JP2003263982A - Method for producing graphitic particles and negative electrode material for lithium ion secondary battery - Google Patents
Method for producing graphitic particles and negative electrode material for lithium ion secondary batteryInfo
- Publication number
- JP2003263982A JP2003263982A JP2002063697A JP2002063697A JP2003263982A JP 2003263982 A JP2003263982 A JP 2003263982A JP 2002063697 A JP2002063697 A JP 2002063697A JP 2002063697 A JP2002063697 A JP 2002063697A JP 2003263982 A JP2003263982 A JP 2003263982A
- Authority
- JP
- Japan
- Prior art keywords
- particles
- negative electrode
- graphite
- ion secondary
- secondary battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
- Carbon And Carbon Compounds (AREA)
- Secondary Cells (AREA)
Abstract
(57)【要約】
【課題】メソフェーズピッチを熱処理して得られる黒鉛
質粒子を、結合剤と分散媒体の存在で混合してリチウム
イオン二次電池の負極を作製する場合、分散媒体が水系
であっても、有機溶媒系と同等の初期充放電効率などの
電池特性を示すような黒鉛質粒子の提供。
【解決手段】黒鉛質前駆体粒子(メソフェーズ小球体な
ど)の表面に、該黒鉛質前駆体粒子の平均粒径よりも小
さな平均粒径を有し、かつ該黒鉛質前駆体粒子よりも硬
い粒子(シリカなど)を、例えば、圧縮剪断式乾式粉体
複合化装置などを用いてメカノケミカル処理により埋設
した後、得られた前駆体粒子を黒鉛化し、埋設された硬
質粒子を気化、昇華または分解する黒鉛質粒子の製造方
法。(57) [Problem] To prepare a negative electrode of a lithium ion secondary battery by mixing graphitic particles obtained by heat-treating mesophase pitch in the presence of a binder and a dispersion medium, when the dispersion medium is aqueous. Even so, the provision of graphitic particles exhibiting battery characteristics such as initial charge and discharge efficiency equivalent to that of an organic solvent system. SOLUTION: Particles having an average particle diameter smaller than the average particle diameter of the graphitic precursor particles on the surface of the graphitic precursor particles (such as mesophase small spheres) and being harder than the graphitic precursor particles (Silica, etc.) is embedded by mechanochemical treatment using, for example, a compression-shear dry-powder compounding device, and the resulting precursor particles are graphitized, and the embedded hard particles are vaporized, sublimated or decomposed. Of producing graphitic particles.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、黒鉛質粒子の製造
方法、特に放電容量が高く、初期充放電効率も高い上、
水系バインダーを用いて負極を作製しても高速充電でき
るリチウムイオン二次電池を得ることができる黒鉛質粒
子の製造方法、該製造方法により得られたリチウムイオ
ン二次電池用負極材料、リチウムイオン二次電池用負極
およびリチウムイオン二次電池に関する。TECHNICAL FIELD The present invention relates to a method for producing graphite particles, in particular, high discharge capacity and high initial charge / discharge efficiency.
A method for producing graphite particles capable of obtaining a lithium ion secondary battery that can be charged at high speed even when an anode is produced using an aqueous binder, a negative electrode material for a lithium ion secondary battery obtained by the production method, and a lithium ion secondary battery. The present invention relates to a negative electrode for a secondary battery and a lithium ion secondary battery.
【0002】[0002]
【従来の技術】近年、電子機器の小型化あるいは高性能
化に伴い、電池の高エネルギー密度化に対する要望はま
すます高まっている。このような状況のなか、エネルギ
ー密度が高く、高電圧化が可能な電池として、リチウム
イオン二次電池が注目されている。このリチウムイオン
二次電池の負極材料としては、充放電特性に優れ、高い
放電容量と電位平坦性とを示す黒鉛(特公昭62−23
433号公報等)が主流となっている。負極材料として
使用される黒鉛(黒鉛質粒子)としては、天然黒鉛、人
造黒鉛などの黒鉛粒子、さらにはタール、ピッチを原料
としたメソフェーズピッチ、例えばメソフェーズ小球体
などを熱処理して得られるメソフェーズ系黒鉛質粒子が
挙げられる。2. Description of the Related Art In recent years, with the miniaturization and higher performance of electronic devices, there has been an increasing demand for higher energy density of batteries. Under such circumstances, a lithium ion secondary battery has been attracting attention as a battery having a high energy density and capable of high voltage. As a negative electrode material for this lithium ion secondary battery, graphite having excellent charge / discharge characteristics, high discharge capacity and potential flatness (Japanese Patent Publication No. 62-23).
No. 433, etc.) is the mainstream. As graphite (graphite particles) used as the negative electrode material, graphite particles such as natural graphite and artificial graphite, and mesophase pitch obtained by heat-treating mesophase pitch such as tar and pitch, for example, mesophase spherules, are obtained. Graphite particles can be mentioned.
【0003】負極は、負極材料、負極材料同士および負
極材料と集電材とを結着させるための結合剤(バインダ
ー樹脂)、集電材から形成される。具体的には、通常、
上記負極材料と、結合剤との負極合剤ペーストを調製
し、次いでこのペーストを銅箔などの集電体上に塗布し
てプレスし、負極を作製する。The negative electrode is formed of a negative electrode material, a negative electrode material, a binder (binder resin) for binding the negative electrode material and the current collector, and a current collector. Specifically,
A negative electrode mixture paste containing the above negative electrode material and a binder is prepared, and then this paste is applied onto a current collector such as a copper foil and pressed to produce a negative electrode.
【0004】[0004]
【発明が解決しようとする課題】上記負極材料としての
天然黒鉛は、放電容量が高い反面、鱗片形状に起因して
負極を形成した際に配向しやすく、サイクル特性および
レート特性(急速充放電特性)が低下するという課題が
ある。一方、メソフェーズピッチを熱処理して得られる
黒鉛質粒子、特にメソフェーズ小球体の黒鉛質粒子は、
球状あるいは球状に近い形状を有し、負極形成時にラン
ダムに積層することから良好なサイクル特性およびレー
ト特性を有するが、負極を形成する際の結合剤の形態に
よって性能を充分に引き出せない場合がある。例えば分
散溶媒が有機溶媒の場合は、負極材料の性能を充分に発
揮することができるが、水系溶媒の場合には、充電速度
などの電池特性が低下することがある。近年、環境面、
安全面などの観点から、水系溶媒すなわち水系結合剤の
使用が望まれている状況に鑑み、水系結合剤を使用する
場合であっても、黒鉛質粒子に負極材料としての性能を
充分に発揮させ得る方法の出現が望まれている。The above-mentioned natural graphite as a negative electrode material has a high discharge capacity, but on the other hand, it tends to be oriented when the negative electrode is formed due to the scale shape, and has cycle characteristics and rate characteristics (rapid charge / discharge characteristics). ) Decreases. On the other hand, the graphitic particles obtained by heat-treating the mesophase pitch, especially the graphitic particles of mesophase spherules,
It has a spherical shape or a shape close to a spherical shape, and has good cycle characteristics and rate characteristics because it is laminated randomly at the time of forming the negative electrode, but the performance may not be sufficiently drawn out depending on the form of the binder when forming the negative electrode. . For example, when the dispersion solvent is an organic solvent, the performance of the negative electrode material can be sufficiently exhibited, but when the dispersion solvent is an aqueous solvent, battery characteristics such as charging rate may be deteriorated. In recent years,
From the viewpoint of safety and the like, in view of the situation where the use of an aqueous solvent, that is, an aqueous binder is desired, even when using an aqueous binder, make the graphite particles sufficiently exhibit the performance as a negative electrode material. The advent of a method of obtaining is desired.
【0005】[0005]
【課題を解決するための手段】本発明者は、前記のよう
な黒鉛系リチウムイオン二次電池用負極材料の課題を検
討するうちに、黒鉛質前駆体粒子の表面に、該黒鉛質前
駆体粒子の平均粒径よりも小さい平均粒径を有し、かつ
該黒鉛質前駆体粒子よりも硬い粒子(以後、硬質粒子と
も称す)を埋設した後、黒鉛化することによって、メソ
フェーズ系黒鉛質粒子の電池特性の溶媒依存性を解消
し、水系結合剤の場合でも有機溶媒系結合剤の場合と同
等の電池特性を得ることができるなど、黒鉛質粒子の電
池特性の課題を解消し得ることを見出した。その機構は
必ずしも明確ではないが、該黒鉛質前駆体粒子表面に埋
設された硬質微粒子が黒鉛化時に消失し、最終的に得ら
れる黒鉛質粒子表面が粗面化されることが、結合剤の密
着性やリチウムイオンの吸蔵、放出性を高めるものと推
測している。Means for Solving the Problems The present inventor has studied the problems of the negative electrode material for a graphite-based lithium ion secondary battery as described above, and found that the graphite precursor particles were formed on the surface of the graphite precursor particles. Mesophase-based graphite particles having an average particle size smaller than that of the particles and being harder than the graphite precursor particles (hereinafter also referred to as hard particles) are embedded and then graphitized. It is possible to solve the problem of battery characteristics of graphite particles, such as eliminating the solvent dependence of battery characteristics of, and being able to obtain the same battery characteristics as in the case of an organic solvent binder even in the case of an aqueous binder. I found it. Although the mechanism is not always clear, the hard particles embedded in the surface of the graphite precursor particles disappear during graphitization, and the surface of the finally obtained graphite particles is roughened. It is presumed that it enhances the adhesiveness and the absorption and desorption of lithium ions.
【0006】本発明は、黒鉛質前駆体粒子の表面に、該
黒鉛質前駆体粒子の平均粒径よりも小さな平均粒径を有
し、かつ該黒鉛質前駆体粒子よりも硬い粒子を埋設した
後、黒鉛化することを特徴とする黒鉛質粒子の製造方法
である。According to the present invention, particles having an average particle size smaller than that of the graphite precursor particles and harder than the graphite precursor particles are embedded on the surface of the graphite precursor particles. After that, it is graphitized, which is a method for producing graphite particles.
【0007】本発明は、硬質粒子が黒鉛化の際に気化、
昇華または分解する金属、金属酸化物、金属窒化物、金
属ホウ化物、金属炭化物の粒子であることが好ましい。
本発明は、硬質粒子が気相シリカまたは酸化チタンであ
ることが特に好ましい。In the present invention, hard particles are vaporized during graphitization,
Particles of a metal, a metal oxide, a metal nitride, a metal boride, or a metal carbide that sublimes or decomposes are preferable.
In the present invention, it is particularly preferable that the hard particles are gas phase silica or titanium oxide.
【0008】本発明は、前記した埋設がメカノケミカル
処理で行なわれることが好ましい。本発明は、メカノケ
ミカル処理が高速衝撃式乾式粉体複合化装置または圧縮
剪断式乾式粉体複合化装置によるのが好ましい。In the present invention, it is preferable that the above-mentioned burying is performed by a mechanochemical treatment. In the present invention, the mechanochemical treatment is preferably performed by a high-speed impact type dry powder compounding device or a compression shearing dry powder compounding device.
【0009】また本発明は、黒鉛質前駆体粒子の表面
に、該黒鉛質前駆体粒子の平均粒径よりも小さな平均粒
径を有し、かつ該黒鉛質前駆体粒子よりも硬い粒子を埋
設した後、黒鉛化する方法により得られる黒鉛質粒子か
らなるリチウムイオン二次電池用負極材料である。Further, according to the present invention, particles having an average particle size smaller than that of the graphite precursor particles and harder than the graphite precursor particles are embedded on the surface of the graphite precursor particles. After that, it is a negative electrode material for lithium ion secondary batteries, which is composed of graphite particles obtained by a method of graphitizing.
【0010】また本発明は、前記した負極材料を用いた
リチウムイオン二次電池用負極である。Further, the present invention is a negative electrode for a lithium ion secondary battery, which uses the above-mentioned negative electrode material.
【0011】また本発明は、前記した負極を用いたリチ
ウムイオン二次電池である。The present invention is also a lithium ion secondary battery using the above-mentioned negative electrode.
【0012】[0012]
【発明の実施の形態】以下、本発明をより具体的に説明
する。本発明の黒鉛質粒子は、黒鉛質前駆体粒子の表面
に硬質粒子を埋設した後、黒鉛化する方法により製造さ
れる。BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in more detail below. The graphite particles of the present invention are produced by a method of embedding hard particles on the surface of graphite precursor particles and then graphitizing.
【0013】黒鉛質前駆体粒子
本発明に使用される黒鉛質前駆体粒子は、2500℃以
上の高温熱処理によって黒鉛構造を形成し得る高結晶性
の炭素質材料(ソフトカーボン)である。該高温熱処理
には、タールまたはピッチを加熱してメソフェーズを生
成する工程、メソフェーズを炭素化させる工程などの熱
処理の全てが包含される。黒鉛質前駆体粒子としては、
石油系または石炭系のタールまたはピッチを加熱して得
られるメソフェーズ焼成炭素(バルクメソフェーズ)、
メソフェーズ小球体、コークス類(ピッチコークス、ニ
ードルコークス、石油コークス、生コークスなど)など
が例示される。Graphite Precursor Particle The graphite precursor particle used in the present invention is a highly crystalline carbonaceous material (soft carbon) capable of forming a graphite structure by high temperature heat treatment at 2500 ° C. or higher. The high temperature heat treatment includes all heat treatments such as heating tar or pitch to generate mesophase, carbonizing the mesophase, and the like. As the graphite precursor particles,
Mesophase calcined carbon obtained by heating petroleum-based or coal-based tar or pitch (bulk mesophase),
Examples include mesophase spheres, cokes (pitch coke, needle coke, petroleum coke, raw coke, etc.).
【0014】黒鉛質前駆体粒子は、本発明の目的を損な
わない範囲であれば、他の炭素材料(非晶質ハードカー
ボンなどを含む)、黒鉛質材料(天然黒鉛を含む)、有
機物、金属化合物との複合物であってもよい。その複合
形態としては、混合、造粒、被覆、積層などのいずれで
あってもよい。また黒鉛質前駆体粒子は、液相、固相、
気相における各種化学的処理、熱処理、酸化処理、13
00℃以下の焼成処理などを予め施したものであっても
よい。好ましいのはメソフェーズ焼成炭素、メソフェー
ズ焼成炭素と黒鉛質材料の複合物、メソフェーズ小球体
であり、特に好ましいのはメソフェーズ小球体である。
本発明に使用される黒鉛質前駆体粒子は、その平均粒子
径は通常1〜100μm、好ましくは5〜40μmであ
り、硬質粒子より平均粒径が大きい。The graphite precursor particles include other carbon materials (including amorphous hard carbon, etc.), graphite materials (including natural graphite), organic substances, metals as long as the object of the present invention is not impaired. It may be a complex with a compound. The composite form may be any of mixing, granulating, coating, laminating and the like. In addition, the graphitic precursor particles include a liquid phase, a solid phase,
Various chemical treatments in the gas phase, heat treatments, oxidation treatments, 13
It may be one which has been previously subjected to a firing treatment at 00 ° C or less. Preferred are mesophase calcined carbon, composites of mesophase calcined carbon and graphitic material, mesophase microspheres, and particularly preferred are mesophase microspheres.
The average particle size of the graphite precursor particles used in the present invention is usually 1 to 100 μm, preferably 5 to 40 μm, and the average particle size is larger than that of the hard particles.
【0015】硬質粒子
本発明においては、前記したように硬質粒子が黒鉛質前
駆体粒子の表面に埋設された後、黒鉛化される。該硬質
粒子は、該黒鉛質前駆体粒子の平均粒径よりも小さい平
均粒径を有し、かつ該黒鉛質前駆体粒子よりも硬いもの
であれば、その形態など特に制限されない。硬質粒子
は、黒鉛質前駆体粒子よりも硬いので、黒鉛質前駆体粒
子の表面に埋設させることが可能である。本発明におけ
る埋設とは、各硬質粒子の下部が黒鉛質前駆体粒子の内
部に入り込み、上部が黒鉛質前駆体粒子の表面に露出し
ている場合だけでなく、少数の硬質粒子が黒鉛質前駆体
粒子に埋没している場合も包含する。硬質粒子が黒鉛化
後の黒鉛質粒子に一部残存していても構わないが、黒鉛
質粒子の表面をより粗面化し、充放電特性を向上させる
観点からは、硬質粒子は黒鉛化時に気化(蒸発)、昇華
または分解して消失するものであるのが好ましい。Hard Particles In the present invention, as described above, the hard particles are embedded in the surface of the graphite precursor particles and then graphitized. The hard particles have an average particle size smaller than the average particle size of the graphite precursor particles and are harder than the graphite precursor particles, and the form thereof is not particularly limited. Since the hard particles are harder than the graphite precursor particles, the hard particles can be embedded in the surface of the graphite precursor particles. The embedding in the present invention, the lower part of each hard particle enters the inside of the graphite precursor particles, not only when the upper part is exposed on the surface of the graphite precursor particles, a few hard particles are graphite precursor It also includes the case of being buried in body particles. The hard particles may remain partially in the graphite particles after graphitization, but from the viewpoint of roughening the surface of the graphite particles and improving the charge / discharge characteristics, the hard particles are vaporized during graphitization. (Evaporation), sublimation, or decomposition and disappearance is preferable.
【0016】硬質粒子は、有機系でも無機系でも構わな
いが、有機系粒子は、黒鉛化後に炭化して残存して、リ
チウムイオン二次電池の負極材料として用いたときに、
放電容量を低下させる場合があるので、無機系粒子が好
ましい。無機系粒子は金属、金属酸化物、金属窒化物、
金属ホウ化物、金属炭化物などの粒子であり、好ましい
のは金属、金属酸化物である。金属種としてはケイ素、
チタン、アルミニウム、鉄、ニッケルなどが例示され
る。具体的には、これら金属の粒子やシリカ、酸化チタ
ン、アルミナ、酸化鉄などの粒子が挙げられるが、好ま
しいのは気相法によって製造された無水シリカ(以後、
気相シリカとも称す)、酸化チタンである。これらは2
種以上組合わせて使用することもできる。The hard particles may be organic or inorganic, but the organic particles remain carbonized after graphitization and are used as a negative electrode material of a lithium ion secondary battery.
Inorganic particles are preferable because they may reduce the discharge capacity. Inorganic particles are metals, metal oxides, metal nitrides,
Particles of metal borides, metal carbides and the like are preferable, and metals and metal oxides are preferable. Silicon as the metal species,
Titanium, aluminum, iron, nickel etc. are illustrated. Specific examples thereof include particles of these metals and silica, particles of titanium oxide, alumina, iron oxide, etc., but preferred is anhydrous silica produced by a gas phase method (hereinafter,
It is also called vapor phase silica), and titanium oxide. These are 2
It is also possible to use a combination of two or more species.
【0017】本発明においては、硬質粒子の平均粒径、
配合量および埋設状態・分布を変化させることによっ
て、黒鉛化後の黒鉛質粒子の表面粗さを調整することが
できる。硬質粒子の平均粒径が1nm以上、1μm以
下、好ましくは10〜200nmで、かつ黒鉛質前駆体
粒子の平均粒径より小さければ、黒鉛質粒子表面の粗面
化度を上げることができる。黒鉛質前駆体粒子に対する
硬質粒子の配合量は、硬質粒子の平均粒径や埋設状態に
応じて適宜設定されるが、通常は0.1〜20体積%、
好ましくは1〜10体積%である。硬質粒子が凝集物で
ある場合には、一次粒子の平均粒径が黒鉛質粒子の平均
粒径よりも小さいものであればよい。In the present invention, the average particle size of the hard particles,
The surface roughness of the graphitized graphite particles can be adjusted by changing the compounding amount and the buried state / distribution. When the average particle diameter of the hard particles is 1 nm or more and 1 μm or less, preferably 10 to 200 nm and smaller than the average particle diameter of the graphite precursor particles, the degree of roughening of the graphite particle surface can be increased. The blending amount of the hard particles with respect to the graphite precursor particles is appropriately set according to the average particle diameter of the hard particles and the embedded state, but is usually 0.1 to 20% by volume,
It is preferably 1 to 10% by volume. When the hard particles are aggregates, the average particle size of the primary particles may be smaller than the average particle size of the graphite particles.
【0018】硬質粒子の埋設
本発明においては、前記したように硬質粒子が黒鉛質前
駆体粒子の表面に埋設された後、黒鉛化される。埋設は
表面改質装置として公知の乾式粉体複合化装置などを用
いて、黒鉛質前駆体粒子に、硬質粒子の共存下で、圧縮
力、剪断力などの機械的外力を同時に懸ける処理(メカ
ノケミカル処理)によるのが好ましい。メカノケミカル
処理の圧縮力や剪断力は、通常の攪拌よりも大きいが、
これらの機械的応力は黒鉛質前駆体粒子の表面に懸けら
れることが好ましく、黒鉛質前駆体粒子の骨格を実質的
に破壊しないことが好ましい。黒鉛質前駆体粒子が破壊
されると、不可逆容量の増大を招く傾向があるので、メ
カノケミカル処理による黒鉛質前駆体粒子の平均粒径の
低下を20%以下に抑えるのが好ましい。Embedding of Hard Particles In the present invention, as described above, the hard particles are embedded on the surface of the graphite precursor particles and then graphitized. For burying, a dry powder compounding device known as a surface reforming device is used, and a process in which mechanical external forces such as compressive force and shearing force are simultaneously applied to graphite precursor particles in the presence of hard particles (mechano Chemical treatment) is preferable. The compressive force and shear force of mechanochemical treatment are larger than those of normal stirring,
These mechanical stresses are preferably applied to the surface of the graphite precursor particles, and preferably do not substantially destroy the skeleton of the graphite precursor particles. Since destruction of the graphite precursor particles tends to increase the irreversible capacity, it is preferable to suppress the decrease in the average particle diameter of the graphite precursor particles due to the mechanochemical treatment to 20% or less.
【0019】前記埋設がメカノケミカル処理により実施
される場合は、被処理物(黒鉛質前駆体粒子と硬質粒
子)に圧縮力と剪断力を同時に懸けることができる装置
であれば、装置の種類、構造は特に限定されない。例え
ば加圧ニーダー、二本ロールなどの混練機、回転ボール
ミル、ハイブリダイゼーションシステム((株)奈良機
械製作所製)などの高速衝撃式乾式粉体複合化装置、メ
カノマイクロス((株)奈良機械製作所製)、メカノフ
ュージョンシステム(ホソカワミクロン(株)製)など
の圧縮剪断式乾式粉体複合化装置などを使用することが
できる。When the burying is carried out by a mechanochemical treatment, as long as it is a device capable of simultaneously applying a compressive force and a shearing force to an object to be treated (graphite precursor particles and hard particles), the type of the device, The structure is not particularly limited. For example, a high-speed impact type dry powder compounding device such as a pressure kneader, a kneader for two rolls, a rotating ball mill, a hybridization system (manufactured by Nara Machinery Co., Ltd.), Mechanomicros (Nara Machinery Co., Ltd.) And a mechanofusion system (manufactured by Hosokawa Micron Co., Ltd.).
【0020】中でも回転速度差を利用して剪断力および
圧縮力を同時に懸ける装置が好ましい。具体的には回転
するドラム(回転ローター)と、該ドラムと回転速度の
異なる内部部材(インナーピース)と、被処理物の循環
機構(例えば循環用ブレード)とを有する装置(例えば
図2(a) 〜(b) に模式的機構を示すホソカワミクロン
(株)製メカノフュージョンシステム)を用い、回転ド
ラムと内部部材との間に供給された被処理物に遠心力を
付与しながら、内部部材により回転ドラムとの速度差に
起因する圧縮力と剪断力とを同時に繰返し付与すること
によりメカノケミカル処理するのが好ましい。また固定
ドラム(ステーター)と、高速回転する回転ローターの
間に被処理物を通すことで固定ドラムと回転ローターと
の速度差に起因する圧縮力と剪断力とを被処理物に付与
する装置(例えば図1に模式的機構を示す(株)奈良機
械製作所製ハイブリダイゼーションシステム)も好まし
い。Above all, a device for simultaneously applying the shearing force and the compressing force by utilizing the difference in rotational speed is preferable. Specifically, a device having a rotating drum (rotating rotor), an internal member (inner piece) whose rotational speed is different from that of the drum, and a circulation mechanism (for example, a circulation blade) of the object to be processed (for example, FIG. ) To (b), using the Hosokawa Micron Co., Ltd. mechanofusion system whose schematic mechanism is shown in Fig. 4), the internal member rotates while applying centrifugal force to the object supplied between the rotating drum and the internal member. It is preferable to perform the mechanochemical treatment by simultaneously and repeatedly applying the compressive force and the shearing force due to the speed difference with the drum. In addition, a device for passing the object to be processed between a fixed drum (stator) and a rotating rotor rotating at a high speed to apply a compressive force and a shearing force to the object to be processed due to a speed difference between the fixed drum and the rotating rotor ( For example, a hybridization system (manufactured by Nara Machinery Co., Ltd.) whose schematic mechanism is shown in FIG. 1) is also preferable.
【0021】メカノケミカル処理の条件は、使用する装
置によっても異なり一概には言えないが、処理による黒
鉛質粒子の平均粒径の低下率を20%以下に抑えるよう
に設定するのが好ましい。例えば回転ドラムと内部部材
を備えた装置を用いる場合には、回転ドラムと内部部材
との周速度差:5〜50m/秒、両者間の距離1〜10
0mm、処理時間3〜90分の条件下で処理するのが好
ましい。また固定ドラムと高速回転ローターを備える装
置の場合には、固定ドラムと回転ローターとの周速度差
10〜100m/秒、処理時間30秒〜10分の条件下
で処理するのが好ましい。The conditions of the mechanochemical treatment differ depending on the apparatus used and cannot be generally stated, but it is preferable to set the reduction rate of the average particle size of the graphite particles due to the treatment to 20% or less. For example, when an apparatus including a rotating drum and an internal member is used, the peripheral speed difference between the rotating drum and the internal member: 5 to 50 m / sec, the distance between them is 1 to 10
The treatment is preferably performed under the conditions of 0 mm and the treatment time of 3 to 90 minutes. Further, in the case of an apparatus equipped with a fixed drum and a high-speed rotating rotor, it is preferable to perform processing under the conditions of a peripheral speed difference between the fixed drum and the rotating rotor of 10 to 100 m / sec and a processing time of 30 seconds to 10 minutes.
【0022】黒鉛質前駆体粒子と硬質粒子とのメカノケ
ミカル処理前、処理中、処理後のいずれかにおいて、本
発明の効果を損なわない範囲において、公知の導電性材
料、イオン伝導性材料、界面活性剤、高分子化合物など
の各種添加剤を添加することができる。Before or during the mechanochemical treatment of the graphite precursor particles and the hard particles, a known conductive material, ion conductive material, or interface is used as long as the effect of the present invention is not impaired. Various additives such as activators and polymer compounds can be added.
【0023】黒鉛化
本発明の黒鉛化は、前記の方法によって硬質粒子が埋設
された黒鉛質前駆体粒子を、公知の黒鉛化炉を用いて、
必要ならば、形状を調整し、非酸化性雰囲気下で、高温
で熱処理(黒鉛化)することにより実施される。熱処理
温度は2500℃以上が好ましく、2800℃以上が特
に好ましいが、装置の耐熱性や黒鉛の昇華を抑える観点
から3300℃が上限である。黒鉛化に要する時間は
0.5〜50時間、好ましくは2〜20時間である。Graphitization In the graphitization of the present invention, the graphite precursor particles in which the hard particles are embedded by the above-mentioned method are used in a known graphitization furnace,
If necessary, it is carried out by adjusting the shape and heat-treating (graphitizing) at a high temperature in a non-oxidizing atmosphere. The heat treatment temperature is preferably 2500 ° C. or higher, particularly preferably 2800 ° C. or higher, but 3300 ° C. is the upper limit from the viewpoint of heat resistance of the apparatus and suppression of sublimation of graphite. The time required for graphitization is 0.5 to 50 hours, preferably 2 to 20 hours.
【0024】黒鉛質粒子
黒鉛化により得られた黒鉛質粒子は、高い放電容量を得
るために、特にX線回折における格子面間隔d002 が
0.34nm以下で、真比重が2.2以上の黒鉛化度を
有するものが好ましい。格子面間隔d002 はX線として
CuKα線を用い、高純度シリコンを標準物質とするX
線回折法[大谷杉郎、炭素繊維、733−742頁(1
986)、近代編集社]によって測定された値である。Graphite particles The graphite particles obtained by graphitization have a lattice spacing d 002 of 0.34 nm or less in X-ray diffraction and a true specific gravity of 2.2 or more in order to obtain a high discharge capacity. Those having a degree of graphitization are preferred. The lattice spacing d 002 uses CuKα rays as X-rays and X with high-purity silicon as a standard substance.
Line Diffraction [Sugio Ohtani, Carbon Fiber, pp. 733-742 (1
986), modern editorial company].
【0025】黒鉛化の際に、埋設している硬質粒子が気
化、昇華または分解により消失して、黒鉛質粒子の表面
が粗面化され、比表面積が増大する。比表面積が大きす
ぎると不可逆容量の増大や電池の安全性の低下を招くた
め、黒鉛質粒子の窒素ガス吸着BET法比表面積は20
m2 /g以下であり、黒鉛質粒子と結着剤との密着性を
発現させる観点から1m2 /g以上であることが好まし
い。特に好ましい比表面積は1.5〜10m2 /gであ
る。黒鉛質粒子の形態は黒鉛化前の黒鉛質前駆体粒子の
形態を維持することが好ましい。すなわち黒鉛質前駆体
粒子と同様に、その形態は球状または球状に近い形状で
あることが好ましい。平均粒径は通常1〜100μm、
好ましくは5〜40μmに設定される。At the time of graphitization, the embedded hard particles disappear due to vaporization, sublimation or decomposition to roughen the surface of the graphitic particles and increase the specific surface area. If the specific surface area is too large, the irreversible capacity increases and the safety of the battery decreases, so the nitrogen gas adsorption BET method specific surface area of the graphite particles is 20
m is 2 / g or less, it is preferable that the viewpoint of exhibiting the adhesion between graphite particles and the binder 1 m 2 / g or more. A particularly preferable specific surface area is 1.5 to 10 m 2 / g. It is preferable that the morphology of the graphite particles maintains the morphology of the graphite precursor particles before graphitization. That is, like the graphite precursor particles, the morphology thereof is preferably spherical or nearly spherical. The average particle size is usually 1 to 100 μm,
It is preferably set to 5 to 40 μm.
【0026】本発明の黒鉛質粒子は、その特徴を活かし
て負極材料以外の用途、例えば燃料電池セパレーター用
の導電材や耐火物用黒鉛などに使用することもできる
が、特にリチウムイオン二次電池の負極用材料として好
適である。したがって本発明はさらに負極用材料を用い
たリチウムイオン二次電池負極、さらにはリチウムイオ
ン二次電池に及ぶ。The graphite particles of the present invention can be used for applications other than the negative electrode material, for example, conductive materials for fuel cell separators, graphite for refractory materials, etc., by utilizing the characteristics thereof, but especially lithium ion secondary batteries. It is suitable as a negative electrode material. Therefore, the present invention further extends to a lithium ion secondary battery negative electrode using a negative electrode material, and further to a lithium ion secondary battery.
【0027】リチウムイオン二次電池用負極材料
前記のように表面が粗面化された本発明の黒鉛質粒子
は、結合剤と混合されて負極合剤ペーストに調製され、
リチウムイオン二次電池用負極材料として使用される
が、負極材料としての放電容量の低下や不可逆容量の増
大を招かずに、結合剤の溶剤が水系(水溶性結合剤およ
び/または水分散性結合剤)であっても、有機溶媒系の
場合と同等の充放電特性を得ることができる。したがっ
て、本発明の黒鉛質粒子はリチウムイオン二次電池用負
極材料として最適である。Negative Electrode Material for Lithium Ion Secondary Battery The graphite particles of the present invention having the surface roughened as described above are mixed with a binder to prepare a negative electrode mixture paste,
It is used as a negative electrode material for lithium-ion secondary batteries, but the binder solvent is water-based (water-soluble binder and / or water-dispersible binder) without lowering the discharge capacity or increasing the irreversible capacity of the negative electrode material. The same charge / discharge characteristics as in the case of the organic solvent type can be obtained even with the agent). Therefore, the graphite particles of the present invention are optimal as a negative electrode material for lithium ion secondary batteries.
【0028】リチウムイオン二次電池
リチウムイオン二次電池は、通常、負極、正極および非
水電解質を主たる電池構成要素とし、正・負極はそれぞ
れリチウムイオンの担持体からなり、充放電過程におけ
る非水溶媒の出入は層間で行われる。そして充電時には
リチウムイオンが負極中にドープされ、放電時には負極
から脱ドープする電池機構によっている。本発明のリチ
ウムイオン二次電池は、負極材料として前記黒鉛質粒子
を用いること以外は特に限定されず、他の電池構成要素
については一般的なリチウムイオン二次電池の要素に準
じる。Lithium-ion secondary battery A lithium-ion secondary battery usually has a negative electrode, a positive electrode and a non-aqueous electrolyte as main battery constituent elements, and the positive and negative electrodes each comprise a lithium ion carrier, and are non-aqueous during the charging and discharging process. Solvent entry and exit occurs between layers. Then, the battery mechanism is such that lithium ions are doped into the negative electrode during charging and dedoped from the negative electrode during discharging. The lithium ion secondary battery of the present invention is not particularly limited except that the graphite particles are used as the negative electrode material, and other battery constituents are the same as those of a general lithium ion secondary battery.
【0029】負極
本発明における前記負極材料(黒鉛質粒子)からの負極
の作製は、黒鉛質粒子の性能を充分に引き出し、かつ粉
末に対する賦型性が高く、化学的、電気化学的に安定な
負極を得ることができる成形方法であればいずれでもよ
く、通常の成形方法によることができる。負極作製のた
めに、前記黒鉛質粒子に結合剤を加えた負極合剤を用い
てもよい。前記黒鉛質粒子を用いることにより、有機溶
媒に溶解または分散する有機溶媒系結合剤はもちろんの
こと、水溶性および/または水分散性の水系結合剤を用
いても優れた充放電特性を発現する負極を得ることがで
きる。結合剤は、通常、負極合剤全量中0.5〜20質
量%程度の量で用いるのが好ましい。Negative Electrode Preparation of a negative electrode from the above-mentioned negative electrode material (graphite particles) in the present invention brings out the performance of the graphite particles sufficiently, has high moldability to powder, and is chemically and electrochemically stable. Any molding method can be used as long as it can obtain the negative electrode, and a usual molding method can be used. For producing the negative electrode, a negative electrode mixture obtained by adding a binder to the graphite particles may be used. By using the graphite particles, excellent charge / discharge characteristics are exhibited not only with an organic solvent-based binder that dissolves or disperses in an organic solvent but also with a water-soluble and / or water-dispersible water-based binder. A negative electrode can be obtained. Usually, the binder is preferably used in an amount of about 0.5 to 20% by mass based on the total amount of the negative electrode mixture.
【0030】負極合剤は、例えば黒鉛質粒子を分級等に
よって適当な粒径に調整し、結合剤と混合して調製され
る。その後、例えば、負極合剤を溶媒に分散させ、撹拌
機、混合機、混練機、ニーダー等を用いて撹拌してペー
スト状にし、ペーストを集電体の片面もしくは両面に塗
布、乾燥すれば、負極合剤層が均一かつ強固に接着した
負極が得られる。ペーストの調製は、例えば黒鉛質粒子
と、ポリテトラフルオロエチレン等のフッ素系樹脂粉末
とを、イソプロピルアルコール等の溶媒中で混合・混練
して実施される。The negative electrode mixture is prepared, for example, by adjusting graphite particles to have an appropriate particle size by classification or the like and mixing them with a binder. After that, for example, the negative electrode mixture is dispersed in a solvent, stirred using a stirrer, a mixer, a kneader, a kneader or the like to form a paste, the paste is applied to one side or both sides of the current collector, and dried, A negative electrode in which the negative electrode mixture layer is uniformly and firmly adhered can be obtained. The paste is prepared, for example, by mixing and kneading graphite particles and a fluorine-based resin powder such as polytetrafluoroethylene in a solvent such as isopropyl alcohol.
【0031】また黒鉛質粒子と、ポリフッ化ビニリデン
等のフッ素系樹脂粉末またはカルボキシメチルセルロー
ス、スチレンブタジエンラバー等を、N−メチルピロリ
ドン、ジメチルホルムアミド、水、アルコール等の溶媒
と攪拌混合してスラリーとした後、スラリーを集電体の
片面もしくは両面に塗布、乾燥しても、負極合剤層が均
一かつ強固に接着した負極を得ることができる。溶媒の
乾燥除去における安全面、環境面への影響を配慮し、水
あるいはアルコール等を溶媒として、カルボキシメチル
セルロース、スチレンブタジエンラバー等を溶解、分散
させてなる水系スラリーを用いることが好ましい。Further, graphite particles, fluororesin powder such as polyvinylidene fluoride, carboxymethyl cellulose, styrene butadiene rubber and the like are stirred and mixed with a solvent such as N-methylpyrrolidone, dimethylformamide, water and alcohol to form a slurry. After that, even if the slurry is applied to one or both surfaces of the current collector and dried, the negative electrode having the negative electrode mixture layer uniformly and firmly adhered can be obtained. In consideration of safety and environmental effects in drying and removing the solvent, it is preferable to use an aqueous slurry obtained by dissolving and dispersing carboxymethyl cellulose, styrene butadiene rubber and the like in water or alcohol as a solvent.
【0032】また黒鉛質粒子と、ポリエチレン、ポリビ
ニルアルコールなどの樹脂粉末とを乾式混合し、混合物
を集電体に、金型内でホットプレス成形して積層体を
得、これにさらにプレス加圧等の圧着を行ない、負極合
剤層と集電体との接着強度をより高めた負極を製造する
ことができる。負極合剤層の塗膜厚は10〜200μm
であるのが好ましい。Further, the graphite particles and resin powders such as polyethylene and polyvinyl alcohol are dry-mixed, and the mixture is hot-press molded into a current collector in a mold to obtain a laminate, which is further pressed and pressed. It is possible to manufacture a negative electrode in which the adhesive strength between the negative electrode mixture layer and the current collector is further enhanced by performing pressure bonding such as. The coating thickness of the negative electrode mixture layer is 10 to 200 μm.
Is preferred.
【0033】結合剤としては、電解質に対して化学的安
定性、電気化学的安定性を有するものが好ましく、例え
ばポリフッ化ビニリデン、ポリテトラフルオロエチレン
などのフッ素系樹脂、ポリエチレン、ポリビニルアルコ
ール、カルボキシメチルセルロース、スチレンブタジエ
ンラバーなどが挙げられる。なかでも、本発明の目的を
達成し、効果を最大限に活かす上で、カルボキシメチル
セルロース(水溶性)、ポリビニルアルコール(水溶
性)、スチレンブタジエンラバー(水分散性)などの水
系結合剤が特に好ましい。これらを併用することもでき
る。負極を形成するに際しては、従来公知の導電剤や結
着剤などの各種添加剤を適宜に使用することができる。As the binder, those having chemical stability and electrochemical stability with respect to the electrolyte are preferable, and for example, fluorine-based resins such as polyvinylidene fluoride and polytetrafluoroethylene, polyethylene, polyvinyl alcohol, carboxymethyl cellulose. , Styrene-butadiene rubber and the like. Among them, an aqueous binder such as carboxymethyl cellulose (water-soluble), polyvinyl alcohol (water-soluble), styrene-butadiene rubber (water-dispersible) is particularly preferable in achieving the object of the present invention and maximizing the effect. . These can also be used together. In forming the negative electrode, conventionally known various additives such as a conductive agent and a binder can be appropriately used.
【0034】負極に用いる集電体の形状は、特に限定さ
れないが、箔状またはメッシュ、エキスパンドメタル等
の網状のものである。集電体の材質は銅、ステンレス、
ニッケル等である。集電体の厚さは、箔状の場合、5〜
20μmであるのが好ましい。The shape of the current collector used for the negative electrode is not particularly limited, but may be foil, mesh, or mesh such as expanded metal. The material of the collector is copper, stainless steel,
Nickel or the like. The thickness of the current collector is 5 to 5 in the case of foil.
It is preferably 20 μm.
【0035】前記黒鉛質粒子からなる負極材料を用い、
水系結合剤と集電体とから作製した負極を含むリチウム
イオン二次電池が、優れた充放電特性を発現するのは、
表面親水化、粗面化などにより表面改質された黒鉛質粒
子が、水系結合剤と強固に密着し、充放電を繰り返して
も黒鉛質粒子同士、さらに黒鉛質粒子と水系結合剤と集
電体とが強固に接触していること、さらに結合剤が均一
に薄膜化して黒鉛質粒子間に介在して、導電性、イオン
伝導性、電解液浸透性などを阻害することがない点に起
因するものと考えられる。Using a negative electrode material composed of the above graphite particles,
The lithium ion secondary battery including the negative electrode prepared from the aqueous binder and the current collector, exhibits excellent charge and discharge characteristics,
Graphite particles that have been surface-modified by surface hydrophilicization and surface roughening adhere firmly to the water-based binder, and even after repeated charge and discharge, the graphite particles will collect each other, and the graphite particles and the water-based binder will collect electricity. Due to the strong contact with the body, and the fact that the binder is not uniformly thinned and intervenes between the graphite particles, and does not impede conductivity, ionic conductivity, electrolyte permeability, etc. It is supposed to do.
【0036】正極
正極は、例えば正極材料と結合剤および導電剤よりなる
正極合剤を集電体の表面に塗布することにより形成され
る。結合剤としては、負極で例示したものが使用可能で
ある。導電剤としては例えば黒鉛質粒子が用いられる。Positive Electrode The positive electrode is formed, for example, by applying a positive electrode mixture composed of a positive electrode material, a binder and a conductive agent onto the surface of the current collector. As the binder, those exemplified for the negative electrode can be used. Graphite particles, for example, are used as the conductive agent.
【0037】集電体の形状は特に限定されないが、箔状
またはメッシュ、エキスパンドメタル等の網状等のもの
が用いられる。集電体の材質は、アルミニウム、ステン
レス、ニッケル等である。その厚さは10〜40μmの
ものが好適である。The shape of the current collector is not particularly limited, but a foil shape, a mesh, a mesh shape such as expanded metal or the like is used. The material of the current collector is aluminum, stainless steel, nickel or the like. The thickness is preferably 10 to 40 μm.
【0038】正極も負極と同様に、正極合剤を溶剤中に
分散させペースト状にし、このペースト状の正極合剤を
集電体に塗布、乾燥して正極合剤層を形成してもよく、
正極合剤層を形成した後、さらにプレス加圧等の圧着を
行ってもよい。これにより正極合剤層が均一且つ強固に
集電体に接着される。Similarly to the negative electrode, the positive electrode mixture may be dispersed in a solvent to form a paste, and the paste-like positive electrode mixture may be applied to a current collector and dried to form a positive electrode mixture layer. ,
After forming the positive electrode mixture layer, pressure bonding such as pressing may be further performed. Thereby, the positive electrode material mixture layer is uniformly and firmly adhered to the current collector.
【0039】正極の材料(正極活物質)には、充分量の
リチウムをドープ/脱ドープし得るものを選択するのが
好ましい。具体的には、リチウム含有遷移金属酸化物、
遷移金属カルコゲン化物、バナジウム酸化物(V
2 O5 、V6 O13、V2 O4 、V3O8 など)およびそ
のLi化合物などのリチウム含有化合物、一般式MX M
o6S8-Y (式中Xは0≦X≦4、Yは0≦Y≦1の範
囲の数値であり、Mは遷移金属などの金属を表す)で表
されるシェブレル相化合物、活性炭、活性炭素繊維など
が挙げられる。As the material of the positive electrode (positive electrode active material), it is preferable to select a material that can be doped / dedoped with a sufficient amount of lithium. Specifically, a lithium-containing transition metal oxide,
Transition metal chalcogenide, vanadium oxide (V
2 O 5, V 6 O 13 , V 2 O 4, etc. V 3 O 8) and lithium-containing compounds, such as the Li compound, the general formula M X M
o 6 S 8-Y (where X is a numerical value in the range of 0 ≦ X ≦ 4, Y is a value in the range of 0 ≦ Y ≦ 1 and M represents a metal such as a transition metal), activated carbon , Activated carbon fiber and the like.
【0040】前記リチウム含有遷移金属酸化物は、リチ
ウムと遷移金属との複合酸化物であり、リチウムと2種
類以上の遷移金属を固溶したものであってもよい。リチ
ウム含有遷移金属酸化物は、具体的には、LiM(1)
1-X M(2)X O2 (式中Xは0≦X≦1の範囲の数値
であり、M(1)、M(2)は少なくとも一種の遷移金
属元素からなる。)あるいはLiM(1)2-Y M(2)
Y O4 (式中Yは0≦Y≦1の範囲の数値であり、M
(1)、M(2)は少なくとも一種の遷移金属元素から
なる。)で示される。Mで示される遷移金属元素として
は、Co、Ni、Mn、Cr、Ti、V、Fe、Zn、
Al、In、Snなどが挙げられ、好ましくはCo、F
e、Mn、Ti、Cr、V、Alが挙げられる。The lithium-containing transition metal oxide is a composite oxide of lithium and a transition metal, and may be a solid solution of lithium and two or more kinds of transition metals. The lithium-containing transition metal oxide is specifically LiM (1)
1-X M (2) X O 2 (where X is a numerical value in the range of 0 ≦ X ≦ 1 and M (1) and M (2) are composed of at least one transition metal element) or LiM ( 1) 2-Y M (2)
Y O 4 (where Y is a numerical value in the range of 0 ≦ Y ≦ 1 and M
(1) and M (2) are composed of at least one transition metal element. ). As the transition metal element represented by M, Co, Ni, Mn, Cr, Ti, V, Fe, Zn,
Al, In, Sn and the like can be mentioned, preferably Co, F
Examples thereof include e, Mn, Ti, Cr, V and Al.
【0041】リチウム含有遷移金属酸化物としては、よ
り具体的に、LiCoO2 、LixNiY M1-Y O2(M
はNiを除く上記遷移金属元素、好ましくはCo、F
e、Mn、Ti、Cr、V、Alから選ばれる少なくと
も一種、0.05≦x≦1.10、0.5≦Y≦1.0
である。)で示されるリチウム複合酸化物、LiNiO
2 、LiMnO2 、LiMn2 O4 などが挙げられる。As the lithium-containing transition metal oxide,
More specifically, LiCoO2, LixNiYM1-YO2(M
Is a transition metal element other than Ni, preferably Co, F
At least one selected from e, Mn, Ti, Cr, V, and Al.
One kind, 0.05 ≦ x ≦ 1.10, 0.5 ≦ Y ≦ 1.0
Is. ) Li composite oxide, LiNiO
2, LiMnO2, LiMn2OFourAnd so on.
【0042】前記のようなリチウム含有遷移金属酸化物
は、例えばLi、遷移金属の酸化物、水酸化物、塩類等
を出発原料とし、これら出発原料を混合し、酸素雰囲気
下600〜1000℃の温度で焼成することにより得る
ことができる。正極活物質は、前記化合物を単独で使用
しても2種類以上併用してもよい。例えば、正極中に炭
酸リチウム等の炭素塩を添加することができる。正極を
形成するに際しては、従来公知の導電剤や結着剤などの
各種添加剤を適宜に使用することができる。The lithium-containing transition metal oxide as described above is prepared by using, for example, Li, a transition metal oxide, a hydroxide or a salt as a starting material, and mixing these starting materials in an oxygen atmosphere at 600 to 1000 ° C. It can be obtained by firing at a temperature. As the positive electrode active material, the above compounds may be used alone or in combination of two or more kinds. For example, a carbon salt such as lithium carbonate can be added to the positive electrode. When forming the positive electrode, various additives such as conventionally known conductive agents and binders can be appropriately used.
【0043】電解質
本発明に用いられる電解質としては通常の非水電解液に
使用されている電解質塩を用いることができ、例えばL
iPF6 、LiBF4 、LiAsF6 、LiClO4 、
LiB(C6 H5 )、LiCl、LiBr、LiCF3
SO3 、LiCH3 SO3 、LiN(CF3 S
O2 )2 、LiC(CF3 SO2 )3 、LiN(CF3
CH2 OSO2 )2 、LiN(CF3 CF2 OSO2 )
2 、LiN(HCF2 CF2 CH2 OSO2 )2 、Li
N((CF3 )2 CHOSO2 )2 、LiB[(C6 H
3 ((CF3 )2 ]4 、LiAlCl4 、LiSiF6
などのリチウム塩などを用いることができる。特にLi
PF6 、LiBF4 が酸化安定性の点から好ましく用い
られる。電解液中の電解質塩濃度は、0.1〜5モル/
リットルが好ましく、0.5〜3.0モル/リットルが
より好ましい。Electrolyte The electrolyte used in the present invention may be an electrolyte salt used in ordinary non-aqueous electrolytes, for example, L
iPF 6, LiBF 4, LiAsF 6 , LiClO 4,
LiB (C 6 H 5), LiCl, LiBr, LiCF 3
SO 3 , LiCH 3 SO 3 , LiN (CF 3 S
O 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiN (CF 3
CH 2 OSO 2) 2, LiN (CF 3 CF 2 OSO 2)
2 , LiN (HCF 2 CF 2 CH 2 OSO 2 ) 2 , Li
N ((CF 3) 2 CHOSO 2) 2, LiB [(C 6 H
3 ((CF 3 ) 2 ] 4 , LiAlCl 4 , LiSiF 6
Lithium salt or the like can be used. Especially Li
PF 6 and LiBF 4 are preferably used from the viewpoint of oxidation stability. The electrolyte salt concentration in the electrolytic solution is 0.1 to 5 mol /
L is preferable, and 0.5 to 3.0 mol / l is more preferable.
【0044】前記非水電解質は、液系の非水電解液とし
てもよいし、固体電解質あるいはゲル電解質等、高分子
電解質としてもよい。前者の場合、非水電解質電池は、
いわゆるリチウムイオン電池として構成され、後者の場
合、非水電解質電池は、高分子固体電解質電池、高分子
ゲル電解質電池等の高分子電解質電池として構成され
る。The non-aqueous electrolyte may be a liquid non-aqueous electrolyte solution or a polymer electrolyte such as a solid electrolyte or a gel electrolyte. In the former case, the non-aqueous electrolyte battery is
It is configured as a so-called lithium ion battery, and in the latter case, the non-aqueous electrolyte battery is configured as a polymer electrolyte battery such as a polymer solid electrolyte battery and a polymer gel electrolyte battery.
【0045】液系の非水電解質液とする場合には、溶媒
として、エチレンカーボネート、プロピレンカーボネー
ト、ジメチルカーボネート、ジエチルカーボネート、
1,1−または1,2 −ジメトキシエタン、1,2 −ジ
エトキシエタン、テトラヒドロフラン、2−メチルテト
ラヒドロフラン、γ−ブチロラクトン、1 ,3−ジオキ
ソラン、4 −メチル−1 ,3 −ジオキソラン、アニソー
ル、ジエチルエーテル、スルホラン、メチルスルホラ
ン、アセトニトリル、クロロニトリル、プロピオニトリ
ル、ホウ酸トリメチル、ケイ酸テトラメチル、ニトロメ
タン、ジメチルホルムアミド、N−メチルピロリドン、
酢酸エチル、トリメチルオルトホルメート、ニトロベン
ゼン、塩化ベンゾイル、臭化ベンゾイル、テトラヒドロ
チオフェン、ジメチルスルホキシド、3−メチル−2−
オキサゾリドン、エチレングリコール、ジメチルサルフ
ァイト等の非プロトン性有機溶媒を用いることができ
る。When a liquid non-aqueous electrolyte solution is used, the solvent is ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate,
1,1- or 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, γ-butyrolactone, 1,3-dioxolane, 4-methyl-1,3-dioxolane, anisole, diethyl Ether, sulfolane, methylsulfolane, acetonitrile, chloronitrile, propionitrile, trimethyl borate, tetramethyl silicate, nitromethane, dimethylformamide, N-methylpyrrolidone,
Ethyl acetate, trimethyl orthoformate, nitrobenzene, benzoyl chloride, benzoyl bromide, tetrahydrothiophene, dimethyl sulfoxide, 3-methyl-2-
An aprotic organic solvent such as oxazolidone, ethylene glycol or dimethylsulfite can be used.
【0046】非水電解質を高分子固体電解質、高分子ゲ
ル電解質等の高分子電解質とする場合には、可塑剤(非
水電解液)でゲル化されたマトリクス高分子を含むが、
このマトリクス高分子としては、ポリエチレンオキサイ
ドやその架橋体等のエーテル系高分子、ポリメタクリレ
ート系、ポリアクリレート系、ポリビニリデンフルオラ
イドやビニリデンフルオライド−ヘキサフルオロプロピ
レン共重合体等のフッ素系高分子等を単独、もしくは混
合して用いることができる。これらの中で、酸化還元安
定性の観点等から、ポリビニリデンフルオライドやビニ
リデンフルオライド−ヘキサフルオロプロピレン共重合
体等のフッ素系高分子を用いることが好ましい。When the non-aqueous electrolyte is a polymer electrolyte such as a polymer solid electrolyte or a polymer gel electrolyte, it contains a matrix polymer gelled with a plasticizer (non-aqueous electrolyte solution),
Examples of the matrix polymer include ether polymers such as polyethylene oxide and cross-linked products thereof, polymethacrylate polymers, polyacrylate polymers, fluorine polymers such as polyvinylidene fluoride and vinylidene fluoride-hexafluoropropylene copolymer. Can be used alone or in combination. Among these, from the viewpoint of redox stability and the like, it is preferable to use a fluoropolymer such as polyvinylidene fluoride or vinylidene fluoride-hexafluoropropylene copolymer.
【0047】これら高分子固体電解質、高分子ゲル電解
質に含有される可塑剤を構成する電解質塩や非水溶媒と
しては、前述のものがいずれも使用可能である。ゲル電
解質の場合、可塑剤である非水電解液中の電解質塩濃度
は、0.1〜5モル/リットルが好ましく、0.5〜
2.0モル/リットルがより好ましい。このような固体
電解質の作製方法としては特に制限はないが、例えば、
マトリックスを形成する高分子化合物、リチウム塩およ
び溶媒を混合し、加熱して溶融する方法、適当な混合用
の有機溶剤に高分子化合物、リチウム塩および溶媒を溶
解させた後、混合用の有機溶剤を蒸発させる方法、並び
にモノマー、リチウム塩および溶媒を混合し、それに紫
外線、電子線または分子線などを照射してポリマーを形
成させる方法等を挙げることができる。また、前記固体
電解質中の溶媒の添加割合は、10〜90質量%が好ま
しく、さらに好ましくは30〜80質量%である。上記
10〜90質量%であると、導電率が高く、かつ機械的
強度が高く、フィルム化しやすい。As the electrolyte salt and the non-aqueous solvent constituting the plasticizer contained in these polymer solid electrolytes and polymer gel electrolytes, any of the above can be used. In the case of a gel electrolyte, the concentration of the electrolyte salt in the non-aqueous electrolytic solution which is a plasticizer is preferably 0.1 to 5 mol / liter, and 0.5 to
2.0 mol / liter is more preferable. The method for producing such a solid electrolyte is not particularly limited, but, for example,
A method of mixing a polymer compound forming a matrix, a lithium salt and a solvent, and heating and melting the polymer compound, a lithium salt and a solvent in an appropriate organic solvent for mixing, and then mixing an organic solvent And a method of mixing a monomer, a lithium salt and a solvent, and irradiating the mixture with an ultraviolet ray, an electron beam or a molecular beam to form a polymer. The addition ratio of the solvent in the solid electrolyte is preferably 10 to 90% by mass, more preferably 30 to 80% by mass. When the content is 10 to 90% by mass, the conductivity is high, the mechanical strength is high, and a film is easily formed.
【0048】本発明のリチウムイオン二次電池において
は、セパレーターを使用することもできる。セパレータ
ーとしては、特に限定されるものではないが、例えば織
布、不織布、合成樹脂製微多孔膜等が挙げられる。特に
合成樹脂製微多孔膜が好適に用いられるが、その中でも
ポリオレフィン系微多孔膜が、厚さ、膜強度、膜抵抗の
面で好適である。具体的には、ポリエチレンおよびポリ
プロピレン製微多孔膜、またはこれらを複合した微多孔
膜等である。A separator may be used in the lithium ion secondary battery of the present invention. The separator is not particularly limited, and examples thereof include woven cloth, non-woven cloth, and synthetic resin microporous film. In particular, a synthetic resin microporous film is preferably used, and among them, a polyolefin microporous film is preferable in terms of thickness, film strength and film resistance. Specifically, it is a microporous membrane made of polyethylene and polypropylene, or a microporous membrane obtained by combining these.
【0049】本発明のリチウムイオン二次電池において
は、初期充放電効率が高いことから、ゲル電解質を用い
ることも可能である。ゲル電解質二次電池は、黒鉛質粒
子を含有する負極と、正極およびゲル電解質を、例えば
負極、ゲル電解質、正極の順で積層し、電池外装材内に
収容することで構成される。なお、これに加えてさらに
負極と正極の外側にゲル電解質を配するようにしても良
い。このような黒鉛質粒子を負極に用いるゲル電解質二
次電池では、ゲル電解質にプロピレンカーボネートが含
有され、また黒鉛質粒子粉末としてインピーダンスを十
分に低くできる程度に小粒径のものを用いた場合でも、
不可逆容量が小さく抑えられる。したがって、大きな放
電容量が得られるとともに高い初期充放電効率が得られ
る。In the lithium ion secondary battery of the present invention, since the initial charge / discharge efficiency is high, it is possible to use a gel electrolyte. The gel electrolyte secondary battery is configured by stacking a negative electrode containing graphite particles, a positive electrode, and a gel electrolyte in the order of, for example, a negative electrode, a gel electrolyte, and a positive electrode, and accommodating them in a battery exterior material. In addition to this, a gel electrolyte may be further arranged outside the negative electrode and the positive electrode. In the gel electrolyte secondary battery using such graphite particles in the negative electrode, even when propylene carbonate is contained in the gel electrolyte and the graphite particles have a small particle size such that the impedance can be sufficiently lowered. ,
Irreversible capacity can be kept small. Therefore, a large discharge capacity can be obtained and a high initial charge / discharge efficiency can be obtained.
【0050】さらに、本発明に係るリチウムイオン二次
電池の構造は任意であり、その形状、形態について特に
限定されるものではなく、円筒型、角型、コイン型、ボ
タン型等の中から任意に選択することができる。より安
全性の高い密閉型非水電解液電池を得るためには、過充
電等の異常時に電池内圧上昇を感知して電流を遮断させ
る手段を備えたものであることが望ましい。高分子固体
電解質電池や高分子ゲル電解質電池の場合には、ラミネ
ートフィルムに封入した構造とすることもできる。Further, the structure of the lithium-ion secondary battery according to the present invention is arbitrary, and its shape and form are not particularly limited, and any of cylindrical, rectangular, coin-shaped, button-shaped, etc. can be selected. Can be selected. In order to obtain a more safe sealed non-aqueous electrolyte battery, it is desirable to provide a means for detecting an increase in the battery internal pressure and shutting off the current when an abnormality such as overcharge occurs. In the case of a polymer solid electrolyte battery or a polymer gel electrolyte battery, it may have a structure of being enclosed in a laminate film.
【0051】[0051]
【実施例】次に本発明を実施例により具体的に説明する
が、本発明はこれら実施例に限定されるものではない。
また以下の実施例および比較例では、黒鉛質粒子を、図
3に示すような構成の評価用のボタン型二次電池を作製
して評価したが、実電池は、本発明の概念に基づき、公
知の方法に準じて作製することができる。なお以下の実
施例および比較例において、粒子の物性は以下により測
定した。EXAMPLES The present invention will now be specifically described with reference to examples, but the present invention is not limited to these examples.
In addition, in the following Examples and Comparative Examples, the graphite particles were evaluated by making button type secondary batteries for evaluation having a configuration as shown in FIG. 3, but the actual batteries are based on the concept of the present invention. It can be produced according to a known method. In the following examples and comparative examples, the physical properties of particles were measured as follows.
【0052】黒鉛質前駆体粒子、硬質粒子および黒鉛質
粒子の平均粒径はレーザー回折式粒度分布計により測定
した。黒鉛質粒子の格子面間隔d002 はX線回折により
求めた。黒鉛質粒子の比表面積は窒素ガス吸着によるB
ET比表面積である。黒鉛質前駆体粒子および硬質粒子
の硬さは、黒鉛質前駆体粒子または黒鉛質粒子を円筒状
容器(内径20mm)に5g充填し、200回タンピン
グした後、円筒状容器の内径を有する鋼鉄製丸棒を試料
充填面上部から押込み、定速で圧縮試験を行い、検出荷
重の変曲点(粒子の破壊に基づき、検出荷重が低下した
点)における荷重を相対値で表した。すなわち後述する
実施例1で用いた黒鉛質前駆体粒子の変曲点荷重を1と
し、各黒鉛質前駆体粒子および硬質粒子の変曲点荷重の
相対値を示した。The average particle size of the graphite precursor particles, hard particles and graphite particles was measured by a laser diffraction type particle size distribution meter. The lattice spacing d 002 of the graphite particles was determined by X-ray diffraction. The specific surface area of the graphite particles is B due to nitrogen gas adsorption.
ET specific surface area. The hardness of the graphite precursor particles and the hard particles is determined by filling 5 g of the graphite precursor particles or the graphite particles in a cylindrical container (inner diameter 20 mm), tamping 200 times, and then making the steel having the inner diameter of the cylindrical container. A round bar was pushed in from the top of the sample filling surface and a compression test was performed at a constant speed, and the load at the inflection point of the detected load (the point at which the detected load decreased due to the destruction of particles) was expressed as a relative value. That is, the inflection point load of the graphite precursor particles used in Example 1 described later was set to 1, and the relative values of the inflection point loads of the graphite precursor particles and the hard particles were shown.
【0053】〔実施例1〕
(1)負極材料の調製
コールタールピッチを熱処理してなるメソフェーズ小球
体(黒鉛質前駆体粒子、川崎製鉄(株)製、平均粒径:
25μm、硬さの相対値:1.0)に、8体積%に相当
する気相シリカ(「AEROSIL50 」、日本アエロジル
(株)製、平均粒径:30nm、硬さの相対値:4.2)
を加え、得られた混合物を図1に示すような概略構造の
乾式粉体複合化装置(「ハイブリダイゼーションシステ
ム」、(株)奈良機械製作所製)を用いて、回転ロータ
ーの周速40m/秒、処理時間6分間で、黒鉛質粒子を
分散しながら、主として衝撃力、分子間相互作用を含め
た圧縮力、摩擦力、剪断力等の機械的作用を繰返し付与
し、メカノケミカル処理して、メソフェーズ小球体表面
に気相シリカが埋設した黒鉛質前駆体粒子(平均粒径:
24μm)を製造した。Example 1 (1) Preparation of Negative Electrode Material Mesophase spheres obtained by heat treating coal tar pitch (graphite precursor particles, manufactured by Kawasaki Steel Co., Ltd., average particle size:
25 μm, relative hardness value: 1.0), corresponding to 8% by volume of vapor phase silica (“AEROSIL50”, manufactured by Nippon Aerosil Co., Ltd., average particle diameter: 30 nm, relative hardness value: 4.2) )
The resulting mixture was mixed with a dry powder compounding device (“Hybridization System”, manufactured by Nara Machinery Co., Ltd.) having a schematic structure as shown in FIG. 1, and the peripheral speed of the rotating rotor was 40 m / sec. During the treatment time of 6 minutes, while repeatedly dispersing the graphite particles, mechanical force such as impact force, compressive force including intermolecular interaction, frictional force, shearing force and the like is repeatedly applied, and mechanochemical treatment is performed. Graphite precursor particles in which vapor-phase silica is embedded on the surface of mesophase spherules (average particle size:
24 μm).
【0054】これを3000℃で6時間懸けて黒鉛化
し、黒鉛質粒子を得た。黒鉛質粒子は初期の形状(球
状)を呈しており、表面に細孔が存在することをSEM
観察(倍率5万倍)で確認した。元素分析ではSi元素
が不検出であり、シリカが残存しないことが確認され
た。黒鉛質粒子の平均粒径は22μm、格子面間隔d
002 が0.3362nm、真比重が2.241、比表面
積が2.5m2 /gであった。This was suspended at 3000 ° C. for 6 hours for graphitization to obtain graphite particles. Graphite particles have the initial shape (spherical shape), and the presence of pores on the surface is confirmed by SEM.
It was confirmed by observation (magnification: 50,000 times). Elemental analysis confirmed that Si element was not detected and that silica did not remain. The average particle size of the graphite particles is 22 μm, the lattice spacing d
002 was 0.3362 nm, true specific gravity was 2.241, and specific surface area was 2.5 m 2 / g.
【0055】(2)負極合剤ペーストの調製
得られた黒鉛質粒子を負極材料として、水系および有機
溶媒系の負極合剤ペーストをそれぞれ調製した。
<水系負極合剤ペーストの調製>負極材料97質量%
と、結合剤としてのカルボキシメチルセルロース1質量
%、スチレンブタジエンラバー2質量%を水に入れ、ホ
モミキサーを用いて500rpm で5分間攪拌混合し、水
系負極合剤ペーストを調製した。
<有機溶媒系負極合剤ペーストの調製>負極材料90質
量%と、結合剤としてのポリフッ化ビニリデン10質量
%とを、N−メチルピロリドン溶媒に入れ、ホモミキサ
ーを用いて500rpm で5分間攪拌混合し、有機溶媒系
負極合剤ペーストを調製した。(2) Preparation of Negative Electrode Mixture Paste Aqueous and organic solvent type negative electrode mixture pastes were prepared using the obtained graphite particles as a negative electrode material. <Preparation of water-based negative electrode mixture paste> Negative electrode material 97% by mass
Then, 1% by mass of carboxymethyl cellulose as a binder and 2% by mass of styrene-butadiene rubber were put in water and mixed by stirring for 5 minutes at 500 rpm using a homomixer to prepare an aqueous negative electrode mixture paste. <Preparation of Organic Solvent-Based Negative Electrode Mixture Paste> 90% by mass of the negative electrode material and 10% by mass of polyvinylidene fluoride as a binder are put in an N-methylpyrrolidone solvent and mixed with stirring by a homomixer at 500 rpm for 5 minutes. Then, an organic solvent-based negative electrode mixture paste was prepared.
【0056】(3)作用電極(負極)の作製
前記負極合剤ペーストを、銅箔(集電体7b)上に均一
な厚さで塗布し、さらに真空中で90℃で溶媒を揮発さ
せて乾燥した。次に、この銅箔上に塗布された負極合剤
をローラープレスによって加圧し、さらに直径15.5
mmの円形状に打抜くことで、集電体に密着した負極合
剤層からなる作用電極(負極)2を作製した。(3) Preparation of Working Electrode (Negative Electrode) The above negative electrode mixture paste was applied on a copper foil (current collector 7b) to a uniform thickness, and the solvent was further evaporated at 90 ° C. in vacuum. Dried. Next, the negative electrode mixture applied on this copper foil was pressed by a roller press to have a diameter of 15.5.
By punching into a circular mm shape, a working electrode (negative electrode) 2 composed of a negative electrode mixture layer adhered to the current collector was produced.
【0057】(4)対極(正極)の作製
対極(正極)4は、リチウム金属箔を、ニッケルネット
に押付け、直径15.5mmの円形状に打抜いて、ニッ
ケルネットからなる集電体7aと、該集電体に密着した
リチウム金属箔からなる対極4を作製した。(4) Preparation of Counter Electrode (Positive Electrode) As the counter electrode (positive electrode) 4, a lithium metal foil was pressed against a nickel net and punched into a circular shape having a diameter of 15.5 mm to form a current collector 7a made of the nickel net. A counter electrode 4 made of a lithium metal foil adhered to the current collector was prepared.
【0058】(5)電解質
エチレンカーボネート33モル%−メチルエチルカーボ
ネート67モル%の混合溶媒に、LiPF6 を1モル/
dm3 となる濃度で溶解させ、非水電解液を調製した。
得られた非水電解液をポリプロピレン多孔質体に含浸さ
せ、電解質液が含浸されたセパレータ5を作製した。(5) Electrolyte 33 mol% ethylene carbonate-67 mol% methyl ethyl carbonate mixed solvent of LiPF 6 at 1 mol / mol.
A non-aqueous electrolytic solution was prepared by dissolving it at a concentration of dm 3 .
A polypropylene porous body was impregnated with the obtained non-aqueous electrolytic solution to prepare a separator 5 impregnated with the electrolytic solution.
【0059】(6)評価電池の作製
評価電池として図3に示すボタン型二次電池を作製し
た。外装カップ1と外装缶3とは、その周縁部において
絶縁ガスケット6を介してかしめられた密閉構造を有
し、その内部に、外装缶3の内面から順に、ニッケルネ
ットからなる集電体7a、リチウム箔よりなる円盤状の
対極4、電解質溶液が含浸されたセパレータ5、負極合
剤からなる円盤状の作用電極2および銅箔からなる集電
体7bが積層された電池系である。(6) Preparation of Evaluation Battery A button type secondary battery shown in FIG. 3 was prepared as an evaluation battery. The outer cup 1 and the outer can 3 have a hermetically sealed structure in which they are caulked at their peripheral portions via an insulating gasket 6, and inside thereof, a current collector 7a made of a nickel net, in order from the inner surface of the outer can 3, This is a battery system in which a disk-shaped counter electrode 4 made of a lithium foil, a separator 5 impregnated with an electrolyte solution, a disk-shaped working electrode 2 made of a negative electrode mixture, and a current collector 7b made of a copper foil are laminated.
【0060】評価電池は、電解質溶液を含浸させたセパ
レータ5を、集電体7bに密着した作用電極2と、集電
体7aに密着した対極4との間に挟んで積層した後、作
用電極2を外装カップ1内に、対極4を外装缶3内に収
容して、外装カップ1と外装缶3とを合わせ、外装カッ
プ1と外装缶3との周縁部を絶縁ガスケット6を介して
かしめ密閉して作製した。この評価電池は、実電池にお
いて負極用活物質として使用可能な黒鉛質粒子を含有す
る作用電極2と、リチウム金属箔からなる対極4とから
構成される電池である。前記のように作製された評価電
池について、25℃の温度下で下記のような充放電試験
を行った。In the evaluation battery, a separator 5 impregnated with an electrolyte solution was sandwiched between a working electrode 2 in close contact with a current collector 7b and a counter electrode 4 in intimate contact with a current collector 7a, and then laminated. 2 is housed in the outer cup 1, the counter electrode 4 is housed in the outer can 3, the outer cup 1 and the outer can 3 are combined, and the peripheral portions of the outer cup 1 and the outer can 3 are caulked with the insulating gasket 6 interposed therebetween. It was sealed and prepared. This evaluation battery is a battery including a working electrode 2 containing graphite particles that can be used as a negative electrode active material in an actual battery, and a counter electrode 4 made of a lithium metal foil. With respect to the evaluation battery manufactured as described above, the following charge / discharge test was performed at a temperature of 25 ° C.
【0061】(7)充放電試験
<初期充放電効率>0.9mAの電流値で回路電圧が0
mVに達するまで定電流充電を行い、回路電圧が0mV
に達した時点で定電圧充電に切替え、さらに電流値が2
0μAになるまで充電を続けた後、120分間休止し
た。次に0.9mAの電流値で、回路電圧が1.5Vに
達するまで定電流放電を行った。このとき第1サイクル
における通電量から充電容量と放電容量を求め、次式か
ら初期充放電効率を計算した。
初期充放電効率(%)=(放電容量/充電容量)×10
0
なおこの試験では、リチウムイオンを黒鉛質粒子中にド
ープする過程を充電、黒鉛質粒子から脱ドープする過程
を放電とした。(7) Charge / Discharge Test <Initial Charge / Discharge Efficiency> At a current value of 0.9 mA, the circuit voltage was 0.
Constant current charging until reaching mV, circuit voltage is 0 mV
When it reaches the threshold, it switches to constant voltage charging and the current value is 2
After continuing charging until it reached 0 μA, it was paused for 120 minutes. Next, constant current discharge was performed at a current value of 0.9 mA until the circuit voltage reached 1.5V. At this time, the charge capacity and the discharge capacity were obtained from the energization amount in the first cycle, and the initial charge / discharge efficiency was calculated from the following equation. Initial charge / discharge efficiency (%) = (discharge capacity / charge capacity) × 10
0 In this test, the process of doping lithium ions into the graphite particles was charged and the process of dedoping from the graphite particles was discharged.
【0062】<急速充電効率>前記に引き続き、第2サ
イクルにて高速充電を行なった。電流値を5倍の4.5
mAとして、回路電圧が0mVに達するまで定電流充電
を行い、充電容量を求め、次の数式1から急速充電効率
を計算した。<Rapid Charging Efficiency> Following the above, high speed charging was performed in the second cycle. 4.5 times the current value
As mA, constant current charging was performed until the circuit voltage reached 0 mV, the charging capacity was obtained, and the rapid charging efficiency was calculated from the following formula 1.
【0063】[0063]
【数1】 [Equation 1]
【0064】黒鉛質粒子の1g当りの放電容量(mAh/g
)、初期充放電効率(%)および急速充電効率(%)
を表2に示す。Discharge capacity per 1 g of graphite particles (mAh / g
), Initial charge / discharge efficiency (%) and quick charge efficiency (%)
Is shown in Table 2.
【0065】〔実施例2〕実施例1のメソフェーズ小球
体(平均粒径:25μm)の代わりにバルクメソフェー
ズ(平均粒径:25μm、硬さの相対値:1.0、比表
面積:0.6m2/g)を用いる以外は、実施例1と同
様に黒鉛質粒子を製造し、実施例1と同様に負極、リチ
ウムイオン二次電池を作製し、実施例1と同様の評価試
験を行なった。結果を表2に示す。Example 2 Instead of the mesophase spheres (average particle size: 25 μm) of Example 1, bulk mesophase (average particle size: 25 μm, relative hardness value: 1.0, specific surface area: 0.6 m) Graphite particles were produced in the same manner as in Example 1 except that 2 / g) was used, a negative electrode and a lithium ion secondary battery were produced in the same manner as in Example 1, and the same evaluation test as in Example 1 was conducted. . The results are shown in Table 2.
【0066】[実施例3]石油系ピッチを熱処理してな
る生コークス(黒鉛質前駆体粒子、興亜石油(株)製、
形態:塊状、平均粒径:25μm、硬さの相対値:1.
1)に、5体積%に相当する気相法酸化チタン(「AERO
SILP-25 」、日本アエロジル(株)製、平均粒径:21
nm、硬さの相対値:4.6)を加え、得られた混合物
を図2(a)〜(b) に示すような概略構造の乾式粉体複合
化装置(メカノフュージョンシステム、ホソカワミクロ
ン(株)製)を用いて、回転ドラムの周速20m/秒、
処理時間60分間、回転ドラムと内部部材との距離5m
mの条件で、圧縮力、剪断力を繰返し付与し、メカノケ
ミカル処理して、生コークス表面に気相酸化チタンが埋
設した黒鉛質前駆体粒子(平均粒径:24μm)を製造
した。[Example 3] Raw coke obtained by heat-treating petroleum pitch (graphite precursor particles, manufactured by Koa Oil Co., Ltd.,
Form: block, average particle size: 25 μm, relative hardness value: 1.
In 1), vapor phase titanium oxide equivalent to 5% by volume (“AERO
SILP-25 ", manufactured by Nippon Aerosil Co., Ltd., average particle size: 21
nm, relative value of hardness: 4.6), and the resulting mixture was used as a dry powder compounding device (mechanofusion system, Hosokawa Micron Co., Ltd.) with a schematic structure as shown in FIGS. 2 (a) to (b). )), The peripheral speed of the rotating drum is 20 m / sec,
Processing time 60 minutes, distance between rotating drum and internal member 5m
A compressive force and a shearing force were repeatedly applied under the condition of m, and mechanochemical treatment was carried out to produce graphite precursor particles (average particle diameter: 24 μm) in which vapor phase titanium oxide was embedded on the surface of raw coke.
【0067】これを3000℃で6時間懸けて黒鉛化
し、黒鉛質粒子を得た。黒鉛質粒子は初期の形状(球
状)を呈しており、表面に細孔が存在することをSEM
観察(倍率5万倍)で確認した。元素分析ではTi元素
が不検出であり、酸化チタンが残存していないことが確
認された。黒鉛質粒子の平均粒径は22μm、格子面間
隔d002 が0.3364nm、真比重が2.235、比
表面積が2.0m2 /gであった。この黒鉛質粒子を負
極材料として、実施例1と同様に負極、リチウムイオン
二次電池を作製し、実施例1と同様の評価試験を行なっ
た。結果の電池特性を表2に示す。This was suspended at 3000 ° C. for 6 hours for graphitization to obtain graphite particles. Graphite particles have the initial shape (spherical shape), and the presence of pores on the surface is confirmed by SEM.
It was confirmed by observation (magnification: 50,000 times). Elemental analysis confirmed that Ti element was not detected, and that titanium oxide did not remain. The average particle diameter of the graphite particles was 22 μm, the lattice spacing d 002 was 0.3364 nm, the true specific gravity was 2.235, and the specific surface area was 2.0 m 2 / g. Using the graphite particles as a negative electrode material, a negative electrode and a lithium ion secondary battery were prepared in the same manner as in Example 1, and the same evaluation test as in Example 1 was performed. The resulting battery characteristics are shown in Table 2.
【0068】表2に示されるように、作用電極(実電池
の負極に相当)に本発明の黒鉛質粒子を含む負極材料を
用いたリチウムイオン二次電池(実施例1〜3)は、有
機溶媒系負極合剤ペーストを用いて作製された負極だけ
でなく、水系負極合剤ペーストを用いて作製された負極
であっても、高いレベルの放電容量を有し、かつ高い初
期充放電効率(すなわち小さな不可逆容量)とともに高
い急速充電効率を有することが確認された。As shown in Table 2, the lithium ion secondary batteries (Examples 1 to 3) using the negative electrode material containing the graphite particles of the present invention as the working electrode (corresponding to the negative electrode of the actual battery) are organic. Not only the negative electrode prepared using the solvent-based negative electrode mixture paste but also the negative electrode prepared using the aqueous negative electrode mixture paste has a high level of discharge capacity and high initial charge / discharge efficiency ( That is, it was confirmed that it has a high rapid charging efficiency together with a small irreversible capacity).
【0069】〔比較例1〕実施例1において、気相シリ
カを添加しないことを除いて、実施例1と同様にメソフ
ェーズ小球体のメカノケミカル処理を行ない、気相シリ
カが埋設していないメソフェーズ小球体(平均粒径:2
3μm)を得た。これを用いて、実施例1と同様にして
負極合剤を調製し、実施例1と同様に負極およびリチウ
ムイオン二次電池を作製し、実施例1と同様に評価試験
を行なった。電池特性の結果を表2に示す。Comparative Example 1 Mesophase microspheres were mechanochemically treated in the same manner as in Example 1 except that the vapor phase silica was not added. Sphere (Average particle size: 2
3 μm) was obtained. Using this, a negative electrode mixture was prepared in the same manner as in Example 1, a negative electrode and a lithium ion secondary battery were prepared in the same manner as in Example 1, and an evaluation test was conducted in the same manner as in Example 1. The results of the battery characteristics are shown in Table 2.
【0070】〔比較例2〕実施例1において、メカノケ
ミカル処理に代えて、剪断力の小さいヘンシェルミキサ
ー(三井鉱山(株)製)を用い、攪拌回転数700rpm
で30分間混合して、メソフェーズ小球体表面にシリカ
が付着した黒鉛質前駆体粒子(平均粒径:23μm)を
製造した。これを用いて、実施例1と同様にして負極合
剤を調製し、実施例1と同様に負極およびリチウムイオ
ン二次電池を作製し、実施例1と同様に評価試験を行な
った。電池特性の結果を表2に示す。[Comparative Example 2] In Example 1, a Henschel mixer (manufactured by Mitsui Mining Co., Ltd.) having a small shearing force was used in place of the mechanochemical treatment, and the stirring speed was 700 rpm.
Were mixed for 30 minutes to prepare graphitic precursor particles (average particle size: 23 μm) in which silica was adhered to the surface of the mesophase microspheres. Using this, a negative electrode mixture was prepared in the same manner as in Example 1, a negative electrode and a lithium ion secondary battery were prepared in the same manner as in Example 1, and an evaluation test was conducted in the same manner as in Example 1. The results of the battery characteristics are shown in Table 2.
【0071】表2に示されるように、黒鉛質前駆体粒子
に硬質粒子が埋設されていない場合には、これを黒鉛化
して得られる黒鉛質粒子の表面に細孔が形成されず、比
表面積が小さい。したがって、これを負極材料に用いた
リチウムイオン二次電池において、有機溶媒系負極合剤
ペーストから作製したものは、実施例1と同等に高い放
電容量、初期充放電効率、急速充電効率を示すが、水系
負極合剤ペーストから作製したものは、急速充電効率が
低いことがわかる。As shown in Table 2, when the hard particles are not embedded in the graphite precursor particles, no pores are formed on the surface of the graphite particles obtained by graphitizing the particles, and the specific surface area is reduced. Is small. Therefore, in the lithium ion secondary battery using this as a negative electrode material, the one prepared from the organic solvent-based negative electrode mixture paste exhibits high discharge capacity, initial charge / discharge efficiency, and rapid charge efficiency as in Example 1. It can be seen that the one prepared from the water-based negative electrode mixture paste has a low rapid charging efficiency.
【0072】[0072]
【表1】 [Table 1]
【0073】[0073]
【表2】 [Table 2]
【0074】[0074]
【発明の効果】本発明の黒鉛質粒子は、粒子径を維持し
つつ、表面が粗面化され、比表面積が大きい。そのた
め、リチウムイオン二次電池の負極の結合剤として水
系、有機溶剤系結合剤のいずれを使用した場合において
も、高い急速充電効率を有し、放電容量、初期充放電効
率についても高い値を維持することができる。そのた
め、本発明のリチウムイオン二次電池は、近年の電池の
高エネルギー密度化に対する要望を満たし、搭載する機
器の小型化および高性能化に有効である。The graphitic particles of the present invention have a roughened surface and a large specific surface area while maintaining the particle size. Therefore, it has a high rapid charge efficiency and maintains a high value for discharge capacity and initial charge / discharge efficiency regardless of whether an aqueous binder or an organic solvent binder is used as a binder for the negative electrode of a lithium ion secondary battery. can do. Therefore, the lithium ion secondary battery of the present invention satisfies the recent demand for higher energy density of the battery, and is effective for downsizing and high performance of the mounted device.
【図面の簡単な説明】[Brief description of drawings]
【図1】 実施例で用いた乾式粉体複合化装置の構造の
概略説明図である。FIG. 1 is a schematic explanatory diagram of a structure of a dry powder compounding device used in an example.
【図2】 (a)〜(b) 実施例で用いた他の乾式粉
体複合化装置装置の構造の概略説明図である。FIG. 2 (a)-(b) is a schematic explanatory view of the structure of another dry powder compounding apparatus used in the examples.
【図3】 黒鉛質粒子の電池特性を評価するための評価
電池を示す断面図である。FIG. 3 is a cross-sectional view showing an evaluation battery for evaluating battery characteristics of graphite particles.
1 外装カップ 2 作用電極 3 外装缶 4 対極 5 電解質溶液含浸セパレータ 6 絶縁ガスケット 7a,7b 集電体 1 exterior cup 2 Working electrode 3 exterior cans 4 opposite poles 5 Electrolyte solution impregnated separator 6 Insulation gasket 7a, 7b Current collector
───────────────────────────────────────────────────── フロントページの続き (72)発明者 羽多野 仁美 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内 (72)発明者 油谷 敏 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内 Fターム(参考) 4G046 EA06 EB06 EB13 EC02 EC06 5H029 AJ02 AJ05 AJ14 AK02 AK03 AK05 AL07 AM03 AM04 AM05 AM07 BJ03 BJ12 CJ02 CJ25 CJ28 DJ14 DJ16 DJ17 HJ05 5H050 AA02 AA07 AA19 BA17 CA02 CA07 CA11 CB08 FA02 FA15 FA17 FA19 GA00 GA02 GA25 GA27 HA05 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Hitomi Hatano 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Made in Kawasaki Technical Research Institute of Iron Co., Ltd. (72) Inventor Satoshi Yutani 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Made in Kawasaki Chiba Steel Works, Ltd. F-term (reference) 4G046 EA06 EB06 EB13 EC02 EC06 5H029 AJ02 AJ05 AJ14 AK02 AK03 AK05 AL07 AM03 AM04 AM05 AM07 BJ03 BJ12 CJ02 CJ25 CJ28 DJ14 DJ16 DJ17 HJ05 5H050 AA02 AA07 AA19 BA17 CA02 CA07 CA11 CB08 FA02 FA15 FA17 FA19 GA00 GA02 GA25 GA27 HA05
Claims (5)
体粒子の平均粒径よりも小さな平均粒径を有し、かつ該
黒鉛質前駆体粒子よりも硬い粒子を埋設した後、黒鉛化
することを特徴とする黒鉛質粒子の製造方法。1. After embedding particles having an average particle size smaller than the average particle size of the graphite precursor particles and harder than the graphite precursor particles on the surface of the graphite precursor particles, A method for producing graphite particles, which comprises graphitizing.
なわれることを特徴とする請求項1に記載の黒鉛質粒子
の製造方法。2. The method for producing graphite particles according to claim 1, wherein the burying is performed by a mechanochemical treatment.
れる黒鉛質粒子からなるリチウムイオン二次電池用負極
材料。3. A negative electrode material for a lithium ion secondary battery, comprising graphite particles obtained by the method according to claim 1.
ムイオン二次電池用負極。4. A negative electrode for a lithium ion secondary battery, which uses the negative electrode material according to claim 3.
オン二次電池。5. A lithium ion secondary battery using the negative electrode according to claim 4.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002063697A JP4050072B2 (en) | 2002-03-08 | 2002-03-08 | Method for producing graphitic particles and negative electrode material for lithium ion secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002063697A JP4050072B2 (en) | 2002-03-08 | 2002-03-08 | Method for producing graphitic particles and negative electrode material for lithium ion secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003263982A true JP2003263982A (en) | 2003-09-19 |
JP4050072B2 JP4050072B2 (en) | 2008-02-20 |
Family
ID=29196842
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002063697A Expired - Fee Related JP4050072B2 (en) | 2002-03-08 | 2002-03-08 | Method for producing graphitic particles and negative electrode material for lithium ion secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4050072B2 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100708730B1 (en) | 2005-11-21 | 2007-04-17 | 삼성에스디아이 주식회사 | Medium porous carbon, manufacturing method thereof and fuel cell using same |
JP2007191369A (en) * | 2006-01-20 | 2007-08-02 | Jfe Chemical Corp | Method for producing fine graphite particles |
JP2009158356A (en) * | 2007-12-27 | 2009-07-16 | Tokai Carbon Co Ltd | Composite carbon material for negative electrode material of lithium secondary battery and method for producing the same |
JP2011216231A (en) * | 2010-03-31 | 2011-10-27 | Jx Nippon Oil & Energy Corp | Carbon material for lithium ion secondary battery, and electrode using the same |
KR101462028B1 (en) | 2008-03-03 | 2014-11-14 | 에낙스 가부시키가이샤 | Powder treating apparatus |
EP2605318A4 (en) * | 2010-08-11 | 2016-05-04 | Jx Nippon Oil & Energy Corp | GRAPHITE MATERIAL FOR NEGATIVE LITHIUM SECONDARY BATTERY ELECTRODES, METHOD FOR MANUFACTURING SAME, AND LITHIUM SECONDARY BATTERY USING THE SAME |
KR20180020784A (en) * | 2016-08-19 | 2018-02-28 | 주식회사 엘지화학 | Electrode for lithium secondary battery and Method for preparing the same |
KR20180067428A (en) * | 2016-12-12 | 2018-06-20 | 주식회사 엘지화학 | Method of preparing electrodes for lithium secondary battery |
WO2018110912A1 (en) * | 2016-12-12 | 2018-06-21 | 주식회사 엘지화학 | Method for manufacturing electrode for lithium secondary battery |
CN114188533A (en) * | 2021-12-20 | 2022-03-15 | 湖北亿纬动力有限公司 | Negative electrode material and preparation method and application thereof |
WO2023276334A1 (en) * | 2021-06-30 | 2023-01-05 | 株式会社Gsユアサ | Solid polyelectrolyte, power storage element, and power storage device |
-
2002
- 2002-03-08 JP JP2002063697A patent/JP4050072B2/en not_active Expired - Fee Related
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100708730B1 (en) | 2005-11-21 | 2007-04-17 | 삼성에스디아이 주식회사 | Medium porous carbon, manufacturing method thereof and fuel cell using same |
JP2007191369A (en) * | 2006-01-20 | 2007-08-02 | Jfe Chemical Corp | Method for producing fine graphite particles |
JP2009158356A (en) * | 2007-12-27 | 2009-07-16 | Tokai Carbon Co Ltd | Composite carbon material for negative electrode material of lithium secondary battery and method for producing the same |
KR101462028B1 (en) | 2008-03-03 | 2014-11-14 | 에낙스 가부시키가이샤 | Powder treating apparatus |
JP2011216231A (en) * | 2010-03-31 | 2011-10-27 | Jx Nippon Oil & Energy Corp | Carbon material for lithium ion secondary battery, and electrode using the same |
EP2605318A4 (en) * | 2010-08-11 | 2016-05-04 | Jx Nippon Oil & Energy Corp | GRAPHITE MATERIAL FOR NEGATIVE LITHIUM SECONDARY BATTERY ELECTRODES, METHOD FOR MANUFACTURING SAME, AND LITHIUM SECONDARY BATTERY USING THE SAME |
KR20180020784A (en) * | 2016-08-19 | 2018-02-28 | 주식회사 엘지화학 | Electrode for lithium secondary battery and Method for preparing the same |
KR102160273B1 (en) * | 2016-08-19 | 2020-09-25 | 주식회사 엘지화학 | Electrode for lithium secondary battery and Method for preparing the same |
KR20180067428A (en) * | 2016-12-12 | 2018-06-20 | 주식회사 엘지화학 | Method of preparing electrodes for lithium secondary battery |
WO2018110912A1 (en) * | 2016-12-12 | 2018-06-21 | 주식회사 엘지화학 | Method for manufacturing electrode for lithium secondary battery |
KR102081397B1 (en) | 2016-12-12 | 2020-02-25 | 주식회사 엘지화학 | Method of preparing electrodes for lithium secondary battery |
US11038157B2 (en) | 2016-12-12 | 2021-06-15 | Lg Chem, Ltd. | Method for manufacturing electrode for lithium secondary battery |
WO2023276334A1 (en) * | 2021-06-30 | 2023-01-05 | 株式会社Gsユアサ | Solid polyelectrolyte, power storage element, and power storage device |
CN114188533A (en) * | 2021-12-20 | 2022-03-15 | 湖北亿纬动力有限公司 | Negative electrode material and preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
JP4050072B2 (en) | 2008-02-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5348878B2 (en) | Negative electrode material for lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery | |
JP5543533B2 (en) | Anode material for lithium ion secondary battery | |
JP4672955B2 (en) | Negative electrode material for lithium ion secondary battery and method for producing the same | |
JP6412520B2 (en) | Carbonaceous coated graphite particles for lithium ion secondary battery anode material, lithium ion secondary battery anode and lithium ion secondary battery | |
JP6316466B2 (en) | Carbonaceous coated graphite particles, production method thereof, negative electrode for lithium ion secondary battery and lithium ion secondary battery | |
JP6585238B2 (en) | Method for producing carbonaceous coated graphite particles for negative electrode material of lithium ion secondary battery | |
JP2003012311A (en) | Method for producing polymer-coated carbon material, negative electrode material, and lithium ion secondary battery | |
JP2011243567A (en) | Negative electrode material for lithium ion secondary battery and method of manufacturing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery | |
JP4672958B2 (en) | Graphite particles, lithium ion secondary battery, negative electrode material therefor and negative electrode | |
JP4542352B2 (en) | Negative electrode for lithium ion secondary battery and lithium ion secondary battery | |
JP4839180B2 (en) | Carbon powder and manufacturing method thereof, negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery | |
JP2004253379A (en) | Anode material for lithium ion secondary battery, anode and lithium ion secondary battery | |
JP5394721B2 (en) | Lithium ion secondary battery, negative electrode material and negative electrode therefor | |
JP4050072B2 (en) | Method for producing graphitic particles and negative electrode material for lithium ion secondary battery | |
JP4495531B2 (en) | Granular composite carbon material and method for producing the same, negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery | |
JP5133543B2 (en) | Method for producing mesocarbon microsphere graphitized material | |
JP4996827B2 (en) | Metal-graphite composite particles for negative electrode of lithium ion secondary battery and manufacturing method thereof, negative electrode material and negative electrode for lithium ion secondary battery, and lithium ion secondary battery | |
JP2019160791A (en) | Method for manufacturing carbon-coated graphite particles for lithium ion secondary battery negative electrode material, carbon-coated graphite particles for lithium ion secondary battery negative electrode material, lithium ion secondary battery negative electrode and lithium ion secondary battery | |
WO2016194355A1 (en) | Carbonaceous coated graphite particles for negative-electrode material of lithium-ion secondary cell, negative electrode for lithium-ion secondary cell, and lithium-ion secondary cell | |
JP4143354B2 (en) | Carbon material for negative electrode of lithium ion secondary battery and lithium ion secondary battery | |
JP4628007B2 (en) | Carbon material manufacturing method, negative electrode for lithium ion secondary battery, and lithium ion secondary battery | |
KR20210098965A (en) | Carbonaceous material, manufacturing method of carbonaceous material, negative electrode for lithium ion secondary battery and lithium ion secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040713 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20061002 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070605 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070726 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20071113 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20071128 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4050072 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101207 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111207 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121207 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121207 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131207 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |