JP2003277058A - Zirconia material forming solid solution with scandia and solid oxide type fuel cell provided with the same - Google Patents
Zirconia material forming solid solution with scandia and solid oxide type fuel cell provided with the sameInfo
- Publication number
- JP2003277058A JP2003277058A JP2002075069A JP2002075069A JP2003277058A JP 2003277058 A JP2003277058 A JP 2003277058A JP 2002075069 A JP2002075069 A JP 2002075069A JP 2002075069 A JP2002075069 A JP 2002075069A JP 2003277058 A JP2003277058 A JP 2003277058A
- Authority
- JP
- Japan
- Prior art keywords
- electrolyte membrane
- scandia
- mol
- solid solution
- solid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 title claims abstract description 130
- 239000000446 fuel Substances 0.000 title claims abstract description 103
- 239000006104 solid solution Substances 0.000 title claims abstract description 57
- 239000007787 solid Substances 0.000 title claims abstract description 56
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 title claims abstract description 38
- HJGMWXTVGKLUAQ-UHFFFAOYSA-N oxygen(2-);scandium(3+) Chemical compound [O-2].[O-2].[O-2].[Sc+3].[Sc+3] HJGMWXTVGKLUAQ-UHFFFAOYSA-N 0.000 title claims abstract description 29
- 241000968352 Scandia <hydrozoan> Species 0.000 title claims abstract description 27
- 239000003792 electrolyte Substances 0.000 claims abstract description 145
- 239000002245 particle Substances 0.000 claims abstract description 81
- 238000009826 distribution Methods 0.000 claims abstract description 35
- 239000012528 membrane Substances 0.000 claims description 141
- 238000000034 method Methods 0.000 claims description 19
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 claims description 14
- 239000000243 solution Substances 0.000 abstract description 6
- 238000005245 sintering Methods 0.000 abstract description 3
- 239000007789 gas Substances 0.000 description 54
- 239000000203 mixture Substances 0.000 description 37
- 230000035699 permeability Effects 0.000 description 33
- 238000003411 electrode reaction Methods 0.000 description 24
- 230000000052 comparative effect Effects 0.000 description 22
- 229910052706 scandium Inorganic materials 0.000 description 22
- 238000010248 power generation Methods 0.000 description 20
- -1 oxygen ions Chemical class 0.000 description 19
- 239000001301 oxygen Substances 0.000 description 18
- 229910052760 oxygen Inorganic materials 0.000 description 18
- 239000011324 bead Substances 0.000 description 17
- 239000002002 slurry Substances 0.000 description 15
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 12
- 239000000843 powder Substances 0.000 description 11
- 229910000420 cerium oxide Inorganic materials 0.000 description 10
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 10
- 238000002360 preparation method Methods 0.000 description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 8
- 238000000975 co-precipitation Methods 0.000 description 8
- 229910052712 strontium Inorganic materials 0.000 description 8
- 229910002651 NO3 Inorganic materials 0.000 description 6
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 6
- 229910052772 Samarium Inorganic materials 0.000 description 6
- BQENXCOZCUHKRE-UHFFFAOYSA-N [La+3].[La+3].[O-][Mn]([O-])=O.[O-][Mn]([O-])=O.[O-][Mn]([O-])=O Chemical compound [La+3].[La+3].[O-][Mn]([O-])=O.[O-][Mn]([O-])=O.[O-][Mn]([O-])=O BQENXCOZCUHKRE-UHFFFAOYSA-N 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 238000010298 pulverizing process Methods 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- 239000001856 Ethyl cellulose Substances 0.000 description 5
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 5
- 229910052688 Gadolinium Inorganic materials 0.000 description 5
- 239000011230 binding agent Substances 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- NFYLSJDPENHSBT-UHFFFAOYSA-N chromium(3+);lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Cr+3].[La+3] NFYLSJDPENHSBT-UHFFFAOYSA-N 0.000 description 5
- 239000002270 dispersing agent Substances 0.000 description 5
- 229920001249 ethyl cellulose Polymers 0.000 description 5
- 235000019325 ethyl cellulose Nutrition 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 238000007581 slurry coating method Methods 0.000 description 5
- 238000010304 firing Methods 0.000 description 4
- 239000002737 fuel gas Substances 0.000 description 4
- 238000000227 grinding Methods 0.000 description 4
- 235000006408 oxalic acid Nutrition 0.000 description 4
- 239000002244 precipitate Substances 0.000 description 4
- 229910052727 yttrium Inorganic materials 0.000 description 4
- 229910052726 zirconium Inorganic materials 0.000 description 4
- CUNWUEBNSZSNRX-RKGWDQTMSA-N (2r,3r,4r,5s)-hexane-1,2,3,4,5,6-hexol;(z)-octadec-9-enoic acid Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO.OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO.CCCCCCCC\C=C/CCCCCCCC(O)=O.CCCCCCCC\C=C/CCCCCCCC(O)=O.CCCCCCCC\C=C/CCCCCCCC(O)=O CUNWUEBNSZSNRX-RKGWDQTMSA-N 0.000 description 3
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 229910001882 dioxygen Inorganic materials 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 229960005078 sorbitan sesquioleate Drugs 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 2
- 229910002179 La0.75Sr0.25MnO3 Inorganic materials 0.000 description 2
- 229910052779 Neodymium Inorganic materials 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 229910052777 Praseodymium Inorganic materials 0.000 description 2
- 229910018047 Sc2O Inorganic materials 0.000 description 2
- 239000002518 antifoaming agent Substances 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000013530 defoamer Substances 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 229910052746 lanthanum Inorganic materials 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000003801 milling Methods 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 239000004014 plasticizer Substances 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- UZFMOKQJFYMBGY-UHFFFAOYSA-N 4-hydroxy-TEMPO Chemical compound CC1(C)CC(O)CC(C)(C)N1[O] UZFMOKQJFYMBGY-UHFFFAOYSA-N 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000000498 ball milling Methods 0.000 description 1
- 238000010296 bead milling Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- WMWLMWRWZQELOS-UHFFFAOYSA-N bismuth(III) oxide Inorganic materials O=[Bi]O[Bi]=O WMWLMWRWZQELOS-UHFFFAOYSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000004088 foaming agent Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 229910001404 rare earth metal oxide Inorganic materials 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- HYXGAEYDKFCVMU-UHFFFAOYSA-N scandium(III) oxide Inorganic materials O=[Sc]O[Sc]=O HYXGAEYDKFCVMU-UHFFFAOYSA-N 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 238000005118 spray pyrolysis Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Fuel Cell (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、スカンジアを固溶
させたジルコニア(以下、SSZと示す。)材料に関する。
特には焼結性に優れ、固体酸化物形燃料電池の電解質膜
に好適なSSZ材料に関する。TECHNICAL FIELD The present invention relates to a zirconia (hereinafter referred to as SSZ) material in which scandia is dissolved.
In particular, it relates to an SSZ material having excellent sinterability and suitable for an electrolyte membrane of a solid oxide fuel cell.
【0002】[0002]
【従来の技術】従来、特開平8-31432ではスカンジアの
固溶量が8〜15mol%であるSSZ材料を固体酸化物形燃料
電池の電解質膜に用いることを提案している。2. Description of the Related Art Conventionally, Japanese Patent Laid-Open No. 8-31432 proposes to use an SSZ material having a solid solution amount of scandia of 8 to 15 mol% for an electrolyte membrane of a solid oxide fuel cell.
【0003】特開平7-73891ではSSZ材料をゾルゲル法ま
たは共沈法で作製後、熱処理して粉砕し、平均粒子径が
2〜3μmとなった材料を固体酸化物形燃料電池の電解質
膜に用いることを提案している。In Japanese Patent Laid-Open No. 7-73891, an SSZ material is produced by a sol-gel method or a coprecipitation method, then heat-treated and ground to obtain an average particle diameter of
It has been proposed to use a material having a thickness of 2 to 3 μm for an electrolyte membrane of a solid oxide fuel cell.
【0004】従来、特開平10-158894では固体酸化物形
燃料電池の電解質膜としてイットリアを固溶させたジル
コニア(以下、YSZと示す。)材料を採用していた。Conventionally, in Japanese Patent Laid-Open No. 10-158894, a zirconia (hereinafter referred to as YSZ) material containing yttria as a solid solution has been used as an electrolyte membrane of a solid oxide fuel cell.
【0005】特開平8-31432で示すSSZ材料の組成はイオ
ン導電性が高く、固体酸化物形燃料電池の電解質膜に採
用すれば出力性能が高くなることが期待される。しか
し、当方で前記組成のSSZ材料を使って固体酸化物形燃
料電池の電解質膜を作製したが、ガス透過性の無い電解
質膜を作製することができず、逆に出力性能が低くなっ
てしまった。このガス透過性の無い電解質膜を作製でき
なかった原因は、SSZ材料のBET値、粒度分布が適当でな
いことが考えられた。The composition of the SSZ material disclosed in JP-A-8-31432 has a high ionic conductivity, and it is expected that the output performance will be improved if it is used in the electrolyte membrane of a solid oxide fuel cell. However, although we prepared an electrolyte membrane of a solid oxide fuel cell using the SSZ material of the above composition, we could not produce an electrolyte membrane without gas permeability, and conversely the output performance was low. It was It was considered that the reason why the electrolyte membrane having no gas permeability could not be produced was that the BET value and particle size distribution of the SSZ material were not appropriate.
【0006】特開平7-73891で示す方法で得られたSSZ材
料で固体酸化物形燃料電池の電解質膜を作製したが、ガ
ス透過性の無い電解質膜を作製することができなかっ
た。この原因は、平均粒子径が2〜3μmでは大きすぎる
ためと考えられた。An electrolyte membrane for a solid oxide fuel cell was produced from the SSZ material obtained by the method disclosed in JP-A-7-73891, but an electrolyte membrane having no gas permeability could not be produced. It was considered that this was because the average particle size of 2 to 3 μm was too large.
【0007】ここで示すガス透過性の無い電解質膜と
は、電解質膜の片面とその反対側面の間に圧力差を設
け、その間を透過するガス透過量で評価され、ガス透過
量Q≦2.8×10-9ms-1Pa-1(より好ましくはQ≦2.8×10
-10ms-1Pa-1)であるものを指す。The electrolyte membrane having no gas permeability shown here is provided with a pressure difference between one side and the opposite side of the electrolyte membrane, and is evaluated by the amount of gas permeation that passes through the gap, and the amount of gas permeation Q ≦ 2.8 × 10 −9 ms −1 Pa −1 (more preferably Q ≦ 2.8 × 10
-10 ms -1 Pa -1 ).
【0008】固体酸化物形燃料電池の電解質膜として、
YSZ材料を用いると発電温度が900℃以下になるとYSZ材
料のイオン導電性が低下することによって出力性能が大
きく低下するという問題があった。As an electrolyte membrane of a solid oxide fuel cell,
When the YSZ material is used, when the power generation temperature is 900 ° C. or lower, the ionic conductivity of the YSZ material is reduced, and thus the output performance is significantly reduced.
【0009】本発明の目的は、焼結性に優れ、固体酸化
物形燃料電池の電解質膜として好適なSSZ材料を提供す
ることである。An object of the present invention is to provide an SSZ material which has excellent sinterability and is suitable as an electrolyte membrane of a solid oxide fuel cell.
【0010】[0010]
【課題を解決するための手段】上記目的を達成するため
第1の発明は、BET値が5〜20m2g-1で、かつ粒度分布が
0.1〜2.0μmの範囲からなるSSZ材料を提供する。Means for Solving the Problems To achieve the above object, the first invention is that the BET value is 5 to 20 m 2 g -1 and the particle size distribution is
An SSZ material having a range of 0.1 to 2.0 μm is provided.
【0011】本発明によれば、SSZ材料のBET値および粒
度分布を上記範囲に限定したので焼結性に優れたSSZ材
料を提供することができ、該材料を固体酸化物形燃料電
池の電解質膜に用いれば、ガス透過性の無い電解質膜を
提供することができる。According to the present invention, since the BET value and the particle size distribution of the SSZ material are limited to the above ranges, it is possible to provide the SSZ material having excellent sinterability, and the material is used as an electrolyte for a solid oxide fuel cell. When used as a membrane, an electrolyte membrane having no gas permeability can be provided.
【0012】この理由は、BET値が5 m2g-1より小さいと
焼結性が低くガス透過性の無い電解質膜を作製すること
ができないためで、一方BET値が20m2g-1より大きいと焼
結性が高すぎて電解質膜にクラックを生じるためであ
る。また、粒度分布が0.1〜2.0μmの範囲外が悪いのは
0.1μmより小さい材料が含まれると焼結性が高すぎて電
解質膜にクラックを生じるためで、一方2.0μmより大き
い材料が含まれると焼結性が低下しガス透過性の無い電
解質膜が作製できないことと空気極および燃料極との密
着性が低下し、剥がれを生じる可能性があるためであ
る。[0012] The reason is because the BET value 5 m 2 g -1 smaller than sinterability can not be made gas permeable free electrolyte membrane low, whereas BET value than 20 m 2 g -1 This is because if it is large, the sinterability is too high and cracks occur in the electrolyte membrane. In addition, the reason why the particle size distribution outside the range of 0.1 to 2.0 μm is bad is
This is because if a material smaller than 0.1 μm is included, the sinterability is too high and cracks occur in the electrolyte membrane.On the other hand, if a material larger than 2.0 μm is included, the sinterability decreases and an electrolyte membrane without gas permeability is produced. This is because what cannot be done and the adhesion between the air electrode and the fuel electrode is deteriorated and peeling may occur.
【0013】ここで示すBET値とは、島津製作所製の流
動式比表面積測定装置フローソーブII2300形を用いて測
定して得られた値である。また、粒度分布は島津製作所
製のレーザ回折式粒度分布測定装置SALD-2000を用いて
測定して得られた値である。The BET value shown here is a value obtained by measurement using a flow type specific surface area measuring apparatus Flowsorb II2300 manufactured by Shimadzu Corporation. The particle size distribution is a value obtained by measurement using a laser diffraction particle size distribution analyzer SALD-2000 manufactured by Shimadzu Corporation.
【0014】上記目的を達成するため第2の発明は、SS
Z材料における平均粒子径が0.3〜1.0μmであることを提
供する。In order to achieve the above object, a second invention is SS
It is provided that the average particle diameter in the Z material is 0.3 to 1.0 μm.
【0015】本発明によれば、BET値と粒度分布の他に
平均粒子径も限定したので、焼結性に優れたSSZ材料を
提供することができ、該材料を固体酸化物形燃料電池の
電解質膜に用いれば、ガス透過性の無い電解質膜を提供
することができる。According to the present invention, the average particle size is limited in addition to the BET value and the particle size distribution, so that it is possible to provide an SSZ material having excellent sinterability, which is used for a solid oxide fuel cell. When used as an electrolyte membrane, it is possible to provide an electrolyte membrane having no gas permeability.
【0016】この理由は、0.3μmより小さいと焼結性が
高すぎて電解質膜にクラックを生じる可能性があり、一
方1.0μmより大きいと焼結性が低下し、ガス透過性の無
い電解質膜を作製するのが困難になるためである。平均
粒子径が0.3〜1.0μmの範囲であれば、ガス透過量Q≦
2.8×10-10ms-1Pa-1の電解質膜を作製することができ、
より好ましいためである。The reason for this is that if it is less than 0.3 μm, the sinterability is too high and cracks may occur in the electrolyte membrane, while if it is more than 1.0 μm, the sinterability is lowered and the electrolyte membrane does not have gas permeability. This is because it becomes difficult to fabricate. When the average particle size is in the range of 0.3 to 1.0 μm, the gas permeation amount Q ≦
2.8 × 10 -10 ms -1 Pa -1 electrolyte membrane can be prepared,
This is because it is more preferable.
【0017】ここで示す平均粒子径とは、島津製作所製
のレーザ回折式粒度分布測定装置SALD-2000を用いて測
定して得られるメディアン径(50%径)の値である。The average particle diameter shown here is the value of the median diameter (50% diameter) obtained by measurement using a laser diffraction particle size distribution analyzer SALD-2000 manufactured by Shimadzu Corporation.
【0018】上記目的を達成するために第3の発明は、S
SZ材料におけるスカンジアの固溶量が3〜12mol%である
ことを提供する。In order to achieve the above object, a third invention is S
It is provided that the solid solution amount of scandia in the SZ material is 3 to 12 mol%.
【0019】本発明によれば、さらにスカンジアの固溶
量を限定したのでイオン導電性が高く、焼結性に優れた
SSZ材料を提供することができる。該材料を固体酸化物
形燃料電池の電解質膜に用いれば、ガス透過性の無い電
解質膜を作製することができ、出力性能に優れた固体酸
化物形燃料電池を提供することができる。According to the present invention, since the solid solution amount of scandia is further limited, the ionic conductivity is high and the sinterability is excellent.
SSZ material can be provided. When the material is used for an electrolyte membrane of a solid oxide fuel cell, an electrolyte membrane having no gas permeability can be produced, and a solid oxide fuel cell having excellent output performance can be provided.
【0020】この理由は、スカンジアの固溶量が3 mol
%より少ないとイオン導電性が低下し、ガス透過性の無
い電解質膜が作製できても出力性能は低下するためで、
一方、12 mol%より多いと結晶相が立方晶の他に菱面体
晶相が析出するのでイオン導電性が低下し、ガス透過性
の無い電解質膜が作製できても出力性能が低下するため
である。The reason for this is that the amount of scandia dissolved is 3 mol.
If it is less than%, the ionic conductivity will decrease, and the output performance will decrease even if an electrolyte membrane having no gas permeability can be produced.
On the other hand, when the content is more than 12 mol%, the crystal phase precipitates a rhombohedral phase in addition to the cubic crystal, so the ionic conductivity decreases, and the output performance decreases even if an electrolyte membrane without gas permeability can be produced. is there.
【0021】上記目的を達成するために第4の発明は、S
SZ材料には、さらにCeO2が固溶され、該成分の固溶量が
0.5〜5mol%であることを提供する。In order to achieve the above object, a fourth invention is S
CeO 2 is further solid-dissolved in the SZ material, and the solid solution amount of the component is
It is provided that it is 0.5 to 5 mol%.
【0022】本発明によれば、SSZ材料にさらにCeO2が
0.5〜5mol%固溶されているのでイオン導電性が高く、
焼結性に優れたSSZ材料を提供することができる。該材
料を固体酸化物形燃料電池の電解質膜に用いれば、ガス
透過性の無い電解質膜を作製することができ、出力性能
に優れた固体酸化物形燃料電池を提供することができ
る。According to the invention, the SSZ material is additionally provided with CeO 2.
Since it is 0.5 to 5 mol% solid solution, it has high ionic conductivity,
It is possible to provide an SSZ material having excellent sinterability. When the material is used for an electrolyte membrane of a solid oxide fuel cell, an electrolyte membrane having no gas permeability can be produced, and a solid oxide fuel cell having excellent output performance can be provided.
【0023】この理由は、CeO2の固溶量が0.5 mol%よ
り少ないと固溶量が少ないためCeO2を固溶させないSSZ
材料とイオン導電性の差がないためで、一方、固溶量が
5 mol%より多いと還元雰囲気下で電子導電性を有する
ので、固体酸化物形燃料電池の電解質膜として用いると
出力性能が低下するためである。[0023] This is because the solid solution amount of CeO 2 is not a solid solution of CeO 2 for a small amount of solid solution is less than 0.5 mol% SSZ
Because there is no difference between the material and ionic conductivity, on the other hand, the amount of solid solution is
This is because if it is more than 5 mol%, it has electronic conductivity in a reducing atmosphere, and if it is used as an electrolyte membrane of a solid oxide fuel cell, the output performance is reduced.
【0024】上記目的を達成するために第5の発明は、
SSZ材料には、さらにBi2O3とCeO2が固溶され、前記Bi2O
3とCeO2の固溶量の合計が0.5〜5mol%であることを提供
する。In order to achieve the above object, a fifth invention is
The SSZ material is further solid solution Bi 2 O 3 and CeO 2, the Bi 2 O
It is provided that the total solid solution amount of 3 and CeO 2 is 0.5 to 5 mol%.
【0025】本発明によれば、SSZ材料にBi2O3とCeO2の
合計が0.5〜5mol%固溶されているのでイオン導電性が
高く、焼結性に優れたSSZ材料を提供することができ
る。該材料を固体酸化物形燃料電池の電解質膜に用いれ
ば、ガス透過性の無い電解質膜を低温でも作製すること
ができるので出力性能に優れた固体酸化物形燃料電池を
提供することができる。According to the present invention, the SSZ material contains 0.5 to 5 mol% of Bi 2 O 3 and CeO 2 as a solid solution, so that the SSZ material has high ionic conductivity and excellent sinterability. You can When the material is used for an electrolyte membrane of a solid oxide fuel cell, an electrolyte membrane having no gas permeability can be produced even at a low temperature, so that a solid oxide fuel cell having excellent output performance can be provided.
【0026】Bi2O3を固溶させることが好ましい理由
は、Bi2O3は融点が820℃程度と低く、かつ沸点が1900℃
程度と高いため、SSZ材料の焼結を低温で行うことがで
きるだけでなく、固体酸化物形燃料電池の空気極や燃料
極の焼成温度(1350〜1500℃程度)でもガス透過性の無い
電解質膜を容易に作製することができるためである。[0026] Bi 2 O 3 reasons be preferable to solid solution is, Bi 2 O 3 has a melting point as low as about 820 ° C., and a boiling point of 1900 ° C.
Because of its high temperature, it is not only possible to sinter the SSZ material at low temperature, but also an electrolyte membrane that does not have gas permeability even at the firing temperature (1350 to 1500 ° C) of the air electrode and fuel electrode of the solid oxide fuel cell. This is because it can be easily manufactured.
【0027】固溶量の合計が0.5 mol%未満であると固
溶量が少なすぎてBi2O3とCeO2を固溶させないSSZ材料と
比較して、イオン導電性および焼結性の向上の効果が無
いためで、一方、5 mol%より固溶量が多いと焼結性が
高くなりすぎて電解質膜にクラックを生じたり、還元雰
囲気下で電子導電性を有し固体酸化物形燃料電池の電解
質膜として用いると出力性能が低下したりするためであ
る。When the total amount of solid solution is less than 0.5 mol%, the ionic conductivity and sinterability are improved as compared with the SSZ material in which the amount of solid solution is too small to dissolve Bi 2 O 3 and CeO 2 in solid solution. On the other hand, if the solid solution amount is more than 5 mol%, the sinterability becomes too high and cracks occur in the electrolyte membrane, and the solid oxide fuel has electronic conductivity in a reducing atmosphere. This is because when it is used as an electrolyte membrane of a battery, output performance may be reduced.
【0028】なお、Bi2O3については融点が820℃程度と
低いが、1度高温で焼成を行えばBi2O 3はSSZの結晶層に
固溶され、安定化するため固体電解質型燃料電池の発電
温度において拡散することはないので、問題はない。Note that Bi2O3About melting point is about 820 ℃
It is low, but if fired at a high temperature of 1 degree, Bi2O 3On the crystal layer of SSZ
Power generation of solid oxide fuel cell because it is solid-solved and stabilized
There is no problem because it does not diffuse at temperature.
【0029】上記目的を達成するために第6の発明は、
SSZ 材料は、800〜1000℃で熱処理し、粉砕してなるこ
とを提供している。In order to achieve the above object, a sixth invention is
The SSZ material is provided by being heat-treated at 800-1000 ° C and crushed.
【0030】本発明によれば、800〜1000℃で熱処理
し、粉砕してなるので焼結性に優れたSSZ材料を提供す
ることができ、該材料を固体酸化物形燃料電池の電解質
膜に用いれば、ガス透過性の無い電解質膜を提供するこ
とができる。According to the present invention, the SSZ material excellent in sinterability can be provided because it is heat-treated at 800 to 1000 ° C. and pulverized, and the material can be used as an electrolyte membrane of a solid oxide fuel cell. If used, an electrolyte membrane having no gas permeability can be provided.
【0031】この理由は、800℃より低い温度での熱処
理では1次粒子の粒径が小さすぎるため該材料を電解質
膜に用いた場合電解質膜にクラックを生じるためで、一
方1000℃より高い熱処理をしたSSZ材料では、焼結性が
低すぎて、さらに粉砕して粒子を細かくしても焼結性が
向上せず、ガス透過性の無い電解質膜を作製することが
できないためである。The reason for this is that the heat treatment at a temperature lower than 800 ° C. causes a crack in the electrolyte membrane when the material is used for the electrolyte membrane because the particle size of the primary particles is too small. On the other hand, a heat treatment higher than 1000 ° C. This is because the sinterability of SSZ material is too low and the sinterability is not improved even if the particles are further crushed to make the particles finer, and an electrolyte membrane having no gas permeability cannot be produced.
【0032】上記目的を達成するために第7の発明は、
電解質膜と、該電解質膜の片面に燃料極と、前記電解質
膜の反対面に設けた空気極と、からなる単電池と、前記
空気極または燃料極表面に接続され、電気的接続の役割
を有するインターコネクターと、からなる固体酸化物形
燃料電池であって、前記電解質膜が第1の発明〜第6の発
明のいずれかに記載のSSZ材料からなることを提供す
る。In order to achieve the above object, a seventh invention is:
A cell comprising an electrolyte membrane, a fuel electrode on one surface of the electrolyte membrane, and an air electrode provided on the opposite surface of the electrolyte membrane, and a cell connected to the air electrode or the surface of the fuel electrode and serving as an electrical connection. A solid oxide fuel cell comprising the interconnector having the above, wherein the electrolyte membrane is made of the SSZ material according to any one of the first invention to the sixth invention.
【0033】本発明によれば、第1の発明〜第6の発明
のいずれかのSSZ材料を固体酸化物形燃料電池の電解質
膜に採用したので、従来のYSZ材料を電解質膜に採用し
ていた固体酸化物形燃料電池より高い出力性能を有する
固体酸化物形燃料電池を提供することができる。According to the present invention, since the SSZ material according to any one of the first to sixth inventions is used for the electrolyte membrane of the solid oxide fuel cell, the conventional YSZ material is used for the electrolyte membrane. It is possible to provide a solid oxide fuel cell having higher output performance than the solid oxide fuel cell.
【0034】この理由は、YSZ材料よりイオン導電性が
高いSSZ材料でガス透過性の無い電解質膜を作製するこ
とができるため、電解質膜での内部抵抗が小さくなり、
YSZ材料を電解質膜に採用していた固体酸化物形燃料電
池より高い出力性能を得ることができるためである。The reason for this is that an SSZ material having a higher ionic conductivity than the YSZ material can be used to form an electrolyte membrane having no gas permeability, so that the internal resistance of the electrolyte membrane becomes small.
This is because it is possible to obtain higher output performance than the solid oxide fuel cell in which the YSZ material is used for the electrolyte membrane.
【0035】[0035]
【発明の実施形態】本発明における実施形態として固体
酸化物形燃料電池を例にとり説明する。図1は、円筒タ
イプの固体酸化物形燃料電池の断面を示す図である。円
筒状の空気極支持体1上に帯状のインターコネクター
2、電解質膜3、さらに電解質膜3の上にインターコネ
クター2と接触しないように燃料極膜4が構成されてい
る。空気極支持体の内側にAirを流し、外側に燃料を流
すとAir中の酸素が空気極と電解質膜の界面で酸素イオ
ンに変わり、この酸素イオンが電解質を通って燃料極に
達する。そして、燃料ガスと酸素イオンが反応して水お
よび二酸化炭素になる。これらの反応は(1),(2)式で示
される。燃料極4とインターコネクター2を接続するこ
とによって外部へ電気を取り出すことができる。
H2+O2-→H2O+2e- … (1)
CO+O2-→CO2+2e- … (2)DETAILED DESCRIPTION OF THE INVENTION A solid oxide fuel cell will be described as an embodiment of the present invention. FIG. 1 is a view showing a cross section of a cylindrical solid oxide fuel cell. A strip-shaped interconnector 2 and an electrolyte membrane 3 are provided on a cylindrical air electrode support 1, and a fuel electrode membrane 4 is formed on the electrolyte membrane 3 so as not to come into contact with the interconnector 2. When Air is flown inside the air electrode support and fuel is flown outside, oxygen in Air is converted into oxygen ions at the interface between the air electrode and the electrolyte membrane, and these oxygen ions reach the fuel electrode through the electrolyte. Then, the fuel gas and oxygen ions react to form water and carbon dioxide. These reactions are shown by the equations (1) and (2). Electricity can be taken out by connecting the fuel electrode 4 and the interconnector 2. H 2 + O 2- → H 2 O + 2e - ... (1) CO + O 2- → CO 2 + 2e - ... (2)
【0036】図2は、空気極1と電解質膜3の間に空気側
電極反応層1aを、そして電解質膜3と燃料極4の間に燃料
側電極反応層4aを設けたタイプについて示した断面図で
ある。空気側電極反応層1aは空気電極からの酸素ガスと
電子から酸素イオンが生成する(3)式の反応を効率良く
行うために設けられた層であり、この空気側電極反応層
1aで生成した酸素イオンが電解質膜3を通って燃料極側
に移動する。そして、燃料側電極反応層4aで(1),(2)式
に示す反応が行われ、燃料極4とインターコネクター2
を接続することで外部へ電気を取り出すことができる。
このため特に700〜900℃程度の低温で高い出力性能を得
るには空気側電極反応層、電解質膜および燃料側電極反
応層が重要となる。
1/2O2+2e-→O2- … (3)FIG. 2 is a cross section showing a type in which an air side electrode reaction layer 1a is provided between the air electrode 1 and the electrolyte membrane 3 and a fuel side electrode reaction layer 4a is provided between the electrolyte membrane 3 and the fuel electrode 4. It is a figure. The air side electrode reaction layer 1a is a layer provided in order to efficiently perform the reaction of formula (3) in which oxygen ions are generated from oxygen gas and electrons from the air electrode.
Oxygen ions generated in 1a move to the fuel electrode side through the electrolyte membrane 3. Then, the reactions shown in the equations (1) and (2) are performed in the fuel side electrode reaction layer 4a, and the fuel electrode 4 and the interconnector 2
Electricity can be taken out by connecting with.
Therefore, the air-side electrode reaction layer, the electrolyte membrane, and the fuel-side electrode reaction layer are important in order to obtain high output performance especially at a low temperature of about 700 to 900 ° C. 1 / 2O 2 + 2e - → O 2- ... (3)
【0037】本発明における電解質膜は、固体酸化物形
燃料電池の発電温度の空気雰囲気および燃料雰囲気にお
いて、酸素イオン導電性が高いこと、ガス透過性が無い
こと、電子導電性が無いことが要求される。この観点か
らSSZ材料からなる電解質膜が好ましい。The electrolyte membrane in the present invention is required to have high oxygen ion conductivity, no gas permeability, and no electronic conductivity in the air atmosphere and the fuel atmosphere at the power generation temperature of the solid oxide fuel cell. To be done. From this viewpoint, an electrolyte membrane made of SSZ material is preferable.
【0038】SSZ材料は、従来用いられていたYSZ材料と
比較して焼結性が低いことからガス透過性の無い電解質
膜を作製するにはSSZ材料のBET値、粒度分布および平均
粒子径がより適正なものでなくてはならない。この観点
からBET値が5〜20m2g-1で、かつ粒度分布が0.1〜2.0μm
が好ましい。さらに平均粒子径が0.3〜1.0μmと限定さ
れると、ガス透過量Q≦2.8×10-10ms-1Pa-1の電解質膜
を作製することができ、より好ましい。Since the SSZ material has low sinterability as compared with the conventionally used YSZ material, the BET value, particle size distribution and average particle diameter of the SSZ material are required to prepare an electrolyte membrane having no gas permeability. It has to be more appropriate. From this viewpoint, the BET value is 5 to 20 m 2 g -1 , and the particle size distribution is 0.1 to 2.0 μm.
Is preferred. Further, when the average particle diameter is limited to 0.3 to 1.0 μm, an electrolyte membrane having a gas permeation amount Q ≦ 2.8 × 10 −10 ms −1 Pa −1 can be produced, which is more preferable.
【0039】SSZ材料において、酸素イオン導電性が高
く、電子導電性がないという観点からはスカンジアの固
溶量は3〜12mol%が好ましく、酸素イオン導電性が高い
という観点からは8〜12mol%がより好ましい。In the SSZ material, the solid solution amount of scandia is preferably 3 to 12 mol% from the viewpoint of high oxygen ion conductivity and no electronic conductivity, and 8 to 12 mol% from the viewpoint of high oxygen ion conductivity. Is more preferable.
【0040】本発明においては、SSZ材料の酸素イオン
導電性を向上させるためにCeO2を0.5〜5mol%固溶させ
ることが好ましいとしているが、CeO2の他に原子番号39
と57〜71の希土類酸化物を固溶させたものであっても良
い。固溶方法としては、Sm2O3、Gd2O3などを単独で固溶
させたものでも良いし、Sm2O3を固溶させたCeO2のよう
な形で固溶させても良いし、さらにはSm2O3とGd2O3の2
種類を固溶させるなど複数の酸化物を固溶させたもので
あっても良い。前記の例はいずれも酸素イオン導電性を
向上させることができるので固体酸化物形燃料電池の電
解質膜材料として好ましい。In the present invention, it is preferable that 0.5 to 5 mol% of CeO 2 be solid-dissolved in order to improve the oxygen ion conductivity of the SSZ material. However, in addition to CeO 2 , atomic number 39
And a rare earth oxide of 57 to 71 may be solid-dissolved. As a solid solution method, Sm 2 O 3 , Gd 2 O 3 or the like may be solid solution alone, or Sm 2 O 3 may be solid solution in the form of CeO 2. Furthermore, 2 of Sm 2 O 3 and Gd 2 O 3
It may be a solid solution of a plurality of oxides such as a solid solution of various kinds. All of the above examples can improve the oxygen ion conductivity, and are therefore preferable as the electrolyte membrane material of the solid oxide fuel cell.
【0041】本発明におけるSSZ材料には焼結性を向上
させるために、焼結助剤を加えたものであったも良い。
焼結助剤としては、Bi2O3を固溶させたり、Al2O3、SiO2
などを添加させたものであっても良い。The SSZ material in the present invention may contain a sintering aid in order to improve the sinterability.
As a sintering aid, Bi 2 O 3 can be dissolved in solid solution, Al 2 O 3 , SiO 2
Etc. may be added.
【0042】本発明におけるSSZ材料は、800〜1000℃で
熱処理し、粉砕してなることが好ましいとしているがこ
の際の粉砕方法としては、BET値が5〜20m2g-1で、かつ
粒度分布が0.1〜2.0μmとなれば良く特に限定はない。
ビーズミルによる粉砕、ボールミルによる粉砕、遊星ミ
ルによる粉砕などが挙げられる。短時間で作製できると
いう観点からはビーズミルによる粉砕が好ましい。The SSZ material in the present invention is preferably heat-treated at 800 to 1000 ° C. and pulverized. As a pulverization method at this time, the BET value is 5 to 20 m 2 g −1 and the particle size is There is no particular limitation as long as the distribution is 0.1 to 2.0 μm.
Examples thereof include bead milling, ball milling, and planetary milling. Milling with a bead mill is preferable from the viewpoint that it can be produced in a short time.
【0043】本発明におけるSSZ材料の出発原料の合成
法については、スカンジアが均一に固溶させる方法であ
れば良く特に限定はない。共沈法などを挙げることがで
きる。The method for synthesizing the starting material for the SSZ material in the present invention is not particularly limited as long as it is a method in which scandia is uniformly dissolved. The coprecipitation method and the like can be mentioned.
【0044】本発明における燃料側電極反応層の役割
は、固体酸化物形燃料電池の発電温度の燃料雰囲気下で
(1),(2)式の反応を効率良く行うことである。このため
には、燃料側電極反応層としては酸素イオン導電性が高
いこと、水素および一酸化炭素ガスのガス透過性が高い
こと、電子導電性を有すること、熱膨張係数がSSZ材料
の値と近いことが要求される。これらの要求特性を満た
す材料として、NiOとSSZが均一に混合された層(以下、N
iO/SSZと示す)、NiOとYSZが均一に混合された層(以下、
NiO/YSZと示す)およびNiOとセリウム酸化物が均一に混
合された層(以下、NiO/セリウム酸化物と示す)などが好
ましい。NiOは固体電解質型燃料電池の運転雰囲気下で
還元されてNiとなり、該層はNi/SSZ、Ni/YSZおよびNi/
セリウム酸化物となる。The role of the fuel-side electrode reaction layer in the present invention is to function under the fuel atmosphere at the power generation temperature of the solid oxide fuel cell.
It is to carry out the reaction of the equations (1) and (2) efficiently. For this purpose, the fuel-side electrode reaction layer has a high oxygen ion conductivity, a high gas permeability of hydrogen and carbon monoxide gas, an electron conductivity, and a thermal expansion coefficient of SSZ material value. It is required to be close. As a material that satisfies these required characteristics, a layer in which NiO and SSZ are uniformly mixed (hereinafter, N
iO / SSZ), a layer in which NiO and YSZ are uniformly mixed (hereinafter,
NiO / YSZ) and a layer in which NiO and cerium oxide are uniformly mixed (hereinafter referred to as NiO / cerium oxide) are preferable. NiO is reduced to Ni under the operating atmosphere of a solid oxide fuel cell, and the layers are Ni / SSZ, Ni / YSZ and Ni /
Becomes cerium oxide.
【0045】燃料側電極反応層においては、酸素イオン
導電性と電子導電性を有することからNiOの比率が10〜5
0重量部であることが好ましい。また、NiOの比率を電解
質膜から燃料極側へ10、30、50重量部のように傾斜させ
た構造であっても良い。電解質膜と燃料極の熱膨張差を
緩和するという観点からは傾斜させた方が好ましい。In the fuel-side electrode reaction layer, since it has oxygen ion conductivity and electron conductivity, the ratio of NiO is 10-5.
It is preferably 0 part by weight. Further, the structure may be such that the ratio of NiO is inclined from the electrolyte membrane toward the fuel electrode side such as 10, 30 and 50 parts by weight. From the viewpoint of reducing the difference in thermal expansion between the electrolyte membrane and the fuel electrode, it is preferable to incline.
【0046】前記セリウム酸化物にはSm,Gd,Yなどを含
んでいても良く、酸素イオン導電性が高いという観点か
ら(CeO2)1-X(A2O3)X(但し、A=Sm,Gd,Yのいずれか一種、
0.05≦X≦0.15)で表されるものがより好ましい。The cerium oxide may contain Sm, Gd, Y and the like, and from the viewpoint of high oxygen ion conductivity, (CeO 2 ) 1-X (A 2 O 3 ) X (where A = Any one of Sm, Gd, Y,
The one represented by 0.05 ≦ X ≦ 0.15) is more preferable.
【0047】本発明における燃料極は固体酸化物形燃料
電池の発電温度の燃料ガス雰囲気において電子導電性が
高いこと、燃料ガス透過性が高いこと、耐久性に優れる
こと、熱膨張係数がSSZ材料の値と近いことが要求され
る。この観点からNiO/YSZ、NiO/SSZ、NiO/セリウム酸化
物およびNiOとCaを固溶させたジルコニアが均一に混合
された層(以下、NiO/CSZと示す)などが好ましい。な
お、NiOは固体酸化物形燃料電池の運転雰囲気下で還元
されてNiとなり、該層はNi/YSZ、Ni/SSZ、Ni/セリウム
酸化物およびNi/CSZとなる。The fuel electrode of the present invention has a high electron conductivity, a high fuel gas permeability, an excellent durability, and a thermal expansion coefficient of SSZ material in a fuel gas atmosphere at the power generation temperature of a solid oxide fuel cell. It is required to be close to the value of. From this viewpoint, a layer (hereinafter referred to as NiO / CSZ) in which NiO / YSZ, NiO / SSZ, NiO / cerium oxide, and zirconia in which NiO and Ca are solid-dissolved is uniformly mixed is preferable. NiO is reduced to Ni under the operating atmosphere of the solid oxide fuel cell, and the layers become Ni / YSZ, Ni / SSZ, Ni / cerium oxide and Ni / CSZ.
【0048】燃料極のおけるYSZ、SSZ、セリウム酸化物
およびCSZの役割は固体酸化物形燃料電池の燃料ガス雰
囲気において安定であり、Niの凝集を抑制できるもので
あれば良いので、同程度の性能であればコストが安価な
方が好ましい。この観点からYSZ、CSZが好ましい。The roles of YSZ, SSZ, cerium oxide and CSZ in the fuel electrode are stable as long as they are stable in the fuel gas atmosphere of the solid oxide fuel cell and can suppress Ni agglomeration. If it is performance, it is preferable that the cost is low. From this viewpoint, YSZ and CSZ are preferable.
【0049】電子導電性が高いという観点から燃料極に
おけるNiOの重量比率は50〜90重量部であることが好ま
しく、また、ガス透過性が高いという観点からは燃料極
に用いる原料粉末の平均粒子径は0.5〜10μmであること
が好ましい。この理由は、NiOの重量比率が50重量部よ
り小さいと燃料極の電子導電性が低くなるためで、90重
量部より大きいと固体酸化物形燃料電池の運転雰囲気下
で還元されたNiが凝集するため、耐久性が低下するため
である。一方、0.5μmより小さい原料粉末から燃料極を
作製するとガス透過性が高い燃料電極を作製できないた
めで、一方、10μmより大きい原料粉末から燃料極を作
製すると燃料極の気孔率が大きくなりすぎて電子導電性
が高い燃料極が得られないためである。From the viewpoint of high electronic conductivity, the weight ratio of NiO in the fuel electrode is preferably 50 to 90 parts by weight, and from the viewpoint of high gas permeability, the average particle size of the raw material powder used for the fuel electrode is high. The diameter is preferably 0.5 to 10 μm. The reason for this is that if the weight ratio of NiO is less than 50 parts by weight, the electronic conductivity of the fuel electrode becomes low, and if it is more than 90 parts by weight, Ni reduced in the operating atmosphere of the solid oxide fuel cell aggregates. Therefore, the durability is reduced. On the other hand, if the fuel electrode is made from a raw material powder smaller than 0.5 μm, a fuel electrode with high gas permeability cannot be made.On the other hand, if the fuel electrode is made from a raw material powder larger than 10 μm, the porosity of the fuel electrode becomes too large. This is because a fuel electrode having high electronic conductivity cannot be obtained.
【0050】本発明における空気側電極反応層の役割
は、固体酸化物形燃料電池の発電温度の空気雰囲気下で
(3)式の反応を効率良く行うことである。このために
は、空気側電極反応層としては酸素イオン導電性が高い
こと、酸素ガス透過性が高いこと、電子導電性を有する
こと、熱膨張係数がSSZ材料の値と近いことが要求され
る。これらの要求特性を満たす材料として、CaまたはSr
を固溶させたランタンマンガナイトとSSZが均一に混合
された層(以下、LaBMnO3/SSZ(但し、B=CaまたはSrのい
ずれか)と示す。)、CaまたはSrを固溶させたランタンマ
ンガナイトとYSZが均一に混合された層(LaBMnO3/YSZと
示す。)、CaまたはSrを固溶させたランタンマンガナイ
トとセリウム酸化物が均一に混合された層(以下、LaBMn
O3/セリウム酸化物と示す。)などが挙げられる。The role of the air-side electrode reaction layer in the present invention is to function under the air atmosphere at the power generation temperature of the solid oxide fuel cell.
Efficiently performing the reaction of formula (3). For this purpose, it is required that the air-side electrode reaction layer has high oxygen ion conductivity, high oxygen gas permeability, electron conductivity, and a thermal expansion coefficient close to that of the SSZ material. . As a material that meets these required characteristics, Ca or Sr
Is a solid solution of lanthanum Manganite and SSZ are uniformly mixed (hereinafter referred to as LaBMnO 3 / SSZ (where B = Ca or Sr)), and lanthanum in which Ca or Sr is dissolved. A layer in which manganite and YSZ are uniformly mixed (referred to as LaBMnO 3 / YSZ), and a layer in which lanthanum manganite in which Ca or Sr is dissolved as a solid solution and cerium oxide are uniformly mixed (hereinafter referred to as LaBMn
Indicated as O 3 / cerium oxide. ) And the like.
【0051】また、空気側電極反応層におけるCaまたは
Srを固溶させたランタンマンガナイトは、電子導電性の
向上および酸素イオン導電性の向上などのためにCe,Sm,
Pr,Nd,Co,Fe,Niなどを固溶させたものであっても良い。Also, in the air side electrode reaction layer, Ca or
Lanthanum manganite in which Sr is dissolved is Ce, Sm, for improving electronic conductivity and oxygen ion conductivity.
It may be a solid solution of Pr, Nd, Co, Fe, Ni or the like.
【0052】前記セリウム酸化物にはSm,Gd,Yなどを含
んでいても良く、酸素イオン導電性が高いという観点か
ら(CeO2)1-X(A2O3)X(但し、A=Sm,Gd,Yのいずれか一種、
0.05≦X≦0.15)で表されるものがより好ましい。The cerium oxide may contain Sm, Gd, Y and the like, and from the viewpoint of high oxygen ion conductivity, (CeO 2 ) 1-X (A 2 O 3 ) X (where A = Any one of Sm, Gd, Y,
The one represented by 0.05 ≦ X ≦ 0.15) is more preferable.
【0053】本発明における空気極は固体酸化物形燃料
電池の空気雰囲気において電子導電性が高いこと、酸素
ガス透過性が高いこと、熱膨張係数がSSZ材料の値と近
いことが要求される。この観点からはCaまたはSrを固溶
させたランタンマンガナイトからなる層が好ましい。The air electrode of the present invention is required to have high electronic conductivity, high oxygen gas permeability, and thermal expansion coefficient close to that of the SSZ material in the air atmosphere of the solid oxide fuel cell. From this viewpoint, a layer made of lanthanum manganite in which Ca or Sr is dissolved is preferable.
【0054】本発明におけるCaまたはSrを固溶させたラ
ンタンマンガナイト層からなる空気極は、電子導電性の
向上などの理由からCe,Sm,Gd,Pr,Nd,Co,Fe,Niなどを固
溶させたものであっても良い。The air electrode comprising the lanthanum manganite layer in which Ca or Sr is solid-solved in the present invention contains Ce, Sm, Gd, Pr, Nd, Co, Fe, Ni, etc. for reasons such as improvement of electronic conductivity. It may be a solid solution.
【0055】本発明におけるインターコネクターは固体
酸化物形燃料電池の空気雰囲気および燃料雰囲気におい
て電子導電性が高いこと、ガス透過性が無いこと、酸素
イオン導電性が無いこと、熱膨張係数がSSZ材料の値と
近いことが要求される。この観点からランタンクロマイ
トが最も好ましい。The interconnector of the present invention has high electronic conductivity in the air atmosphere and fuel atmosphere of the solid oxide fuel cell, no gas permeability, no oxygen ion conductivity, and a thermal expansion coefficient of SSZ material. It is required to be close to the value of. From this viewpoint, lanthanum chromite is most preferable.
【0056】ランタンクロマイトは難焼結性であるため
固体酸化物形燃料電池の焼成温度(1500℃以下)でガス透
過性の無いインターコネクターを作製することが難し
い。焼結性を向上させるためにCa,Sr,Mgを固溶させて用
いていることが好ましい。焼結性が最も高く、固体電解
質型燃料電池の他材料と同程度の温度でガス透過性の無
い膜を作製できるという点からCaを固溶させたものが最
も好ましい。Since lanthanum chromite is difficult to sinter, it is difficult to manufacture an interconnector having no gas permeability at the firing temperature (1500 ° C. or lower) of a solid oxide fuel cell. In order to improve the sinterability, it is preferable to use Ca, Sr, and Mg as a solid solution. A solid solution of Ca is most preferable because it has the highest sinterability and can form a membrane having no gas permeability at a temperature similar to that of other materials of the solid oxide fuel cell.
【0057】インターコネクターに用いられるCaを固溶
させたランタンクロマイトの固溶量については特に限定
はない。Ca固溶量が多いほど電子導電性が高くなるが、
材料の安定性が低下することからランタンクロマイト10
0モル%に対して10〜40モル%程度が好ましい。There is no particular limitation on the amount of lanthanum chromite in which Ca is used as a solid solution for the interconnector. The higher the solid solution amount of Ca, the higher the electronic conductivity, but
Lanthanum chromite 10 due to reduced material stability
About 10 to 40 mol% is preferable with respect to 0 mol%.
【0058】本発明における固体酸化物形燃料電池の形
状については特に限定はなく、平板型、円筒型いずれで
あっても良い。The shape of the solid oxide fuel cell in the present invention is not particularly limited, and may be a flat plate type or a cylindrical type.
【0059】[0059]
【実施例】(実施例1)図1に示す円筒型固体酸化物形燃
料電池を用いた。すなわち、円筒状の空気極支持体1上
に帯状のインターコネクター2、電解質膜3、さらに電
解質膜の上にインターコネクターと接触しないように燃
料極4から構成されたものを用いた。空気極と電解質膜
および燃料極については、図2に示すように空気極と電
解質膜の間に空気側電極反応層1aを設け、電解質膜と燃
料極の間に燃料側電極反応層4aからなる構成のものを用
いた。Example 1 A cylindrical solid oxide fuel cell shown in FIG. 1 was used. That is, a strip-shaped interconnector 2, an electrolyte membrane 3, and a fuel electrode 4 on the electrolyte membrane were used on the cylindrical air electrode support 1 so as not to come into contact with the interconnector. As for the air electrode, the electrolyte membrane and the fuel electrode, as shown in FIG. 2, the air side electrode reaction layer 1a is provided between the air electrode and the electrolyte membrane, and the fuel side electrode reaction layer 4a is provided between the electrolyte membrane and the fuel electrode. The thing of the structure was used.
【0060】(1)空気極の作製
空気極の組成は、La0.75Sr0.25MnO3組成で表されるSrを
固溶させたランタンマンガナイトで、共沈法で作製後熱
処理して空気極原料粉末を得た。平均粒子径は、30μm
であった。押し出し成形法によって円筒状成形体を作製
した。さらに、1500℃で焼成を行い、空気極支持体とし
た。(1) Preparation of air electrode The composition of the air electrode was lanthanum manganite in which Sr represented by La 0.75 Sr 0.25 MnO 3 composition was dissolved, and the air electrode material was prepared by coprecipitation and then heat-treated. A powder was obtained. Average particle size is 30 μm
Met. A cylindrical molded body was produced by an extrusion molding method. Further, it was fired at 1500 ° C. to obtain an air electrode support.
【0061】(2)空気側電極反応層の作製
空気側電極反応層の組成としては、La0.75Sr0.25MnO3/
90 mol%ZrO2-10mol%Sc 2O3であり、その重量比率は50/
50からなるものを用いた。La,Sr,Mn,ZrおよびScの各々
の硝酸塩水溶液を用いて、前記組成になるように調合し
た後、シュウ酸を加え沈殿させた。該沈殿物をさらに熱
処理し、粒径を制御した後原料粉末を得た。平均粒子径
は2μmであった。該電極反応層粉末40重量部を溶媒(エ
タノール)100重量部、バインダー(エチルセルロース)
2重量部、分散剤(ポリオキシエタレンアルキルソン酸エ
ステル)1重量部、消泡剤(ソルビタンセスキオレート)1
重量部とを混合した後、十分攪拌してスラリーを調整し
た。このスラリー粘度は100mPasであった。前記スラリ
ーを、空気極支持体(外径15mm、肉厚1.5mm、有効長
400mm)上にスラリーコート法で成膜した後に1400℃で
焼結させた。厚さは20μmであった。(2) Preparation of air side electrode reaction layer
The composition of the air-side electrode reaction layer is La0.75Sr0.25MnO3/
90 mol% ZrO2-10mol% Sc 2O3And the weight ratio is 50 /
The one consisting of 50 was used. Each of La, Sr, Mn, Zr and Sc
Using an aqueous nitrate solution of
After that, oxalic acid was added to cause precipitation. Heat the precipitate further
After processing and controlling the particle size, a raw material powder was obtained. Average particle size
Was 2 μm. 40 parts by weight of the powder of the electrode reaction layer was mixed with a solvent (
(Tanol) 100 parts by weight, binder (ethyl cellulose)
2 parts by weight, dispersant (polyoxyethalene alkylsonate
Stell) 1 part by weight, defoamer (sorbitan sesquioleate) 1
After mixing with parts by weight, agitate well to adjust the slurry.
It was The viscosity of this slurry was 100 mPas. The slurry
The air electrode support (outer diameter 15 mm, wall thickness 1.5 mm, effective length
(400 mm) at 1400 ° C after film formation by slurry coating method
Sintered. The thickness was 20 μm.
【0062】(3)電解質膜用材料の作製
電解質膜の組成は、90 mol%ZrO2-10mol%Sc2O3とし
た。ZrO2 を100℃で加熱した3N以上の濃硝酸に溶解さ
せ、蒸留水で希釈した後、硝酸塩水溶液を得た。Sc2O 3
についても同様の方法から硝酸塩水溶液を得た。各々の
硝酸塩水溶液を前記組成になるように調合し、80℃に温
められたシュウ酸水溶液を加え、共沈させた。共沈して
得られた液を200℃程度で乾燥し、500℃で熱分解、さら
に900℃で10時間熱処理をした。さらにビーズミルで粉
砕して電解質膜用材料を得た。電解質膜用材料のBET値
は10 m2g-1、粒度分布は0.3〜1.1μmおよび平均粒子径
は0.5μmであった。(3) Preparation of material for electrolyte membrane
The composition of the electrolyte membrane is 90 mol% ZrO2-10mol% Sc2O3age
It was ZrO2 Is dissolved in 3N or more concentrated nitric acid heated at 100 ℃.
And diluted with distilled water to obtain a nitrate aqueous solution. Sc2O 3
An aqueous nitrate solution was obtained by the same method. Each
Prepare an aqueous nitrate solution to the above composition and warm it to 80 ° C.
The aqueous oxalic acid solution was added and coprecipitated. Coprecipitate
The obtained liquid is dried at about 200 ° C, pyrolyzed at 500 ° C, and further
It was heat-treated at 900 ℃ for 10 hours. Powder with a bead mill
The material was crushed to obtain an electrolyte membrane material. BET value of electrolyte membrane material
Is 10 m2g-1, Particle size distribution is 0.3 ~ 1.1μm and average particle size
Was 0.5 μm.
【0063】(4)電解質膜スラリーの作製
該材料40重量部を溶媒(エタノール)100重量部、バイン
ダー(エチルセルロース)2重量部、分散剤(ポリオキシ
エタレンアルキルソン酸エステル)1重量部、消泡剤(ソ
ルビタンセスキオレート)1重量部とを混合した後、十
分攪拌してスラリーを調整した。このスラリー粘度は14
0mPasであった。(4) Preparation of Electrolyte Membrane Slurry 40 parts by weight of the material is used as 100 parts by weight of solvent (ethanol), 2 parts by weight of binder (ethyl cellulose), 1 part by weight of dispersant (polyoxyetalene alkylsonate), and After mixing with 1 part by weight of a foaming agent (sorbitan sesquioleate), the mixture was thoroughly stirred to prepare a slurry. This slurry viscosity is 14
It was 0 mPas.
【0064】(5)電解質膜の作製
空気側電極反応層上に、スラリーコート法で成膜し、14
20℃で焼成した。得られた電解質膜の厚さは、30μmで
あった。なお、後工程でインターコネクターを成膜する
部分についてはマスキングを施し、膜が塗布されないよ
うにしておいた。(5) Preparation of Electrolyte Membrane A film was formed on the air-side electrode reaction layer by a slurry coating method,
It was baked at 20 ° C. The thickness of the obtained electrolyte membrane was 30 μm. Note that masking was applied to a portion where an interconnector was formed in a later step so that the film was not applied.
【0065】(6)燃料側電極反応層のスラリー作製
燃料側電極反応層の組成は、NiO/90 mol%ZrO2-10mol%
Sc2O3とし、Ni,ZrおよびSc各々の硝酸塩水溶液を用い
て、前記組成になるように調合した後、シュウ酸を加え
沈殿させた。該沈殿物をさらに熱処理を施し、粒径を制
御して原料を得た。燃料側電極反応層組成およびその重
量比率は、NiO/90 mol%ZrO2-10mol%Sc2O3=20/80と、5
0/50であり、平均粒子径はいずれも0.5μmであった。該
粉末100重量部と有機溶媒(エタノール)500重量部、バ
インダー(エチルセルロース)10重量部、分散剤(ポリ
オキシエタレンアルキルリン酸エステル)5重量部、消泡
剤(ソルビタンセスオキオレート)1重量部、可塑剤(D
BP)5重量部を混合した後、十分攪拌してスラリーを調
整した。このスラリーの粘度は70mPasであった。(6) Preparation of slurry for fuel-side electrode reaction layer The composition of the fuel-side electrode reaction layer was NiO / 90 mol% ZrO 2 -10 mol%
Sc 2 O 3 was used to prepare Ni, Zr and Sc nitrate aqueous solutions so as to have the above composition, and then oxalic acid was added to cause precipitation. The precipitate was further heat-treated to control the particle size to obtain a raw material. The composition and the weight ratio of the fuel side electrode reaction layer are NiO / 90 mol% ZrO 2 -10 mol% Sc 2 O 3 = 20/80,
It was 0/50, and the average particle size was 0.5 μm in each case. 100 parts by weight of the powder, 500 parts by weight of an organic solvent (ethanol), 10 parts by weight of a binder (ethyl cellulose), 5 parts by weight of a dispersant (polyoxyetalene alkyl phosphate ester), 1 part by weight of a defoaming agent (sorbitane sesquiolate). Parts, plasticizer (D
After mixing 5 parts by weight of BP), the mixture was thoroughly stirred to prepare a slurry. The viscosity of this slurry was 70 mPas.
【0066】(7)燃料極のスラリー作製:燃料極の組
成としては、NiO/90 mol%ZrO2-10mol%Y2O3とし、Ni,Z
rおよびY各々の硝酸塩水溶液を用いて、前記組成になる
ように調合した後、シュウ酸を加え沈殿させた。該沈殿
物をさらに熱処理を施し、粒径を制御した後原料を得
た。燃料極組成およびその重量比率はNiO/90 mol%ZrO2
-10mol%Y2O3 =70/30であり、平均粒子径が2μmであっ
た。該粉末100重量部と有機溶媒(エタノール)500重量
部、バインダー(エチルセルロース)20重量部、分散剤
(ポリオキシエタレンアルキルリン酸エステル)5重量
部、消泡剤(ソルビタンセスオキオレート)1重量部、可
塑剤(DBP)5重量部を混合した後、十分攪拌してスラ
リーを調整した。このスラリーの粘度は250mPasであっ
た。(7) Preparation of slurry of fuel electrode: The composition of the fuel electrode was NiO / 90 mol% ZrO 2 -10 mol% Y 2 O 3, and Ni, Z
Each of r and Y nitrate solutions was used to prepare the above composition, and then oxalic acid was added to cause precipitation. The precipitate was further heat-treated to control the particle size and obtain a raw material. Fuel electrode composition and its weight ratio are NiO / 90 mol% ZrO 2
-10 mol% Y 2 O 3 = 70/30 and the average particle size was 2 μm. 100 parts by weight of the powder, 500 parts by weight of organic solvent (ethanol), 20 parts by weight of binder (ethyl cellulose), dispersant
After mixing 5 parts by weight of (polyoxyethalene alkyl phosphate), 1 part by weight of antifoaming agent (sorbitane sesquiolate) and 5 parts by weight of plasticizer (DBP), the mixture was sufficiently stirred to prepare a slurry. The viscosity of this slurry was 250 mPas.
【0067】(8)燃料極の作製
燃料極の面積が150cm2になるように電池へマスキン
グをし、前記燃料側電極反応層をまずスラリーコート法
により電解質上へNiO/90 mol%ZrO2-10mol%Sc2O 3 (平
均粒子径)=20/80(0.5μm)、50/50(0.5μm)の順に成膜
した。膜厚(焼成後)は10μmとした。さらにこの上に、
燃料極をスラリーコート法により成膜した。膜厚(焼成
後)は90μmとした。さらに、1400℃で焼成した。(8) Preparation of fuel electrode
Area of fuel electrode is 150 cmTwoTo the battery so that
And the fuel-side electrode reaction layer is first coated by the slurry coating method.
Onto the electrolyte by NiO / 90 mol% ZrO2-10mol% Sc2O 3 (flat
Uniform particle size) = 20/80 (0.5 μm), 50/50 (0.5 μm)
did. The film thickness (after firing) was 10 μm. On top of this,
The fuel electrode was formed into a film by the slurry coating method. Film thickness (baking
After) was 90 μm. Further, it was baked at 1400 ° C.
【0068】(9)インターコネクターの作製
インターコネクターの組成をLa0.80Ca0.20CrO3、で表さ
れるCaを固溶させたランタンクロマイトとし、噴霧熱分
解法で作製後、熱処理を施して得た。得られた粉末の平
均粒子径は1μmであった。該粉末40重量部を溶媒(エタ
ノール)100重量部、バインダー(エチルセルロース)2
重量部、分散剤(ポリオキシエタレンアルキルソン酸エ
ステル)1重量部、消泡剤(ソルビタンセスキオレート)
1重量部とを混合した後、十分攪拌してスラリーを調整
した。このスラリー粘度は100mPasであった。スラリー
コート法によりインターコネクターを成膜し、1400℃で
焼成した。焼成後の厚みは40μmであった。(9) Preparation of interconnector The composition of the interconnector was La 0.80 Ca 0.20 CrO 3 and was obtained by subjecting it to lanthanum chromite in which Ca was solid-solved, prepared by spray pyrolysis, and then subjected to heat treatment. . The average particle size of the obtained powder was 1 μm. 40 parts by weight of the powder, 100 parts by weight of solvent (ethanol), binder (ethyl cellulose) 2
Parts by weight, dispersant (polyoxyethalene alkylsonate) 1 part by weight, defoamer (sorbitan sesquioleate)
After mixing with 1 part by weight, the slurry was sufficiently stirred to prepare a slurry. The viscosity of this slurry was 100 mPas. An interconnector was formed into a film by a slurry coating method and baked at 1400 ° C. The thickness after firing was 40 μm.
【0069】(10)ガス漏れ試験
空気極支持体内部に窒素ガスを流し、空気極内部から0.
1MPaの圧力を加え、電解質膜を透過するガス透過量を測
定した。これにより電解質膜がガス透過性の無い膜であ
るかを評価した。なお、電解質が成膜されていない部分
についてはガス漏れしないように樹脂で封止した。(10) Gas Leakage Test Nitrogen gas is flown into the inside of the air electrode support, and the inside of the air electrode is adjusted to 0.
A pressure of 1 MPa was applied and the amount of gas permeating through the electrolyte membrane was measured. From this, it was evaluated whether the electrolyte membrane was a membrane having no gas permeability. The portion where the electrolyte was not formed was sealed with a resin so as not to leak gas.
【0070】(実施例2)ビーズミルの粉砕条件を制御
し、電解質膜用材料のBET値を5 m2g-1、粒度分布を0.4
〜1.5μmおよび平均粒子径を0.8μmにした以外は実施例
1と同様にした。(Example 2) The pulverization conditions of a bead mill were controlled so that the BET value of the electrolyte membrane material was 5 m 2 g -1 and the particle size distribution was 0.4.
~ 1.5 μm and Example except that the average particle size was 0.8 μm
Same as 1.
【0071】(実施例3)ビーズミルの粉砕条件を制御
し、電解質膜用材料のBET値を20 m2g-1、粒度分布を0.1
〜0.9μmおよび平均粒子径を0.3μmにした以外は実施例
1と同様にした。Example 3 The BET value of the material for the electrolyte membrane was 20 m 2 g −1 and the particle size distribution was 0.1 by controlling the grinding conditions of the bead mill.
~ 0.9 μm and Example except that the average particle size was 0.3 μm
Same as 1.
【0072】(実施例4)ビーズミルの粉砕条件を制御
し、電解質膜用材料のBET値を10 m2g-1、粒度分布を0.1
〜2.0μmおよび平均粒子径を0.5μmにした以外は実施例
1と同様にした。Example 4 The pulverization conditions of the bead mill were controlled so that the BET value of the electrolyte membrane material was 10 m 2 g −1 and the particle size distribution was 0.1.
~ 2.0 μm and Example except that the average particle size was 0.5 μm
Same as 1.
【0073】(実施例5)ビーズミルの粉砕条件を制御
し、電解質膜用材料のBET値を8 m2g-1、粒度分布を0.1
〜2.0μmおよび平均粒子径を1.0μmにした以外は実施例
1と同様にした。Example 5 The BET value of the material for the electrolyte membrane was 8 m 2 g −1 and the particle size distribution was 0.1 by controlling the crushing conditions of the bead mill.
~ 2.0 μm and Example except that the average particle size was 1.0 μm
Same as 1.
【0074】(実施例6)ビーズミルの粉砕条件を制御
し、電解質膜用材料のBET値を8 m2g-1、粒度分布を0.1
〜2.0μmおよび平均粒子径を1.1μmにした以外は実施例
1と同様にした。(Example 6) The pulverization conditions of the bead mill were controlled, the BET value of the material for the electrolyte membrane was 8 m 2 g -1 , and the particle size distribution was 0.1.
~ 2.0 μm and Example except that the average particle size was 1.1 μm
Same as 1.
【0075】(実施例7)ビーズミルの粉砕条件を制御
し、電解質膜用材料のBET値を20 m2g-1、粒度分布を0.1
〜0.8μmおよび平均粒子径を0.25μmにした以外は実施
例1と同様にした。(Example 7) The pulverization conditions of the bead mill were controlled so that the BET value of the electrolyte membrane material was 20 m 2 g -1 and the particle size distribution was 0.1.
Example 1 was repeated except that the average particle size was ˜0.8 μm and the average particle size was 0.25 μm.
【0076】(比較例1)ビーズミルの粉砕条件を制御
し、電解質膜用材料のBET値を4 m2g-1、粒度分布を0.4
〜2.0μmおよび平均粒子径を0.8μmにした以外は実施例
1と同様にした。(Comparative Example 1) The BET value of the material for the electrolyte membrane was 4 m 2 g -1 and the particle size distribution was 0.4 by controlling the grinding conditions of the bead mill.
~ 2.0 μm and Example except that the average particle size was 0.8 μm
Same as 1.
【0077】(比較例2)ビーズミルの粉砕条件を制御
し、電解質膜用材料のBET値を22 m2g-1、粒度分布を0.1
〜0.8μmおよび平均粒子径を0.3μmにした以外は実施例
1と同様にした。Comparative Example 2 The BET value of the material for the electrolyte membrane was 22 m 2 g −1 and the particle size distribution was 0.1 by controlling the grinding conditions of the bead mill.
~ 0.8 μm and Example except that the average particle size was 0.3 μm
Same as 1.
【0078】(比較例3)ビーズミルの粉砕条件を制御
し、電解質膜用材料のBET値を10 m2g-1、粒度分布を0.3
〜2.2μmおよび平均粒子径を0.6μmにした以外は実施例
1と同様にした。Comparative Example 3 The BET value of the material for the electrolyte membrane is 10 m 2 g −1 and the particle size distribution is 0.3 by controlling the crushing conditions of the bead mill.
~ 2.2 μm and Example except that the average particle size was 0.6 μm
Same as 1.
【0079】ビーズミルの粉砕条件を制御し、電解質膜
用材料のBET値を11 m2g-1、粒度分布を0.08〜1.5μmお
よび平均粒子径を0.5μmにした以外は実施例1と同様に
した。Example 1 was repeated except that the pulverization conditions of the bead mill were controlled, the BET value of the material for the electrolyte membrane was 11 m 2 g −1 , the particle size distribution was 0.08 to 1.5 μm, and the average particle size was 0.5 μm. did.
【0080】[0080]
【表1】 [Table 1]
【0081】表1に材料のBET値、粒度分布および平均粒
子径に対する電解質膜の外観およびガス透過量の結果を
示す。実施例1〜7においてはいずれも電解質膜の外観に
クラックが見られず、ガス透過量Q≦2.8×10-9ms-1Pa-1
となり電解質膜として要求されるガス透過に達すること
が確認された。一方、比較例2および比較例4においては
電解質膜にクラックが見られ、電解質膜としては不適当
な条件であることがわかり、さらに比較例1と比較例3に
おいてはクラックは見られなかったがガス透過量Q>2.8
×10-9ms-1Pa-1となり、電解質膜として要求されるガス
透過性が得られなかった。以上の結果から、BET値が5〜
20 m2g-1かつ粒度分布が0.1〜2μmであることが好まし
いことが確認された。また、実施例1〜5においてはガス
透過量Q≦2.8×10-10ms-1Pa-1となりこれらの平均粒子
径が0.3〜1.0μmの範囲であることから、さらに平均粒
子径が0.3〜1.0μmであるとより好ましいことが確認さ
れた。Table 1 shows the results of the appearance and gas permeation amount of the electrolyte membrane with respect to the BET value, particle size distribution and average particle diameter of the material. In Examples 1 to 7, cracks are not seen in the appearance of the electrolyte membrane, and the gas permeation amount Q ≦ 2.8 × 10 −9 ms −1 Pa −1
It was confirmed that the gas permeation required for the electrolyte membrane was reached. On the other hand, cracks were found in the electrolyte membrane in Comparative Example 2 and Comparative Example 4, it was found that the conditions are unsuitable as an electrolyte membrane, further cracks were not found in Comparative Examples 1 and 3 Gas permeation rate Q> 2.8
It became × 10 -9 ms -1 Pa -1 , and the gas permeability required for the electrolyte membrane was not obtained. From the above results, BET value of 5 ~
It was confirmed that it is preferable that the particle size distribution is 20 m 2 g −1 and the particle size distribution is 0.1 to 2 μm. Further, in Examples 1 to 5, the gas permeation amount Q ≦ 2.8 × 10 −10 ms −1 Pa −1 and the average particle size of these is in the range of 0.3 to 1.0 μm, and thus the average particle size is 0.3 to It was confirmed that 1.0 μm was more preferable.
【0082】スカンジアの固溶量について
(実施例8)電解質膜の組成を、97 mol%ZrO2-3mol%Sc2O
3とした以外は実施例1と同様にした。Regarding solid solution amount of scandia (Example 8) The composition of the electrolyte membrane was 97 mol% ZrO 2 -3 mol% Sc 2 O.
The same procedure as in Example 1 was performed except that the number was changed to 3 .
【0083】(実施例9)電解質膜の組成を、88 mol%ZrO
2-12mol%Sc2O3とした以外は実施例1と同様にした。Example 9 The composition of the electrolyte membrane was 88 mol% ZrO 2.
The same procedure was performed as in Example 1 except that 2-12 mol% Sc 2 O 3 was used.
【0084】(実施例10)電解質膜の組成を、98 mol%Zr
O2-2mol%Sc2O3とした以外は実施例1と同様にした。Example 10 The composition of the electrolyte membrane was set to 98 mol% Zr.
The same procedure was performed as in Example 1 except that O 2 -2 mol% Sc 2 O 3 was used.
【0085】(実施例11)電解質膜の組成を、85 mol%Zr
O2-15mol%Sc2O3とした以外は実施例1と同様にした。(Example 11) The composition of the electrolyte membrane was changed to 85 mol% Zr.
Same as Example 1 except that O 2 -15 mol% Sc 2 O 3 was used.
【0086】(11)発電試験
実施例1、実施例8〜11および比較例1で得られた電池
(燃料極有効面積:150cm2)を用いて発電試験を行っ
た。このときの運転条件は以下であった。
燃料:(H2+11%H2O):N2 = 1:2
酸化剤:Air
発電温度:900℃
電流密度:0.3Acm-2 (11) Power Generation Test A power generation test was carried out using the cells obtained in Example 1, Examples 8 to 11 and Comparative Example 1 (fuel electrode effective area: 150 cm 2 ). The operating conditions at this time were as follows. Fuel: (H 2 + 11% H 2 O): N 2 = 1: 2 Oxidizing agent: Air Power generation temperature: 900 ° C. Current density: 0.3 Acm -2
【0087】[0087]
【表2】 [Table 2]
【0088】表2に実施例1、実施例8〜11および比較例1
における電解質膜のガス透過量の結果および発電試験結
果を示す。実施例1、実施例8〜11においては電解質のガ
ス透過量Q≦2.8×10-9ms-1Pa-1となり電解質膜として要
求されるガス透過に達することが確認された。また、実
施例1、実施例8および実施例9においてはガス透過量Q≦
2.8×10-10ms-1Pa-1となりより好ましいことが確認され
た。一方、出力性能においては実施例1が最も良く、実
施例9、実施例8と続き、実施例10と実施例11はやや性能
が低くなったが、比較例1より優れていることが確認さ
れた。以上の結果から、BET値および粒度分布が適正で
あればガス透過性の無い電解質膜を作製することがで
き、かつ出力性能においても比較例1より優れることが
確認された。電解質膜のガス透過量および出力性能の結
果から、スカンジアの固溶量としては3〜12mol%がより
好ましいことが確認された。Table 2 shows Example 1, Examples 8 to 11 and Comparative Example 1
The result of the gas permeation amount of the electrolyte membrane and the result of the power generation test in FIG. In Examples 1 and 8 to 11, it was confirmed that the gas permeation amount of the electrolyte was Q ≦ 2.8 × 10 −9 ms −1 Pa −1 and the gas permeation required for the electrolyte membrane was reached. Further, in Examples 1, 8 and 9, the gas permeation amount Q ≦
It was confirmed to be 2.8 × 10 −10 ms −1 Pa −1 , which was more preferable. On the other hand, in terms of output performance, Example 1 was the best, followed by Examples 9 and 8, and Examples 10 and 11 showed slightly lower performance, but was confirmed to be superior to Comparative Example 1. It was From the above results, it was confirmed that if the BET value and the particle size distribution are proper, an electrolyte membrane having no gas permeability can be produced, and the output performance is superior to that of Comparative Example 1. From the results of the gas permeation amount and the output performance of the electrolyte membrane, it was confirmed that the solid solution amount of scandia is more preferably 3 to 12 mol%.
【0089】CeO2の固溶量について
(実施例12)電解質膜材料の組成を、89.5 mol%ZrO2-10m
ol%Sc2O3-0.5 mol%CeO2にした以外は実施例1と同様に
した。Regarding the solid solution amount of CeO 2 (Example 12) The composition of the electrolyte membrane material was 89.5 mol% ZrO 2 -10 m
Example 1 was repeated except that ol% Sc 2 O 3 -0.5 mol% CeO 2 was used.
【0090】(実施例13)電解質膜材料の組成を、88 mol
%ZrO2-10mol%Sc2O3-2 mol%CeO2にした以外は実施例1
と同様にした。Example 13 The composition of the electrolyte membrane material was 88 mol.
% ZrO 2 -10 mol% Sc 2 O 3 -2 mol% CeO 2 Example 1
Same as.
【0091】(実施例14)電解質膜材料の組成を、85 mol
%ZrO2-10mol%Sc2O3-5 mol%CeO2にした以外は実施例1
と同様にした。Example 14 The composition of the electrolyte membrane material was 85 mol.
% ZrO 2 -10 mol% Sc 2 O 3 -5 mol% CeO 2 Example 1
Same as.
【0092】(実施例15)電解質膜材料の組成を、89.7 m
ol%ZrO2-10mol%Sc2O3-0.3 mol%CeO2にした以外は実
施例1と同様にした。Example 15 The composition of the electrolyte membrane material was 89.7 m
ol% ZrO 2 -10 mol% Sc 2 O 3 -0.3 mol% CeO 2 was the same as in Example 1.
【0093】(実施例16)電解質膜材料の組成を、84 mol
%ZrO2-10mol%Sc2O3-6mol%CeO2にした以外は実施例1
と同様にした。Example 16 The composition of the electrolyte membrane material was 84 mol.
% ZrO 2 -10 mol% Sc 2 O 3 -6 mol% CeO 2 Example 1
Same as.
【0094】[0094]
【表3】 [Table 3]
【0095】前記発電試験方法と同様の条件で実施例1
2、実施例13、実施例14、実施例15および実施例16の発
電試験を行った。表3に発電試験結果を示す。実施例1と
比較して実施例12〜14においては出力性能が高くなって
いるが、実施例15では変化がなく、実施例16ではむしろ
悪くなった。以上の結果からCeO2の固溶量は、0.5〜5mo
l%の範囲が好ましいことが確認された。Example 1 under the same conditions as in the power generation test method
2, power generation tests of Example 13, Example 14, Example 15, and Example 16 were performed. Table 3 shows the power generation test results. The output performance was higher in Examples 12 to 14 as compared with Example 1, but there was no change in Example 15 and it was rather worse in Example 16. From the above results, the solid solution amount of CeO 2 is 0.5 to 5mo.
It was confirmed that the l% range was preferable.
【0096】Bi2O3、CeO2の固溶量について
(実施例17)電解質膜材料の組成を89.5 mol%ZrO2-10mol
%Sc2O3-0.2 mol%Bi2O3-0.3 mol%CeO2とした以外は実
施例1と同様にした。Regarding the amount of solid solution of Bi 2 O 3 and CeO 2 (Example 17) The composition of the electrolyte membrane material was 89.5 mol% ZrO 2 -10 mol
Same as Example 1 except that% Sc 2 O 3 -0.2 mol% Bi 2 O 3 -0.3 mol% CeO 2 was used.
【0097】(実施例18)電解質膜材料の組成を88 mol%
ZrO2-10mol%Sc2O3-1mol%Bi2O3-1mol%CeO2とした以外
は実施例1と同様にした。(Example 18) The composition of the electrolyte membrane material was 88 mol%.
Example 1 was repeated except that ZrO 2 -10 mol% Sc 2 O 3 -1 mol% Bi 2 O 3 -1 mol% CeO 2 was used.
【0098】(実施例19)電解質膜材料の組成を85 mol%
ZrO2-10mol%Sc2O3-2mol%Bi2O3-3mol%CeO2とした以外
は実施例1と同様にした。Example 19 The composition of the electrolyte membrane material was 85 mol%
Example 1 was repeated except that ZrO 2 -10 mol% Sc 2 O 3 -2 mol% Bi 2 O 3 -3 mol% CeO 2 was used.
【0099】(実施例20)電解質膜材料の組成を89.7mol
%ZrO2-10mol%Sc2O3-0.1mol%Bi2O3-0.2mol%CeO 2とし
た以外は実施例1と同様にした。Example 20 The composition of the electrolyte membrane material was 89.7 mol
% ZrO2-10mol% Sc2O3-0.1mol% Bi2O3-0.2mol% CeO 2age
The same as Example 1 except that
【0100】(実施例21)電解質膜材料の組成を84mol%Z
rO2-10mol%Sc2O3-3mol%Bi2O3-3mol%CeO2とした以外
は実施例1と同様にした。Example 21 The composition of the electrolyte membrane material is 84 mol% Z
The same procedure as in Example 1 was performed except that rO 2 -10mol% Sc 2 O 3 -3mol% Bi 2 O 3 -3mol% CeO 2 was used.
【0101】[0101]
【表4】 [Table 4]
【0102】前記発電試験方法と同様の条件で実施例1
7、実施例18、実施例19、実施例20および実施例21の発
電試験を行った。表4に発電試験結果を示す。実施例1と
比較して実施例17〜19においては出力性能が高くなって
いるが、実施例20では変化がなく、実施例21ではむしろ
悪くなった。以上の結果からBi2O3+CeO2の固溶量は、0.
5〜5mol%の範囲が好ましいことが確認された。Example 1 under the same conditions as in the power generation test method
The power generation tests of 7, Example 18, Example 19, Example 20, and Example 21 were performed. Table 4 shows the power generation test results. The output performance was higher in Examples 17 to 19 as compared with Example 1, but there was no change in Example 20 and rather worse in Example 21. From the above results, the solid solution amount of Bi 2 O 3 + CeO 2 is 0.
It was confirmed that the range of 5 to 5 mol% was preferable.
【0103】熱処理温度と粉砕について
(実施例22)90 mol%ZrO2-10mol%Sc2O3組成からなる材
料を共沈法で作製後、800℃で10時間熱処理をし、さら
にビーズミルで粉砕して電解質膜用材料を得た。電解質
膜用材料のBET値は10 m2g-1、粒度分布は0.3〜1.1μmお
よび平均粒子径は0.5μmであること以外は実施例1と同
様にした。Heat Treatment Temperature and Grinding (Example 22) A material having a composition of 90 mol% ZrO 2 -10 mol% Sc 2 O 3 was prepared by a coprecipitation method, then heat treated at 800 ° C. for 10 hours, and further ground by a bead mill. Then, a material for an electrolyte membrane was obtained. The electrolyte membrane material was prepared in the same manner as in Example 1 except that the BET value was 10 m 2 g -1 , the particle size distribution was 0.3 to 1.1 μm, and the average particle size was 0.5 μm.
【0104】(実施例23)90 mol%ZrO2-10mol%Sc2O3組
成からなる材料を共沈法で作製後、1000℃で10時間熱処
理をし、さらにビーズミルで粉砕して電解質膜用材料を
得た。電解質膜用材料のBET値は10 m2g-1、粒度分布は
0.3〜1.1μmおよび平均粒子径は0.5μmであること以外
は実施例1と同様にした。Example 23 A material having a composition of 90 mol% ZrO 2 -10 mol% Sc 2 O 3 was prepared by a coprecipitation method, heat-treated at 1000 ° C. for 10 hours, and further pulverized by a bead mill to be used as an electrolyte membrane. Got the material. The BET value of the material for the electrolyte membrane is 10 m 2 g -1 , and the particle size distribution is
Example 1 was repeated except that the average particle size was 0.3 to 1.1 μm and the average particle size was 0.5 μm.
【0105】(比較例5)90 mol%ZrO2-10mol%Sc2O3組成
からなる材料を共沈法で作製後、750℃で10時間熱処理
をし、さらにビーズミルで粉砕して電解質膜用材料を得
た。電解質膜用材料のBET値は15 m2g-1、粒度分布は0.0
8〜1.1μmおよび平均粒子径は0.5μmであること以外は
実施例1と同様にした。Comparative Example 5 A material having a composition of 90 mol% ZrO 2 -10 mol% Sc 2 O 3 was prepared by a coprecipitation method, then heat-treated at 750 ° C. for 10 hours, and further pulverized by a bead mill to prepare an electrolyte membrane. Got the material. BET value of the material for electrolyte membrane is 15 m 2 g -1 , particle size distribution is 0.0
Example 1 was repeated except that the average particle size was 8 to 1.1 μm and the average particle size was 0.5 μm.
【0106】(比較例6)90 mol%ZrO2-10mol%Sc2O3組成
からなる材料を共沈法で作製後、1100℃で10時間熱処理
をし、さらにビーズミルで粉砕して電解質膜用材料を得
た。電解質膜用材料のBET値は10 m2g-1、粒度分布は0.2
〜2.2μmおよび平均粒子径は0.6μmであること以外は実
施例1と同様にした。(Comparative Example 6) A material having a composition of 90 mol% ZrO 2 -10 mol% Sc 2 O 3 was prepared by a coprecipitation method, then heat-treated at 1100 ° C. for 10 hours, and further pulverized with a bead mill to form an electrolyte membrane. Got the material. BET value of electrolyte membrane material is 10 m 2 g -1 , particle size distribution is 0.2
.About.2.2 .mu.m and the average particle size was 0.6 .mu.m.
【0107】(比較例7)90 mol%ZrO2-10mol%Sc2O3組成
からなる材料を共沈法で作製後、900℃で10時間熱処理
をし、電解質膜用材料を得た。電解質膜用材料のBET値
は10 m2g-1、粒度分布は0.3〜4.5μmおよび平均粒子径
は0.6μmであること以外は実施例1と同様にした。Comparative Example 7 A material having a composition of 90 mol% ZrO 2 -10 mol% Sc 2 O 3 was prepared by a coprecipitation method, and then heat-treated at 900 ° C. for 10 hours to obtain a material for an electrolyte membrane. The electrolyte membrane material was prepared in the same manner as in Example 1 except that the BET value was 10 m 2 g -1 , the particle size distribution was 0.3 to 4.5 μm, and the average particle size was 0.6 μm.
【0108】[0108]
【表5】 [Table 5]
【0109】実施例1、実施例22、実施例23、比較例5、
比較例6および比較例7の電池に対して、前記ガス漏れ試
験を実施した。表5に試験結果を示す。実施例1、実施例
22および実施例23では電解質のガス透過量Q≦2.8×10-9
ms-1Pa-1であり、電解質膜として要求されるガス透過に
達することが確認された。一方、比較例5では電解質膜
にクラックが発生しこれによってガス透過量が大きくな
り、比較例6と比較例7においては、クラックは無いがガ
ス透過量が未達であった。以上の結果から、電解質膜用
材料の熱処理を800〜1000℃で行い、さらに粉砕するこ
とが好ましいことが確認された。Example 1, Example 22, Example 23, Comparative Example 5,
The gas leakage test was performed on the batteries of Comparative Example 6 and Comparative Example 7. Table 5 shows the test results. Example 1, Example
In 22 and Example 23, the amount of gas permeation of the electrolyte Q ≦ 2.8 × 10 −9
It was ms −1 Pa −1 , and it was confirmed that the gas permeation required for the electrolyte membrane was reached. On the other hand, in Comparative Example 5, cracks were generated in the electrolyte membrane, which increased the gas permeation amount. In Comparative Examples 6 and 7, there was no crack, but the gas permeation amount was not reached. From the above results, it was confirmed that the heat treatment of the material for the electrolyte membrane is preferably performed at 800 to 1000 ° C. and further pulverized.
【0110】YSZ材料との比較
(比較例8)電解質膜の組成は、90 mol%ZrO2-10mol%Y2O
3とした。900℃で10時間熱処理後、ビーズミルで粉砕
し、BET値は10 m2g-1、粒度分布は0.3〜1.1μmおよび平
均粒子径は0.5μmである電解質膜用材料であること以外
は実施例1と同様にした。Comparison with YSZ material (Comparative Example 8) The composition of the electrolyte membrane was 90 mol% ZrO 2 -10 mol% Y 2 O.
It was 3 . After heat treatment at 900 ° C. for 10 hours, it was pulverized with a bead mill and the BET value was 10 m 2 g −1 , the particle size distribution was 0.3 to 1.1 μm, and the average particle size was 0.5 μm. Same as 1.
【0111】実施例1および比較例8の電池について、以
下に示す発電試験を実施した。
燃料:(H2+11%H2O):N2 = 1:2
酸化剤:Air
発電温度:700〜1000℃
電流密度:0.3Acm-2 The following power generation tests were carried out on the batteries of Example 1 and Comparative Example 8. Fuel: (H 2 + 11% H 2 O): N 2 = 1: 2 Oxidizing agent: Air Power generation temperature: 700 to 1000 ° C. Current density: 0.3Acm -2
【0112】図3に実施例1と比較例8の700〜1000℃にお
ける出力結果を示す。1000℃では2W程度の差しかないの
が、900℃では4W程度、800℃では10W程度、700℃では22
W程度と発電温度が下がるに従い、実施例1と比較例8の
出力性能の差が大きくなるのがわかる。以上の結果から
本発明のSSZ材料を固体酸化物形燃料電池の電解質膜に
採用すれば、従来のYSZ材料を固体酸化物形燃料電池の
電解質膜に採用した電池より出力性能が優れ、700℃程
度の低温下においても高い出力性能を有する固体酸化物
形燃料電池を提供できることを確認した。FIG. 3 shows the output results of Example 1 and Comparative Example 8 at 700 to 1000 ° C. About 2W at 1000 ℃, but about 4W at 900 ℃, 10W at 800 ℃, 22 at 700 ℃
It can be seen that the difference in the output performance between Example 1 and Comparative Example 8 increases as the power generation temperature decreases about W. From the above results, if the SSZ material of the present invention is used for the electrolyte membrane of the solid oxide fuel cell, the output performance is superior to that of the battery using the conventional YSZ material for the electrolyte membrane of the solid oxide fuel cell, and 700 ° C. It was confirmed that a solid oxide fuel cell having high output performance even at a low temperature can be provided.
【0113】[0113]
【発明の効果】以上の説明から明らかなように、BET値
が5〜20m2g-1で、かつ粒度分布が0.1〜2.0μmの範囲か
らなるSSZ材料を提案したので、焼結性に優れるSSZ材料
を提供することができ、該材料を固体酸化物形燃料電池
の電解質膜に採用すればガス透過性の無い電解質膜を得
ることができる。EFFECTS OF THE INVENTION As is clear from the above description, since an SSZ material having a BET value of 5 to 20 m 2 g -1 and a particle size distribution of 0.1 to 2.0 μm was proposed, it has excellent sinterability. An SSZ material can be provided, and when the material is used as an electrolyte membrane of a solid oxide fuel cell, an electrolyte membrane having no gas permeability can be obtained.
【0114】SSZ材料でガス透過性の無い電解質膜を得
ることができたので、従来のYSZ材料を電解質膜に採用
していた固体酸化物形燃料電池より高い出力性能を有す
る固体酸化物形燃料電池を提供することができる。Since the electrolyte membrane having no gas permeability could be obtained with the SSZ material, the solid oxide fuel having higher output performance than the solid oxide fuel cell which used the conventional YSZ material for the electrolyte membrane. A battery can be provided.
【図1】円筒タイプの固体酸化物形燃料電池の断面を示
す図である。FIG. 1 is a view showing a cross section of a cylindrical solid oxide fuel cell.
【図2】図1に示す固体酸化物形燃料電池の空気極、電
解質および燃料極構成について詳細に示した断面図であ
る。FIG. 2 is a cross-sectional view showing in detail the air electrode, electrolyte and fuel electrode configuration of the solid oxide fuel cell shown in FIG.
【図3】発電温度(横軸)と電池の初期出力(縦軸)の関係
を示すグラフである。FIG. 3 is a graph showing the relationship between the power generation temperature (horizontal axis) and the initial output of the battery (vertical axis).
1:空気極(支持体) 2:インターコネクター 3:電解質膜 4:燃料極 1a:空気側電極反応層 4a:燃料側電極反応層 1: Air electrode (support) 2: Interconnector 3: Electrolyte membrane 4: Fuel electrode 1a: Air side electrode reaction layer 4a: Fuel side electrode reaction layer
Claims (7)
が0.1〜2.0μmの範囲からなることを特徴とする
スカンジアを固溶させたジルコニア材料。1. A zirconia material in which scandia is dissolved, which has a BET value of 5 to 20 m 2 g -1 and a particle size distribution of 0.1 to 2.0 μm.
材料の平均粒子径が0.3〜1.0μmであることを特
徴とする請求項1に記載のスカンジアを固溶させたジル
コニア材料。2. The scandia solid-solution zirconia material according to claim 1, wherein the scandia solid-solution zirconia material has an average particle diameter of 0.3 to 1.0 μm.
材料において、スカンジアの固溶量が3〜12mol%で
あることを特徴とする請求項1または2に記載のスカン
ジアを固溶させたジルコニア材料。3. The scandia solid solution zirconia material according to claim 1, wherein the scandia solid solution amount of the scandia solid solution is 3 to 12 mol%.
材料には、さらにCeO2が固溶され、該成分の固溶量が
0.5〜5mol%であることを特徴とする請求項1〜3
のいずれか一項に記載のスカンジアを固溶させたジルコ
ニア材料。4. The zirconia material in which scandia is solid-dissolved further has CeO 2 solid-dissolved therein, and the solid-solution amount of the component is 0.5 to 5 mol%.
A zirconia material in which the scandia according to any one of items 1 to 4 is dissolved.
材料には、さらにBi2O3とCeO2が固溶され、前記Bi2O3と
CeO2の固溶量の合計が0.5〜5mol%であることを特
徴とする請求項1〜3のいずれか一項に記載のスカンジ
アを固溶させたジルコニア材料。The method according to claim 5 zirconia material was a solid solution of the scandia, further solid solution Bi 2 O 3 and CeO 2, and the Bi 2 O 3
Zirconia material was a solid solution of scandia according to any one of claims 1 to 3, wherein the sum of CeO 2 solid solution amount is 0.5~5mol%.
材料は、800〜1000℃で熱処理し、粉砕してなる
ことを特徴とする請求項1〜5のいずれか一項に記載の
スカンジアを固溶させたジルコニア材料。6. The scandia solid solution according to any one of claims 1 to 5, wherein the scandia solid solution zirconia material is heat-treated at 800 to 1000 ° C. and pulverized. Made zirconia material.
と、前記電解質膜の反対面に設けた空気極と、からなる
単電池と、前記空気極または燃料極表面に接続され、電
気的接続の役割を有するインターコネクターと、からな
る固体酸化物形燃料電池であって、前記電解質膜が請求
項1〜6のいずれか一項に記載のスカンジアを固溶させ
たジルコニア材料からなることを特徴とする固体酸化物
形燃料電池。7. A unit cell including an electrolyte membrane, a fuel electrode on one surface of the electrolyte membrane, and an air electrode provided on the opposite surface of the electrolyte membrane, and an electric cell connected to the air electrode or the fuel electrode surface. A solid oxide fuel cell comprising an interconnector having a role of electrical connection, wherein the electrolyte membrane is made of a zirconia material in which scandia as a solid solution according to any one of claims 1 to 6 is formed. And a solid oxide fuel cell.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002075069A JP2003277058A (en) | 2002-03-18 | 2002-03-18 | Zirconia material forming solid solution with scandia and solid oxide type fuel cell provided with the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002075069A JP2003277058A (en) | 2002-03-18 | 2002-03-18 | Zirconia material forming solid solution with scandia and solid oxide type fuel cell provided with the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003277058A true JP2003277058A (en) | 2003-10-02 |
Family
ID=29227709
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002075069A Pending JP2003277058A (en) | 2002-03-18 | 2002-03-18 | Zirconia material forming solid solution with scandia and solid oxide type fuel cell provided with the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003277058A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011079723A (en) * | 2009-10-09 | 2011-04-21 | Agc Seimi Chemical Co Ltd | Scandia-stabilized zirconia and method for producing the same |
US10454123B2 (en) | 2015-08-03 | 2019-10-22 | Honda Motor Co., Ltd. | Metal-supported cell |
-
2002
- 2002-03-18 JP JP2002075069A patent/JP2003277058A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011079723A (en) * | 2009-10-09 | 2011-04-21 | Agc Seimi Chemical Co Ltd | Scandia-stabilized zirconia and method for producing the same |
US10454123B2 (en) | 2015-08-03 | 2019-10-22 | Honda Motor Co., Ltd. | Metal-supported cell |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20130224628A1 (en) | Functional layer material for solid oxide fuel cell, functional layer manufactured using functional layer material, and solid oxide fuel cell including functional layer | |
JP2007200693A (en) | Method for producing solid oxide fuel cell material | |
KR20130123189A (en) | Anode support for solid oxide fuel cell and manufacturing method thereof, and solid oxide fuel cell including the anode support | |
KR101186929B1 (en) | Method of non-shrinkage fabrication of metal oxide thin film for solid oxide fuel cell by low temperature | |
JPWO2009060752A1 (en) | Nickel oxide powder material for solid oxide fuel cell, method for producing the same, fuel electrode material using the same, fuel electrode, and solid oxide fuel cell | |
KR101307560B1 (en) | Fabrication and structure of low- and intermediate-temperature-operating solid oxide fuel cell by spin coating and low-temperature sintering | |
JP5260209B2 (en) | Method for producing cell for solid oxide fuel cell and cell for solid oxide fuel cell | |
KR20120140476A (en) | Material for solid oxide fuel cell, cathode including the material and solid oxide fuel cell including the material | |
KR20110107187A (en) | Metal Doped Oxide Particles, Preparation Method thereof, and Solid Oxide Electrolyte Using the Same | |
JP2006302709A (en) | Solid oxide fuel cell | |
JP4524791B2 (en) | Solid oxide fuel cell | |
JP2007200664A (en) | Method of manufacturing solid oxide fuel cell | |
JP3661676B2 (en) | Solid oxide fuel cell | |
JP2011142042A (en) | Power generation cell for solid oxide fuel battery and its manufacturing method | |
JP2004265746A (en) | Solid oxide fuel cell | |
JP6664132B2 (en) | Porous structure, method of manufacturing the same, and electrochemical cell using the same and method of manufacturing the same | |
JP3729194B2 (en) | Solid oxide fuel cell | |
JP2003217597A (en) | Solid electrolyte type fuel cell | |
JP6315581B2 (en) | Cathode for solid oxide fuel cell, method for producing the same, and solid oxide fuel cell including the cathode | |
JP4496749B2 (en) | Solid oxide fuel cell | |
JP2006059611A (en) | Ceria based solid electrolyte fuel cell and its manufacturing method | |
JP4192733B2 (en) | Solid oxide fuel cell | |
JP2008077998A (en) | Solid oxide fuel cell | |
JP2003323903A (en) | Zirconia material containing scandia in form of solid solution, and solid electrolyte fuel cell using the same | |
JP2006059610A (en) | Solid electrolyte fuel cell and its manufacturing method |