[go: up one dir, main page]

JP2003270117A - Method and apparatus for measuring dynamic contact angle - Google Patents

Method and apparatus for measuring dynamic contact angle

Info

Publication number
JP2003270117A
JP2003270117A JP2002067711A JP2002067711A JP2003270117A JP 2003270117 A JP2003270117 A JP 2003270117A JP 2002067711 A JP2002067711 A JP 2002067711A JP 2002067711 A JP2002067711 A JP 2002067711A JP 2003270117 A JP2003270117 A JP 2003270117A
Authority
JP
Japan
Prior art keywords
contact angle
solid sample
droplet
measuring
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002067711A
Other languages
Japanese (ja)
Other versions
JP3767500B2 (en
Inventor
Nobuko Okada
信子 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2002067711A priority Critical patent/JP3767500B2/en
Publication of JP2003270117A publication Critical patent/JP2003270117A/en
Application granted granted Critical
Publication of JP3767500B2 publication Critical patent/JP3767500B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a versatile measuring method and a versatile measuring instrument capable of measuring a dynamic contact angle, as to all the solid samples and all the liquid samples. <P>SOLUTION: The liquid sample is pushed out on a surface of the solid sample 1 arranged horizontally, from a needle like tube body 11 arranged vertically in an upper side of the solid sample 1, a liquid drop 2 is formed thereby, and a contact angle θ1 is measured between the solid sample 1 and the liquid drop 2 in an advancing directional front side of the solid sample 1, while moving the solid sample 1, under the condition where a tip of the needle like tube body 11 is inserted into the liquid drop 2, so as to obtain a retreat contact angle. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は液体と固体の間の動
的接触角の測定方法および測定装置に関する。
TECHNICAL FIELD The present invention relates to a method and an apparatus for measuring a dynamic contact angle between a liquid and a solid.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】液体と
固体の間の動的接触角には前進接触角と後退接触角があ
るが、従来、これらの動的接触角の測定方法として、例
えば(1)ウィルヘルミー法、(2)拡張収縮法、
(3)転落法などが知られている。
2. Description of the Related Art The dynamic contact angle between a liquid and a solid includes an advancing contact angle and a receding contact angle. Conventionally, as a method for measuring these dynamic contact angles, for example, (1) Wilhelmy method, (2) expansion-contraction method,
(3) The fall method etc. are known.

【0003】(1)ウィルヘルミー法は、試料槽内の液
体試料中に固体試料を沈める過程で、また沈めたものを
引き上げる過程での荷重を測定し、その測定値と固体試
料の表面積の値とから動的接触角を求める方法である。
固体試料を沈める過程で得られる接触角が前進接触角、
引き上げる過程で得られる接触角が後退接触角である。
しかしながら、この測定方法では多量の液体試料を必要
とするうえ、固体試料の表面が不均一であると適切な測
定が行えないという問題があった。このため、この測定
方法で動的接触角を測定できるのは、表面が均一な固体
試料に限られていた。
(1) The Wilhelmy method measures the load in the process of submerging a solid sample in a liquid sample in a sample tank and in the process of pulling up the submerged sample. The measured value and the surface area value of the solid sample are compared with each other. This is a method of obtaining the dynamic contact angle from
The contact angle obtained in the process of sinking a solid sample is the advancing contact angle,
The contact angle obtained in the process of pulling up is the receding contact angle.
However, this measuring method has a problem that a large amount of liquid sample is required and that if the surface of the solid sample is not uniform, proper measurement cannot be performed. Therefore, the dynamic contact angle can be measured by this measuring method only for a solid sample having a uniform surface.

【0004】(2)拡張収縮法は、注射針やガラス毛細
管等の先端から、固体表面上に液体試料を一定流量で押
し出すことによって液滴を形成しながら、固体表面と液
滴の間の接触角を測定することによって前進接触角を
得、逆に注射針やガラス毛細管等の先端から液滴を形成
している液体試料を引き込みながら、固体表面と液滴の
間の接触角を測定することによって後退接触角を得る方
法である。しかしながら、この測定方法では、固体表面
と液滴の間の接触角が90゜以上になるような濡れ性が
小さい場合には適切な測定が行えないという不都合があ
った。
(2) In the expansion / contraction method, a liquid sample is extruded from a tip of an injection needle, a glass capillary tube or the like onto a solid surface at a constant flow rate to form liquid droplets, and contact between the solid surface and the liquid droplets is made. To obtain the advancing contact angle by measuring the angle, and conversely to measure the contact angle between the solid surface and the liquid droplet while drawing the liquid sample forming the liquid droplet from the tip of the injection needle or glass capillary tube. Is a method of obtaining the receding contact angle. However, this measuring method has a disadvantage in that proper measurement cannot be performed when the wettability such that the contact angle between the solid surface and the droplet is 90 ° or more is small.

【0005】(3)転落法は、固体試料上に液滴を形成
し、この固体試料を傾ける、あるいは垂直にして固体試
料上の液体を転落移動させながら、固体試料と液滴の間
の接触角を測定するものである。液体が移動する方向の
前方における接触角が前進接触角であり、後方における
接触角が後退接触角である。しかしながら、この測定方
法では、固体試料の表面状態および液滴の物性によって
は、固体試料を垂直にしても液滴が移動しない場合も多
く、測定できる固体試料および液体試料が限られてい
た。
(3) In the falling method, a droplet is formed on a solid sample, and the solid sample is tilted, or the liquid on the solid sample is made to fall vertically to make contact with the solid sample and the droplet. It measures the angle. The contact angle in the front of the moving direction of the liquid is the advancing contact angle, and the contact angle in the rear is the receding contact angle. However, in this measuring method, depending on the surface state of the solid sample and the physical properties of the liquid droplet, the liquid droplet often does not move even if the solid sample is made vertical, and thus the measurable solid sample and liquid sample are limited.

【0006】このように、いずれの動的接触角測定方法
においても不都合点があり、特に測定可能な固体試料お
よび液体試料に制限があることが問題であった。本発明
は前記事情に鑑みてなされたもので、あらゆる固体試料
および液体試料について動的接触角の測定が可能な汎用
性の高い測定方法および測定装置を提供することを目的
とする。
As described above, there is a disadvantage in any of the dynamic contact angle measuring methods, and there has been a problem that there are limitations on the measurable solid sample and liquid sample. The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a highly versatile measuring method and measuring apparatus capable of measuring a dynamic contact angle for all solid samples and liquid samples.

【0007】[0007]

【課題を解決するための手段】前記課題を解決するため
に、本発明の接触角の測定方法は、水平に配置された固
体試料の表面上に、該固体試料の上方に垂直に配された
針状管体の先端から液体試料を押し出して液滴を形成
し、該液滴内に前記針状管体の先端が挿入されている状
態で、前記固体試料を水平方向に移動させながら、前記
固体試料の進行方向の前方または後方における、前記固
体試料と液滴との間の接触角を測定することを特徴とす
る。
In order to solve the above-mentioned problems, the method for measuring a contact angle according to the present invention has a method in which a contact point is arranged vertically on a surface of a horizontally arranged solid sample. The liquid sample is extruded from the tip of the needle-shaped tube to form a droplet, and while the tip of the needle-shaped tube is inserted into the droplet, the solid sample is moved horizontally while It is characterized in that the contact angle between the solid sample and the droplet is measured in front of or in the rear of the traveling direction of the solid sample.

【0008】本発明において、接触角を測定する際に
は、例えば図3(a)に例示するように、固体試料1の
表面上に形成した液滴2内に針状管体11の先端が挿入
されている状態で、固体試料1を水平方向に移動させ
る。液滴2内に針状管体11が挿入されているので、液
滴2と針状管体11との界面張力により、図3(b)に
示すように、固体試料1の移動に伴い液滴2が針状管体
11に引きずられるように変形する。
In the present invention, when measuring the contact angle, the tip of the needle-shaped tubular body 11 is placed in the droplet 2 formed on the surface of the solid sample 1 as illustrated in FIG. 3 (a), for example. The solid sample 1 is moved horizontally in the inserted state. Since the needle-shaped tubular body 11 is inserted in the droplet 2, the interfacial tension between the droplet 2 and the needle-shaped tubular body 11 causes the liquid to move as the solid sample 1 moves, as shown in FIG. The droplet 2 is deformed so as to be dragged by the needle tube 11.

【0009】このように液滴2が変形した状態での固体
試料1と液滴2の間の接触角の大きさは、液滴2を成す
液体の表面張力、固体試料1を成す固体の表面張力、液
体−固体間の界面張力、摩擦力、吸着力、固体表面粗さ
等に因るため、この状態での接触角を測定することによ
り動的接触角を得ることができる。本発明において、固
体試料1の移動方向の前方の接触角θ1より後退接触角
が得られ、後方の接触角θ2より前進接触角が得られ
る。
The size of the contact angle between the solid sample 1 and the droplet 2 in the state where the droplet 2 is thus deformed depends on the surface tension of the liquid forming the droplet 2 and the surface of the solid forming the solid sample 1. The dynamic contact angle can be obtained by measuring the contact angle in this state because it depends on the tension, the interfacial tension between the liquid and the solid, the frictional force, the adsorption force, the surface roughness of the solid, and the like. In the present invention, the receding contact angle is obtained from the front contact angle θ1 in the moving direction of the solid sample 1, and the advancing contact angle is obtained from the rear contact angle θ2.

【0010】したがって本発明の測定方法は、固体試料
上の液滴内に針状管体の先端を挿入した状態で前記固体
試料を水平方向に移動させることにより、表面エネルギ
ーや摩擦等の上記因子を調べることなく、その結果とし
て引き起こされる動的接触角のみを測定することができ
るものであり、あらゆる固体試料および液体試料につい
て動的接触角の測定を適切に行うことができる。
Therefore, according to the measuring method of the present invention, by moving the solid sample in the horizontal direction with the tip of the needle-shaped tube inserted in the droplet on the solid sample, the above-mentioned factors such as surface energy and friction can be obtained. It is possible to measure only the resulting dynamic contact angle without investigating, and it is possible to appropriately measure the dynamic contact angle for all solid and liquid samples.

【0011】本発明において、特に前記固体試料を一定
速度で水平方向に移動させ、前記固体試料と液滴との間
の接触角が略一定に保たれている状態での該接触角を動
的接触角とすることが好ましい。
In the present invention, in particular, the solid sample is moved in the horizontal direction at a constant speed, and the contact angle between the solid sample and the liquid droplet is kept substantially constant. The contact angle is preferable.

【0012】本発明において、固体試料を一定速度で移
動させると、ある時点で液滴と針状管体との間の付着力
と、液滴と固体試料との間の付着力とが釣り合った状態
となり、固体試料が移動し続けても液滴の形状が一定に
保たれるようになる。図4は、固体試料1を一定速度で
移動させたときの、固体試料1と液滴2と間の接触角の
経時変化の例を示したものである。図4中、実線は固体
試料1の進行方向前方における接触角θ1の経時変化を
示し、破線は固体試料1の進行方向後方における接触角
θ2の経時変化を示す。このように、前方の接触角θ1
は、固体試料1が移動し始めると減少し、ある角度に達
したところで、固体試料1が移動しても一定に保たれる
ようになる。この一定となっているときの接触角θ1を
測定することにより後退接触角が得られる。一方、後方
の接触角θ2は、固体試料1が移動し始めると増加し、
ある角度に達したところで、固体試料1が移動しても一
定に保たれるようになる。この一定となっているときの
接触角θ2を測定することにより前進接触角が得られ
る。
In the present invention, when the solid sample is moved at a constant speed, the adhesive force between the droplet and the needle tube and the adhesive force between the droplet and the solid sample are balanced at a certain point of time. Then, even if the solid sample continues to move, the shape of the droplet will be kept constant. FIG. 4 shows an example of the change over time in the contact angle between the solid sample 1 and the droplet 2 when the solid sample 1 is moved at a constant speed. In FIG. 4, the solid line indicates the change over time in the contact angle θ1 in the forward direction of the solid sample 1, and the broken line indicates the change over time in the contact angle θ2 in the forward direction of the solid sample 1. Thus, the front contact angle θ1
Decreases when the solid sample 1 starts to move, and when the solid sample 1 reaches a certain angle, the value is kept constant even if the solid sample 1 moves. The receding contact angle can be obtained by measuring the contact angle θ1 when this is constant. On the other hand, the rear contact angle θ2 increases when the solid sample 1 starts moving,
After reaching a certain angle, the solid sample 1 is kept constant even if it moves. The advancing contact angle can be obtained by measuring the contact angle θ2 when this is constant.

【0013】したがって、本発明の測定方法によれば、
前述のように表面エネルギー、摩擦、表面状態等の因子
が平衡になる状態を作り出すことができ、この状態での
接触角を測定することにより動的接触角をより適切に求
めることができる。
Therefore, according to the measuring method of the present invention,
As described above, it is possible to create a state in which factors such as surface energy, friction, and surface state are in equilibrium, and by measuring the contact angle in this state, the dynamic contact angle can be obtained more appropriately.

【0014】本発明において、前記固体試料と液滴との
間の接触角を測定する際に、前記固体試料の移動方向に
対して垂直な水平方向から前記液滴を撮像し、得られた
画像データを接線法に基づいて演算処理することが好ま
しい。かかる構成によれば、移動中の固体試料と、この
固体試料上で針状管体に引きずられるように変形してい
る液滴との間の接触角を、精度良く測定することができ
る。
In the present invention, when the contact angle between the solid sample and the droplet is measured, the droplet is imaged from the horizontal direction perpendicular to the moving direction of the solid sample, and the obtained image is obtained. It is preferable to process the data based on the tangent method. According to this configuration, the contact angle between the moving solid sample and the droplet that is deformed on the solid sample so as to be dragged by the needle-shaped tube can be accurately measured.

【0015】本発明の動的接触角の測定装置は、固体試
料を水平に保持するステージと、該ステージを水平方向
に移動させる駆動手段と、前記ステージの上方に垂直に
配された針状管体と、該針状管体の先端から液体試料を
押し出させる液体供給機構と、前記固体試料上に形成さ
れた液滴と該固体試料との間の接触角を測定する手段を
備えてなることを特徴とする。
The dynamic contact angle measuring apparatus of the present invention comprises a stage for holding a solid sample horizontally, a driving means for moving the stage in the horizontal direction, and a needle tube vertically arranged above the stage. A body, a liquid supply mechanism for pushing out the liquid sample from the tip of the needle-shaped tube body, and means for measuring the contact angle between the liquid droplets formed on the solid sample and the solid sample. Is characterized by.

【0016】本発明の測定装置によれば、ステージ上に
固体試料を水平に保持し、液体供給機構により針状管体
の先端から液体試料を押し出して固体試料表面上に液滴
を形成し、さらに、液滴内に針状管体の先端が挿入され
ている状態で、ステージを水平方向に移動させることに
より固体試料を水平方向に移動させることができる。し
たがって、前述の各因子の平衡状態を作り出して動的接
触角を測定することができる。
According to the measuring apparatus of the present invention, the solid sample is held horizontally on the stage, and the liquid sample is extruded from the tip of the needle tube by the liquid supply mechanism to form droplets on the surface of the solid sample. Furthermore, the solid sample can be moved in the horizontal direction by moving the stage in the horizontal direction while the tip of the needle-shaped tube is inserted in the droplet. Therefore, the dynamic contact angle can be measured by creating an equilibrium state of each of the above factors.

【0017】本発明の装置において、前記ステージの移
動速度が可変であることが好ましい。これは、前述の各
因子が平衡状態に達するステージ速度は液体−固体の種
類で異なるためである。かかる構成によれば、固体試料
の移動速度を、固体試料が移動し続けても液滴の形状が
一定に保たれる特定の速度に調整することができる。こ
のような特定の移動速度でステージを移動させることに
より、前述の各因子の平衡状態を作り出すことができ、
この状態での接触角を測定することによって動的接触角
をより適切に求めることができる。
In the apparatus of the present invention, it is preferable that the moving speed of the stage is variable. This is because the stage velocity at which each of the aforementioned factors reaches an equilibrium state differs depending on the type of liquid-solid. With such a configuration, the moving speed of the solid sample can be adjusted to a specific speed at which the shape of the droplet is kept constant even if the solid sample continues to move. By moving the stage at such a specific moving speed, it is possible to create an equilibrium state of each of the above factors,
The dynamic contact angle can be obtained more appropriately by measuring the contact angle in this state.

【0018】また本発明の測定装置において、前記測定
手段が、前記液滴を、前記ステージの移動方向に垂直な
水平方向から撮像する撮像手段と、該撮像手段からの画
像データを用いて接触角を求める演算手段とを備えてな
ることが好ましい。かかる構成によれば、移動中の固体
試料と、この固体試料上で針状管体に引きずられるよう
に変形している液滴との間の接触角を、精度良く測定す
ることができる。
Further, in the measuring apparatus of the present invention, the measuring means uses the image pickup means for picking up the droplet from the horizontal direction perpendicular to the moving direction of the stage, and the contact angle using the image data from the image pickup means. It is preferable to include a calculating means for obtaining According to this configuration, the contact angle between the moving solid sample and the droplet that is deformed on the solid sample so as to be dragged by the needle-shaped tube can be accurately measured.

【0019】[0019]

【発明の実施の形態】以下、本発明を詳しく説明する。
図1は本発明の動的接触角測定装置の一実施形態を示し
た概略構成図である。本実施形態の測定装置10は、ス
テージ12と、その上方に配された針状管体11と、針
状管体11の先端から液体試料を押し出させる液体供給
機構13と、ステージ12上に形成された液滴2の接触
角を測定する測定手段20とから概略構成されている。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is described in detail below.
FIG. 1 is a schematic configuration diagram showing an embodiment of a dynamic contact angle measuring device of the present invention. The measuring device 10 of the present embodiment is formed on the stage 12, a needle-shaped tube body 11 arranged above the stage 12, a liquid supply mechanism 13 for pushing out a liquid sample from the tip of the needle-shaped tube body 11, and a stage 12. The measuring means 20 for measuring the contact angle of the formed droplet 2 is roughly configured.

【0020】ステージ12は、その上に固体試料1を水
平に保持できるように構成されている。またステージ1
2は、水平方向において少なくとも一方向(X方向)に
移動可能であるとともに、垂直方向(Z方向)にも移動
可能に構成されており、そのためにX軸方向駆動手段
(図示略)およびZ軸方向駆動手段(図示略)を備えて
いる。Z軸方向駆動手段は、ステージ12と針状管体1
1の先端との距離を微調整可能に構成され、モータ駆動
による制御がなされる。X軸方向駆動手段は、ステージ
12の水平方向における移動速度を調整可能に構成さ
れ、同様にモータ駆動による制御がなされる。
The stage 12 is constructed so that the solid sample 1 can be held horizontally thereon. See stage 1
2 is configured to be movable in at least one direction (X direction) in the horizontal direction and also movable in the vertical direction (Z direction). Therefore, X-axis direction drive means (not shown) and Z-axis are provided. Direction driving means (not shown) is provided. The Z-axis direction driving means is composed of the stage 12 and the needle-shaped tubular body 1.
The distance from the tip of 1 is finely adjustable and controlled by driving a motor. The X-axis direction driving means is configured to be able to adjust the moving speed of the stage 12 in the horizontal direction, and is similarly controlled by driving the motor.

【0021】針状管体11は、その先端から数μmの液
体試料を、滴下しないように押し出すことができるもの
が用いられ、長さ方向が垂直となるように配置されてい
る。針状管体11の内径は、大きすぎると押し出す液体
量の制御が難しいので、0.1〜1.2mm程度が好ま
しい。また針状管体11の外径は、大きすぎると、液滴
2中に針状管体11を挿入した状態で接触角を測定する
際に、液体サンプルが針状管体11に引き寄せられてし
まうため、0.5〜1.5mm程度が好ましい。本実施
形態では、内径0.8mm、外径1.0mmの針状管体
11が用いられている。
The needle-like tube 11 is used so that a liquid sample of several μm can be pushed out from the tip thereof so as not to drop, and is arranged so that its length direction is vertical. The inner diameter of the needle-shaped tubular body 11 is preferably about 0.1 to 1.2 mm because it is difficult to control the amount of liquid to be pushed out if it is too large. If the outer diameter of the needle-shaped tube body 11 is too large, the liquid sample is attracted to the needle-shaped tube body 11 when the contact angle is measured with the needle-shaped tube body 11 inserted in the droplet 2. Therefore, the thickness is preferably about 0.5 to 1.5 mm. In this embodiment, the needle-shaped tubular body 11 having an inner diameter of 0.8 mm and an outer diameter of 1.0 mm is used.

【0022】針状管体11の表面の材質は、液滴2の物
性に応じて適切なものを選択するのが好ましい。すなわ
ち、針状管体11の表面の材質によっては、ステージ1
2上に保持された固体試料1上の液滴2に針状管体11
を挿入した状態でステージ12を移動させたときに、液
滴2が針状管体11に引きずられたような変形を生じな
い場合があるので、かかる不都合が生じないように針状
管体11として適切な材質のものを選択する。目安とし
ては、液体試料の表面張力が約30mN/m程度または
これよりも小さい場合、好ましくは液体試料の表面張力
が40N/m以下である場合には、外表面にテフロン
(登録商標)からなる被覆が施された針状管体11を用
いることが好ましい。例えばエタノール(表面張力2
4.05mN/m)や、後述の実施例で用いた液体サン
プルC(表面張力30.2mN/m)は、この場合に該
当する。一方、液体試料の表面張力が30mN/mを越
える程度に大きい場合、好ましくは液体試料の表面張力
が40N/mより大きい場合には、ステンレス製の針状
管体11を用いることが好ましい。例えば水(表面張力
75.7mN/m)は、この場合に該当する。
The material of the surface of the needle-shaped tube body 11 is preferably selected as appropriate according to the physical properties of the droplet 2. That is, depending on the material of the surface of the needle tube 11, the stage 1
The needle-like tubular body 11 on the droplet 2 on the solid sample 1 held on
When the stage 12 is moved in a state where the needle-shaped tube 11 is inserted, the droplet 2 may not be deformed by being dragged by the needle-shaped tube 11, so that the needle-shaped tube 11 is prevented from occurring. Select an appropriate material as. As a guide, when the surface tension of the liquid sample is about 30 mN / m or less, preferably when the surface tension of the liquid sample is 40 N / m or less, the outer surface is made of Teflon (registered trademark). It is preferable to use the needle-shaped tubular body 11 that has been coated. For example, ethanol (surface tension 2
4.05 mN / m) and the liquid sample C (surface tension 30.2 mN / m) used in the examples described later correspond to this case. On the other hand, when the surface tension of the liquid sample is large enough to exceed 30 mN / m, preferably when the surface tension of the liquid sample is larger than 40 N / m, it is preferable to use the needle-shaped tubular body 11 made of stainless steel. For example, water (surface tension 75.7 mN / m) corresponds to this case.

【0023】液体供給機構13は、針状管体11に液体
試料を、予め設定された所定量だけ供給することによっ
て、針状管体11の先端から液体試料を所定量だけ押し
出させて液滴2を形成できるように構成されている。
The liquid supply mechanism 13 supplies the liquid sample to the needle-shaped tube body 11 by a predetermined amount set in advance, thereby pushing out the liquid sample by a predetermined amount from the tip of the needle-shaped tube body 11 to form droplets. 2 can be formed.

【0024】測定手段20は、ステージ12上に保持さ
れた固体試料1上の液滴2を拡大撮像してその画像デー
タを信号出力するCCDカメラ(撮像手段)21と、撮
像時に液滴2を照明するための光源22、CCDカメラ
21からの画像データ信号を演算処理して接触角を求め
るコンピュータ(演算手段)23およびコンピュータ2
3に接続されたモニター24を備えている。CCDカメ
ラ21は、液滴2を、ステージ12の移動方向(X方
向)に対して垂直な水平方向(Y方向)から撮像するよ
うに配置されている。また符号15は、液体供給機構1
3から針状管体11への液体供給、ステージ12の移
動、およびCCDカメラ21での撮像の各動作を制御す
る制御装置である。
The measuring means 20 includes a CCD camera (imaging means) 21 for enlarging and imaging the droplet 2 on the solid sample 1 held on the stage 12 and outputting the image data as a signal, and the droplet 2 during imaging. A light source 22 for illuminating, a computer (arithmetic means) 23 for computing image data signals from the CCD camera 21 to obtain a contact angle, and a computer 2.
3 has a monitor 24 connected to it. The CCD camera 21 is arranged so as to image the droplet 2 from a horizontal direction (Y direction) perpendicular to the moving direction (X direction) of the stage 12. Further, reference numeral 15 is a liquid supply mechanism 1.
3 is a control device that controls each operation of liquid supply from 3 to the needle-shaped tubular body 11, movement of the stage 12, and imaging by the CCD camera 21.

【0025】次に、かかる構成の装置を用いて動的接触
角を測定する一実施形態について説明する。本実施形態
では後退接触角を測定する。まず、動的接触角を測定し
ようとする固体試料1をステージ12上に固定して保持
させ、液体試料を液体供給機構13にセットする。そし
て、図2に示すように、固体試料1の上方に配置されて
いる針状管体11の先端から所定量の液体試料を押し出
し、続いてステージ12をZ方向上方へ移動させて、押
し出された液体試料に固体試料1を接触させることによ
り、図3(a)に示すように固体試料1上に液滴2を形
成する。針状管体11の先端から押し出される液体試料
の量は、液滴2において自重による重力の影響が無視で
きる程度の量とすることが好ましい。具体的には、固体
試料1上に形成された液滴2の、接触面における外径が
3〜5mm程度となるように設定することが好ましい。
Next, an embodiment for measuring the dynamic contact angle by using the apparatus having such a configuration will be described. In this embodiment, the receding contact angle is measured. First, the solid sample 1 whose dynamic contact angle is to be measured is fixed and held on the stage 12, and the liquid sample is set in the liquid supply mechanism 13. Then, as shown in FIG. 2, a predetermined amount of the liquid sample is extruded from the tip of the needle tube 11 arranged above the solid sample 1, and then the stage 12 is moved upward in the Z direction to be extruded. By bringing the solid sample 1 into contact with the liquid sample, droplets 2 are formed on the solid sample 1 as shown in FIG. It is preferable that the amount of the liquid sample extruded from the tip of the needle-shaped tubular body 11 be such that the influence of gravity on the droplet 2 due to its own weight can be ignored. Specifically, it is preferable to set the outer diameter of the droplet 2 formed on the solid sample 1 at the contact surface to be about 3 to 5 mm.

【0026】次いで、図3(b)に示すように、ステー
ジ12をX方向へ一定速度で移動させながら、CCDカ
メラ21で液滴2を撮像し、得られた画像データから、
ステージ12の進行方向前方における液滴2の接触角θ
1を測定する。ステージ12が移動し始めると、液滴2
が針状管体11に引きずられるように変形し、前方の接
触角θ1は図4に実線で示すように、経時的に減少して
ある角度に達すると固体試料1が移動しても接触角θ1
は一定となる。この一定となっているときの接触角θ1
の値を後退接触角として採用する。ステージ12のX方
向への移動速度は特に限定されず、液滴2が針状管体1
1に引きずられるように変形した後、ステージ12が移
動しても一定形状を保つように設定されていればよい。
そのために、必要であればステージ12の移動速度を調
整する。ステージ12のX方向への移動速度は、例えば
1〜4mm/sec程度に好ましく設定される。
Next, as shown in FIG. 3 (b), while moving the stage 12 in the X direction at a constant speed, the CCD camera 21 images the droplet 2, and from the obtained image data,
Contact angle θ of the droplet 2 in front of the traveling direction of the stage 12
Measure 1. When the stage 12 starts moving, the droplet 2
Is deformed so as to be dragged by the needle-shaped tubular body 11, and the front contact angle θ1 decreases with time as shown by the solid line in FIG. 4, and when the solid sample 1 moves, the contact angle θ1 decreases. θ1
Is constant. Contact angle θ1 when this is constant
The value of is adopted as the receding contact angle. The moving speed of the stage 12 in the X direction is not particularly limited, and the liquid droplet 2 may be moved by the needle-shaped tubular body 1.
After being deformed so as to be dragged to 1, it may be set so as to maintain a constant shape even if the stage 12 moves.
Therefore, the moving speed of the stage 12 is adjusted if necessary. The moving speed of the stage 12 in the X direction is preferably set to, for example, about 1 to 4 mm / sec.

【0027】CCDカメラ21で取り込んだ画像データ
を用い、コンピュータ23で接触角θ1を測定する方法
としては、次のような接線法を用いることが好ましい。
図5は接線法により移動方向前方における接触角θ1を
測定する方法を原理的に説明するための図である。後退
接触角を測定する場合、まず、図5(a)に示すよう
に、ステージ12の移動方向(X方向)の前方におい
て、液滴2の最先端の第1の端点(図では左側の端点)
L1と、この第1の端点L1から予め設定された間隔で
選ばれた第2の端点L2、および第3の端点L3を取得
する。次に、図5(b)に示すように、第1〜第3の端
点L1、L2、L3が1つの円O1の円弧上にあるとみ
なして、この円O1の中心M1を求め、第1の端点L1
における円O1の接線mを求める。液滴2と固体試料1
との接触面に相当する直線Sと、求めた接線mとのなす
角度が移動方向前方における接触角θ1となる。そし
て、ステージ12を移動させながら、この移動方向前方
における接触角θ1を所定間隔で経時的に測定し、直前
の測定値との差を求める。この前回の測定値との差が小
さくて、接触角θ1の値が略一定となったら、このとき
のθ1の値を後退接触角の値として採用する。例えば、
接触角θ1を連続して2回測定したときの測定値の差が
5°以下であるときに、接触角θ1の値がほぼ一定であ
ると見なすことができる。
As a method of measuring the contact angle θ1 by the computer 23 using the image data captured by the CCD camera 21, the following tangent method is preferably used.
FIG. 5 is a diagram for explaining in principle the method of measuring the contact angle θ1 in the front of the moving direction by the tangent method. When measuring the receding contact angle, first, as shown in FIG. 5A, in front of the moving direction (X direction) of the stage 12, the first end point of the tip of the droplet 2 (the left end point in the figure). )
L1, a second end point L2 and a third end point L3 selected at preset intervals from the first end point L1 are acquired. Next, as shown in FIG. 5B, assuming that the first to third end points L1, L2, L3 are on the arc of one circle O1, the center M1 of this circle O1 is obtained, End point L1
The tangent line m of the circle O1 at is obtained. Droplet 2 and solid sample 1
The angle formed by the straight line S corresponding to the contact surface with and the calculated tangent line m is the contact angle θ1 in the front in the moving direction. Then, while moving the stage 12, the contact angle θ1 in the front of the moving direction is measured at predetermined intervals with time, and the difference from the immediately preceding measured value is obtained. When the difference from the previous measured value is small and the value of the contact angle θ1 becomes substantially constant, the value of θ1 at this time is adopted as the value of the receding contact angle. For example,
It can be considered that the value of the contact angle θ1 is substantially constant when the difference between the measured values when the contact angle θ1 is continuously measured twice is 5 ° or less.

【0028】本実施形態によれば、水平方向に移動して
いる固体試料1上で、後方に引きずられるように変形し
た液滴2の最先端の接触角を測定することにより後退接
触角が得られる。また、本実施形態では、固体試料1上
に形成した液滴2内に針状管体11の先端を挿入した状
態で固体試料1を水平方向に適切な一定速度で移動させ
ることにより、固体試料1および液体試料の表面状態や
物性等に関係なく、あらゆる因子の平衡状態を達成でき
るため、あらゆる固体試料および液体試料について後退
接触角の測定を適切に行うことができる。例えば、従来
のウィルヘルミー法では適切な測定が困難であった表面
均一性が低い固体試料についても、従来の拡張収縮法で
は適切な測定が困難であった撥水性が高い固体試料と液
体試料との組み合わせについても、また従来の転落法で
は適切な測定が困難であった付着力が高い固体試料と液
体試料との組み合わせについても、適切に動的接触角を
測定することができる。
According to the present embodiment, the receding contact angle is obtained by measuring the contact angle at the tip of the droplet 2 which is deformed so as to be dragged backward on the solid sample 1 which is moving in the horizontal direction. To be Further, in the present embodiment, the solid sample 1 is moved in the horizontal direction at an appropriate constant speed while the tip of the needle tube 11 is inserted into the droplet 2 formed on the solid sample 1. Since the equilibrium state of all factors can be achieved regardless of the surface state and physical properties of the liquid sample 1 and the liquid sample, the receding contact angle can be appropriately measured for all solid samples and liquid samples. For example, even for a solid sample with low surface uniformity, which was difficult to perform appropriate measurement by the conventional Wilhelmy method, a solid sample and a liquid sample with high water repellency, which were difficult to perform appropriate measurement by the conventional expansion and contraction method, were used. The dynamic contact angle can be appropriately measured for the combination, and also for the combination of the solid sample and the liquid sample having high adhesive force, which was difficult to be appropriately measured by the conventional falling method.

【0029】なお、本実施形態では、ステージ12の移
動方向前方における接触角θ1を測定することによって
後退接触角を求める場合を例に挙げて説明したが、同様
の手順でステージ12の移動方向後方における接触角θ
2を測定することによって前進接触角を求めることがで
きる。移動方向後方における接触角θ2は、図4に破線
で示すように、ステージ12が移動し始めると経時的に
増加してある角度に達すると固体試料1が移動しても接
触角θ2は一定となるので、この一定となっているとき
の接触角θ2の値を前進接触角として採用する。
In this embodiment, the case where the receding contact angle is obtained by measuring the contact angle θ1 in the front of the moving direction of the stage 12 has been described as an example. Contact angle at
The advancing contact angle can be determined by measuring 2. As shown by the broken line in FIG. 4, the contact angle θ2 at the rear of the moving direction increases with time when the stage 12 starts moving, and when the solid sample 1 moves, the contact angle θ2 is constant. Therefore, the value of the contact angle θ2 when this is constant is adopted as the advancing contact angle.

【0030】また、本実施形態では、液滴2と固体試料
1の間の接触角を測定するための測定装置20として、
CCDカメラを使って画像を取り込み、接線法により画
像データを演算処理する方法を用いたが、液滴2と固体
試料1の間の接触角θ1(またはθ2)を測定できる方
法であれば、他の手法を用いることもできる。
In this embodiment, the measuring device 20 for measuring the contact angle between the droplet 2 and the solid sample 1 is as follows.
Although a method in which an image is captured using a CCD camera and image data is arithmetically processed by the tangent method is used, other methods can be used as long as the contact angle θ1 (or θ2) between the droplet 2 and the solid sample 1 can be measured. The method of can also be used.

【0031】[0031]

【実施例】以下、具体的な実施例を示して本発明の効果
を明らかにする。固体試料1の例として、表面に共析
メッキを施した固体サンプルA、および表面にテフロ
ン膜が成膜された固体サンプルBを用意した。 固体サンプルAは、ステンレスプレートを、金属イオ
ン(ニッケルイオン)と撥水性樹脂(ポリテトラフルオ
ロエチレン)の粒子を分散させた電解液に浸漬してメッ
キ処理した後、さらに撥水性樹脂の融点以上の温度で加
熱処理することにより強固な撥水性の共析メッキ層を形
成したものを使用した。
EXAMPLES The effects of the present invention will be clarified below with reference to specific examples. As an example of the solid sample 1, a solid sample A having a surface subjected to eutectoid plating and a solid sample B having a Teflon film formed on the surface thereof were prepared. The solid sample A was obtained by immersing a stainless steel plate in an electrolytic solution in which metal ions (nickel ions) and particles of a water-repellent resin (polytetrafluoroethylene) were dispersed, followed by plating, and then a temperature above the melting point of the water-repellent resin. A product having a strong water-repellent eutectoid plating layer formed by heat treatment at a temperature was used.

【0032】固体サンプルBは、ステンレスプレート
に、プラズマ重合法により撥水処理を施したものを使用
した。具体的には、まずC410やC816などの直鎖状
PFCからなる原料液の蒸気をプラズマ処理装置におい
てプラズマ化する。このようにして直鎖状PFCの蒸気
がプラズマ化されると、直鎖状PFCの結合が一部切断
されて活性化する。活性化されたPFCをステンレスプ
レートの表面に接触させることにより、ステンレスプレ
ート上でPFCが互いに重合し、撥液性を有するフッ素
樹脂重合膜が形成されたものを使用した。
As the solid sample B, a stainless steel plate subjected to water repellent treatment by a plasma polymerization method was used. Specifically, first, the vapor of the raw material liquid composed of linear PFC such as C 4 F 10 or C 8 F 16 is converted into plasma in the plasma processing apparatus. When the vapor of the linear PFC is plasmatized in this way, the bond of the linear PFC is partially broken and activated. The activated PFC was brought into contact with the surface of the stainless steel plate, whereby the PFCs were polymerized with each other on the stainless steel plate, and a fluororesin polymer film having liquid repellency was formed.

【0033】一方、液体試料としては、ドデシルベン
ゼンとテトラリンを体積比1:1で混合してなる極成溶
媒99.6重量%に対して、発光材料としてポリジオク
チルフルオレン0.4重量%を添加してなる有機EL素
子の発光層を形成する材料(以下液体サンプルCとい
う)を用いた。この液体サンプルCの表面張力は30.
2mN/mであった。
On the other hand, as a liquid sample, 0.4% by weight of polydioctylfluorene as a light emitting material was added to 99.6% by weight of an polar solvent prepared by mixing dodecylbenzene and tetralin in a volume ratio of 1: 1. A material (hereinafter referred to as a liquid sample C) for forming a light emitting layer of the organic EL device is formed. The surface tension of this liquid sample C is 30.
It was 2 mN / m.

【0034】(実施例1)図1に示す構成の測定装置1
0を用い、本発明に係る測定方法で固体サンプルAと液
体サンプルCとの間の後退接触角を測定した。まず、固
体サンプルAをステージ12上に固定して保持させ、液
体サンプルCを液体供給機構13にセットした。針状管
体11としては、外表面にテフロン(登録商標)からな
る被覆が施された、外径1.0mm、内径0.8mmの
テフロンコート針を用いた。そして、図2に示すよう
に、固体サンプルAの上方に配置されている針状管体1
1の先端から4μlの液体サンプルCを押し出し、続い
てステージ12をZ方向上方へ移動させることにより、
図3(a)に示すように固体サンプルA上に液体サンプ
ルCからなる液滴2を形成した。次いで、図3(b)に
示すように、ステージ12をX方向へ2mm/秒の一定
速度で移動させながら、この液滴2をY方向からCCD
カメラ21で撮像し、得られた画像データから接線法に
よりステージ12の進行方向前方における液滴2の接触
角θ1を測定した。ステージ12の移動中に、接触角θ
1がほぼ一定となったときの接触角θ1の値を後退接触
角として求めた。後退接触角の測定を5回行い、5回の
測定値の平均値、および最大値と最小値との差(Max
−Min)をそれぞれ求めた。その結果を下記表1に示
す。
(Embodiment 1) Measuring apparatus 1 having the structure shown in FIG.
0 was used to measure the receding contact angle between the solid sample A and the liquid sample C by the measuring method according to the present invention. First, the solid sample A was fixed and held on the stage 12, and the liquid sample C was set in the liquid supply mechanism 13. As the needle-shaped tubular body 11, a Teflon-coated needle having an outer diameter of 1.0 mm and an inner diameter of 0.8 mm, the outer surface of which was coated with Teflon (registered trademark), was used. Then, as shown in FIG. 2, the needle-shaped tubular body 1 arranged above the solid sample A.
By extruding 4 μl of the liquid sample C from the tip of 1, and moving the stage 12 upward in the Z direction,
As shown in FIG. 3A, droplets 2 made of a liquid sample C were formed on the solid sample A. Next, as shown in FIG. 3B, while moving the stage 12 in the X direction at a constant speed of 2 mm / sec, the droplet 2 is moved from the Y direction to the CCD.
An image was taken by the camera 21, and the contact angle θ1 of the droplet 2 in the forward direction of the stage 12 was measured by the tangent method from the obtained image data. While the stage 12 is moving, the contact angle θ
The value of the contact angle θ1 when 1 became almost constant was determined as the receding contact angle. The receding contact angle was measured 5 times, and the average of the 5 measurements and the difference between the maximum and minimum values (Max
-Min) was calculated for each. The results are shown in Table 1 below.

【0035】(実施例2)上記実施例1において、固体
サンプルAに代えて固体サンプルBを用いた他は同様に
して、固体サンプルBと液体サンプルCとの間の後退接
触角を測定した。5回の測定により得られた後退接触角
の平均値、および最大値と最小値との差(Max−Mi
n)を下記表1に示す。
Example 2 The receding contact angle between the solid sample B and the liquid sample C was measured in the same manner as in Example 1 except that the solid sample B was used instead of the solid sample A. The average value of the receding contact angles obtained by five times of measurement, and the difference between the maximum value and the minimum value (Max-Mi
n) is shown in Table 1 below.

【0036】(比較例1)従来法である拡張収縮法を用
いて、固体サンプルAと液体サンプルCとの間の後退接
触角を測定した。まず、固体サンプルA上に内径0.8
mmの注射針から4μlの液体サンプルCを押し出して
液滴を形成した後、この液滴中に注射針の先端を挿入さ
せた状態で、液滴から液体サンプルCを一定流量で引き
抜きながら、液滴が縮小していく過程をCCDカメラで
撮像した。得られた画像データから液滴と固体サンプル
Aとの接触面の直径Lと液滴の高さHを測定し、下記数
式(1)で表される後退接触角θrを求めた。 θr=2tan-12H/L …(1) このようにして後退接触角θrの測定を5回行い、5回
の測定値の平均値、および最大値と最小値との差(Ma
x−Min)をそれぞれ求めた。その結果を下記表1に
示す。
(Comparative Example 1) The receding contact angle between the solid sample A and the liquid sample C was measured by using a conventional expansion / contraction method. First, an inner diameter of 0.8 on the solid sample A
After ejecting 4 μl of the liquid sample C from the mm injection needle to form a droplet, the liquid sample C is drawn out from the droplet at a constant flow rate while the tip of the injection needle is inserted into the droplet. The process of the droplet shrinking was imaged with a CCD camera. The diameter L of the contact surface between the droplet and the solid sample A and the height H of the droplet were measured from the obtained image data, and the receding contact angle θr represented by the following mathematical formula (1) was obtained. θr = 2 tan −1 2H / L (1) In this way, the receding contact angle θr is measured 5 times, and the average value of the 5 measured values and the difference between the maximum value and the minimum value (Ma
x-Min) was calculated. The results are shown in Table 1 below.

【0037】(比較例2)上記比較例1において、固体
サンプルAに代えて固体サンプルBを用いた他は同様に
して、固体サンプルBと液体サンプルCとの間の後退接
触角θrを測定した。5回の測定により得られた後退接
触角θrの平均値、および最大値と最小値との差(Ma
x−Min)を下記表1に示す。
Comparative Example 2 The receding contact angle θr between the solid sample B and the liquid sample C was measured in the same manner as in Comparative Example 1 except that the solid sample B was used in place of the solid sample A. . The average value of the receding contact angle θr obtained by five measurements and the difference between the maximum value and the minimum value (Ma
x-Min) is shown in Table 1 below.

【0038】[0038]

【表1】 [Table 1]

【0039】表1の結果より、測定値のばらつきは、比
較例1,2では3.5゜であったのに対して、実施例
1,2では2.4゜〜3.2゜と小さくて再現性が良い
ことが認められた。また、両測定方法による平均値の差
は、固体サンプルAを用いた場合は1.9゜であり、固
体サンプルBを用いた場合は1.3゜であるが、この差
は上記の測定値のばらつきよりも小さいものであり、測
定誤差の範囲内であると認められる。したがって、実施
例1,2の測定結果は、比較例1,2の測定結果と良く
一致していることが認められた。
From the results shown in Table 1, the variation in measured values was 3.5 ° in Comparative Examples 1 and 2, whereas it was as small as 2.4 ° to 3.2 ° in Examples 1 and 2. It was confirmed that the reproducibility was good. Further, the difference between the average values by both measuring methods is 1.9 ° when the solid sample A is used and 1.3 ° when the solid sample B is used. The difference is smaller than the variation of, and it is recognized that it is within the range of measurement error. Therefore, it was confirmed that the measurement results of Examples 1 and 2 were in good agreement with the measurement results of Comparative Examples 1 and 2.

【0040】[0040]

【発明の効果】以上説明したように、本発明によれば、
固体試料および液体試料の表面状態や物性等に関係な
く、ほぼ全ての材料について動的接触角を測定すること
ができ、汎用性の高い測定方法および測定装置を提供す
ることができる。
As described above, according to the present invention,
The dynamic contact angle can be measured for almost all materials regardless of the surface condition and physical properties of the solid sample and the liquid sample, and a highly versatile measuring method and measuring device can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に係る動的接触角の測定装置の一実施
形態を示す概略構成図である。
FIG. 1 is a schematic configuration diagram showing an embodiment of a dynamic contact angle measuring device according to the present invention.

【図2】 本発明に係る動的接触角の測定方法を説明す
るための図であり、針状管体の先端から液体材料を押し
出した状態を示す側面図である。
FIG. 2 is a diagram for explaining a method for measuring a dynamic contact angle according to the present invention, and is a side view showing a state in which a liquid material is extruded from the tip of a needle-shaped tubular body.

【図3】 本発明に係る動的接触角の測定方法を説明す
るための図であり、(a)は固体試料上に液滴を形成し
た状態を示す側面図、(b)は固体試料を移動させた状
態を示す側面図である。
3A and 3B are diagrams for explaining a method for measuring a dynamic contact angle according to the present invention, in which FIG. 3A is a side view showing a state where droplets are formed on a solid sample, and FIG. It is a side view showing a moved state.

【図4】 本発明に係る測定方法において、接触角の測
定値の経時変化の例を示すグラフである。
FIG. 4 is a graph showing an example of a change with time of a measured value of a contact angle in the measuring method according to the present invention.

【図5】 本発明に係る測定方法において、接線法を用
いた演算処理により接触角を求める方法を示す説明図で
ある。
FIG. 5 is an explanatory diagram showing a method of obtaining a contact angle by a calculation process using a tangent method in the measuring method according to the present invention.

【符号の説明】[Explanation of symbols]

1…固体試料 2…液滴 11…針状管体 12…ステージ 13…液体供給機構 15…制御装置 20…測定手段 21…CCDカメラ(撮像手段) 23…コンピュータ(演算手段) 1 ... Solid sample 2 ... Droplet 11 ... Needle tube 12 ... Stage 13 ... Liquid supply mechanism 15 ... Control device 20 ... Measuring means 21 ... CCD camera (imaging means) 23 ... Computer (calculation means)

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 水平に配置された固体試料の表面上に、
該固体試料の上方に垂直に配された針状管体の先端から
液体試料を押し出して液滴を形成し、該液滴内に前記針
状管体の先端が挿入されている状態で、前記固体試料を
水平方向に移動させながら、前記固体試料の進行方向の
前方または後方における、前記固体試料と液滴との間の
接触角を測定することを特徴とする動的接触角の測定方
法。
1. On the surface of a horizontally arranged solid sample,
The liquid sample is extruded from the tip of the needle-shaped tube vertically disposed above the solid sample to form a droplet, and the tip of the needle-shaped tube is inserted into the droplet, A method for measuring a dynamic contact angle, which comprises moving a solid sample in a horizontal direction and measuring a contact angle between the solid sample and a droplet in front of or behind the moving direction of the solid sample.
【請求項2】 前記固体試料を一定速度で水平方向に移
動させ、前記固体試料と液滴との間の接触角が略一定に
保たれている状態での該接触角を動的接触角とすること
を特徴とする請求項1記載の動的接触角の測定方法。
2. The contact angle when the solid sample is moved in the horizontal direction at a constant speed and the contact angle between the solid sample and the droplet is kept substantially constant is defined as a dynamic contact angle. The method for measuring a dynamic contact angle according to claim 1, wherein
【請求項3】 前記固体試料と液滴との間の接触角を測
定する際に、前記固体試料の移動方向に対して垂直な水
平方向から前記液滴を撮像し、得られた画像データを接
線法に基づいて演算処理することを特徴とする請求項1
または2のいずれかに記載の動的接触角の測定方法。
3. When measuring the contact angle between the solid sample and the droplet, the droplet is imaged from a horizontal direction perpendicular to the moving direction of the solid sample, and the obtained image data is obtained. The arithmetic processing is performed based on the tangent method.
Or the method for measuring a dynamic contact angle according to any one of 2).
【請求項4】 固体試料を水平に保持するステージと、
該ステージを水平方向に移動させる駆動手段と、前記ス
テージの上方に垂直に配された針状管体と、該針状管体
の先端から液体試料を押し出させる液体供給機構と、前
記固体試料上に形成された液滴と該固体試料との間の接
触角を測定する手段を備えてなることを特徴とする動的
接触角の測定装置。
4. A stage for holding a solid sample horizontally,
A drive means for moving the stage in the horizontal direction, a needle-shaped tubular body vertically arranged above the stage, a liquid supply mechanism for pushing out a liquid sample from the tip of the needle-shaped tubular body, and a solid sample on the solid sample. A device for measuring a dynamic contact angle, comprising means for measuring a contact angle between a droplet formed on the surface and the solid sample.
【請求項5】 前記ステージの移動速度が可変であるこ
とを特徴とする請求項4記載の動的接触角の測定装置。
5. The dynamic contact angle measuring device according to claim 4, wherein the moving speed of the stage is variable.
【請求項6】 前記測定手段が、前記液滴を、前記ステ
ージの移動方向に垂直な水平方向から撮像する撮像手段
と、該撮像手段からの画像データを用いて接触角を求め
る演算手段とを備えてなることを特徴とする請求項4ま
たは5のいずれかに記載の動的接触角の測定装置。
6. The measuring means includes an image pickup means for picking up an image of the liquid droplet from a horizontal direction perpendicular to the moving direction of the stage, and a calculating means for obtaining a contact angle by using image data from the image pickup means. The dynamic contact angle measuring device according to claim 4, further comprising:
JP2002067711A 2002-03-12 2002-03-12 Method and apparatus for measuring dynamic contact angle Expired - Fee Related JP3767500B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002067711A JP3767500B2 (en) 2002-03-12 2002-03-12 Method and apparatus for measuring dynamic contact angle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002067711A JP3767500B2 (en) 2002-03-12 2002-03-12 Method and apparatus for measuring dynamic contact angle

Publications (2)

Publication Number Publication Date
JP2003270117A true JP2003270117A (en) 2003-09-25
JP3767500B2 JP3767500B2 (en) 2006-04-19

Family

ID=29198996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002067711A Expired - Fee Related JP3767500B2 (en) 2002-03-12 2002-03-12 Method and apparatus for measuring dynamic contact angle

Country Status (1)

Country Link
JP (1) JP3767500B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006078477A (en) * 2004-08-10 2006-03-23 Kanagawa Acad Of Sci & Technol Method and apparatus for measuring droplet movement behavior
WO2006118108A1 (en) * 2005-04-27 2006-11-09 Nikon Corporation Exposure method, exposure apparatus, method for manufacturing device, and film evaluation method
JP2007256168A (en) * 2006-03-24 2007-10-04 Kanagawa Acad Of Sci & Technol Droplet behavior analysis method and apparatus
JP2007322181A (en) * 2006-05-30 2007-12-13 Nippon Soda Co Ltd Thin film inspection method and thin film inspection device
JP2008047847A (en) * 2005-04-27 2008-02-28 Nikon Corp Exposure method, exposure device, method of manufacturing device, and evaluation method of films
JP2010175417A (en) * 2009-01-30 2010-08-12 Hitachi High-Technologies Corp Automatic analyzer
US8111374B2 (en) 2005-09-09 2012-02-07 Nikon Corporation Analysis method, exposure method, and device manufacturing method
KR101539676B1 (en) * 2014-02-27 2015-07-27 경상대학교산학협력단 Contact angle measuring method
JP2015145009A (en) * 2007-05-18 2015-08-13 武蔵エンジニアリング株式会社 Method and device of discharging liquid material
JP2015193922A (en) * 2014-03-24 2015-11-05 三菱重工業株式会社 Liquid repellent surface fine structure, production method thereof, heat exchanger, and component of air conditioner
CN107505236A (en) * 2017-09-13 2017-12-22 宁波新边界科学仪器有限公司 A kind of contact angle measuring method and its device with new liquid distribution method
CN107817193A (en) * 2017-10-27 2018-03-20 清华大学 Super-hydrophobic surface of solids contact angle measuring method and system based on partial circle fitting
CN109269976A (en) * 2018-11-16 2019-01-25 西南科技大学 Measure the measuring device and measuring method of frictional force between solid liquid interface under electric field
CN110132798A (en) * 2019-06-11 2019-08-16 西南科技大学 Device and method for measuring advancing/receding angle of solid-liquid interface under electric field
CN111175194A (en) * 2019-12-24 2020-05-19 肇庆市海特复合材料技术研究院 Method for testing wettability of composite material of connecting rod
CN113567307A (en) * 2021-07-15 2021-10-29 武汉理工大学 A method for testing aggregate surface energy based on static drop method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5315429B2 (en) * 2012-02-24 2013-10-16 協和界面科学株式会社 Dynamic contact angle meter and method for measuring dynamic contact angle

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006078477A (en) * 2004-08-10 2006-03-23 Kanagawa Acad Of Sci & Technol Method and apparatus for measuring droplet movement behavior
WO2006118108A1 (en) * 2005-04-27 2006-11-09 Nikon Corporation Exposure method, exposure apparatus, method for manufacturing device, and film evaluation method
JP2008047847A (en) * 2005-04-27 2008-02-28 Nikon Corp Exposure method, exposure device, method of manufacturing device, and evaluation method of films
JPWO2006118108A1 (en) * 2005-04-27 2008-12-18 株式会社ニコン Exposure method, exposure apparatus, device manufacturing method, and film evaluation method
US8111374B2 (en) 2005-09-09 2012-02-07 Nikon Corporation Analysis method, exposure method, and device manufacturing method
JP2007256168A (en) * 2006-03-24 2007-10-04 Kanagawa Acad Of Sci & Technol Droplet behavior analysis method and apparatus
JP2007322181A (en) * 2006-05-30 2007-12-13 Nippon Soda Co Ltd Thin film inspection method and thin film inspection device
JP2015145009A (en) * 2007-05-18 2015-08-13 武蔵エンジニアリング株式会社 Method and device of discharging liquid material
JP2010175417A (en) * 2009-01-30 2010-08-12 Hitachi High-Technologies Corp Automatic analyzer
KR101539676B1 (en) * 2014-02-27 2015-07-27 경상대학교산학협력단 Contact angle measuring method
JP2015193922A (en) * 2014-03-24 2015-11-05 三菱重工業株式会社 Liquid repellent surface fine structure, production method thereof, heat exchanger, and component of air conditioner
CN107505236A (en) * 2017-09-13 2017-12-22 宁波新边界科学仪器有限公司 A kind of contact angle measuring method and its device with new liquid distribution method
CN107817193A (en) * 2017-10-27 2018-03-20 清华大学 Super-hydrophobic surface of solids contact angle measuring method and system based on partial circle fitting
CN107817193B (en) * 2017-10-27 2020-12-04 清华大学 Method and system for measuring contact angle of superhydrophobic solid surface based on local circle fitting
CN109269976A (en) * 2018-11-16 2019-01-25 西南科技大学 Measure the measuring device and measuring method of frictional force between solid liquid interface under electric field
CN109269976B (en) * 2018-11-16 2023-10-03 西南科技大学 Measuring device and measuring method for measuring friction force between solid-liquid interfaces in electric field
CN110132798A (en) * 2019-06-11 2019-08-16 西南科技大学 Device and method for measuring advancing/receding angle of solid-liquid interface under electric field
CN110132798B (en) * 2019-06-11 2024-05-17 西南科技大学 Device and method for measuring the advancing/receding angle of solid-liquid interface under electric field
CN111175194A (en) * 2019-12-24 2020-05-19 肇庆市海特复合材料技术研究院 Method for testing wettability of composite material of connecting rod
CN113567307A (en) * 2021-07-15 2021-10-29 武汉理工大学 A method for testing aggregate surface energy based on static drop method
CN113567307B (en) * 2021-07-15 2022-06-21 武汉理工大学 A method for testing aggregate surface energy based on static drop method
US11982608B2 (en) 2021-07-15 2024-05-14 Wuhan University Of Technology Method for testing surface energy of aggregate based on static drop method

Also Published As

Publication number Publication date
JP3767500B2 (en) 2006-04-19

Similar Documents

Publication Publication Date Title
JP2003270117A (en) Method and apparatus for measuring dynamic contact angle
Sivakumar et al. Spreading behavior of an impacting drop on a structured rough surface
US6213354B1 (en) System and method for dispensing fluid droplets of known volume and generating very low fluid flow rates
JP6830406B2 (en) Dispenser
Winkels et al. Receding contact lines: from sliding drops to immersion lithography
CN107505236A (en) A kind of contact angle measuring method and its device with new liquid distribution method
Orlova et al. Spreading of a distilled water droplet over polished and laser-treated aluminum surfaces
CN104569482B (en) A kind of high-velocity liquid jet superficial velocity measurement apparatus and method
JP4563890B2 (en) Method and apparatus for measuring droplet movement behavior
Remer et al. Dynamic water contact angle during initial phases of droplet impingement
Ponce-Torres et al. Smooth printing of viscoelastic microfilms with a flow focusing ejector
WO2019144905A1 (en) Microdroplet container, method for preparing microdroplet container, microdroplet spreading method, microdroplet formation kit, temperature control device, oil phase composition for microdroplet formation and treatment method therefor
JP2001116675A (en) Contact angle measuring device, dynamic surface tension measuring device, contact angle measuring method, and dynamic surface tension measuring method
WO2023143113A1 (en) Measurement method and measurement device for mechanical property of thin film
JPWO2016117455A1 (en) Coating device and coating method, coating unit
Karhan Experimental investigation of wettability and evaporation for the surface of PMMA dielectric material used in high-voltage applications and outdoor electrical applications
Kim et al. Deposition of micro/macroscale water droplets on grooved hydrophobic surfaces
Misyura Heat transfer of aqueous salt solutions during evaporation on a structured heated wall
Bottiglione et al. Wenzel to Cassie transition in superhydrophobic randomly rough surfaces
JPH08152396A (en) Surface tension measuring method and surface tension meter
Sheykhian et al. An experimental study on the impact of Boger and Newtonian droplets on spherical surfaces
Kwon et al. Jetting frequency and evaporation effects on the measurement accuracy of inkjet droplet amount
Liu et al. Measurement of contact angles in a simulated microgravity environment generated by a large gradient magnetic field
JP2007040730A (en) Liquid repellent property evaluation equipment
Senarathna et al. Development of a low-cost automated micro dispense digital goniometric device with drop shape analysis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060123

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees