JP2003266144A - Cold forging method for cranks - Google Patents
Cold forging method for cranksInfo
- Publication number
- JP2003266144A JP2003266144A JP2002071641A JP2002071641A JP2003266144A JP 2003266144 A JP2003266144 A JP 2003266144A JP 2002071641 A JP2002071641 A JP 2002071641A JP 2002071641 A JP2002071641 A JP 2002071641A JP 2003266144 A JP2003266144 A JP 2003266144A
- Authority
- JP
- Japan
- Prior art keywords
- cold forging
- crank
- billet
- less
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Forging (AREA)
- Heat Treatment Of Articles (AREA)
Abstract
(57)【要約】
【課題】 冷間鍛造後の時効処理を廃止しても、クラン
クとして必要な硬度、強度及び耐久性が得られる冷間鍛
造法を提供する。
【解決手段】 炭素鋼からなるビレットを中間焼鈍する
ことなく冷間鍛造によって連続成形した後、成形後の発
熱温度(250〜300℃)から常温までファンなどで
調整しつつ50〜70℃/hrの冷却速度で冷却する。
この冷却速度範囲で冷却することで冷間鍛造によって加
工硬化した鍛造品が更に連続的に時効を起こし、クラン
クとして適切な特性を示す。
(57) [Summary] [PROBLEMS] To provide a cold forging method capable of obtaining hardness, strength and durability required for a crank even if aging treatment after cold forging is abolished. SOLUTION: After continuously forming a billet made of carbon steel by cold forging without intermediate annealing, the temperature is adjusted from a heat generation temperature (250 to 300 ° C.) after forming to normal temperature by a fan or the like to 50 to 70 ° C./hr. Cool at a cooling rate of
By cooling in this cooling rate range, the forged product that has been hardened by cold forging is further aged, and exhibits proper characteristics as a crank.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、例えば自動二輪車
等のエンジンの分割型クランクを冷間鍛造にて製造する
方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a split crank of an engine such as a motorcycle by cold forging.
【0002】[0002]
【従来の技術】従来、自動二輪車等のエンジンに組み込
むクランクシャフトは、左右の軸付き円盤状の分割型ク
ランクを成形した後、それぞれの円盤状のウェイト部に
形成したピン穴にピンを嵌合させて左右の分割型クラン
クを連結するようにしている。2. Description of the Related Art Conventionally, a crankshaft to be incorporated into an engine of a motorcycle or the like has a disk-shaped split type crank with right and left shafts formed, and then pins are fitted into pin holes formed in respective disk-shaped weight portions. The left and right split cranks are connected together.
【0003】このような素材からの変形率の大きな分割
型クランクは従来から熱間鍛造成形にて製造していた。
しかしながら熱間鍛造成形は、金型表面が摩耗しやす
く、その結果鍛造品の精度が悪くなり、鍛造後の機械加
工による取代が大きくなって加工効率が低下し、また、
レース加工代が大きい為に機械台数も多くなり初期投資
が膨大になり、更に、加熱後に鍛造するためにスケール
が発生し、離型剤等の塗布も必須になるので作業環境を
最適に保つことが困難であるという問題があるため、本
発明者らは特開2001−3117号公報に示すよう
に、冷間鍛造にてクランクを製造する方法を提案した。A split type crank having a large deformation rate from such a material has been conventionally manufactured by hot forging.
However, in hot forging, the die surface is easily worn, resulting in poor precision of the forged product, resulting in a large machining allowance after forging and a reduction in machining efficiency.
Since the number of machines is large due to the large cost of lace processing, the initial investment becomes huge, and scale is generated due to forging after heating, and it is also necessary to apply a release agent etc., so keep the work environment optimal. Therefore, the inventors of the present invention have proposed a method of manufacturing a crank by cold forging, as disclosed in Japanese Patent Laid-Open No. 2001-3117.
【0004】特開2001−3117号公報に示す冷間
鍛造法は、素材であるビレット(炭素鋼)の成分割合を
変形能に悪影響を及ぼす元素である、Si、P、S及び
Cuの含有量を減じた成分比、具体的には、C(炭素)
が0.46〜0.48wt%、Si(珪素)が0.14wt
%以下、Mn(マンガン)が0.55〜0.65wt%、
P(リン)が0.015wt%以下、S(硫黄)が0.0
15wt%以下、Cu(銅)が0.15wt%以下、Ni
(ニッケル)が0.20wt%以下、Cr(クロム)が
0.35wt%以下含まれ、残部がFe(鉄)と不純物か
らなる成分比とし、このような成分比のビレットを中間
焼鈍なく連続的に冷間鍛造した後、250〜350℃の
温度で1〜2.5時間保持し、その後常温まで放冷する
という時効処理(調質)を施すようにしたものである。The cold forging method disclosed in Japanese Unexamined Patent Publication No. 2001-3117 contains the contents of Si, P, S and Cu, which are elements that adversely affect the deformability of the composition ratio of the billet (carbon steel) as a raw material. Component ratio, which is specifically C (carbon)
Is 0.46-0.48wt%, Si (silicon) is 0.14wt%
% Or less, Mn (manganese) is 0.55 to 0.65 wt%,
P (phosphorus) is 0.015 wt% or less, S (sulfur) is 0.0
15 wt% or less, Cu (copper) 0.15 wt% or less, Ni
(Nickel) is 0.20 wt% or less, Cr (Chromium) is 0.35 wt% or less, and the balance is Fe (iron) and impurities. A billet having such a component ratio is continuously formed without intermediate annealing. After cold forging, it is held at a temperature of 250 to 350 ° C. for 1 to 2.5 hours, and then allowed to cool to room temperature, and then subjected to an aging treatment (tempering).
【0005】尚、冷間鍛造法に関して本発明者らは、特
開2001−1031号公報、特開2001−3135
号公報および特開2001−89810号公報に、冷間
鍛造用のビレット、その製造方法或いは処理方法提案し
ている。Regarding the cold forging method, the inventors of the present invention disclosed in Japanese Patent Laid-Open Nos. 2001-1031 and 2001-3135.
JP-A-2001-89810 and JP-A-2001-89810 propose a billet for cold forging and a manufacturing method or processing method thereof.
【0006】[0006]
【発明が解決しようとする課題】先に本発明者らが提案
した冷間鍛造法にてクランクを製造すれば、冷間鍛造の
最大の問題である変形能が小さく割れが発生しやすいと
いう問題を解消しつつ、成形精度や作業環境更には初期
投資の問題を解消することができるのであるが、冷間鍛
造後の時効処理を必須としているため、加熱エネルギー
を供給しなければならず、効率が悪化する。When the crank is manufactured by the cold forging method proposed by the present inventors, the greatest problem of the cold forging is that the deformability is small and cracking is likely to occur. It is possible to solve the problems of molding accuracy, working environment and initial investment while solving the above problem, but since aging treatment after cold forging is indispensable, heating energy must be supplied, and efficiency is improved. Becomes worse.
【0007】また、積極的に上記の時効処理を行わなく
ても、冷間鍛造後の製品は多数個パレット内に蓄積され
る場合が多く、このような場合には鍛造加工後の熱によ
りパレット内が200℃程度に保持されるため軟化して
しまう虞もある。In many cases, many products after cold forging are accumulated in a pallet even if the above-mentioned aging treatment is not positively carried out. In such a case, the pallet is heated by the heat after the forging process. Since the inside is maintained at about 200 ° C., it may soften.
【0008】[0008]
【課題を解決するための手段】上記課題を解決すべく本
発明に係るクランクの冷間鍛造方法は、炭素鋼からなる
ビレットを中間焼鈍することなく冷間鍛造によって連続
成形(型換えは行う)した後、成形後の発熱温度から常
温まで50〜70℃/hrの冷却速度で冷却するように
した。この冷却速度は例えばファンなどで調整する。斯
かる構成とすることで、冷間鍛造後の時効処理(調質:
焼入れ焼き戻し)を廃止しても、クランクとして必要な
硬度、強度及び耐久性が得られる。In order to solve the above problems, the method for cold forging a crank according to the present invention is such that a billet made of carbon steel is continuously formed by cold forging without intermediate annealing (the die is changed). After that, the temperature was changed from the exothermic temperature after molding to room temperature at a cooling rate of 50 to 70 ° C./hr. This cooling rate is adjusted by, for example, a fan. With such a configuration, the aging treatment after cold forging (tempering:
The hardness, strength and durability required for the crank can be obtained even if the quenching and tempering) is eliminated.
【0009】また、ビレットの成分比としては以下の範
囲が好ましい。C(炭素)が0.46〜0.48wt%、
Si(珪素)が0.14wt%以下、Mn(マンガン)が
0.55〜0.65wt%、P(リン)が0.015wt%
以下、S(硫黄)が0.015wt%以下、Cu(銅)が
0.15wt%以下、Ni(ニッケル)が0.20wt%以
下、Cr(クロム)が0.35wt%以下含まれ、残部が
Fe(鉄)と不純物。上記成分比はクランク軸用の熱間
鍛造の素材としては、一般的なJIS S48C(以
下、単にS48Cと記す)炭素鋼を基に改良したもので
あり、各成分比は以下の基準で定めた。先ず、Cは単位
%当り最も冷間鍛造性に大きな効果をもつ元素であり、
機械的性質、特に材料強度、焼入れ性の面から重要であ
る。即ち、クランク軸にあっては全体的に所定の機械的
強度を必要とするとともに、ウォーム及びテーパ部など
局部的に高硬度が要求される。このように局部的に高硬
度が要求される部分を機械加工後に高周波焼入れで硬度
を上げるために、Cの割合を0.46〜0.48wt%と
した。またSiは原料の銑鉄中に存在し、製鋼の過程で
殆ど除去されるが、製鋼過程の最後に脱酸剤として添加
されることがあり、S48Cでは0.15〜0.35wt
%含まれ、一部は鋼中に入りフェライトに固溶するが、
鍛造性を阻害するので冷間鍛造素材としては除去するこ
とが好ましく、0.14wt%以下とした。またMnは製
鋼の過程でも多少残るが、脱酸剤として添加されるた
め、S48Cには0.60〜0.90wt%含まれてい
る。このMnはSと結合して硫化マンガンとして鋼中に
分散し、一部はフェライト中に固溶するが、Sに結合し
やすいMnはMnSとなり、このMnSは鍛造成形時の
割れの起点となりやすい為、低減させることが望ましい
が、フェライト中に固溶するMnは焼きを入りやすく
し、結晶粒の成長を抑える。このため、0.55〜0.
65wt%にした。またPはフェライト中に固溶し、多量
に含まれる場合は鉄の一部と化合してリン化鉄になる
が、Pがフェライト中に固溶するとフェライトは伸びが
減じられるようになり、常温における衝撃値も減じられ
て加工時に割れが生じやすくなる。そしてこのPはS4
8Cでは0.03wt%まで許容されており、冷間鍛造素
材としては、この許容値が高すぎる。そこで0.015
wt%以下とした。またSはMnの一部と化合してMnS
になり、このMnSは冷間鍛造時に生じる表面割れの起
点となり、S48Cでは0.035wt%まで許容されて
いるが、冷間鍛造素材としては、許容値が高すぎる。そ
こで0.015wt%以下とした。またCuは高温加熱で
はFeより酸化が少ないため、表面に富化して赤熱脆性
を起こすので、概ね当量のNiを添加して赤熱脆性を防
止する。一方CuはPと同様に微量の含有によりフェラ
イト硬さを増加させ、冷間鍛造性を損うことが考えられ
る為、0.15wt%以下とした。またNiは前記した効
果の他に、焼入れ性を増し、低温脆性を防止し、耐食性
を改善するため、S48Cと同量添加する。更にCrは
焼入性、焼戻し抵抗を大にし、耐食性を高め安定した炭
化物を作りやすいため、S48Cと同量程度含有せしめ
た。The billet component ratio is preferably in the following range. C (carbon) is 0.46-0.48 wt%,
Si (silicon) 0.14 wt% or less, Mn (manganese) 0.55-0.65 wt%, P (phosphorus) 0.015 wt%
Below, S (sulfur) is 0.015 wt% or less, Cu (copper) is 0.15 wt% or less, Ni (nickel) is 0.20 wt% or less, Cr (chromium) is 0.35 wt% or less, and the balance is Fe (iron) and impurities. The above component ratio is an improvement based on general JIS S48C (hereinafter simply referred to as S48C) carbon steel as a material for hot forging for crankshafts, and each component ratio is determined by the following standards. . First, C is the element that has the greatest effect on the cold forgeability per unit%,
It is important in terms of mechanical properties, especially material strength and hardenability. That is, the crankshaft as a whole needs to have a predetermined mechanical strength, and locally needs to have a high hardness such as a worm and a tapered portion. Thus, in order to increase the hardness by induction hardening after machining the part where high hardness is locally required, the proportion of C is set to 0.46 to 0.48 wt%. Si is present in the raw pig iron and is mostly removed during the steelmaking process, but it may be added as a deoxidizer at the end of the steelmaking process.
%, Part of which enters steel and forms a solid solution with ferrite,
Since it hinders forgeability, it is preferable to remove it as a cold forging material, and the content was 0.14 wt% or less. Further, Mn remains in the steelmaking process to some extent, but since it is added as a deoxidizer, it is contained in S48C in an amount of 0.60 to 0.90 wt%. This Mn is combined with S and dispersed in the steel as manganese sulfide, and a part is dissolved in the ferrite, but Mn that easily bonds to S becomes MnS, and this MnS easily becomes a starting point of cracks during forging. Therefore, it is desirable to reduce the amount, but Mn dissolved in ferrite makes quenching easier and suppresses the growth of crystal grains. Therefore, 0.55 to 0.
It was set to 65 wt%. Further, when P is solid-dissolved in ferrite, and when it is contained in a large amount, it is combined with part of iron to become iron phosphide, but when P is solid-dissolved in ferrite, the elongation of ferrite comes to be reduced and The impact value at is also reduced and cracks are likely to occur during processing. And this P is S4
In 8C, 0.03 wt% is allowed, and this allowable value is too high as a cold forging material. So 0.015
It was set to wt% or less. Also, S combines with a part of Mn to form MnS.
This MnS becomes the starting point of surface cracks that occur during cold forging, and up to 0.035 wt% is allowed in S48C, but the permissible value is too high as a cold forging material. Therefore, it is set to 0.015 wt% or less. Further, since Cu is less oxidized than Fe when heated at a high temperature, it is enriched on the surface and causes red heat embrittlement. Therefore, approximately equivalent amount of Ni is added to prevent red heat embrittlement. On the other hand, Cu, like P, is considered to increase the ferrite hardness and impair the cold forgeability by containing a small amount, so the content was made 0.15 wt% or less. In addition to the effects described above, Ni is added in the same amount as S48C in order to increase hardenability, prevent low temperature brittleness, and improve corrosion resistance. Further, Cr increases the hardenability and the tempering resistance, enhances the corrosion resistance, and easily forms a stable carbide, so that the same amount as that of S48C was contained.
【0010】またビレット中の炭化物は球状化が進んで
いるほど成形性が高くなる。この球状化のレベルはアス
ペクト比(炭化物の縦横比)で表すことができ、アスペ
クト比は300%以下であることが好ましい。アスペク
ト比が300%以下であれば、限界据込み率を90%以
上にすることが可能になる。Further, the carbide in the billet has higher moldability as the spheroidization progresses. The level of this spheroidization can be expressed by the aspect ratio (the aspect ratio of the carbide), and the aspect ratio is preferably 300% or less. If the aspect ratio is 300% or less, the critical upsetting ratio can be 90% or more.
【0011】またビレットは加熱炉から導出して圧延し
た後に急冷することで表層を微細なマルテンサイト組織
とし、次いで焼鈍して前記表層のマルテンサイトをフェ
ライトとセメンタイトからなる微細な球状化組織とされ
ているものが好ましい。上記の焼鈍によってビレット内
部は、フェライトとパーライトの混合相であったのが、
パーライトが分断して球状化が進行する。したがって、
内部も表層も球状化し、冷間鍛造の際の変形能が極めて
大きくなる。The billet is drawn out from the heating furnace, rolled, and then rapidly cooled to form a fine martensite structure in the surface layer, and then annealed to form the martensite in the surface layer into a fine spheroidal structure composed of ferrite and cementite. Those that are preferable. By the above-mentioned annealing, the inside of the billet was a mixed phase of ferrite and pearlite,
The pearlite is divided and the spheroidization progresses. Therefore,
Both the inside and the surface layer become spherical, and the deformability during cold forging becomes extremely large.
【0012】前記焼鈍の条件としては、例えば、素材を
約740℃で6時間保持した後、約680℃まで20℃
/hrの冷却速度で、降温後炉冷するか、或いは、素材を
約750℃で4時間保持した後、約735℃で3.5時
間保持し、この後、約680℃まで15℃/hrの冷却速
度で、降温炉冷する等が考えられる。The annealing conditions include, for example, holding the material at about 740 ° C. for 6 hours and then increasing the temperature to about 680 ° C. to 20 ° C.
At a cooling rate of / hr, the furnace is cooled after cooling, or the material is held at about 750 ° C for 4 hours and then at about 735 ° C for 3.5 hours, then to about 680 ° C at 15 ° C / hr. It is conceivable to cool down the furnace at the cooling rate of.
【0013】[0013]
【発明の実施の形態】以下に本発明の実施の形態を添付
図面に基づいて説明する。図1は本発明に係るクランク
の冷間鍛造工程を説明した図であり、球状化処理された
ビレットを出発素材とし、絞り成形、据込成形、荒成
形、仕上げ成形及び外周抜きとピン穴抜きの一連の冷間
鍛造を中間の軟化処理なしでクランクを冷間鍛造する。BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a view for explaining a cold forging process of a crank according to the present invention, in which a spheroidized billet is used as a starting material, and drawing forming, upsetting forming, rough forming, finish forming, peripheral cutting and pin punching. The series of cold forging of the crank is cold forged without intermediate softening treatment.
【0014】図2は出発素材としてのビレットの製造方
法の一例を示す図であり、棒材(炭素鋼)に対して、酸
洗を行った後、第1回目の球状化焼鈍を行い、セメンタ
イトを球状化して素材全体の加工性を向上させ、内部ま
で歪みを与えることができるようにするとともに、パー
ライトの微細化を図る。この第1回目の球状化焼鈍は、
740℃で6時間保持した後、20℃/hで680℃ま
で降温させ、その後、炉冷する手順で行った。FIG. 2 is a diagram showing an example of a method for producing a billet as a starting material. A bar material (carbon steel) is pickled and then subjected to a first spheroidizing annealing to obtain cementite. The spheres are made spherical to improve the workability of the entire material so that distortion can be given to the inside as well, and the pearlite is miniaturized. This first spheroidizing annealing is
After holding at 740 ° C. for 6 hours, the temperature was lowered to 680 ° C. at 20 ° C./h, and then the furnace was cooled.
【0015】次に、酸洗、ボンデ処理を行って引抜き加
工を行い、限界据込み率の向上を図る。引抜きを行うこ
とによって限界据込み率が上がる理由は、引抜きを実施
することで、焼鈍時のオーステナイト粒が微細化し、球
状化速度を速めることができるからだと推定される。本
実施例では、最大の限界据込み率が得られるよう、冷間
引抜き率(断面減少率)約20%で引抜いた。因みに、
冷間引抜き率(断面減少率)は、加工前の径がDで加工
後の径がdの場合、(D−d)/D×100で表される
値である。Next, pickling and bonder treatment are carried out to carry out drawing to improve the critical upsetting rate. It is presumed that the reason why the critical upsetting rate is increased by performing the drawing is that by performing the drawing, the austenite grains at the time of annealing are refined and the spheroidizing speed can be increased. In the present example, the cold drawing ratio (reduction of area) was about 20% so that the maximum critical upsetting ratio could be obtained. By the way,
The cold drawing rate (area reduction rate) is a value represented by (D−d) / D × 100 when the diameter before processing is D and the diameter after processing is d.
【0016】次に、この棒材を所望の寸法に切断してビ
レットとし、これを酸洗した後、2回目の球状化焼鈍を
行い、炭化物の分散を図るとともに球状化率を高めた。
そして本実施例では、この2回目の球状化焼鈍は、75
0℃で2時間保持した後、20℃/hで730℃まで降
温させ、その後降温率を15℃/hに下げて680℃ま
で降温させ、その後炉冷する手順で行った。Next, this bar material was cut into a desired size to form a billet, which was pickled and then subjected to a second spheroidizing annealing to disperse the carbide and increase the spheroidizing rate.
In this example, the second spheroidizing annealing was 75
After the temperature was maintained at 0 ° C. for 2 hours, the temperature was lowered to 730 ° C. at 20 ° C./h, the temperature lowering rate was then lowered to 15 ° C./h to 680 ° C., and then the furnace was cooled.
【0017】そして、2回目の球状化焼鈍を終えたなら
ば、ショットブラスト、ボンデ処理を行って表面調整を
行い、冷間鍛造用ビレットとした。After completion of the second spheroidizing annealing, shot blasting and bonder treatment were carried out to adjust the surface, to obtain a cold forging billet.
【0018】図3は出発素材としてのビレットの製造法
の他の例を示す図であり、この例では先ず、加熱炉から
導出した素材(炭素鋼)を圧延機で圧延し、切断シャー
4所定寸法に切断し、この後、冷却装置を通して急冷せ
しめた後、ビレットと線材に分け、ビレットについては
冷却床に送り込み、線材については巻き取る。FIG. 3 is a diagram showing another example of a method for manufacturing a billet as a starting material. In this example, first, a material (carbon steel) led out from a heating furnace is rolled by a rolling mill and a cutting shear 4 is predetermined. After being cut into a size and then rapidly cooled through a cooling device, the billet and the wire are separated, the billet is sent to a cooling floor, and the wire is wound.
【0019】前記ビレットは急冷によってその表層は高
硬度のマルテンサイト組織になっている。この表層がマ
ルテンサイト組織となっているビレットを切断し酸洗い
を行った後、球状化焼鈍を行う。The billet has a high hardness martensite structure due to its rapid cooling. The billet whose surface layer has a martensite structure is cut, pickled, and then spheroidized.
【0020】焼鈍条件はビレットを約740℃で6時間
保持した後、約680℃まで20℃/hrの冷却速度で、
降温後炉冷するパターンと、ビレットを約750℃で4
時間保持した後、約735℃で3.5時間保持し、この
後、約680℃まで15℃/hrの冷却速度で、降温後炉
冷するパターンを試みた。いずれのパターンでも、金属
組織は差異はなく、表層はマルテンサイト相がフェライ
トとセメンタイトとの混相で微細な球状化組織になって
いた。The annealing condition is that the billet is held at about 740 ° C. for 6 hours and then cooled to about 680 ° C. at a cooling rate of 20 ° C./hr.
The pattern of cooling down the furnace and cooling the billet at about 750 ° C
After keeping the temperature for about 3.5 hours, the temperature was kept at about 735 ° C. for 3.5 hours, and then the temperature was lowered to about 680 ° C. at a cooling rate of 15 ° C./hr. In any of the patterns, there was no difference in the metallographic structure, and the surface layer had a fine spheroidized structure in which the martensite phase was a mixed phase of ferrite and cementite.
【0021】図4は鍛造後の冷却速度を鍛造直後の25
0〜300℃から50〜70℃/hrとした場合と、自
然放冷した場合の温度低下に伴う硬度(HRB)変化を
示すグラフであり、このグラフから自然放冷に比較し
て、本発明のように冷却速度を適切な範囲にファンなど
を用いてコントロールすることで、表面硬度を高めるこ
とができる。尚、50〜70℃/hrとしたのは、50
℃/hr未満とすると、図4で示す空中放冷に近い硬度
になり、またこれ未満の冷却速度では、時間がかかるた
め効率的でなく、70℃/hrを超えると、冷却速度を
さらに早める為のワーク整列、エア圧力調整等の工数が
増え効率が悪化するためである。FIG. 4 shows that the cooling rate after forging is 25% immediately after forging.
It is a graph which shows the hardness (HRB) change with a temperature fall at the time of 0-300 degreeC to 50-70 degreeC / hr, and the case of natural cooling. As described above, the surface hardness can be increased by controlling the cooling rate within an appropriate range using a fan or the like. In addition, 50 to 70 ° C./hr was set to 50
If it is less than ℃ / hr, the hardness becomes close to that in the air cooling shown in FIG. 4, and if it is less than this, it is not efficient because it takes time, and if it exceeds 70 ° C./hr, the cooling rate is further accelerated. This is because the number of man-hours for aligning workpieces and adjusting the air pressure increases, and efficiency deteriorates.
【0022】図5はビレット硬度と本発明にかかる冷間
鍛造で得たクランク軸部の硬度(HRB)を比較したグ
ラフであり、このグラフから軸部の3箇所(φ25.
3、φ21.3、φ12.3)のいずれにおいてもクラ
ンクとして必要な目標硬度内に収まっていることが分
る。FIG. 5 is a graph comparing the billet hardness with the hardness (HRB) of the crankshaft obtained by cold forging according to the present invention. From this graph, three positions (φ25.
It can be seen that, in all of No. 3, φ21.3, and φ12.3), the hardness falls within the target hardness required for the crank.
【0023】図6はビレット硬度と本発明にかかる冷間
鍛造で得たクランクの円盤状のウェイト部(内部、セン
ターラインおよびピン穴周辺部)の硬度(HRB)を比
較したグラフであり、このグラフからウェイト部の内
部、センターラインおよびピン穴周辺部のいずれにおい
てもクランクとして必要な目標硬度内に収まっているこ
とが分る。FIG. 6 is a graph comparing the billet hardness with the hardness (HRB) of the disk-shaped weight portion (internal portion, center line and peripheral portion of the pin hole) of the crank obtained by cold forging according to the present invention. From the graph, it can be seen that the inside of the weight portion, the center line, and the peripheral portion of the pin hole are all within the target hardness required for the crank.
【0024】[0024]
【発明の効果】以上に説明したように本発明によれば、
冷間鍛造後の成形品の温度は発熱により250〜300
℃となっており、この温度から常温まで50〜70℃/
hrの冷却速度で冷却することで冷間鍛造によって加工
硬化した鍛造品が更に連続的に時効を起こし、クランク
として適切な特性を示す。また、本発明によれば従来の
クランクの冷間鍛造において必須とされた端造後の熱処
理(時効処理)が省略でき、また鍛造後の研削加工も簡
単になる。As described above, according to the present invention,
The temperature of the molded product after cold forging is 250 to 300 due to heat generation.
℃, and from this temperature to room temperature 50-70 ℃ /
By cooling at a cooling rate of hr, the forged product work-hardened by cold forging is further aged continuously and exhibits appropriate characteristics as a crank. Further, according to the present invention, the heat treatment (aging treatment) after the end forming, which is indispensable in the conventional cold forging of the crank, can be omitted, and the grinding process after the forging can be simplified.
【0025】また、冷間鍛造用の素材として、微細な球
状化組織を有するビレットを用いることで、中間で軟化
処理を行うことなく、最後まで連続して冷間鍛造を行う
ことができ、設備にかかる費用を大幅に削減できるとと
もに、作業環境の改善にも資することになる。Further, by using a billet having a fine spheroidized structure as a material for cold forging, cold forging can be continuously performed to the end without performing softening treatment in the middle. The cost required for the work can be significantly reduced and the working environment can be improved.
【図1】本発明に係るクランクの冷間鍛造工程を説明し
た図。FIG. 1 is a diagram illustrating a cold forging process of a crank according to the present invention.
【図2】本発明に係るクランクの冷間鍛造に用いるビレ
ットの製造法の一例を示す図FIG. 2 is a diagram showing an example of a method for manufacturing a billet used for cold forging of a crank according to the present invention.
【図3】本発明に係るクランクの冷間鍛造に用いるビレ
ットの製造法の他の例を示す図FIG. 3 is a diagram showing another example of a method for manufacturing a billet used for cold forging of a crank according to the present invention.
【図4】鍛造後の冷却速度を50〜70℃/hrとした
場合と、自然放冷した場合の温度低下に伴う硬度(HR
B)変化を示すグラフ[FIG. 4] Hardness (HR) accompanying a temperature decrease when the cooling rate after forging is set to 50 to 70 ° C./hr and when naturally cooled.
B) Graph showing changes
【図5】ビレット硬度と本発明にかかる冷間鍛造で得た
クランク軸部の硬度を比較したグラフFIG. 5 is a graph comparing the billet hardness with the hardness of the crankshaft obtained by cold forging according to the present invention.
【図6】ビレット硬度と本発明にかかる冷間鍛造で得た
クランクの円盤状のウェイト部の硬度を比較したグラフFIG. 6 is a graph comparing the billet hardness with the hardness of a disc-shaped weight portion of a crank obtained by cold forging according to the present invention.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22C 38/42 C22C 38/42 (72)発明者 竹島 史生 埼玉県狭山市狭山1丁目10番地1 ホンダ エンジニアリング株式会社内 (72)発明者 中田 豊繁 熊本県菊池郡大津町平川1500 本田技研工 業株式会社熊本製作所内 (72)発明者 松浦 英樹 熊本県菊池郡大津町平川1500 本田技研工 業株式会社熊本製作所内 Fターム(参考) 4E087 AA05 AA08 BA02 BA14 CA11 CA22 CA31 CB03 CC01 DA05 DB16 DB24 GA09 HA32 HA36 HA83 HB13 4K042 AA16 BA03 BA05 BA13 CA05 CA06 CA10 DA03 DE02 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C22C 38/42 C22C 38/42 (72) Inventor Fumio Takeshima 1-10 Sayama, Sayama-shi, Saitama Honda Engineering (72) Inventor Toyoshige Nakata 1500 Hirakawa, Otsu-cho, Kikuchi-gun, Kumamoto Honda Motor Co., Ltd.Kumamoto Manufacturing Co., Ltd. (72) Inventor Hideki Matsuura 1500, Hirakawa, Otsu-machi, Kumamoto-ken Honda Kumamoto Co., Ltd. F term in the factory (reference) 4E087 AA05 AA08 BA02 BA14 CA11 CA22 CA31 CB03 CC01 DA05 DB16 DB24 GA09 HA32 HA36 HA83 HB13 4K042 AA16 BA03 BA05 BA13 CA05 CA06 CA10 DA03 DE02
Claims (4)
ことなく冷間鍛造によって連続成形した後、成形後の発
熱温度から常温まで50〜70℃/hrの冷却速度で冷
却することを特徴とするクランクの冷間鍛造方法。1. A billet made of carbon steel is continuously formed by cold forging without intermediate annealing, and then cooled at a cooling rate of 50 to 70 ° C./hr from the exothermic temperature after forming to normal temperature. Crank cold forging method.
法において、前記ビレットの組成はC(炭素)が0.4
6〜0.48wt%、Si(珪素)が0.14wt%以下、
Mn(マンガン)が0.55〜0.65wt%、P(リ
ン)が0.015wt%以下、S(硫黄)が0.015wt
%以下、Cu(銅)が0.15wt%以下、Ni(ニッケ
ル)が0.20wt%以下、Cr(クロム)が0.35wt
%以下含まれ、残部がFe(鉄)と不純物からなること
を特徴とするクランクの冷間鍛造方法。2. The method for cold forging a crank according to claim 1, wherein the billet has a C (carbon) content of 0.4.
6 to 0.48 wt%, Si (silicon) is 0.14 wt% or less,
Mn (manganese) 0.55 to 0.65 wt%, P (phosphorus) 0.015 wt% or less, S (sulfur) 0.015 wt%
%, Cu (copper) 0.15 wt% or less, Ni (nickel) 0.20 wt% or less, Cr (chrome) 0.35 wt%
% Or less, with the balance being Fe (iron) and impurities, a method of cold forging a crank.
クの冷間鍛造方法において、前記ビレット中の炭化物の
アスペクト比が300%以下であることを特徴とするク
ランクの冷間鍛造方法。3. The method for cold forging a crank according to claim 1, wherein the carbide has an aspect ratio of 300% or less in the billet.
クの冷間鍛造方法において、前記ビレットは加熱炉から
導出して圧延した後に急冷することで表層を微細なマル
テンサイト組織とし、次いで焼鈍して前記表層のマルテ
ンサイトをフェライトとセメンタイトからなる微細な球
状化組織としたことを特徴とするクランクの冷間鍛造方
法。4. The method for cold forging a crank according to claim 1 or 2, wherein the billet is drawn from a heating furnace, rolled, and then rapidly cooled to form a fine martensite structure in the surface layer, and then annealed. A method for cold forging a crank characterized in that the martensite in the surface layer has a fine spheroidal structure composed of ferrite and cementite.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002071641A JP2003266144A (en) | 2002-03-15 | 2002-03-15 | Cold forging method for cranks |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002071641A JP2003266144A (en) | 2002-03-15 | 2002-03-15 | Cold forging method for cranks |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003266144A true JP2003266144A (en) | 2003-09-24 |
Family
ID=29201862
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002071641A Pending JP2003266144A (en) | 2002-03-15 | 2002-03-15 | Cold forging method for cranks |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003266144A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006150410A (en) * | 2004-11-29 | 2006-06-15 | Nsk Ltd | Manufacturing method of toothed transmission member provided with oil reservoir, and toothed transmission member manufactured by this manufacturing method |
EP1939309A1 (en) | 2006-12-28 | 2008-07-02 | Kabushiki Kaisha Kobe Seiko Sho | Steel for high-speed cold working and method for production thereof, and part formed by high-speed cold working and method for production thereof |
JP2010138457A (en) * | 2008-12-12 | 2010-06-24 | Fuji Electronics Industry Co Ltd | Hardening method and hardening apparatus |
CN102061376A (en) * | 2010-11-23 | 2011-05-18 | 天润曲轴股份有限公司 | Clamping device of crankshaft vibration stress relief |
US8091236B2 (en) | 2004-11-29 | 2012-01-10 | Nsk Ltd. | Manufacturing method for toothed power transmission member having oil reservoir and toothed power transmission member manufactured by this manufacturing method |
CN102989956A (en) * | 2011-09-19 | 2013-03-27 | 沈阳黎明航空发动机(集团)有限责任公司 | Forming method of forge pieces like eccentric crank |
-
2002
- 2002-03-15 JP JP2002071641A patent/JP2003266144A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006150410A (en) * | 2004-11-29 | 2006-06-15 | Nsk Ltd | Manufacturing method of toothed transmission member provided with oil reservoir, and toothed transmission member manufactured by this manufacturing method |
US8091236B2 (en) | 2004-11-29 | 2012-01-10 | Nsk Ltd. | Manufacturing method for toothed power transmission member having oil reservoir and toothed power transmission member manufactured by this manufacturing method |
EP1939309A1 (en) | 2006-12-28 | 2008-07-02 | Kabushiki Kaisha Kobe Seiko Sho | Steel for high-speed cold working and method for production thereof, and part formed by high-speed cold working and method for production thereof |
JP2010138457A (en) * | 2008-12-12 | 2010-06-24 | Fuji Electronics Industry Co Ltd | Hardening method and hardening apparatus |
CN102061376A (en) * | 2010-11-23 | 2011-05-18 | 天润曲轴股份有限公司 | Clamping device of crankshaft vibration stress relief |
CN102989956A (en) * | 2011-09-19 | 2013-03-27 | 沈阳黎明航空发动机(集团)有限责任公司 | Forming method of forge pieces like eccentric crank |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4018905B2 (en) | Hot rolled wire rod and bar for machine structure and manufacturing method thereof | |
KR101631521B1 (en) | Carburizing steel having excellent cold forgeability and method of manufacturing the same | |
KR100939462B1 (en) | Hot forged parts with excellent fatigue strength, manufacturing method and mechanical structural parts | |
JP3915043B2 (en) | Steel for forging production and method for producing forging | |
EP0745696B1 (en) | High strength steel composition having enhanced low temperature toughness | |
US5648044A (en) | Graphite steel for machine structural use exhibiting excellent free cutting characteristic, cold forging characteristic and post-hardening/tempering fatigue resistance | |
JP6693206B2 (en) | Crankshaft, manufacturing method thereof, and crankshaft steel | |
JPH0250910A (en) | Manufacturing method of mold steel plate with good thermal fatigue properties | |
EP3272896B1 (en) | Age-hardenable steel, and method for manufacturing components using age-hardenable steel | |
JP5292896B2 (en) | Machine structural parts having excellent rolling fatigue characteristics and manufacturing method thereof | |
JPS589813B2 (en) | Manufacturing method for non-thermal forged steel products | |
JP2003266144A (en) | Cold forging method for cranks | |
KR102678568B1 (en) | Low carbon spherodial alloy steel and method of manufacturing the same | |
JPH11124623A (en) | Manufacturing method of steel material for cold forging containing boron | |
JPH03254342A (en) | Manufacture of raw material for bearing having excellent service life to rolling fatigue | |
JP3701145B2 (en) | Crankshaft manufacturing method | |
JP4488228B2 (en) | Induction hardening steel | |
JPH07310118A (en) | Production of case hardening steel suitable for cold-working | |
JP3569158B2 (en) | Billet for cold forging | |
JP3739329B2 (en) | Crank cold forging method | |
JPH09202921A (en) | Method for manufacturing wire for cold forging | |
JPH10265841A (en) | Production of high strength cold forging parts | |
JPH10152754A (en) | Case hardening steel and method for producing case hardened steel | |
JP4411096B2 (en) | Steel wire rod and steel bar for case hardening with excellent cold forgeability after spheronization | |
JP4596577B2 (en) | Manufacturing method of billet for cold forging |