[go: up one dir, main page]

JP2003269808A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JP2003269808A
JP2003269808A JP2002071190A JP2002071190A JP2003269808A JP 2003269808 A JP2003269808 A JP 2003269808A JP 2002071190 A JP2002071190 A JP 2002071190A JP 2002071190 A JP2002071190 A JP 2002071190A JP 2003269808 A JP2003269808 A JP 2003269808A
Authority
JP
Japan
Prior art keywords
compressor
air conditioner
injection
circuit
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002071190A
Other languages
Japanese (ja)
Other versions
JP4104112B2 (en
Inventor
Tomomi Umeda
知巳 梅田
Susumu Nakayama
進 中山
Yoshihiko Mochizuki
佳彦 望月
Kenji Matsumura
賢治 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2002071190A priority Critical patent/JP4104112B2/en
Publication of JP2003269808A publication Critical patent/JP2003269808A/en
Application granted granted Critical
Publication of JP4104112B2 publication Critical patent/JP4104112B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/0272Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using bridge circuits of one-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

(57)【要約】 【課題】使用環境の実情に合わせて効率を向上し、年間
を通じて高い成績係数(省エネ性の高い)の運転が可能
な空気調和機を得る。 【解決手段】圧縮機1、熱源側熱交換器3、第一減圧装
置4、レシーバ5、第二減圧装置7a、利用側熱交換器
8を順次配管で接続し冷凍サイクルを構成した空気調和
機において、レシーバ5から圧縮機1の圧縮室へ接続さ
れたインジェクション回路111、112と、インジェ
クション回路から圧縮機1の吸入側配管109へ接続さ
れたバイパス回路110と、を備える。
(57) [Abstract] [PROBLEMS] To provide an air conditioner that can be operated with a high coefficient of performance (high energy saving) throughout the year by improving efficiency according to the actual conditions of the use environment. An air conditioner in which a compressor 1, a heat source side heat exchanger 3, a first decompression device 4, a receiver 5, a second decompression device 7a, and a use side heat exchanger 8 are sequentially connected by piping to form a refrigeration cycle. , Injection circuits 111 and 112 connected from the receiver 5 to the compression chamber of the compressor 1, and a bypass circuit 110 connected from the injection circuit to the suction pipe 109 of the compressor 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、蒸気圧縮機式のヒ
ートポンプサイクルを有する空気調和機に関し、特に中
間負荷(中間能力)以下の運転をする場合において運転
効率を向上し、省エネルギ化を図るものに好適である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner having a steam compressor type heat pump cycle, and in particular, when operating under an intermediate load (intermediate capacity), the operating efficiency is improved to save energy. Suitable for ones.

【0002】[0002]

【従来の技術】従来、空気調和機の成績係数を高くする
ための高効率サイクルとしてインジェクション回路を設
けた空気調和機が知られている。例えば、特開平10−
176866号公報では、広い能力範囲で成績係数の高
い運転を実現する方法として、インジェクション回路を
設け、インジェクション運転または非インジェクション
運転のうち成績係数の高い方の運転を選択することが記
載されている。
2. Description of the Related Art Conventionally, an air conditioner provided with an injection circuit is known as a highly efficient cycle for increasing the coefficient of performance of the air conditioner. For example, Japanese Patent Laid-Open No. 10-
In 176866 publication, as a method for realizing a high performance coefficient operation in a wide range of performance, it is described that an injection circuit is provided and the operation having the higher performance coefficient is selected from the injection operation and the non-injection operation.

【0003】また、圧縮機の容量制御手段として、圧縮
室から冷媒を抜きバイパスさせる方法が知られ、例え
ば、特開平9−256974号公報に記載されている。
さらに、50%以下の部分負荷運転を多段階に変更可能
なスクロール圧縮機として、多段階の容量制御を行うこ
とが特開平11−351167号公報に記載されてい
る。
As a compressor capacity control means, a method is known in which a refrigerant is extracted from a compression chamber and bypassed, and is described in, for example, Japanese Patent Application Laid-Open No. 9-256974.
Further, Japanese Patent Laid-Open No. 11-351167 discloses that multi-stage capacity control is performed as a scroll compressor capable of changing a partial load operation of 50% or less in multiple stages.

【0004】[0004]

【発明が解決しようとする課題】上記従来技術において
は、ガスインジェクションサイクルを用いることで空気
調和機の成績係数は高くなるが、圧力比が小さくなるほ
ど、その効果は段々と小さくなる。つまり、負荷の大き
な時はガスインジェクションの効果は大きいが、負荷が
小さくなると効果は小さい。一方、一般的に空気調和機
が使用されている環境下は低中負荷の場合が多く、省エ
ネ、特に年間省電力とするには充分でない。また上記従
来技術による圧縮機の容量制御は多段階ではあるもの
の、現在省エネ機種として主流になっているインバータ
制御機に比較すると、容量制御範囲は格段に狭く、省エ
ネ効果も小さい。
In the above prior art, the coefficient of performance of the air conditioner is increased by using the gas injection cycle, but the effect becomes smaller as the pressure ratio becomes smaller. That is, when the load is large, the effect of gas injection is large, but when the load is small, the effect is small. On the other hand, in the environment where the air conditioner is generally used, there are many cases where the load is low and medium, and it is not sufficient to save energy, particularly annual power. In addition, although the capacity control of the compressor according to the above-mentioned conventional technology has multiple stages, the capacity control range is much narrower and the energy saving effect is smaller than that of the inverter controller, which is currently the mainstream of energy saving models.

【0005】本発明の目的は、使用環境の実情に合わせ
て効率を向上し、年間を通じて高い成績係数(省エネ性
の高い)の運転が可能な空気調和機を提供することにあ
る。
An object of the present invention is to provide an air conditioner which improves efficiency in accordance with the actual conditions of use and can operate with a high coefficient of performance (high energy saving) throughout the year.

【0006】また、本発明の目的は、低負荷から高負荷
まで運転範囲を拡大、つまりインバータ制御の機種では
圧縮機が最低運転周波数とされる場合でも、さらに能力
を減らすことを可能とすることにある。
Another object of the present invention is to extend the operating range from low load to high load, that is, in the case of a model of inverter control, it is possible to further reduce the capacity even when the compressor is at the minimum operating frequency. It is in.

【0007】さらに、インバータ制御のない機種でも容
量制御を可能としてインバータ制御の有無に係わらず、
省エネに適した運転方法を選択可能とすることにある。
なお、本発明は上記目的の少なくとも一つを達成するこ
とにある。
Further, even if the model does not have the inverter control, the capacity control can be carried out regardless of the presence or absence of the inverter control,
It is to be able to select the operation method suitable for energy saving.
The present invention is to achieve at least one of the above objects.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、圧縮機、熱源側熱交換器、第一減圧装
置、レシーバ、第二減圧装置、利用側熱交換器を順次配
管で接続し冷凍サイクルを構成した空気調和機におい
て、レシーバから圧縮機の圧縮室へ接続されたインジェ
クション回路と、インジェクション回路から圧縮機の吸
入側配管へ接続されたバイパス回路と、を備えたもので
ある。
In order to achieve the above object, the present invention sequentially arranges a compressor, a heat source side heat exchanger, a first pressure reducing device, a receiver, a second pressure reducing device and a utilization side heat exchanger. In an air conditioner that is connected by the above to form a refrigeration cycle, an air conditioner that includes an injection circuit that is connected from the receiver to the compression chamber of the compressor and a bypass circuit that is connected from the injection circuit to the suction side pipe of the compressor. is there.

【0009】また、上記のものにおいて、インジェクシ
ョン回路とバイパス回路の接続点に流路切り替え弁を設
け、インジェクション回路の圧縮室への接続を吸入側配
管への接続に切り替えることが望ましい。
Further, in the above, it is desirable to provide a flow path switching valve at the connection point between the injection circuit and the bypass circuit and switch the connection of the injection circuit to the compression chamber to the connection to the suction side pipe.

【0010】さらに、上記のものにおいて、インジェク
ション回路とバイパス回路の接続点と、レシーバと、の
間に流路開閉弁を設けたことが望ましい。
Further, in the above, it is desirable to provide a flow passage opening / closing valve between the connection point of the injection circuit and the bypass circuit and the receiver.

【0011】さらに、上記のものにおいて、室外温度と
室内温度に関連してバイパス回路を開くことが望まし
い。
Further, in the above, it is desirable to open the bypass circuit in relation to the outdoor temperature and the indoor temperature.

【0012】さらに、上記のものにおいて、圧縮機を運
転周波数が最小周波数から最大周波数まで制御される可
変容量型の圧縮機とし、運転周波数が最小周波数となっ
た場合、バイパス回路を開いてインジェクションを行わ
ないことが望ましい。
Further, in the above-mentioned compressor, the compressor is a variable displacement type compressor whose operating frequency is controlled from the minimum frequency to the maximum frequency, and when the operating frequency becomes the minimum frequency, the bypass circuit is opened to inject injection. It is desirable not to do it.

【0013】[0013]

【発明の実施の形態】以下、図を参照して本発明の一実
施の形態を説明する。図1および図2は空気調和機のヒ
ートポンプサイクルのシステム構成を示し、圧縮機1、
四方弁2、熱源側熱交換器(室外熱交換器)3、第1減
圧装置4、レシーバ5、阻止弁6、第2減圧装置7a、
利用側熱交換器(室内熱交換器)8a、阻止弁9、そし
て圧縮機1を順に配管で接続している。さらにレシーバ
5と圧縮機1の圧縮過程の圧縮室とを結ぶインジェクシ
ョン回路(配管111、配管112、配管109を接続
する回路)を有し、インジェクション回路と圧縮機1の
吸入側配管108を結ぶバイパス回路(配管110)を
有している。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described below with reference to the drawings. 1 and 2 show a system configuration of a heat pump cycle of an air conditioner, a compressor 1,
Four-way valve 2, heat source side heat exchanger (outdoor heat exchanger) 3, first pressure reducing device 4, receiver 5, blocking valve 6, second pressure reducing device 7a,
The utilization side heat exchanger (indoor heat exchanger) 8a, the blocking valve 9, and the compressor 1 are sequentially connected by piping. Further, an injection circuit (a circuit that connects the pipe 111, the pipe 112, and the pipe 109) that connects the receiver 5 and the compression chamber of the compressor 1 in the compression process is provided, and a bypass that connects the injection circuit and the suction side pipe 108 of the compressor 1 It has a circuit (pipe 110).

【0014】インジェクション回路とバイパス回路との
接続点に流路切り替え弁である三方弁10を設けてお
り、バイパス回路とインジェクション回路とを切り替え
る。また、バイパス回路(配管110)には減圧装置と
してキャピラリチューブ12が設けられ、バイパス回路
を流れる冷媒流量の流量を調節する。キャピラリチュー
ブ12の代わりに流量調整弁や電子膨張弁を用いてもよ
い。
A three-way valve 10, which is a flow path switching valve, is provided at a connection point between the injection circuit and the bypass circuit to switch between the bypass circuit and the injection circuit. In addition, a capillary tube 12 is provided in the bypass circuit (pipe 110) as a pressure reducing device to adjust the flow rate of the refrigerant flowing through the bypass circuit. A flow rate adjusting valve or an electronic expansion valve may be used instead of the capillary tube 12.

【0015】さらに、三方弁10とレシーバ5の間のイ
ンジェクション回路(配管111、配管112)には電
磁弁11を設け、インジェクション回路の開閉ができ
る。レシーバは冷房運転時と暖房運転時との必要冷媒量
差、また定格能力運転時(高負荷運転時)と中間能力運
転時(低負荷運転時)との必要冷媒量差を調整する。
Further, a solenoid valve 11 is provided in the injection circuit (pipe 111, pipe 112) between the three-way valve 10 and the receiver 5 so that the injection circuit can be opened and closed. The receiver adjusts the required refrigerant amount difference between the cooling operation and the heating operation, and the required refrigerant amount difference between the rated capacity operation (high load operation) and the intermediate capacity operation (low load operation).

【0016】図1、図2では冷房運転時の冷媒の流れを
示している。圧縮機1で高温高圧のガスとなった冷媒
は、四方弁2により熱源側熱交換器(室外熱交換器)3
に向かう。熱源側熱交換器3では、送風される空気に放
熱し(送風系は図示省略)、冷媒は凝縮し気液二相、飽
和液もしくは過冷却液冷媒のいずれかの状態となる。状
態の決定は、第一減圧装置4の絞り量により制御され
る。第一減圧装置4を通過した冷媒は、減圧され気液二
相の状態となりレシーバ5に流入する。レシーバ5から
は飽和液冷媒または気液二相冷媒が取り出され、その
後、阻止弁6を通過し第二減圧装置7aに至る。第二減
圧装置7aで室内空気よりも低い温度の気液二相冷媒と
なり、利用側熱交換器(室内熱交換器)8aに流入す
る。利用側熱交換器6aにおいて、送風される室内空気
から吸熱し(送風系は図示省略)、ガス冷媒となり圧縮
機1に戻る。暖房運転時の冷媒の流れは、四方弁2を切
り替えることで冷媒を逆に流す。
1 and 2 show the flow of the refrigerant during the cooling operation. The refrigerant that has become high-temperature and high-pressure gas in the compressor 1 is heated by the four-way valve 2 in the heat source side heat exchanger (outdoor heat exchanger) 3
Head to. In the heat source side heat exchanger 3, the heat is radiated to the air to be blown (the blowing system is not shown), and the refrigerant is condensed to be in a gas-liquid two-phase, saturated liquid, or supercooled liquid refrigerant state. The determination of the state is controlled by the throttle amount of the first pressure reducing device 4. The refrigerant that has passed through the first depressurizing device 4 is depressurized into a gas-liquid two-phase state and flows into the receiver 5. The saturated liquid refrigerant or the gas-liquid two-phase refrigerant is taken out from the receiver 5, then passes through the blocking valve 6 and reaches the second pressure reducing device 7a. The second decompression device 7a becomes a gas-liquid two-phase refrigerant having a temperature lower than that of the room air, and flows into the use side heat exchanger (indoor heat exchanger) 8a. In the utilization side heat exchanger 6a, heat is absorbed from the indoor air that is blown (the blowing system is not shown), and the gas refrigerant returns to the compressor 1. The flow of the refrigerant during the heating operation is reversed by switching the four-way valve 2.

【0017】図1ではインジェクション回路の冷媒の流
れを、図2ではバイパス回路の冷媒の流れを示す。図1
に示すように、三方弁10がインジェクション回路側に
切り替えられ、またインジェクション回路上の電磁弁1
1が開の場合、圧縮機1の圧縮過程の圧縮室に冷媒がイ
ンジェクションされる。この時、バイパス回路は閉じて
いる。また電磁弁12が閉じていると、三方弁10がイ
ンジェクション回路側に切り替えられていても、インジ
ェクション回路は閉じている。
FIG. 1 shows the flow of the refrigerant in the injection circuit, and FIG. 2 shows the flow of the refrigerant in the bypass circuit. Figure 1
, The three-way valve 10 is switched to the injection circuit side, and the solenoid valve 1 on the injection circuit is
When 1 is open, the refrigerant is injected into the compression chamber of the compressor 1 during the compression process. At this time, the bypass circuit is closed. When the solenoid valve 12 is closed, the injection circuit is closed even if the three-way valve 10 is switched to the injection circuit side.

【0018】インジェクションの方法には、レシーバ5
から取り出す冷媒の状態により2種類あり、液または気
液二相の冷媒を取り出し圧縮機1にインジェクションを
した場合にはリキッドインジェクションとなり、また飽
和ガス冷媒を取り出し圧縮機1にインジェクションした
場合はガスインジェクションとなる。
The injection method includes a receiver 5
There are two types depending on the state of the refrigerant to be taken out from the liquid, and when liquid or gas-liquid two-phase refrigerant is taken out and injected into the compressor 1, it becomes liquid injection, and when saturated gas refrigerant is taken out and injected into the compressor 1, it is gas injection. Becomes

【0019】以下、ガスインジェクションをするものと
して説明する。ガスインジェクションの駆動力は、圧縮
機1のインジェクションされる圧縮室の圧力とレシーバ
5の圧力との圧力差である。従って、レシーバ5の圧力
が圧縮機1の圧縮室内圧力よりも高い場合にガスインジ
ェクションされる。図2に示すように、三方弁10がバ
イパス回路に切り替えられると、圧縮機1の圧縮過程の
圧縮室と圧縮機1の吸入側配管108を接続することに
なり、圧縮機1の圧縮室の圧力は、圧縮機1の吸入側配
管108内の圧力よりも低いため、圧縮機1の圧縮過程
の圧縮室から圧縮機1の吸入側配管108へ冷媒が流出
(バイパス)されることになる。この時、インジェクシ
ョン回路は閉じている。
Hereinafter, description will be made assuming that gas injection is performed. The driving force of gas injection is the pressure difference between the pressure of the compression chamber of the compressor 1 injected and the pressure of the receiver 5. Therefore, gas injection is performed when the pressure of the receiver 5 is higher than the pressure in the compression chamber of the compressor 1. As shown in FIG. 2, when the three-way valve 10 is switched to the bypass circuit, the compression chamber in the compression process of the compressor 1 and the suction side pipe 108 of the compressor 1 are connected, and the compression chamber of the compressor 1 Since the pressure is lower than the pressure in the suction side pipe 108 of the compressor 1, the refrigerant flows out (bypasses) from the compression chamber in the compression process of the compressor 1 to the suction side pipe 108 of the compressor 1. At this time, the injection circuit is closed.

【0020】以上の空気調和機は、冷房運転、暖房運転
時の各々について3つの運転方法を選択できる。図3か
ら図5において、各々の運転についてモリエル線図を使
用して説明する。モリエル線図の横軸はエンタルピh、
縦軸は圧力pである。線81は飽和液線、線82は飽和
ガス線である。なお運転は冷房運転時として示す。
The above air conditioner can select three operating methods for each of the cooling operation and the heating operation. 3 to 5, each operation will be described using a Mollier diagram. The horizontal axis of the Mollier diagram is enthalpy h,
The vertical axis represents the pressure p. Line 81 is a saturated liquid line and line 82 is a saturated gas line. The operation is shown as the cooling operation.

【0021】図3は、インジェクション回路、バイパス
回路とも閉じている場合である。図中の点P1からP2
までが圧縮機1、P2からP3までが熱源側熱交換器
(室外熱交換器)3、P3からP4が第1減圧装置4か
ら第2減圧装置7aまで、P4からP1が利用側熱交換
器(室内熱交換器)8aでの冷媒の状態を示している。
この時、冷媒の質量流量G1はサイクルで一定である。
FIG. 3 shows a case where both the injection circuit and the bypass circuit are closed. Points P1 to P2 in the figure
Is a compressor 1, P2 to P3 are heat source side heat exchangers (outdoor heat exchangers) 3, P3 to P4 are first pressure reducing devices 4 to second pressure reducing devices 7a, and P4 to P1 are user side heat exchangers. The state of the refrigerant in (indoor heat exchanger) 8a is shown.
At this time, the mass flow rate G1 of the refrigerant is constant in the cycle.

【0022】図4は、インジェクション回路が開き、バ
イパス回路が閉じている場合である。図中の点P1から
P5はガスインジェクションされるまでの圧縮機1の圧
縮過程(ステージ1)で、圧縮室にP11の飽和ガスの
冷媒がガスインジェクションされることで、P5の冷媒
状態P6となりステージ2の圧縮過程P6からP7が開
始する。P7からP3は熱源側熱交換器(室外熱交換
器)3、P3からP8が第1減圧装置4、P8がレシー
バ5の状態でレシーバ内にはP11の飽和ガス冷媒とP
9の飽和液冷媒が共存している。主のサイクルでは、レ
シーバ5からP9飽和液の冷媒を取り出し第2減圧装置
に送る。P9からP10は第2減圧装置7a、P10か
らP1が利用側熱交換器8aでの冷媒の状態を示してい
る。サイクル内の冷媒の質量流量は熱源側熱交換器でG
2、インジェクション回路でG3、利用側熱交換器でG
4とすると、G2=G3+G4の関係にある。当然なが
ら、圧縮機1の圧縮過程では、インジェクションの前後
で圧縮室内の冷媒の流量が各々G4、G2と異なる。実
際には、ガスインジェクションはレシーバ5と圧縮機1
の圧縮室との圧力差でなされるので、P6のように瞬時
に行われるのでなく、ある時間を要し逐次行われる。
FIG. 4 shows the case where the injection circuit is open and the bypass circuit is closed. Points P1 to P5 in the figure are the compression process (stage 1) of the compressor 1 until gas injection, and the refrigerant of the saturated gas of P11 is gas-injected into the compression chamber, resulting in the refrigerant state P6 of P5. The second compression process P6 to P7 starts. P7 to P3 are heat source side heat exchangers (outdoor heat exchangers) 3, P3 to P8 are the first pressure reducing device 4, P8 is the receiver 5, and P11 is the saturated gas refrigerant and P in the receiver.
The saturated liquid refrigerant of 9 coexists. In the main cycle, the refrigerant of the P9 saturated liquid is taken out from the receiver 5 and sent to the second pressure reducing device. P9 to P10 show the state of the refrigerant in the second pressure reducing device 7a, and P10 to P1 show the state of the refrigerant in the utilization side heat exchanger 8a. The mass flow rate of the refrigerant in the cycle is G at the heat source side heat exchanger.
2. G3 in the injection circuit, G in the user side heat exchanger
If it is 4, there is a relationship of G2 = G3 + G4. As a matter of course, in the compression process of the compressor 1, the flow rates of the refrigerant in the compression chamber before and after the injection are different from G4 and G2, respectively. Actually, the gas injection is performed by the receiver 5 and the compressor 1.
Since it is performed by the pressure difference between the compression chamber and the compression chamber, it is not instantaneously performed as in P6, but is sequentially performed over a certain time.

【0023】図5は、インジェクション回路が閉じ、ガ
スバイパス回路が開いている場合である。P1からP2
が圧縮機1であり、P5の圧力になる圧縮室が圧縮機1
の吸入側配管接続しているので、圧縮室から圧縮機1の
吸入側配管に冷媒が流出する。またP2からP3が熱源
側熱交換器3、P3からP4が第1膨張弁から第2膨張
弁、P4からP12が利用側熱交換器8a(室内熱交換
器)である。従って、圧縮機1の吸入時の冷媒の質量流
量をG7、バイパス流量をG6とすると、サイクルに流
れる冷媒量はG5=G7−G5となる。
FIG. 5 shows the case where the injection circuit is closed and the gas bypass circuit is open. P1 to P2
Is the compressor 1, and the compression chamber having the pressure of P5 is the compressor 1
Since the suction side pipe is connected, the refrigerant flows out from the compression chamber to the suction side pipe of the compressor 1. Further, P2 to P3 are heat source side heat exchangers 3, P3 to P4 are first expansion valves to second expansion valves, and P4 to P12 are utilization side heat exchangers 8a (indoor heat exchangers). Therefore, when the mass flow rate of the refrigerant at the time of suction of the compressor 1 is G7 and the bypass flow rate is G6, the amount of refrigerant flowing in the cycle is G5 = G7-G5.

【0024】図3を基準として図4、図5のサイクルの
成績係数(例えば、冷房運転時:冷房COP=冷房能力
/消費電力)を比較する。冷房能力は利用側熱交換器
(室内熱交換器(蒸発器))のエンタルピ差と冷媒質量
流量の積となる。ガスインジェクションをした場合、利
用側熱交換器内のエンタルピ差は、図4ではΔh(図
4)=h(P1)−h(P10)となる。一方、図3の
エンタルピ差は、Δh(図3)=h(P1)−h(P
4)となる。P1、P3のエンタルピは同じであるか
ら、Δh(図4)>Δh(図3)となり、同一能力なら
ばガスインジェクションをした方が冷媒流量が少なくて
よい(G4<G1)。従って、圧縮機1のP1からP5
間の圧縮仕事が減り、即ち、成績係数の分母が小さくな
り成績係数が高くなる。
Based on FIG. 3, the coefficient of performance of the cycles of FIG. 4 and FIG. 5 (for example, during cooling operation: cooling COP = cooling capacity / power consumption) is compared. The cooling capacity is the product of the enthalpy difference of the utilization side heat exchanger (indoor heat exchanger (evaporator)) and the mass flow rate of the refrigerant. When gas injection is performed, the enthalpy difference in the use side heat exchanger is Δh (FIG. 4) = h (P1) −h (P10) in FIG. On the other hand, the enthalpy difference in FIG. 3 is Δh (FIG. 3) = h (P1) −h (P
4). Since the enthalpies of P1 and P3 are the same, Δh (FIG. 4)> Δh (FIG. 3), and if the capacities are the same, the gas flow rate may be smaller with gas injection (G4 <G1). Therefore, P1 to P5 of the compressor 1
The compression work during the period decreases, that is, the denominator of the coefficient of performance decreases and the coefficient of performance increases.

【0025】またバイパスをした場合(図5)では、利
用側熱交換器のエンタルピ差は変わらないが冷媒の質量
流量が減り(G5=G7−G6:圧縮機1の理論行程容
積が同じならばG7=G1)、能力を小さくできる。ま
た圧縮機1のP5からP2の区間の流量が減るためこの
分の圧縮仕事が減り、消費電力も小さくなる。例えば、
インバータによる能力制御をする圧縮機の場合、負荷に
応じ圧縮機の運転周波数を変えて対応するが、最低回転
数となっても負荷に対して能力が大きい場合は無駄な仕
事をしていることになる。この時、バイパス回路を使用
すると負荷に応じた能力に調整でき、高い成績係数の状
態で運転が可能となる。さらに、一定速圧縮機を使用し
ている場合は、圧縮機の運転方法による能力制御はでき
ないが、バイパス回路を使用すると能力制御が可能とな
り、高い圧縮機効率の運転点での運転が可能となる。
When bypassed (FIG. 5), the enthalpy difference of the heat exchanger on the use side does not change, but the mass flow rate of the refrigerant decreases (G5 = G7-G6: if the theoretical stroke volume of the compressor 1 is the same. G7 = G1), the ability can be reduced. Further, since the flow rate in the section from P5 to P2 of the compressor 1 is reduced, the compression work is reduced by this amount and the power consumption is also reduced. For example,
In the case of a compressor whose capacity is controlled by an inverter, the operating frequency of the compressor is changed according to the load, but if the capacity is large with respect to the load even if it reaches the minimum speed, useless work. become. At this time, if a bypass circuit is used, the capacity can be adjusted according to the load, and operation can be performed with a high coefficient of performance. Furthermore, when a constant speed compressor is used, capacity control cannot be performed by the compressor operating method, but by using a bypass circuit, capacity control becomes possible and operation at an operating point with high compressor efficiency becomes possible. Become.

【0026】さらに、インバータ駆動の圧縮機,一定速
の圧縮機に係わらず、バイパス回路を開き、冷媒を圧縮
機吸入側に戻すことで、冷房運転時では熱源側熱交換器
(室外熱交換器)を流れる冷媒質量流量が小さくなり、
見かけ熱交換器が大きくなったことと同等となり、凝縮
圧力が下がり、圧縮機吐出圧力(Pd)が下がる。利用
側熱交換器(室内熱交換器)でも冷媒質量流量が減るた
め圧力損失が小さくなり蒸発圧力が上がり、圧縮機の吸
入圧力(Ps)を上られる。その結果、圧力比(Pd/
Ps)が小さくなり、圧縮仕事が低減でき、空気調和機
の省エネとなる。
Furthermore, regardless of whether the compressor is an inverter-driven compressor or a constant-speed compressor, the bypass circuit is opened to return the refrigerant to the compressor suction side, so that the heat source side heat exchanger (outdoor heat exchanger) can be used during cooling operation. ), The mass flow rate of the refrigerant flowing through
This is equivalent to an increase in the apparent heat exchanger, the condensing pressure decreases, and the compressor discharge pressure (Pd) decreases. Even in the use side heat exchanger (indoor heat exchanger), the refrigerant mass flow rate is reduced, so that the pressure loss is reduced, the evaporation pressure is increased, and the suction pressure (Ps) of the compressor can be increased. As a result, the pressure ratio (Pd /
Ps) becomes small, the compression work can be reduced, and the air conditioner can save energy.

【0027】以上のサイクルでは冷房、暖房運転ともに
3つの運転方法が選択できるので、ガスインジェクショ
ン回路は、圧縮機吸入圧力(Ps)と圧縮機吐出圧力
(Pd)との圧力比(=Pd/Ps)が大きい場合、バ
イパス回路は圧力比が小さい場合に使用する。例えばJ
IS規格の室内外の温度条件に当てはめると、ガスイン
ジェクション回路は、過負荷条件、定格条件で使用し、
バイパス回路は中間条件で使用する。通常は各々の運転
条件に応じ、予め設定され記憶された情報に基づき、最
適な3つの運転方法を選択する。
Since three operation methods can be selected for both cooling and heating operations in the above cycle, the gas injection circuit has a pressure ratio (= Pd / Ps) between the compressor suction pressure (Ps) and the compressor discharge pressure (Pd). ) Is large, the bypass circuit is used when the pressure ratio is small. For example, J
Applying to the IS standard indoor and outdoor temperature conditions, the gas injection circuit should be used under overload conditions and rated conditions.
The bypass circuit is used under intermediate conditions. Usually, three optimal driving methods are selected based on preset and stored information according to each driving condition.

【0028】具体的には、室外吸込み空気温度、室内吸
込み空気温度、使用者が設定した設定温度と圧縮機の運
転周波数を検出し、そのデータを予めメモリに記憶して
いる設定値(例えばプログラム、テーブル)に照らし合
わせて運転を選択する。図1には制御システムの構成も
示し、熱源側熱交換器(室外熱交換器)3の吸込み側に
温度センサを設け室外温度を測定し、利用側熱交換器
(室内熱交換器)8aの吸込み側に温度センサを設け室
内温度を測定する。温度センサにはサーミスタ又は熱電
対を用いる。
Specifically, the outdoor intake air temperature, the indoor intake air temperature, the set temperature set by the user and the operating frequency of the compressor are detected, and the data are stored in advance in a set value (for example, a program). , Table) and select the operation. The configuration of the control system is also shown in FIG. 1, in which a temperature sensor is provided on the suction side of the heat source side heat exchanger (outdoor heat exchanger) 3 to measure the outdoor temperature, and the use side heat exchanger (indoor heat exchanger) 8a A temperature sensor is installed on the suction side to measure the room temperature. A thermistor or a thermocouple is used for the temperature sensor.

【0029】入力装置として例えばリモコン70から使
用者が設定温度を入力する。インバータ制御の場合、圧
縮機には運転周波数の計測センサが設けられ、電流波形
または電圧波形から運転周波数を求める。あるいはイン
バータの設定周波数で代用してもよい。センサと入力装
置(リモコン)はコントローラ61に接続されており、
この情報がコントローラ61に入力される。例えば、室
内機22aを介して、室外機21のコントローラ61に
情報が伝達される。
A user inputs a set temperature from the remote controller 70 as an input device. In the case of inverter control, the compressor is provided with an operating frequency measuring sensor, and the operating frequency is obtained from a current waveform or a voltage waveform. Alternatively, the set frequency of the inverter may be used instead. The sensor and the input device (remote control) are connected to the controller 61,
This information is input to the controller 61. For example, information is transmitted to the controller 61 of the outdoor unit 21 via the indoor unit 22a.

【0030】インジェクション回路とバイパス回路とを
切り替える流路切換え弁(三方弁)10とインジェクシ
ョン回路を開閉する開閉弁(電磁弁)11もコントロー
ラ61に接続されている。コントローラ61にはセン
サ、入力装置からのデータが入り、予め記憶されている
判定値に基づき、3つの運転方法から最適な運転方法を
選択し、それに応じ、コントローラー61から制御信号
が三方弁10や電磁弁11に伝達され制御を行う。例え
ば、室外温度と室内温度との温度差が判定値よりも大き
く、かつ設定温度と室内温度との温度差も判定値よりも
大きい場合は、インジェクション回路を開く。また室外
温度と室内温度との温度差が判定値よりも小さくかつ設
定温度と室内温度との温度差が判定値よりも小さい場合
は、バイパス回路を開く。その他の運転条件では、バイ
パス回路、インジェクション回路も閉じる運転を行う。
A flow path switching valve (three-way valve) 10 for switching between an injection circuit and a bypass circuit and an opening / closing valve (solenoid valve) 11 for opening and closing the injection circuit are also connected to the controller 61. Data from the sensor and the input device is input to the controller 61, and the optimum operating method is selected from the three operating methods based on the determination value stored in advance, and the control signal is sent from the controller 61 to the three-way valve 10 or Control is transmitted to the solenoid valve 11. For example, when the temperature difference between the outdoor temperature and the indoor temperature is larger than the determination value and the temperature difference between the set temperature and the indoor temperature is also larger than the determination value, the injection circuit is opened. When the temperature difference between the outdoor temperature and the indoor temperature is smaller than the determination value and the temperature difference between the set temperature and the indoor temperature is smaller than the determination value, the bypass circuit is opened. Under other operating conditions, the bypass circuit and injection circuit are closed.

【0031】図6は、本実施の形態に使用するスクロー
ル圧縮機の構造と圧縮室につながるインジェクション回
路を示す。スクロール圧縮機の場合、同時に2つの圧縮
室が形成される。圧縮室は固定スクロール42と旋回ス
クロール43のラップが組み合わされて形成される。各
圧縮室には所定の圧力比の場所にインジェクション用の
ポート47a、47bを設けている。このポート47
a、47bは固定スクロール42に設けることが最も容
易である。ポート47a、47bは図1の配管109に
接続する。
FIG. 6 shows the structure of the scroll compressor used in this embodiment and the injection circuit connected to the compression chamber. In the case of a scroll compressor, two compression chambers are formed at the same time. The compression chamber is formed by combining the wraps of the fixed scroll 42 and the orbiting scroll 43. Each compression chamber is provided with injection ports 47a and 47b at a predetermined pressure ratio. This port 47
It is easiest to provide a and 47b on the fixed scroll 42. The ports 47a and 47b are connected to the pipe 109 in FIG.

【0032】図7およぶ図8は、他の実施形態の空気調
和機のサイクル構成を示し、基本的には図1および図2
に示したサイクル構成と同じである。図7は、図1およ
び図2に示した三方弁10の代わりに四方弁13を使用
した場合であり、四方弁の4つある通路の一つは必ず閉
じている。三方弁10を使用した場合と四方弁13を使
用した場合とは基本的に動作は同じである。図8は、図
1および図2に示した三方弁10の代わりに電磁弁14
を使用した場合であり、電磁弁14は配管110上のキ
ャピラリーチューブ13とインジェクション回路との接
続点19との間に設ける。電磁弁11を開き、電磁弁1
4を閉じるとインジェクション回路を使用でき、電磁弁
11を閉じ、電磁弁14を開くとバイパス回路を使用で
きる。どちらも閉じると、通常のサイクル構成となる。
FIGS. 7 and 8 show a cycle structure of an air conditioner of another embodiment, which is basically shown in FIGS. 1 and 2.
It is the same as the cycle configuration shown in. FIG. 7 shows a case where a four-way valve 13 is used instead of the three-way valve 10 shown in FIGS. 1 and 2, and one of the four passages of the four-way valve is always closed. The operation is basically the same when the three-way valve 10 is used and when the four-way valve 13 is used. FIG. 8 shows a solenoid valve 14 instead of the three-way valve 10 shown in FIGS.
In this case, the solenoid valve 14 is provided between the capillary tube 13 on the pipe 110 and the connection point 19 of the injection circuit. Open the solenoid valve 11 and open the solenoid valve 1
When 4 is closed, the injection circuit can be used, and when the solenoid valve 11 is closed and the solenoid valve 14 is opened, the bypass circuit can be used. When both are closed, the normal cycle configuration is achieved.

【0033】図9は、ガスインジェクションを行うため
の他の実施の形態によるサイクル構成を示し、ガスイン
ジェクション回路とバイパス回路の使用に関しては、図
1および図2に示した空気調和機と同じである。図9の
サイクルは、圧縮機1、四方弁2、熱源側熱交換器3、
レシーバ5、阻止弁6、第2減圧装置7a、利用側熱交
換器8a、阻止弁9、そして圧縮機1を順に配管で接続
し、レシーバ5の冷媒流入口が冷房運転時、暖房運転時
とも一方向になるように、レシーバ5の入口に流れ制御
回路16を設けている。
FIG. 9 shows a cycle configuration according to another embodiment for performing gas injection, and the use of the gas injection circuit and the bypass circuit is the same as that of the air conditioner shown in FIGS. 1 and 2. . The cycle of FIG. 9 includes a compressor 1, a four-way valve 2, a heat source side heat exchanger 3,
The receiver 5, the blocking valve 6, the second pressure reducing device 7a, the use side heat exchanger 8a, the blocking valve 9, and the compressor 1 are sequentially connected by piping, and the refrigerant inlet port of the receiver 5 is used both during cooling operation and during heating operation. A flow control circuit 16 is provided at the entrance of the receiver 5 so as to be in one direction.

【0034】流れ制御回路16は、4つの逆止弁14
a、14b、14c、14dと第1減圧装置4として可
変絞りの電子膨張弁を用い、ブリッジ回路を構成してい
る。また、レシーバ5と圧縮機1とを接続するインジェ
クション回路が設けており、レシーバ5側から配管11
6、第3減圧装置(インジェクション減圧装置)18、
配管117、配管111、開閉弁11、配管112、配
管109で構成される。
The flow control circuit 16 includes four check valves 14
A variable expansion electronic expansion valve is used as a, 14b, 14c, and 14d and the first pressure reducing device 4 to form a bridge circuit. Further, an injection circuit that connects the receiver 5 and the compressor 1 is provided, and a pipe 11 is provided from the receiver 5 side.
6, third pressure reducing device (injection pressure reducing device) 18,
The pipe 117, the pipe 111, the on-off valve 11, the pipe 112, and the pipe 109 are configured.

【0035】第3減圧装置18の下流側に、第3減圧装
置18の下流側の冷媒と、レシーバ5の下流側の冷媒と
を熱交換するために中間熱交換器17を設け、インジェ
クション回路では、レシーバ5から飽和液冷媒を取り出
し、第3減圧装置18でインジェクション圧力まで減圧
し気液二相の冷媒とする。この後、中間熱交換器17に
より、第3減圧装置18の下流側の冷媒は、主流のレシ
ーバ5下流の冷媒から吸熱し、気液二相の冷媒が完全ガ
ス化して圧縮機1の中間圧縮室にインジェクションす
る。一方、主流の冷媒流れは、レシーバ5につながる配
管116から飽和液冷媒と飽和ガス冷媒を取り出し、気
液二相の冷媒状態であるが、中間熱交換器17により凝
縮し、さらに冷却され、過冷却状態の液冷媒となり、利
用側熱交換8aへと流れていく。室外機21と室内機2
2aとを接続する接続配管105および配管106が長
配管である場合(例えば30m以上)などは、ガスイン
ジェクションの方式としては、図1よりも図9の方がガ
スインジェクションが可能な運転範囲が大きくなる。
An intermediate heat exchanger 17 is provided downstream of the third pressure reducing device 18 for exchanging heat between the refrigerant downstream of the third pressure reducing device 18 and the refrigerant downstream of the receiver 5, and in the injection circuit. , The saturated liquid refrigerant is taken out from the receiver 5, and the pressure is reduced to an injection pressure by the third pressure reducing device 18 to form a gas-liquid two-phase refrigerant. Then, the intermediate heat exchanger 17 absorbs heat from the refrigerant on the downstream side of the third pressure reducing device 18 from the refrigerant on the downstream side of the mainstream receiver 5, and the gas-liquid two-phase refrigerant is completely gasified to perform intermediate compression of the compressor 1. Inject into the room. On the other hand, the mainstream refrigerant flow is a gas-liquid two-phase refrigerant state in which the saturated liquid refrigerant and the saturated gas refrigerant are taken out from the pipe 116 connected to the receiver 5, but the condensed refrigerant is condensed by the intermediate heat exchanger 17 and further cooled, It becomes a liquid refrigerant in a cooled state and flows to the use side heat exchange 8a. Outdoor unit 21 and indoor unit 2
When the connection pipe 105 and the pipe 106 connecting to the 2a are long pipes (for example, 30 m or more), the gas injection method in FIG. 9 is larger than that in FIG. 1 as a gas injection method. Become.

【0036】以上のように、インジェクション回路にイ
ンジェクション回路と圧縮機の吸入側配管とを結ぶバイ
パス回路を設け、回路を切り替えて使用することでイン
ジェクション回路を利用して、圧縮機の圧縮室から冷媒
を流出させる容量制御を可能にした。基本的には、イン
バータ制御の有無に係わらず、ガスインジェクション回
路を有効に利用し、能力を減らす方向の容量制御を可能
にする。その結果、インバータ制御の機種では、最低圧
縮機運転周波数の場合でも、さらに能力を減らせる容量
制御が可能であり、またガスインジェクションによる能
力増加の容量制御(能力一定の時は省エネ向上)が可能
である。
As described above, the injection circuit is provided with the bypass circuit connecting the injection circuit and the suction side pipe of the compressor, and by switching the circuits to use, the injection circuit is utilized to discharge the refrigerant from the compression chamber of the compressor. It is possible to control the capacity to flow out. Basically, the gas injection circuit is effectively used regardless of the presence or absence of the inverter control, and the capacity control in the direction of decreasing the capacity is enabled. As a result, the inverter control model enables capacity control that further reduces the capacity even at the lowest compressor operating frequency, and capacity control by increasing capacity by gas injection (energy saving improvement when capacity is constant). Is.

【0037】また、回路の切換えはインジェクション回
路搭載の空気調和機では、三方弁や四方弁または電磁弁
を1つ追加することで可能となる。さらに、運転制御に
使用するセンサも一般的に空気調和機では保有している
既存の温度センサ等からの情報を用いればよく、新設す
る必要もない。その結果、例えば、インバータ駆動の圧
縮機を使用している場合、圧縮機の運転周波数を最小に
しても負荷に対して能力が大きい場合など、さらに能力
を小さくすることができ、負荷に適応した最適な運転状
態を作ることで、空気調和機の成績係数が高い状態で運
転することが可能となる。また一定速圧縮機を使用して
いる場合、負荷との不適応の場合には余分な仕事を圧縮
機にさせることになるが、バイパス回路を用いること
で、能力制御が可能となり空気調和機の成績係数が高い
運転が可能となる。さらに、インジェクション回路を搭
載しているので、ガスインジェクションを行えば、イン
バータ駆動の圧縮機の場合、同一能力ならば、ガスイン
ジェクションをしない場合に比べ、圧縮機の運転周波数
を低減できるため、圧縮機の消費電力が低減され、省エ
ネ運転(成績係数が高い)となる。一定速圧縮機では、
同一行程容積とすると、能力アップができ、同一能力な
らば行程容積を小さくできるので圧縮機運転の省エネ
化、また小型化が可能となる。
In the air conditioner equipped with the injection circuit, the circuit can be switched by adding one three-way valve, four-way valve or solenoid valve. Further, as the sensor used for operation control, information from an existing temperature sensor or the like which is generally held in the air conditioner may be used, and it is not necessary to newly install it. As a result, for example, when an inverter-driven compressor is used, the capacity can be further reduced, even if the operating frequency of the compressor is minimized. By creating the optimum operating condition, it becomes possible to operate the air conditioner in a state where the coefficient of performance is high. Also, when a constant speed compressor is used, if it does not adapt to the load, it causes the compressor to do extra work, but by using a bypass circuit, capacity control becomes possible and the air conditioner Driving with a high coefficient of performance becomes possible. Furthermore, since it is equipped with an injection circuit, if gas injection is performed, in the case of a compressor driven by an inverter, the operating frequency of the compressor can be reduced compared to the case without gas injection if the same capacity is used. Power consumption is reduced, resulting in energy-saving operation (high coefficient of performance). With a constant speed compressor,
If the stroke volume is the same, the capacity can be increased, and if the stroke capacity is the same, the stroke volume can be reduced, so that energy saving and size reduction of the compressor operation can be achieved.

【0038】さらにインバータ駆動の圧縮機、一定速の
圧縮機に係わらず、バイパス回路を開き冷媒を圧縮機吸
入側に戻すことで、冷房運転時では熱源側熱交換器(室
外熱交換器)を流れる冷媒質量流量が小さくなり、見か
け熱交換器が大きくなったことと同等となり、凝縮圧力
が下がり、圧縮機吐出圧力(Pd)が下げることができ
る。利用側熱交換器(室内熱交換器)でも冷媒質量流量
が減るため圧力損失が小さくなり蒸発圧力が上がり、圧
縮機の吸入圧力(Ps)を上られる。よって、圧力比
(Pd/Ps)が小さくなり、圧縮仕事が低減できる。
Further, regardless of whether the compressor is an inverter-driven compressor or a constant-speed compressor, the bypass circuit is opened to return the refrigerant to the compressor suction side, so that the heat source side heat exchanger (outdoor heat exchanger) can be operated during the cooling operation. The mass flow rate of the flowing refrigerant is reduced, which is equivalent to the increase in the apparent heat exchanger, the condensing pressure is reduced, and the compressor discharge pressure (Pd) can be reduced. Even in the use side heat exchanger (indoor heat exchanger), the refrigerant mass flow rate is reduced, so that the pressure loss is reduced, the evaporation pressure is increased, and the suction pressure (Ps) of the compressor can be increased. Therefore, the pressure ratio (Pd / Ps) becomes small, and the compression work can be reduced.

【0039】インジェクション回路とバイパス回路を合
せ持ち、条件に応じて運転方法を選択することで、イン
ジェクションポートの有効利用を図り、広い運転範囲に
おいて成績係数の高い運転が可能となり、空気調和機の
運転効率を向上させ、省エネルギとすることができる。
By combining the injection circuit and the bypass circuit and selecting the operation method according to the conditions, the injection port can be effectively used, and the operation with a high coefficient of performance becomes possible in a wide operation range, and the operation of the air conditioner can be performed. It is possible to improve efficiency and save energy.

【0040】また圧縮機をインバータ駆動とし圧縮機の
運転周波数を変可変できるものとして効果を説明した
が、一定速で運転される圧縮機では、ガスインジェクシ
ョンにより圧縮機の行程容積(理論吐出容積)を小さく
することができ、それに応じ圧縮機の負荷が小さくなる
ので電気入力が小さくなり、また必要トルクが小さくな
るのでモータ容量を下げることができる。さらに、圧縮
機のケーシング等が小さくできるなどの効果も得られ
る。
Further, the effect has been described by assuming that the compressor is driven by an inverter so that the operating frequency of the compressor can be changed and changed. However, in a compressor operated at a constant speed, the stroke volume (theoretical discharge volume) of the compressor is achieved by gas injection. Can be reduced, the load of the compressor is reduced accordingly, the electric input is reduced, and the required torque is reduced, so that the motor capacity can be reduced. Further, there is an effect that the casing of the compressor can be made smaller.

【0041】さらにガスインジェクション回路を利用し
たバイパス回路を設けることで、一定速で運転される圧
縮機においても段階的な容量制御が可能となる。またイ
ンジェクション方式は、ガスインジェクションの代わり
にリキッドインジェクションとすることも可能である
が、ポート位置により効果が異なる。
Further, by providing a bypass circuit utilizing a gas injection circuit, it becomes possible to perform stepwise capacity control even in a compressor operated at a constant speed. Further, in the injection method, it is possible to use liquid injection instead of gas injection, but the effect differs depending on the port position.

【0042】さらに、圧縮機はスクロール圧縮機として
説明したが、ロータリー圧縮機としても同様である。さ
らに、冷媒はR22、R410A、R32、R407
C、炭酸ガスやHC冷媒などの自然系冷媒等でも対応可
能であ。
Further, although the compressor has been described as a scroll compressor, the same applies to a rotary compressor. Further, the refrigerant is R22, R410A, R32, R407.
Natural refrigerants such as C, carbon dioxide gas and HC refrigerant can also be used.

【0043】[0043]

【発明の効果】以上述べたように本発明によれば、イン
ジェクション回路にインジェクション回路と圧縮機の吸
入側配管とを結ぶバイパス回路を設けたので、インジェ
クション回路を流用し、圧縮機の圧縮室から冷媒を流出
させることで容量制御を可能にし、バイパス回路を開き
冷媒を圧縮機吸入側に戻すことで圧縮機吸入圧力と圧縮
機吐出圧力の比である圧力比(Pd/Ps)が小さくで
きる。
As described above, according to the present invention, since the bypass circuit connecting the injection circuit and the suction side pipe of the compressor is provided in the injection circuit, the injection circuit is diverted from the compression chamber of the compressor. The capacity can be controlled by flowing out the refrigerant, and the pressure ratio (Pd / Ps), which is the ratio of the compressor suction pressure and the compressor discharge pressure, can be reduced by opening the bypass circuit and returning the refrigerant to the compressor suction side.

【0044】よって、負荷に適応した最適な運転状態を
作ることができ、広い運転範囲において成績係数の高い
運転が可能となり、空気調和機の運転効率を向上させ、
省エネルギ化を図ることができる。
Therefore, it is possible to create an optimum operating condition adapted to the load, enable operation with a high coefficient of performance in a wide operating range, and improve the operating efficiency of the air conditioner.
Energy saving can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】 一実施の形態による空気調和機のシステム構
成図(ガスインジェクション回路開)。
FIG. 1 is a system configuration diagram of an air conditioner according to an embodiment (gas injection circuit is open).

【図2】 図1において、バイパス回路を開とした状態
を示すシステム構成図。
FIG. 2 is a system configuration diagram showing a state in which a bypass circuit is opened in FIG.

【図3】 一実施の形態による空気調和機のガスインジ
ェクション、バイパス共に行わない場合のサイクル運転
のモリエル線図。
FIG. 3 is a Mollier diagram of the cycle operation of the air conditioner according to the embodiment when neither gas injection nor bypass is performed.

【図4】 一実施の形態による空気調和機のガスインジ
ェクション時のモリエル線図。
FIG. 4 is a Mollier diagram during gas injection of the air conditioner according to the embodiment.

【図5】 一実施の形態による空気調和機のバイパス時
のモリエル線図。
FIG. 5 is a Mollier diagram when the air conditioner according to the embodiment is bypassed.

【図6】 一実施の形態による圧縮機の断面図。FIG. 6 is a cross-sectional view of a compressor according to one embodiment.

【図7】 他の実施の形態による空気調和機のシステム
構成図。
FIG. 7 is a system configuration diagram of an air conditioner according to another embodiment.

【図8】 さらに、他の実施の形態による空気調和機の
システム構成図。
FIG. 8 is a system configuration diagram of an air conditioner according to another embodiment.

【図9】本発明の一実施例である空気調和機の別のシス
テム構成図。
FIG. 9 is another system configuration diagram of the air conditioner that is an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…圧縮機、2…四方弁、3…熱源側熱交換器(室外熱
交換器)、4…第一減圧装置、5…レシーバ、6…阻止
弁、7a、7b…第二減圧装置、8a、8b…利用側熱
交換器(室内熱交換器)、9…阻止弁、10…三方弁、
11…電磁弁、12…キヤピラリーチューブ、13…四
方弁、14…電磁弁、44…吸入ポート、45a、45
b…圧縮室、46…吐出ポート、47a、47b…イン
ジェクションポート、110…バイパス配管、111、
112…インジェクション配管。
DESCRIPTION OF SYMBOLS 1 ... Compressor, 2 ... Four-way valve, 3 ... Heat source side heat exchanger (outdoor heat exchanger), 4 ... 1st decompression device, 5 ... Receiver, 6 ... Blocking valve, 7a, 7b ... 2nd decompression device, 8a , 8b ... Utilization side heat exchanger (indoor heat exchanger), 9 ... Blocking valve, 10 ... Three-way valve,
11 ... Electromagnetic valve, 12 ... Capillary tube, 13 ... Four-way valve, 14 ... Electromagnetic valve, 44 ... Suction port, 45a, 45
b ... compression chamber, 46 ... discharge port, 47a, 47b ... injection port, 110 ... bypass piping, 111,
112 ... Injection piping.

フロントページの続き (72)発明者 望月 佳彦 静岡県清水市村松390番地 株式会社日立 空調システム清水生産本部内 (72)発明者 松村 賢治 静岡県清水市村松390番地 株式会社日立 空調システム清水生産本部内 Fターム(参考) 3L060 AA03 CC02 CC03 CC19 DD01 EE02 EE09 Continued front page    (72) Inventor Yoshihiko Mochizuki             Hitachi, Ltd. 390 Muramatsu, Shimizu City, Shizuoka Prefecture             Air conditioning system Shimizu Production Headquarters (72) Inventor Kenji Matsumura             Hitachi, Ltd. 390 Muramatsu, Shimizu City, Shizuoka Prefecture             Air conditioning system Shimizu Production Headquarters F-term (reference) 3L060 AA03 CC02 CC03 CC19 DD01                       EE02 EE09

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】圧縮機、熱源側熱交換器、第一減圧装置、
レシーバ、第二減圧装置、利用側熱交換器を順次配管で
接続し冷凍サイクルを構成した空気調和機において、 前記レシーバから前記圧縮機の圧縮室へ接続されたイン
ジェクション回路と、 前記インジェクション回路から前記圧縮機の吸入側配管
へ接続されたバイパス回路と、を備えたことを特徴とす
る空気調和機。
1. A compressor, a heat source side heat exchanger, a first pressure reducing device,
A receiver, a second decompression device, in an air conditioner configured a refrigeration cycle by sequentially connecting the use side heat exchanger with piping, an injection circuit connected to the compression chamber of the compressor from the receiver, from the injection circuit An air conditioner comprising: a bypass circuit connected to a suction side pipe of a compressor.
【請求項2】請求項1に記載のものにおいて、前記イン
ジェクション回路と前記バイパス回路の接続点に流路切
り替え弁を設け、前記インジェクション回路の前記圧縮
室への接続を前記吸入側配管への接続に切り替えること
を特徴とする空気調和機。
2. The device according to claim 1, wherein a flow path switching valve is provided at a connection point between the injection circuit and the bypass circuit, and a connection of the injection circuit to the compression chamber is connected to the suction side pipe. Air conditioner characterized by switching to.
【請求項3】請求項1に記載のものにおいて、前記イン
ジェクション回路と前記バイパス回路の接続点と、前記
レシーバと、の間に流路開閉弁を設けたことを特徴とし
た空気調和機。
3. The air conditioner according to claim 1, further comprising a flow passage opening / closing valve provided between a connection point of the injection circuit and the bypass circuit and the receiver.
【請求項4】請求項1に記載のものにおいて、室外温度
と室内温度に関連して前記バイパス回路を開くことを特
徴とする空気調和機。
4. The air conditioner according to claim 1, wherein the bypass circuit is opened in association with an outdoor temperature and an indoor temperature.
【請求項5】請求項1に記載のものにおいて、前記圧縮
機を運転周波数が最小周波数から最大周波数まで制御さ
れる可変容量型の圧縮機とし、前記運転周波数が最小周
波数となった場合、前記バイパス回路を開いてインジェ
クションを行わないことを特徴とする空気調和機。
5. The compressor according to claim 1, wherein the compressor is a variable displacement compressor whose operating frequency is controlled from a minimum frequency to a maximum frequency, and when the operating frequency is the minimum frequency, An air conditioner that does not perform injection by opening a bypass circuit.
JP2002071190A 2002-03-15 2002-03-15 Air conditioner Expired - Fee Related JP4104112B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002071190A JP4104112B2 (en) 2002-03-15 2002-03-15 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002071190A JP4104112B2 (en) 2002-03-15 2002-03-15 Air conditioner

Publications (2)

Publication Number Publication Date
JP2003269808A true JP2003269808A (en) 2003-09-25
JP4104112B2 JP4104112B2 (en) 2008-06-18

Family

ID=29201537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002071190A Expired - Fee Related JP4104112B2 (en) 2002-03-15 2002-03-15 Air conditioner

Country Status (1)

Country Link
JP (1) JP4104112B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006250491A (en) * 2005-03-14 2006-09-21 Mitsubishi Electric Corp Cold generating system, air conditioning system, refrigerating plant and cold generating method
WO2006112321A1 (en) * 2005-04-18 2006-10-26 Daikin Industries, Ltd. Air conditioner
JP2007255781A (en) * 2006-03-23 2007-10-04 Sanyo Electric Co Ltd Freezer
JP2008180420A (en) * 2007-01-23 2008-08-07 Mitsubishi Electric Corp Operation control method for air conditioning system, and air conditioning system
JP2008183335A (en) * 2007-01-31 2008-08-14 Mitsubishi Electric Corp Washing and drying system
JP2009243814A (en) * 2008-03-31 2009-10-22 Daikin Ind Ltd Air conditioning system
KR101513305B1 (en) * 2008-12-01 2015-04-17 (주)귀뚜라미 Injection-type air conditioner combined with air-conditioning system and method of switching the injection mode of the air conditioner
CN105588361A (en) * 2015-11-04 2016-05-18 青岛海信日立空调系统有限公司 Multi-split air-conditioning system
CN105588365A (en) * 2015-06-30 2016-05-18 青岛海信日立空调系统有限公司 Intense heat type outdoor unit, heat pump system and control method of intense heat type outdoor unit and heat pump system
WO2017216861A1 (en) * 2016-06-14 2017-12-21 三菱電機株式会社 Air conditioner

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006250491A (en) * 2005-03-14 2006-09-21 Mitsubishi Electric Corp Cold generating system, air conditioning system, refrigerating plant and cold generating method
WO2006112321A1 (en) * 2005-04-18 2006-10-26 Daikin Industries, Ltd. Air conditioner
JP4738219B2 (en) * 2006-03-23 2011-08-03 三洋電機株式会社 Refrigeration equipment
JP2007255781A (en) * 2006-03-23 2007-10-04 Sanyo Electric Co Ltd Freezer
JP2008180420A (en) * 2007-01-23 2008-08-07 Mitsubishi Electric Corp Operation control method for air conditioning system, and air conditioning system
JP2008183335A (en) * 2007-01-31 2008-08-14 Mitsubishi Electric Corp Washing and drying system
JP2009243814A (en) * 2008-03-31 2009-10-22 Daikin Ind Ltd Air conditioning system
KR101513305B1 (en) * 2008-12-01 2015-04-17 (주)귀뚜라미 Injection-type air conditioner combined with air-conditioning system and method of switching the injection mode of the air conditioner
CN105588365A (en) * 2015-06-30 2016-05-18 青岛海信日立空调系统有限公司 Intense heat type outdoor unit, heat pump system and control method of intense heat type outdoor unit and heat pump system
CN105588365B (en) * 2015-06-30 2018-11-30 青岛海信日立空调系统有限公司 A kind of heat-flash type outdoor unit, heat pump system and its control method
CN105588361A (en) * 2015-11-04 2016-05-18 青岛海信日立空调系统有限公司 Multi-split air-conditioning system
WO2017216861A1 (en) * 2016-06-14 2017-12-21 三菱電機株式会社 Air conditioner
GB2565665A (en) * 2016-06-14 2019-02-20 Mitsubishi Electric Corp Air conditioner
GB2565665B (en) * 2016-06-14 2020-11-11 Mitsubishi Electric Corp Air conditioning system

Also Published As

Publication number Publication date
JP4104112B2 (en) 2008-06-18

Similar Documents

Publication Publication Date Title
US7302807B2 (en) Refrigerating cycle device
JP3679323B2 (en) Refrigeration cycle apparatus and control method thereof
CN101410677B (en) freezer
CN110332635B (en) Double-stage compression multi-air-supplementing refrigeration heat pump system, control method and air conditioner
US7730729B2 (en) Refrigerating machine
JPH07234038A (en) Multiroom type cooling-heating equipment and operating method thereof
US20040134206A1 (en) Apparatus and method for controlling operation of air conditioner
JP2001116371A (en) Air conditioner
JP2002081767A (en) Air conditioner
JP2006071137A (en) Refrigeration equipment
JP2009257706A (en) Refrigerating apparatus
JP2003240391A (en) Air conditioner
CN109520170B (en) Air source heat pump unit with double-stage supercooling and liquid pulse defrosting functions
JP2003269808A (en) Air conditioner
JP2000274879A (en) Air conditioner
US7574872B2 (en) Capacity-variable air conditioner
JP4179595B2 (en) Air conditioner
JP4156422B2 (en) Refrigeration cycle equipment
JP4407000B2 (en) Refrigeration system using CO2 refrigerant
US20040103676A1 (en) Method for controlling cooling/heating of heat pump system
JP3161347B2 (en) Refrigeration equipment
JP2003172560A (en) Air-conditioner
JP2019158308A (en) Refrigeration cycle device
JP4277354B2 (en) Air conditioner
KR20040054282A (en) Air-conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040311

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070523

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080318

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080324

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

SZ03 Written request for cancellation of trust registration

Free format text: JAPANESE INTERMEDIATE CODE: R313Z03

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140404

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees