JP2003251381A - Nitrogen removal by membrane bioreactor - Google Patents
Nitrogen removal by membrane bioreactorInfo
- Publication number
- JP2003251381A JP2003251381A JP2002053057A JP2002053057A JP2003251381A JP 2003251381 A JP2003251381 A JP 2003251381A JP 2002053057 A JP2002053057 A JP 2002053057A JP 2002053057 A JP2002053057 A JP 2002053057A JP 2003251381 A JP2003251381 A JP 2003251381A
- Authority
- JP
- Japan
- Prior art keywords
- hollow fiber
- fiber membrane
- membrane
- biofilm
- nitrogen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Biological Treatment Of Waste Water (AREA)
Abstract
(57)【要約】
【課題】 排水等の有機性汚染水あるいはアンモニア態
窒素汚染水等の浄化に有効な、単一槽型硝化脱窒メンブ
レンバイオリアクタによる水中のアンモニア態窒素の除
去方法を提供する。
【解決手段】 外表面上に硝化菌および脱窒菌を含む生
物膜が固定された多孔性中空糸膜を用い、該中空糸膜の
内表面側に酸素を含む気体を供給し、該中空糸膜の外表
面側に原水を供給することにより原水中のアンモニア成
分を多孔性中空糸膜外表面上の生物膜中で硝化および脱
窒して除去することを特徴とする、メンブレンバイオリ
アクタによる窒素除去方法。PROBLEM TO BE SOLVED: To provide a method for removing ammonia nitrogen in water by a single tank type nitrification denitrification membrane bioreactor which is effective for purifying organic contaminated water such as waste water or ammonia nitrogen contaminated water. I do. SOLUTION: A porous hollow fiber membrane having a biofilm containing nitrifying bacteria and denitrifying bacteria fixed on an outer surface is used, and a gas containing oxygen is supplied to the inner surface side of the hollow fiber membrane, thereby forming the hollow fiber membrane Nitrogen removal by a membrane bioreactor, characterized in that the raw water is supplied to the outer surface side of the membrane to remove the ammonia component from the raw water by nitrification and denitrification in the biofilm on the porous hollow fiber outer surface Method.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、排水等の有機性汚
染水あるいはアンモニア態窒素汚染水等の浄化に有効
な、単一槽型硝化脱窒メンブレンバイオリアクタによる
水中のアンモニア態窒素の除去システムに関する。TECHNICAL FIELD The present invention relates to a system for removing ammonia nitrogen in water by a single tank type nitrification denitrification membrane bioreactor, which is effective for purification of organic polluted water such as waste water or ammonia nitrogen polluted water. Regarding
【0002】[0002]
【従来の技術】水環境の富栄養化などの環境問題が指摘
されている中、その原因である窒素等を含む排水処理技
術の重要度が増している。その中でも微生物を用いた生
物学的窒素除去技術は、低エネルギー消費型で環境適合
性の高い技術として注目されている(平田ら、Wat.
Sci.Tech.,34,282−289(199
6))。2. Description of the Related Art While environmental problems such as eutrophication of the water environment have been pointed out, the importance of wastewater treatment technology containing nitrogen, which is the cause, is increasing. Among them, the biological nitrogen removal technology using microorganisms is drawing attention as a low energy consumption type and highly environmentally compatible technology (Hirata et al., Wat.
Sci. Tech. , 34, 282-289 (199
6)).
【0003】排水中の窒素の多くは有機態窒素やアンモ
ニア態窒素であり、有機態窒素はその有機物が加水分解
される過程においてアンモニア態窒素となる。従って、
窒素除去とは結局、アンモニア態窒素除去のことにな
る。Most of the nitrogen in the waste water is organic nitrogen or ammonia nitrogen, and the organic nitrogen becomes ammonia nitrogen in the process of hydrolysis of the organic matter. Therefore,
After all, the removal of nitrogen means the removal of ammonia nitrogen.
【0004】微生物を用いた生物学的な窒素除去は、
アンモニアを硝酸や亜硝酸に酸化する過程(下記反応式
(1),(2))、それら酸化生成物を窒素ガスに還
元する過程(下記反応式(3),(4))、の2つの過
程から成る。前者(の過程)の反応を硝化と言い、後
者(の過程)の反応を脱窒と言う。主に硝化は好気条
件下で好気性菌である硝化菌により行われ、脱窒は嫌気
条件下で嫌気性菌である脱窒菌により行われる。Biological nitrogen removal using microorganisms
There are two processes: a process of oxidizing ammonia to nitric acid or nitrous acid (reaction formulas (1) and (2) below) and a process of reducing these oxidation products to nitrogen gas (reaction formulas (3) and (4) below). Consists of processes. The former (the process) reaction is called nitrification, and the latter (the process) reaction is called denitrification. Nitrification is mainly performed by nitrifying bacteria that are aerobic bacteria under aerobic conditions, and denitrification is performed by denitrifying bacteria that are anaerobic bacteria under anaerobic conditions.
【0005】<硝化> 2NH4 ++3O2→2NO2 -+2H2O+4H+ (1) 2NO2 -+O2→2NO3 - (2)[0005] <nitrification> 2NH 4 + + 3O 2 → 2NO 2 - + 2H 2 O + 4H + (1) 2NO 2 - + O 2 → 2NO 3 - (2)
【0006】<脱窒> 2NO3 -+2H+→2NO2 -+2OH- (3) 2NO2 -+6H+→N2↑+2H2O+2OH- (4)<Denitrification> 2NO 3 − + 2H + → 2NO 2 − + 2OH − (3) 2NO 2 − + 6H + → N 2 ↑ + 2H 2 O + 2OH − (4)
【0007】これまでの研究では、これら2つの過程が
それぞれの操作条件の違い(好気条件下:硝化、嫌気条
件下:脱窒)によって別々のリアクタ(反応槽)で行わ
れてきた(須藤ら、環境浄化のための微生物学、137
頁、講談社、1983年)。しかしながら、この方式
は、システムの複雑化、各反応槽(リアクタ)での
pH調整の必要性、設置面積が大きくなるという欠点
があった。それゆえ、単一反応槽内で硝化および脱窒の
両反応を逐次起こして水中からアンモニアを除去しう
る、効率的な窒素除去リアクタの開発が望まれていた。In the studies so far, these two processes have been carried out in different reactors (reactors) due to the difference in operating conditions (aerobic condition: nitrification, anaerobic condition: denitrification). Et al., Microbiology for Environmental Purification, 137
Page, Kodansha, 1983). However, this method has drawbacks in that the system becomes complicated, the pH needs to be adjusted in each reaction tank (reactor), and the installation area becomes large. Therefore, it has been desired to develop an efficient nitrogen removal reactor capable of removing ammonia from water by sequentially causing both nitrification and denitrification reactions in a single reaction tank.
【0008】[0008]
【発明が解決しようとする課題】本発明は、排水等の有
機性汚染水あるいはアンモニア態窒素汚染水等の浄化に
有効な、単一槽型硝化脱窒メンブレンバイオリアクタに
よる水中のアンモニア態窒素の除去システムを提供する
ことを目的とする。DISCLOSURE OF THE INVENTION The present invention provides a single tank type nitrification denitrification membrane bioreactor which is effective for purification of organic polluted water such as waste water or ammonia nitrogen contaminated water. The purpose is to provide a removal system.
【0009】[0009]
【課題を解決するための手段】本発明者らは、上記の課
題を解決するために鋭意検討を重ねた結果、下記の
(1)〜(5)の構成を有する窒素除去システムの発明
を完成するに至った。Means for Solving the Problems As a result of intensive studies to solve the above problems, the present inventors have completed the invention of a nitrogen removal system having the following configurations (1) to (5). Came to do.
【0010】(1)外表面上に硝化菌および脱窒菌を含
む生物膜が固定された多孔性中空糸膜を用い、該中空糸
膜の内表面側に酸素を含む気体を供給し、該中空糸膜の
外表面側に原水を供給することにより原水中のアンモニ
ア成分を多孔性中空糸膜外表面上の生物膜中で硝化およ
び脱窒して除去することを特徴とする、メンブレンバイ
オリアクタによる窒素除去方法。(1) A porous hollow fiber membrane having a biofilm containing nitrifying bacteria and denitrifying bacteria fixed on the outer surface thereof is used, and a gas containing oxygen is supplied to the inner surface side of the hollow fiber membrane to form a hollow film. A membrane bioreactor characterized by removing raw water to the outer surface side of the membrane by nitrifying and denitrifying the ammonia component in the raw water in the biofilm on the outer surface of the porous hollow fiber membrane. Nitrogen removal method.
【0011】(2)外表面上に硝化菌および脱窒菌を含
む生物膜が固定された多孔性中空糸膜と、該中空糸膜の
内表面側に酸素を含む気体を供給する手段と、該中空糸
膜の外表面側に原水を供給する手段とを少なくとも備え
てなる、原水中のアンモニア成分を多孔性中空糸膜外表
面上の生物膜中で硝化および脱窒して除去するための窒
素除去装置。(2) A porous hollow fiber membrane having a biofilm containing nitrifying bacteria and denitrifying bacteria fixed on its outer surface, a means for supplying a gas containing oxygen to the inner surface side of the hollow fiber membrane, Nitrogen for removing and nitrifying and denitrifying the ammonia component in the raw water in the biofilm on the outer surface of the porous hollow fiber membrane, which comprises at least means for supplying raw water to the outer surface side of the hollow fiber membrane. Removal device.
【0012】(3)多孔性中空糸膜の少なくとも外表面
には正荷電性荷電基が固定されていることを特徴とす
る、上記(2)に記載の窒素除去装置(3) The nitrogen removing apparatus according to (2) above, wherein positively charged groups are fixed on at least the outer surface of the porous hollow fiber membrane.
【0013】(4)多孔性中空糸膜の内径が0.1mm
以上4mm以下、かつ膜厚が0.05mm以上2mm以
下であることを特徴とする、上記(2)又は(3)に記
載の窒素除去装置。(4) The inner diameter of the porous hollow fiber membrane is 0.1 mm
The nitrogen removing device as described in (2) or (3) above, which has a thickness of 4 mm or less and a film thickness of 0.05 mm or more and 2 mm or less.
【0014】(5)多孔性中空糸膜の平均孔径が3μm
以下であることを特徴とする、上記(2)〜(4)記載
の窒素除去装置。(5) The average pore diameter of the porous hollow fiber membrane is 3 μm
The nitrogen removing device according to any one of (2) to (4) above, characterized in that:
【0015】[0015]
【発明の実施の形態】以下、本発明について詳細に記述
する。本発明においては、外表面上に硝化菌および脱窒
菌を含む生物膜が固定された多孔性中空糸膜を硝化およ
び脱窒の反応場として用いる。浄化(窒素除去)される
べき原水は生物膜が固定されている外表面側に供給され
る。一方、内表面側には酸素を含む気体が供給され、満
たされている。BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below. In the present invention, a porous hollow fiber membrane having a biofilm containing nitrifying bacteria and denitrifying bacteria fixed on the outer surface is used as a reaction field for nitrification and denitrification. Raw water to be purified (removal of nitrogen) is supplied to the outer surface side where the biofilm is fixed. On the other hand, a gas containing oxygen is supplied and filled on the inner surface side.
【0016】多孔性中空糸膜の外表面上への硝化菌およ
び脱窒菌を含む生物膜の作製は、例えば、多孔性中空糸
膜の内表面側に酸素を含む気体を供給して満たし、外表
面側には種汚泥を加えた基質(アンモニア)を含む液を
接触させることにより、微生物の増殖に伴って自然に形
成させることができる。The production of a biofilm containing nitrifying bacteria and denitrifying bacteria on the outer surface of the porous hollow fiber membrane is performed, for example, by supplying a gas containing oxygen to the inner surface side of the porous hollow fiber membrane to fill it, By bringing a liquid containing a substrate (ammonia) to which seed sludge has been added into contact with the surface side, it can be formed naturally along with the growth of microorganisms.
【0017】多孔性中空糸膜を形成する素材は、特には
限定されないが、少なくとも外表面に正荷電性の荷電基
が固定されていることが、生物膜の形成を行う上で有利
である。一般に硝化菌は担体表面への付着性が悪く、生
物膜を形成しにくいとされているが、表面を正荷電性に
することで、付着性を向上させることができる。The material forming the porous hollow fiber membrane is not particularly limited, but it is advantageous for forming a biofilm that at least the positively charged groups are fixed on the outer surface. It is generally said that nitrifying bacteria have poor adhesion to the surface of the carrier and are unlikely to form a biofilm, but by making the surface positively charged, the adhesion can be improved.
【0018】正荷電性の荷電基の例としては、4級アン
モニウム塩基、3級アミノ基、2級アミノ基などが挙げ
られる。このような正荷電性の荷電基を多孔性中空糸膜
の少なくとも外表面に存在させるための方法としては例
えば次の〜の方法を挙げることができる。Examples of positively charged groups include quaternary ammonium groups, tertiary amino groups and secondary amino groups. Examples of the method for allowing such positively charged groups to exist on at least the outer surface of the porous hollow fiber membrane include the following methods (1) to (3).
【0019】前記のような正荷電基を有する高分子化
合物から製膜された多孔性中空糸膜を用いる方法
通常使われる非正荷電性の膜素材(ポリエチレン、ポ
リプロピレン、ポリフッ化ビニリデン、ポリスルホン、
ポリエーテルスルホン、ポリアクリロニトリル(含アク
リロニトリルと他のビニルモノマーとの共重合物)、酢
酸セルロース等のセルロースおよびセルロース誘導体)
から形成された多孔性中空糸膜の少なくとも外表面を正
荷電性荷電基を有する物質でコーティングする方法
通常使われる非正荷電性の膜素材(例は同上)から形
成された多孔性中空糸膜の少なくとも外表面に化学反応
やグラフト重合反応等の改質反応により正荷電性の荷電
基を導入する方法Method Using Porous Hollow Fiber Membrane Formed from Polymer Compound Having Positively Charged Group As described above, non-positively charged membrane materials that are commonly used (polyethylene, polypropylene, polyvinylidene fluoride, polysulfone,
Polyether sulfone, polyacrylonitrile (copolymer of acrylonitrile-containing and other vinyl monomers), cellulose such as cellulose acetate and cellulose derivatives)
A method for coating at least the outer surface of a porous hollow fiber membrane formed from a material with a positively charged charged group A porous hollow fiber membrane formed from a commonly used non-positively charged membrane material (eg, the same as above) Method of introducing positively charged groups to at least the outer surface of the surface by modification reaction such as chemical reaction or graft polymerization reaction
【0020】多孔性中空糸膜の孔径は、大きすぎると良
好な生物膜が得られにくく、また、小さすぎると内表面
側からの酸素供給が不充分になりやすくなる。従って、
平均孔径は3μm以下であることが好ましく、分子量1
万のデキストランの透過率が10%以上であることがよ
り好ましい。平均孔径は、ASTM:F316−86記
載の方法(別称:ハーフドライ法)を用いて求めること
ができる。If the pore diameter of the porous hollow fiber membrane is too large, it is difficult to obtain a good biofilm, and if it is too small, oxygen supply from the inner surface side tends to be insufficient. Therefore,
The average pore size is preferably 3 μm or less, and the molecular weight is 1
It is more preferable that the transmittance of ten thousand dextran is 10% or more. The average pore size can be determined by using the method described in ASTM: F316-86 (also known as the half dry method).
【0021】デキストランの透過率は、中空糸膜の内表
面側に0.1重量%のデキストラン水溶液を平均濾過圧
0.05MPa、線速1m/秒、25℃にて供給し、濾
過40分後の濾過水中および供給水中のデキストラン濃
度を示差屈折率計等で測定し、下記式より計算する。
デキストラン透過率[%]
=100(濾過水中のデキストラン濃度)/(供給水中のデキストラン濃度)The dextran permeability was determined by supplying 0.1% by weight dextran aqueous solution to the inner surface of the hollow fiber membrane at an average filtration pressure of 0.05 MPa, a linear velocity of 1 m / sec, and 25 ° C., and after 40 minutes of filtration. The dextran concentration in the filtered water and the supplied water of is measured with a differential refractometer and calculated from the following formula. Dextran permeability [%] = 100 (dextran concentration in filtered water) / (dextran concentration in feed water)
【0022】分子量1万のデキストランは、生合成等で
合成したデキストランをゲルパーミエーションクロマト
グラフィー等で分子量分画をして分子量1万の画分を取
り出して用いても良いが、Pharmacia Bio
tech社(Uppsala, Sweden)より市
販されているDextran T10を用いることがで
きる。The dextran having a molecular weight of 10,000 may be used by subjecting dextran synthesized by biosynthesis or the like to a molecular weight fractionation by gel permeation chromatography or the like to extract a fraction having a molecular weight of 10,000. Pharmacia Bio
Dextran T10 commercially available from tech (Uppsala, Sweden) can be used.
【0023】多孔性中空糸膜の膜厚は特に限定はされな
いが、厚すぎると内表面側から外表面上の生物膜への酸
素の供給の妨げになり、逆に薄すぎると多孔性中空糸膜
の強度保持が難しくなるため、0.05mm以上2mm
以下が好ましい。The thickness of the porous hollow fiber membrane is not particularly limited, but if it is too thick, it will impede the supply of oxygen from the inner surface side to the biofilm on the outer surface, and if it is too thin, it will be porous hollow fiber. Since it is difficult to maintain the strength of the film, 0.05 mm or more and 2 mm
The following are preferred.
【0024】多孔性中空糸膜の糸径は、特には限定され
ないが、内表面側に低圧損で酸素を含む気体を供給し満
たすためには、内径はあまり小さすぎない方が好まし
く、また、{(内径)+(膜厚の2倍)}で決まる外径
はあまり大きすぎると単位容積当たりに充填できる膜外
表面積が小さくなって外表面上に固定できる生物膜面積
も小さくなり、不利である。従って、多孔性中空糸膜の
内径は0.1mm以上4mm以下が好ましい。The diameter of the porous hollow fiber membrane is not particularly limited, but the inner diameter is preferably not too small in order to supply and fill a gas containing oxygen with a low pressure loss on the inner surface side. If the outer diameter determined by {(inner diameter) + (twice the film thickness)} is too large, the outer surface area of the membrane that can be filled per unit volume will be small, and the biological membrane area that can be fixed on the outer surface will also be small, which is a disadvantage. is there. Therefore, the inner diameter of the porous hollow fiber membrane is preferably 0.1 mm or more and 4 mm or less.
【0025】上記のような外表面上に硝化菌および脱窒
菌を固定した生物膜を固定した多孔性中空糸膜を実際に
リアクタとして用いる場合には、多孔性中空糸膜を複数
本束ねて容器内に収納した「モジュール」と呼ばれる形
態(例:吉川ら監修・訳、膜技術・第2版、アイピーシ
ー、397−402頁、1997年)で用いることがで
きる。When a porous hollow fiber membrane having a biofilm on which nitrifying bacteria and denitrifying bacteria are fixed on the outer surface as described above is actually used as a reactor, a plurality of porous hollow fiber membranes are bundled into a container. It can be used in a form called “module” housed inside (eg, supervised and translated by Yoshikawa et al., Membrane Technology, Second Edition, IPC, pp. 397-402, 1997).
【0026】中空糸膜内表面側に供給する酸素を含む気
体の組成および酸素濃度は特に限定はされないが、通常
の場合、空気を用いることができる。The composition and oxygen concentration of the gas containing oxygen supplied to the inner surface of the hollow fiber membrane are not particularly limited, but in the usual case, air can be used.
【0027】[0027]
【実施例】以下に本発明の実施例を示すが、本発明はこ
れに限定されるものではない。
[測定方法等]
(平均孔径)ハーフドライ法による多孔性中空糸膜の平
均孔径測定は、使用液体にエタノールを用い、25℃、
昇圧速度0.01atm/秒、にて測定した。EXAMPLES Examples of the present invention will be shown below, but the present invention is not limited thereto. [Measurement Method, etc.] (Average Pore Diameter) The average pore diameter of the porous hollow fiber membranes was measured by the half dry method at 25 ° C. using ethanol as the liquid used.
The measurement was performed at a pressure rising rate of 0.01 atm / sec.
【0028】(デキストラン透過率)多孔性中空糸膜の
デキストラン透過率は、分子量1万のデキストランとし
てDextran T10(Pharmacia Bi
otech社)を用い、約10cm長の湿潤膜を用いて
測定した。(Dextran Permeability) The dextran permeability of the porous hollow fiber membrane was measured using Dextran T10 (Pharmacia Bi) as dextran having a molecular weight of 10,000.
(Otech) and a wet membrane having a length of about 10 cm.
【0029】(空孔率)多孔性中空糸膜の空孔率は、下
記式より求めた。
空孔率[%]
=100(湿潤膜重量[g]−乾燥膜重量[g])/(密度[g/cm3]×膜
体積[cm3])
なお、上記の式中の「密度」は空孔湿潤液の密度であ
り、「膜体積」は、
膜体積[cm3]
=π{(外径[cm]/2)2−(内径[cm]/2)2}×(膜長[cm])
より求めた。(Porosity) The porosity of the porous hollow fiber membrane was determined by the following formula. Porosity [%] = 100 (wet film weight [g] - dry film weight [g]) / (Density [g / cm 3] × film volume [cm 3]) Here, "density" in the above formula Is the density of the pore-wetting liquid, and the “membrane volume” is defined as: membrane volume [cm 3 ] = π {(outer diameter [cm] / 2) 2 − (inner diameter [cm] / 2) 2 } × (membrane length [Cm]).
【0030】(バルク水の水質測定)全有機炭素濃度
(TOC)および全窒素濃度(T−N)の測定は、それ
ぞれJIS法に従い、TOC自動測定器(島津製作所製
TOC−500)および紫外線吸光光度法(日立製作所
製150-20Spectrophotometer使用)により行った。(Measurement of water quality of bulk water) Total organic carbon concentration (TOC) and total nitrogen concentration (TN) were measured according to JIS method, respectively, by TOC automatic measuring device (TOC-500 manufactured by Shimadzu Corporation) and ultraviolet absorption. The photometric method (using Hitachi's 150-20 Spectrophotometer) was used.
【0031】(生物膜に関する測定)生物膜内の厚さ方
向に対する溶存酸素濃度(DO)の測定は微小電極法
(N.P.Revsbech、Limnology a
nd Oceanography、34(2)、474
−478(1989))を用いて行った。(Measurement on biofilm) The dissolved oxygen concentration (DO) in the thickness direction in the biofilm is measured by the microelectrode method (NP Revsbech, Limology a).
nd Oceanography, 34 (2), 474
-478 (1989)).
【0032】[多孔性中空糸膜製造例]特開平3−42
025号公報開示の技術に従い、ポリエチレン樹脂粉末
(旭化成SH−800グレード)18.5重量部、フタ
ル酸ジブチル(DBP)54.3重量部、微粉シリカ
(日本アエロジル製R−972)27.2重量部からな
る組成物を予備混合した後、35ミリ二軸押し出し機で
中空糸状に押し出した後、塩化メチレン中に浸漬してD
BPを抽出し、さらに60℃の水酸化ナトリウム40重
量%水溶液に浸漬して微粉シリカを抽出した後、水洗、
乾燥することにより、外径3mm、内径2mm、平均孔
径0.3μm、Dextran T10透過率100
%、空孔率70%のポリエチレン製中空糸状多孔性膜
(以下、単にポリエチレン膜という)を得た。[Example of production of porous hollow fiber membrane] JP-A-3-42
According to the technology disclosed in Japanese Patent No. 025 Publication, 18.5 parts by weight of polyethylene resin powder (Asahi Kasei SH-800 grade), 54.3 parts by weight of dibutyl phthalate (DBP), and 27.2 parts by weight of finely divided silica (R-972 manufactured by Nippon Aerosil Co., Ltd.) Part of the composition is premixed, extruded into a hollow fiber with a 35 mm twin-screw extruder, and then dipped in methylene chloride
After extracting BP and further immersing in a 40% by weight aqueous solution of sodium hydroxide at 60 ° C. to extract finely divided silica, washing with water,
By drying, outer diameter 3 mm, inner diameter 2 mm, average pore diameter 0.3 μm, Dextran T10 transmittance 100
%, And a hollow fiber-like porous membrane made of polyethylene (hereinafter, simply referred to as polyethylene membrane) having a porosity of 70% was obtained.
【0033】次いで常田らの方法(J.Chromat
ogr. A, 689,211−218(1995))に
従い、以下に述べる放射線グラフト重合法を利用する方
法でこのポリエチレン膜全体に正荷電性基であるジエチ
ルアミノ基を導入した。Next, the method of Tsuneda et al. (J. Chromat
Ogr. A, 689, 211-218 (1995)), a diethylamino group, which is a positively chargeable group, was introduced into the entire polyethylene membrane by a method utilizing a radiation graft polymerization method described below.
【0034】ポリエチレン膜に電子線加速器(加速電圧
1.5MeV、電子線電流1mA)を用いて窒素雰囲気
下で電子線を200kGy照射した後、グリシジルメタ
クリレート(GMA)を10容積%含む40℃のメタノ
ール溶液に浸漬した後、ジメチルホルムアミドおよびメ
タノールで洗浄し、ポリエチレン膜の膜孔表面に、ポリ
エチレン膜の0.5倍重量のGMAをグラフト重合し
た。この膜を、ジエチルアミン50容量%水溶液に浸漬
することにより、グラフト重合により膜に導入したGM
A由来のエポキシ基にジエチルアミンを付加し、3級ア
ミノ基であるジエチルアミノ基を膜に導入した。このよ
うにして得られた膜全体にジエチルアミノ基を導入した
膜を、以後DEA膜と呼ぶ。The polyethylene film was irradiated with an electron beam at 200 kGy in a nitrogen atmosphere by using an electron beam accelerator (accelerating voltage 1.5 MeV, electron beam current 1 mA), and then methanol containing 40% by volume of glycidyl methacrylate (GMA) at 40 ° C. After being immersed in the solution, it was washed with dimethylformamide and methanol, and 0.5% by weight of GMA of the polyethylene membrane was graft-polymerized on the surface of the membrane pores of the polyethylene membrane. GM introduced into the membrane by graft polymerization by immersing this membrane in a 50% by volume aqueous solution of diethylamine.
Diethylamine was added to the epoxy group derived from A to introduce a diethylamino group, which is a tertiary amino group, into the film. The film obtained by introducing a diethylamino group into the entire film thus obtained is hereinafter referred to as a DEA film.
【0035】DEA膜を希塩酸水溶液中に浸漬して導入
したジエチルアミノ基に塩酸を吸着させた後に水溶液中
の塩酸の減少量をアルカリによる滴定で求めたところ、
グラフト重合により導入されたGMA由来のエポキシ基
の90%がジエチルアミンと付加反応を起こしてジエチ
ルアミノ基が導入されていることがわかった。なお、D
EA膜は、外径3.4mm、内径2.2mm、平均孔径
0.3μm、Dextran T10透過率100%、
空孔率65%であった。When the DEA film was immersed in a dilute hydrochloric acid aqueous solution to adsorb the hydrochloric acid to the introduced diethylamino group, the amount of decrease in the hydrochloric acid in the aqueous solution was determined by titration with an alkali.
It was found that 90% of the GMA-derived epoxy groups introduced by graft polymerization undergo an addition reaction with diethylamine to introduce diethylamino groups. In addition, D
The EA membrane has an outer diameter of 3.4 mm, an inner diameter of 2.2 mm, an average pore diameter of 0.3 μm, a Dextran T10 transmittance of 100%,
The porosity was 65%.
【0036】[実施例]直径25mm、長さ250mm
の管状容器(反応用容器)に、多孔性中空糸膜製造例で
得たDEA膜を3本を湿潤させて装着し、内表面側に純
空気ボンベを用いて0.1kgf/cm2の圧力をか
け、種汚泥を加えた基質(硫酸アンモニウム)を含む水
溶液を外表面側に充填した。充填した基質溶液中の基質
が少なくなると、充填した基質溶液の一部を抜き出し、
高濃度基質溶液を加えた。こうしてDEA膜外表面上に
生物膜を形成させた。[Example] Diameter 25 mm, length 250 mm
The DEA membrane obtained in the porous hollow fiber membrane production example was attached to the tubular container (reaction vessel) of No. 3 by moistening, and a pressure of 0.1 kgf / cm 2 was applied to the inner surface side using a pure air cylinder. Then, the outer surface side was filled with an aqueous solution containing a substrate (ammonium sulfate) to which seed sludge was added. When the amount of the substrate in the filled substrate solution is low, a part of the filled substrate solution is extracted,
High concentration substrate solution was added. A biofilm was thus formed on the outer surface of the DEA membrane.
【0037】DEA膜外表面上に生物膜の形成を確認し
た後、内表面側に空気をコンプレッサーを用いて0.1
kgf/cm2の圧力をかけたまま、30℃にて反応器
の下部の入口から流量1×10-5m3/日にてペプト
ン、肉エキスおよび硫酸アンモニウムを溶解した原水
(TOC:4500g/m3、T−N:4000g/
m3、NH4 +−N:3000g/m3)を中空糸膜外表面
側に半回分的に供給し、反応器の上部の出口にて出口液
(バルク水)の水質を測定した。またこのとき、循環用
ポンプにて反応器出口液の一部を反応器下部の入口に
2.33m3/日の流量で戻し、反応器内を循環させ
た。After confirming the formation of a biofilm on the outer surface of the DEA membrane, air was applied to the inner surface of the DEA membrane by using a compressor for 0.1
With the pressure of kgf / cm 2 being applied, the raw water in which peptone, meat extract and ammonium sulfate were dissolved at a flow rate of 1 × 10 −5 m 3 / day from the lower inlet of the reactor at 30 ° C. (TOC: 4500 g / m 2 3 , TN: 4000 g /
m 3 , NH 4 + —N: 3000 g / m 3 ) was semi-batchly supplied to the outer surface side of the hollow fiber membrane, and the water quality of the outlet liquid (bulk water) was measured at the outlet of the upper part of the reactor. At this time, a part of the reactor outlet liquid was returned to the inlet at the lower part of the reactor by a circulation pump at a flow rate of 2.33 m 3 / day and circulated in the reactor.
【0038】さらに、微小電極を用いてDEA膜外表面
上に形成されている生物膜中の厚さ方向に対するDOの
測定を行った。用いた反応器の概略を図1に示す。反応
器出口での全有機炭素濃度:TOCの経時変化を図2
に、全窒素濃度:T−N、アンモニア態窒素濃度:NH
4 +−N及び硝酸、亜硝酸態窒素濃度:NOx -−Nの経
時変化を図3に示した。Furthermore, the outer surface of the DEA film is formed by using a microelectrode.
Of DO in the thickness direction in the biofilm formed above
The measurement was performed. The outline of the reactor used is shown in FIG. reaction
Total organic carbon concentration at the outlet of the vessel: Change in TOC with time
, Total nitrogen concentration: TN, ammonia nitrogen concentration: NH
Four +-N and nitric acid, nitrite nitrogen concentration: NOx --N sutra
The time change is shown in FIG.
【0039】反応器出口の全有機炭素濃度(TOC)は
180g/m3以下で推移しており、反応器へ供給した
全有機炭素の96%以上除去されていた。また窒素に関
しては、反応器出口の全窒素成分(T−N)は800g
/m3以下で推移しており、反応器に供給した全窒素成
分(T−N)の80%以上除去されていた。またアンモ
ニアの硝化反応によって生成する硝酸、亜硝酸態窒素濃
度(NOx-−N)は反応器出口で10g/m3以下で推
移していることから、用いた反応器が有効に硝化および
脱窒反応を行い、窒素除去リアクタとして有効に働いて
いることが示された。The total organic carbon concentration (TOC) at the reactor outlet remained at 180 g / m 3 or less, and 96% or more of the total organic carbon supplied to the reactor was removed. Regarding nitrogen, the total nitrogen component (TN) at the reactor outlet is 800 g.
/ M 3 or less, and 80% or more of the total nitrogen component (TN) supplied to the reactor was removed. The nitrate produced by nitrification of ammonia, nitrite nitrogen concentration (NOx - -N) from that has remained at the reactor outlet at 10 g / m 3 or less, the reactor is effectively nitrification and denitrification using The reaction was carried out and it was shown to work effectively as a nitrogen removal reactor.
【0040】DEA膜外表面の生物膜の厚みは経時的に
徐々に増し、300日目で約1600μmであった。こ
の生物膜中の厚さ方向に対するDOの測定結果を図4に
示す。中空糸膜内表面から空気を供給することにより、
供給された空気中の酸素は全て生物膜中で消費され、生
物膜内においてDOの濃度勾配が生じ、好気部位、嫌気
部位が存在していることがわかる。これより、生物膜中
に硝化菌および脱窒菌がともに存在しうる部位が存在
し、微生物間の棲み分けが起こっていることがわかる。
なお、生物膜外側の反応器内のバルク水中の菌体量は無
視しうるほどであった。以上より、本発明によるメンブ
レンバイオリアクタによる窒素除去システムは、有効に
稼働することがわかる。The thickness of the biofilm on the outer surface of the DEA film gradually increased with time and was about 1600 μm at the 300th day. The measurement result of DO in the thickness direction in this biofilm is shown in FIG. By supplying air from the inner surface of the hollow fiber membrane,
It is understood that all oxygen in the supplied air is consumed in the biofilm, a DO concentration gradient occurs in the biofilm, and aerobic sites and anaerobic sites exist. From this, it can be seen that there is a site where both nitrifying bacteria and denitrifying bacteria can exist in the biofilm, so that the microorganisms are segregated.
The amount of cells in the bulk water in the reactor outside the biofilm was negligible. From the above, it can be seen that the nitrogen removal system by the membrane bioreactor according to the present invention operates effectively.
【0041】[0041]
【発明の効果】本発明により、排水等の有機性汚染水あ
るいはアンモニア態窒素汚染水等の浄化に有効な、単一
槽型硝化脱窒メンブレンバイオリアクタによる水中のア
ンモニア態窒素の除去システムが提供できる。According to the present invention, there is provided a system for removing ammonia nitrogen in water by a single tank type nitrification denitrification membrane bioreactor, which is effective for purification of organic polluted water such as waste water or ammonia nitrogen polluted water. it can.
【図1】本発明の実施例で用いた反応器(メンブレンバ
イオリアクタ)の概略図である。FIG. 1 is a schematic view of a reactor (membrane bioreactor) used in an example of the present invention.
【図2】本発明の実施例における反応器出口の全有機炭
素濃度(TOC)の経時変化を示す図である。FIG. 2 is a diagram showing a change with time in a total organic carbon concentration (TOC) at an outlet of a reactor in an example of the present invention.
【図3】本発明の実施例における反応器出口の全窒素濃
度(T−N)、アンモニア態窒素濃度(NH4 +−N)、
硝酸、亜硝酸態窒素濃度(NOx-−N)の経時変化を
示す図である。FIG. 3 is a total nitrogen concentration (TN) at the outlet of the reactor, an ammonia nitrogen concentration (NH 4 + -N), and
It is a figure which shows the time-dependent change of nitric acid and nitrite nitrogen concentration (NOx - N).
【図4】本発明の実施例におけるDEA膜外表面上の生
物膜中の厚さ方向に対するDOの測定結果を示す図であ
る。FIG. 4 is a diagram showing the measurement results of DO in the thickness direction in the biofilm on the outer surface of the DEA film in the example of the present invention.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C12M 1/40 C12M 1/40 Z C12N 1/20 C12N 1/20 D (72)発明者 高見 和孝 静岡県富士市鮫島2番地の1 旭化成株式 会社内 (72)発明者 平田 彰 東京都新宿区大久保3−4−1 早稲田大 学理工学部内 (72)発明者 常田 聡 東京都新宿区大久保3−4−1 早稲田大 学理工学部内 Fターム(参考) 4B029 AA27 BB02 CC03 CC11 4B065 AA01X AC20 BA22 BC41 CA54 4D003 AA01 AB02 BA02 CA08 DA30 EA15 EA30 EA38 FA06 FA10 4D006 GA41 HA01 KA31 KB22 KB23 KB25 MA01 MA31 MA33 MB01 MC18X MC22X MC23X MC29X MC39X MC62X MC63X MC78 NA64 PB08 PB17 PC67 PC69 4D040 BB07 BB42 BB63 BB82 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C12M 1/40 C12M 1/40 Z C12N 1/20 C12N 1/20 D (72) Inventor Kazutaka Takami Shizuoka Prefecture 1 Asahi Kasei Co., Ltd. (72) Akira Hirata 3-4-2 Okubo Shinjuku-ku, Tokyo 3-4-1 Okubo Waseda University Faculty of Science and Engineering (72) Satoshi Tsuneda 3-4-1 Okubo Shinjuku-ku, Tokyo Waseda University Faculty of Science and Engineering F-terms (reference) 4B029 AA27 BB02 CC03 CC11 4B065 AA01X AC20 BA22 BC41 CA54 4D003 AA01 AB02 BA02 CA08 DA30 EA15 EA30 EA38 FA06 FA10 4D006 GA41 MC62 MB01 MCX MC62 MC22 MC23 MCX MC21 MC29 MC23 MC22 MC22 MC23 MC22 MC23 MC78 NA64 PB08 PB17 PC67 PC69 4D040 BB07 BB42 BB63 BB82
Claims (5)
物膜が固定された多孔性中空糸膜を用い、該中空糸膜の
内表面側に酸素を含む気体を供給し、該中空糸膜の外表
面側に原水を供給することにより原水中のアンモニア成
分を多孔性中空糸膜外表面上の生物膜中で硝化および脱
窒して除去することを特徴とする、メンブレンバイオリ
アクタによる窒素除去方法。1. A hollow hollow fiber membrane having a biofilm containing nitrifying bacteria and denitrifying bacteria fixed on the outer surface thereof, and a gas containing oxygen is supplied to the inner surface side of the hollow fiber membrane to obtain the hollow fiber. Nitrogen in a membrane bioreactor characterized in that by supplying raw water to the outer surface side of the membrane, ammonia components in the raw water are removed by nitrification and denitrification in the biofilm on the outer surface of the porous hollow fiber membrane. Removal method.
物膜が固定された多孔性中空糸膜と、該中空糸膜の内表
面側に酸素を含む気体を供給する手段と、該中空糸膜の
外表面側に原水を供給する手段とを少なくとも備えてな
る、原水中のアンモニア成分を多孔性中空糸膜外表面上
の生物膜中で硝化および脱窒して除去するための窒素除
去装置。2. A porous hollow fiber membrane having a biofilm containing nitrifying bacteria and denitrifying bacteria fixed on the outer surface, a means for supplying a gas containing oxygen to the inner surface side of the hollow fiber membrane, and the hollow. Nitrogen removal for nitrifying and denitrifying the ammonia component in the raw water in the biofilm on the outer surface of the porous hollow fiber membrane, which comprises at least means for supplying raw water to the outer surface side of the fiber membrane apparatus.
正荷電性荷電基が固定されていることを特徴とする、請
求項2に記載の窒素除去装置。3. The nitrogen removing apparatus according to claim 2, wherein a positively charged group is fixed on at least the outer surface of the porous hollow fiber membrane.
4mm以下、かつ膜厚が0.05mm以上2mm以下で
あることを特徴とする、請求項2又は3に記載の窒素除
去装置。4. The nitrogen removing apparatus according to claim 2, wherein the porous hollow fiber membrane has an inner diameter of 0.1 mm or more and 4 mm or less and a film thickness of 0.05 mm or more and 2 mm or less.
であることを特徴とする、請求項2〜4の何れか一つに
記載の窒素除去装置。5. The nitrogen removing device according to claim 2, wherein the porous hollow fiber membrane has an average pore diameter of 3 μm or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002053057A JP2003251381A (en) | 2002-02-28 | 2002-02-28 | Nitrogen removal by membrane bioreactor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002053057A JP2003251381A (en) | 2002-02-28 | 2002-02-28 | Nitrogen removal by membrane bioreactor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003251381A true JP2003251381A (en) | 2003-09-09 |
Family
ID=28664584
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002053057A Pending JP2003251381A (en) | 2002-02-28 | 2002-02-28 | Nitrogen removal by membrane bioreactor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003251381A (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005511303A (en) * | 2001-12-14 | 2005-04-28 | スリーエム イノベイティブ プロパティズ カンパニー | Layered sheet for gas supply in water treatment |
JP2006087990A (en) * | 2004-09-22 | 2006-04-06 | Univ Waseda | Wastewater treatment apparatus and wastewater treatment tank |
JP2010284617A (en) * | 2009-06-15 | 2010-12-24 | Eidensha:Kk | Bioreactor element, method for producing the same and method for using the same |
US7897048B2 (en) * | 2005-11-17 | 2011-03-01 | Australian Nuclear Science And Technology Organisation | Membrane bioreactor and sewage treatment method |
JP2011529396A (en) * | 2008-07-28 | 2011-12-08 | アプトウォーター,インコーポレイティド | Radial flow membrane biofilm reactor |
CN103846010A (en) * | 2012-11-29 | 2014-06-11 | 沈阳工业大学 | Preparation method of self-assembly nanofiltration separation membrane for high salinity and high ammonia nitrogen wastewater |
CN105565508A (en) * | 2015-12-18 | 2016-05-11 | 同济大学 | Membrane aeration bacteria-algae biological membrane system and application thereof |
CN112125397A (en) * | 2020-10-21 | 2020-12-25 | 西安建筑科技大学 | A method and device for highly enriching and recovering N2O in denitrification process |
JP2022147165A (en) * | 2021-03-23 | 2022-10-06 | 三菱ケミカル株式会社 | Hollow fiber membrane, hollow fiber membrane module, waste water treatment device and waste water treatment method |
WO2023042550A1 (en) * | 2021-09-15 | 2023-03-23 | メタウォーター株式会社 | Organic wastewater treatment method and treatment device |
WO2023199664A1 (en) * | 2022-04-15 | 2023-10-19 | メタウォーター株式会社 | Method for cleaning organic waste water treatment apparatus |
WO2024116342A1 (en) * | 2022-11-30 | 2024-06-06 | 三菱ケミカル株式会社 | Hollow fiber membrane, hollow fiber membrane module, wastewater treatment device, and wastewater treatment method |
-
2002
- 2002-02-28 JP JP2002053057A patent/JP2003251381A/en active Pending
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005511303A (en) * | 2001-12-14 | 2005-04-28 | スリーエム イノベイティブ プロパティズ カンパニー | Layered sheet for gas supply in water treatment |
JP2006087990A (en) * | 2004-09-22 | 2006-04-06 | Univ Waseda | Wastewater treatment apparatus and wastewater treatment tank |
US7897048B2 (en) * | 2005-11-17 | 2011-03-01 | Australian Nuclear Science And Technology Organisation | Membrane bioreactor and sewage treatment method |
JP2011529396A (en) * | 2008-07-28 | 2011-12-08 | アプトウォーター,インコーポレイティド | Radial flow membrane biofilm reactor |
JP2010284617A (en) * | 2009-06-15 | 2010-12-24 | Eidensha:Kk | Bioreactor element, method for producing the same and method for using the same |
CN103846010B (en) * | 2012-11-29 | 2017-11-07 | 沈阳工业大学 | A kind of preparation method of self assembly high salt high ammonia-nitrogen wastewater nanofiltration separation membrane |
CN103846010A (en) * | 2012-11-29 | 2014-06-11 | 沈阳工业大学 | Preparation method of self-assembly nanofiltration separation membrane for high salinity and high ammonia nitrogen wastewater |
CN105565508A (en) * | 2015-12-18 | 2016-05-11 | 同济大学 | Membrane aeration bacteria-algae biological membrane system and application thereof |
CN105565508B (en) * | 2015-12-18 | 2018-07-24 | 同济大学 | A kind of film aeration bacteria and algae membranous system and its application |
CN112125397A (en) * | 2020-10-21 | 2020-12-25 | 西安建筑科技大学 | A method and device for highly enriching and recovering N2O in denitrification process |
JP2022147165A (en) * | 2021-03-23 | 2022-10-06 | 三菱ケミカル株式会社 | Hollow fiber membrane, hollow fiber membrane module, waste water treatment device and waste water treatment method |
JP7643123B2 (en) | 2021-03-23 | 2025-03-11 | 三菱ケミカル株式会社 | Hollow fiber membrane and its manufacturing method, hollow fiber membrane module, wastewater treatment device, and wastewater treatment method |
WO2023042550A1 (en) * | 2021-09-15 | 2023-03-23 | メタウォーター株式会社 | Organic wastewater treatment method and treatment device |
WO2023199664A1 (en) * | 2022-04-15 | 2023-10-19 | メタウォーター株式会社 | Method for cleaning organic waste water treatment apparatus |
WO2024116342A1 (en) * | 2022-11-30 | 2024-06-06 | 三菱ケミカル株式会社 | Hollow fiber membrane, hollow fiber membrane module, wastewater treatment device, and wastewater treatment method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yeom et al. | Treatment of household wastewater using an intermittently aerated membrane bioreactor | |
CA1177977A (en) | Biochemical process for purifying contaminated water | |
Mao et al. | Membrane bioreactors for nitrogen removal from wastewater: a review | |
Song et al. | Salinity build-up in osmotic membrane bioreactors: causes, impacts, and potential cures | |
CN105481168B (en) | Coal gasification wastewater integrated conduct method | |
JP2003251381A (en) | Nitrogen removal by membrane bioreactor | |
CN101234817A (en) | Membrane carrier bubble-free oxygen supply biomembrane reactor and method for treating organic wastewater | |
CN103112951A (en) | Biochemical method for treating synthetic leather wastewater containing dimethylformamide | |
Terada et al. | Enhancement of biofilm formation onto surface-modified hollow-fiber membranes and its application to a membrane-aerated biofilm reactor | |
JP5795459B2 (en) | Hollow fiber membrane for immersion filtration, hollow fiber membrane module for immersion filtration using the same, immersion filtration device, and immersion filtration method | |
JP3721871B2 (en) | Production method of ultra pure water | |
Nagaoka et al. | Influence of extracellular polymeric substances on nitrogen removal in an intermittently-aerated membrane bioreactor | |
JP2005034739A (en) | Wastewater treatment method | |
JP2565431B2 (en) | Method and apparatus for treating organic wastewater | |
JPH0645036B2 (en) | Ultrapure water production system | |
CN109502933B (en) | A kind of treatment method and system of waste water containing polyacrylamide | |
CN104961298A (en) | Acrylon wastewater deep treatment method based on dry method | |
JP2019166441A (en) | Biological treatment apparatus | |
CN214299746U (en) | High recovery rate recycling system for printing and dyeing wastewater | |
CN1802322A (en) | Method for purifying coke waste water using a gas-permeable membrane. | |
JPS6331592A (en) | Method for making ultrapure water | |
JP5010785B2 (en) | Bioreactor and water treatment method | |
KR20030097075A (en) | Hybrid Submerged Plate Type Membrane Bioreactor Using microfilter Combined With Biofilm-Activated Carbon for Advanced Treatment of Sewage and Wastewater | |
JP5055746B2 (en) | Water circulation system using membrane | |
CN112607953A (en) | High-recovery-rate recycling system and method for printing and dyeing wastewater |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20040305 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050202 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070601 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080304 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080716 |