[go: up one dir, main page]

JP2003249739A - Method of manufacturing prepreg, prepreg obtained with the same method, method of manufacturing copper foil with insulation layer, and copper foil with insulation layer manufactured with the same method - Google Patents

Method of manufacturing prepreg, prepreg obtained with the same method, method of manufacturing copper foil with insulation layer, and copper foil with insulation layer manufactured with the same method

Info

Publication number
JP2003249739A
JP2003249739A JP2002207674A JP2002207674A JP2003249739A JP 2003249739 A JP2003249739 A JP 2003249739A JP 2002207674 A JP2002207674 A JP 2002207674A JP 2002207674 A JP2002207674 A JP 2002207674A JP 2003249739 A JP2003249739 A JP 2003249739A
Authority
JP
Japan
Prior art keywords
resin
prepreg
resin layer
skeleton material
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002207674A
Other languages
Japanese (ja)
Other versions
JP4136509B2 (en
Inventor
Tetsuro Sato
哲朗 佐藤
Noriyuki Nagashima
憲幸 長嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2002207674A priority Critical patent/JP4136509B2/en
Priority to TW91134283A priority patent/TW564215B/en
Priority to MYPI20024400A priority patent/MY134752A/en
Priority to US10/470,166 priority patent/US7144472B2/en
Priority to PCT/JP2002/013004 priority patent/WO2003051964A1/en
Publication of JP2003249739A publication Critical patent/JP2003249739A/en
Application granted granted Critical
Publication of JP4136509B2 publication Critical patent/JP4136509B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/022Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B15/00Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
    • B29B15/08Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00 of reinforcements or fillers
    • B29B15/10Coating or impregnating independently of the moulding or shaping step
    • B29B15/12Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length
    • B29B15/122Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length with a matrix in liquid form, e.g. as melt, solution or latex
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/50Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
    • B29C70/504Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC] using rollers or pressure bands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/24Reinforcing the conductive pattern
    • H05K3/241Reinforcing the conductive pattern characterised by the electroplating method; means therefor, e.g. baths or apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/10Scrim [e.g., open net or mesh, gauze, loose or open weave or knit, etc.]
    • Y10T442/184Nonwoven scrim
    • Y10T442/191Inorganic fiber-containing scrim

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a prepreg using a thin skeletal material which can assure excellent boring property with laser and also provide a method of stably manufacturing copper foil with thin insulation layer. <P>SOLUTION: A method of manufacturing prepreg for manufacturing a printed wiring board in which a thermosetting resin is impregnated into a skeletal material. This method includes following processes. (1) Liquid resin film forming process to form a liquid resin layer on the flat surface of a work using a liquid thermosetting resin. (2) Preliminary drying process to convert the relevant liquid resin layer into a dried resin layer. (3) Skeletal material preliminary bonding process for the dried resin layer with skeletal material by thermally depositing the skeletal material to the dried resin layer on the flat surface of the work. (4) Resin impregnation process for impregnating the resin element to the relevant skeletal material by heating the dried resin layer with skeletal material at the temperature which diffuses again the resin. (5) Cooling process for immediately lowering temperature, upon completion of impregnation of resin, to maintain the half-hardened condition of the thermosetting resin impregnated into the skeletal material in view of obtaining again the prepreg condition. Moreover, a method of manufacturing a copper foil with insulation layer with the similar method is also provided. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、プリプレグの製造
方法及びプリプレグの製造装置並びにその製造方法で得
られたプリプレグに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a prepreg manufacturing method, a prepreg manufacturing apparatus, and a prepreg obtained by the manufacturing method.

【0002】[0002]

【従来の技術】従来より、プリプレグは、電気、電子産
業の分野で用いられるプリント配線板の層間絶縁材料と
して用いられてきた。そして、このプリプレグには、フ
ェノール系樹脂を骨格材である紙に含浸させた紙−フェ
ノール プリプレグ、エポキシ系樹脂を骨格材であるガ
ラスクロスに含浸させたガラス−エポキシ プリプレ
グ、ポリイミド系樹脂を骨格材であるガラスクロスに含
浸させたガラス−ポリイミド プリプレグ等種々の製品
がある。そして、近年、プリント配線板の薄層化の流れ
から、プリント配線板の層間絶縁層の構成材料であるプ
リプレグの厚さも薄く信頼性の高いものが求められる様
になってきている。
2. Description of the Related Art Conventionally, prepreg has been used as an interlayer insulating material for printed wiring boards used in the fields of electric and electronic industries. The prepreg includes paper-phenol prepreg in which a phenolic resin is impregnated in a skeleton material, glass-epoxy prepreg in which an epoxy resin is impregnated in a glass cloth which is a skeleton material, and a polyimide resin skeleton material. There are various products such as glass-polyimide prepreg impregnated with glass cloth. In recent years, due to the trend toward thinner printed wiring boards, there has been a demand for a thin prepreg that is a constituent material of the interlayer insulating layer of the printed wiring board and has high reliability.

【0003】プリプレグの製造方法は、各製造メーカー
毎に特徴のある製造方法が採用されている。一般的なプ
リプレグの製造装置のアキュムレータ等の付属設備を除
いた基本的構成を説明すると、図5に示したような製造
方法が最も広く採用されていると言える。即ち、骨格材
に含浸させる樹脂組成物は、種々の特性が付与されたフ
ォーミュレーションでワニス反応釜17を用いてワニス
が製造される。このワニスは循環槽18に送られ、この
ワニスは循環槽18から骨格材に樹脂を含浸させる工程
の含浸バット20に送られ循環することとなる。
As a method of manufacturing a prepreg, a manufacturing method having a characteristic is adopted by each manufacturer. Explaining the basic structure of a general prepreg manufacturing apparatus except for the accumulator and other auxiliary equipment, it can be said that the manufacturing method shown in FIG. 5 is most widely adopted. That is, the resin composition with which the skeleton material is impregnated is manufactured into a varnish by using the varnish reaction kettle 17 in a formulation having various characteristics. This varnish is sent to the circulation tank 18, and this varnish is sent from the circulation tank 18 to the impregnation vat 20 in the step of impregnating the skeleton with the resin and circulates.

【0004】骨格材に樹脂を含浸させる工程では、骨格
材ロールを軸支して、骨格材5を連続的に繰り出す手段
を備え、ここから送り出された骨格材5は、一般的に予
備浸漬バット19を経て、含浸バット20内でディップ
方式若しくはキスコート方式のいずれかにより骨格材5
に樹脂含浸を行わせ、含浸バッド20を出ると、熱風循
環方式或いは熱輻射方式等の加熱方法を採用して、含浸
させた樹脂を乾燥させ半硬化状態(Bステージ)にする
ため、縦型に配置された乾燥塔21内を走行させ、最終
的に冷却し、プリプレグロール22として巻き取り採取
するのである。
In the step of impregnating the skeleton with resin, a means for continuously feeding the skeleton 5 by axially supporting a skeleton roll is provided, and the skeleton 5 fed from this is generally a pre-soaking bat. After passing through 19, the skeleton material 5 is formed in the impregnation vat 20 by either a dip method or a kiss coat method.
When the impregnated resin is impregnated into the impregnated pad 20, the impregnated resin is dried to a semi-cured state (B stage) by using a heating method such as a hot air circulation method or a heat radiation method. It is run in the drying tower 21 arranged at, finally cooled, and wound as a prepreg roll 22 and collected.

【0005】このような方法で製造されるプリプレグ
は、ガラスクロスのように織りのある骨格材を用いる場
合には、クロスの折れ等の問題はあるものの20μm厚
さ程度のものを使用して30μm厚さのプリプレグを製
造することも可能となり、広く市場に受け入れられるよ
うになってきた。
In the prepreg manufactured by such a method, when a woven skeleton material such as a glass cloth is used, there is a problem such as bending of the cloth, but a prepreg having a thickness of about 20 μm is used and the prepreg is 30 μm. It has become possible to manufacture thick prepregs, and they have become widely accepted in the market.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、ガラス
クロスのように織りのあるクロスタイプの骨格材を用い
たプリプレグを用いると、銅張積層板にした後に炭酸ガ
スレーザー穴明け加工を必要とするバイアホール形成の
際に問題が生じていた。即ち、炭酸ガスレーザーを用い
て銅張積層板の穴明け加工を行おうとすると、層間絶縁
層にあるガラスクロスの加工性が悪く、穴明け後のバイ
アホールの内壁部の形状悪化を引き起こすのである。
However, when a prepreg using a woven cloth type skeleton material such as glass cloth is used, a via hole which requires carbon dioxide laser drilling after forming a copper clad laminate. There was a problem in forming holes. That is, when attempting to make a hole in a copper clad laminate using a carbon dioxide laser, the workability of the glass cloth in the interlayer insulating layer is poor, and the shape of the inner wall of the via hole after hole formation is deteriorated. .

【0007】このような問題を解決しようとして、クロ
スタイプの骨格材に替えて、ガラス不織布やアラミド不
織布等の不織布タイプの骨格材が使用されるようになっ
てきた。確かに、骨格材を不織布タイプとすることで、
炭酸ガスレーザーを用いて形成されたバイアホール等の
内壁面の形状は格段に優れたものとなり、大きな技術進
歩を果たすことになった。
In order to solve such a problem, a non-woven type skeleton material such as a glass non-woven fabric or an aramid non-woven fabric has been used in place of the cross type skeleton material. Certainly, by making the skeleton material a non-woven fabric type,
The shape of the inner wall surface such as the via hole formed by using the carbon dioxide gas laser has become remarkably excellent, which has led to a great technological advance.

【0008】ところが、不織布は、クロスタイプのよう
に縦糸と横糸とを交互に織り込んだものではなく、いわ
ばフェルト生地のようにガラス繊維若しくはアラミド繊
維等を押し固めてシート状にしたと捉えられるものであ
る。従って、クロスタイプの骨格材に比べ、不織布タイ
プの骨格材自体の強度が低下することになり、引張り等
の外的応力負荷に対する抵抗力が小さくなる。
However, the non-woven fabric is not a cloth type in which warp yarns and weft yarns are alternately woven, but it is considered that it is made by pressing glass fibers or aramid fibers etc. into a sheet like a felt fabric. Is. Therefore, the strength of the non-woven fabric type skeleton itself is lower than that of the cross type skeleton, and the resistance to external stress load such as tension is reduced.

【0009】この結果、上述したような縦型の乾燥塔を
用いる方法で、不織布に樹脂含浸を行い乾燥させようと
すると、必要量の樹脂を含浸させた不織布が乾燥塔を走
行する際に、含浸した樹脂分の重量が不織布にかかるこ
とになり、不織布が薄くなればなるほど、含浸させた樹
脂が半硬化状態となる前に乾燥塔内で破断し工程が止ま
ることになり、生産歩留まりを著しく低下させることに
なっていた。この様な現象は、骨格材として用いる不織
布が公称厚さ70μm以下になると非常に起こりやす
く、公称厚さ30μm以下の不織布を骨格材として用い
ることは、ほぼ不可能と言われてきた。
As a result, when the non-woven fabric is impregnated with resin by the method using the vertical type drying tower as described above and is dried, when the non-woven fabric impregnated with the required amount of resin travels through the drying tower, The weight of the impregnated resin will be applied to the nonwoven fabric, and the thinner the nonwoven fabric, the more the impregnated resin will break in the drying tower before the semi-cured state and the process will stop, resulting in a significant production yield. It was supposed to lower. It has been said that such a phenomenon is very likely to occur when the nonwoven fabric used as the skeleton has a nominal thickness of 70 μm or less, and it is almost impossible to use the nonwoven fabric having the nominal thickness of 30 μm or less as the skeleton.

【0010】以上に述べてきたような通常の樹脂含浸法
は、例え骨格材にガラスクロスのような織布を用いる場
合にも、当然に20μm以下の織布に樹脂を含浸乾燥さ
せようとすると、縦型の乾燥塔内で破断し易くなり、工
程の安全繊が確保できないと言うのは当然のことであ
る。ただ、織布を用いる場合が、不織布を用いる場合に
比べて、より破断しにくいと言うだけに過ぎず、厚い織
布を用いる場合と比べれば格段に信頼性のおけるもので
はない。
In the ordinary resin impregnation method as described above, even when a woven cloth such as glass cloth is used as the skeletal material, naturally, when the woven cloth of 20 μm or less is impregnated with the resin and dried, Of course, it is easy to break in the vertical drying tower, and it is not possible to secure the safety fiber of the process. However, the case of using the woven fabric is more difficult to break than the case of using the non-woven fabric, and is not much more reliable than the case of using the thick woven fabric.

【0011】以上のことから、市場では、上述した炭酸
ガスレーザー穴明け性を確保できるプリプレグとして、
不織布若しくは不織布を骨格材として用い、従来にない
薄さのプリプレグの安定生産可能な製造方法の確立が待
たれてきたのである。
From the above, in the market, as a prepreg capable of ensuring the above-mentioned carbon dioxide laser drilling property,
It has been awaited to establish a manufacturing method capable of stably producing a prepreg having an unprecedented thinness by using a nonwoven fabric or a nonwoven fabric as a skeletal material.

【0012】[0012]

【課題を解決するための手段】そこで、本発明に係る発
明者等は鋭意研究の結果、以下に示すようなプリプレグ
の製造方法を用いれば、70μm以下の不織布を骨格材
として用いたプリプレグの安定生産及び30μm以下の
極薄ガラスクロスを骨格材として用いたプリプレグの安
定生産が可能となることに想到したのである。
The inventors of the present invention have made earnest studies as a result, and as a result of using the method for producing a prepreg as shown below, the stability of the prepreg using a nonwoven fabric of 70 μm or less as a skeleton material is stabilized. It was conceived that the production and the stable production of the prepreg using the ultrathin glass cloth of 30 μm or less as the skeleton can be performed.

【0013】請求項には、骨格材に熱硬化性樹脂を含浸
させたプリント配線板製造に用いるプリプレグの製造方
法であって、以下に示す〜の各工程を備えたことを
特徴とする薄型のプリプレグの製造方法としている。図
1〜図3を参照しつつ、各工程の順を追って説明するこ
ととする。
According to the claims, there is provided a method of manufacturing a prepreg used for manufacturing a printed wiring board in which a skeletal material is impregnated with a thermosetting resin, which is characterized by including the following steps (1) to (3). It is used as a method for manufacturing prepreg. Each step will be described step by step with reference to FIGS. 1 to 3.

【0014】工程は、液体状の熱硬化性樹脂を用い
て、図1(1)に模式的に示したように、平坦なワーク
平面2の上に所定厚さの被膜として液体樹脂層3を形成
する液体樹脂被膜形成工程である。ここで液体状の熱硬
化性樹脂とは、エポキシ樹脂、硬化剤、硬化促進剤等と
溶剤とを混合して得られるエポキシ樹脂化合物等のこと
であり、ワーク平面2に塗工可能な程度に低い粘度を持
った状態のものである。この液体状の熱硬化性樹脂が、
骨格材に含浸させる樹脂となるのである。
In the step, a liquid thermosetting resin is used to form a liquid resin layer 3 as a film having a predetermined thickness on a flat work plane 2 as schematically shown in FIG. 1 (1). It is a step of forming a liquid resin film to be formed. Here, the liquid thermosetting resin is an epoxy resin compound or the like obtained by mixing an epoxy resin, a curing agent, a curing accelerator and the like with a solvent, and to the extent that it can be applied to the work plane 2. It has a low viscosity. This liquid thermosetting resin
It becomes the resin with which the skeleton material is impregnated.

【0015】そして、ワーク平面2とは、主に銅、チタ
ン、アルミニウム、ステンレス等の金属材で構成した平
面であり、以下の製造方法から明らかなように、樹脂を
半硬化状態にするために行う加熱操作での熱に対する耐
熱性を備えたもので有ればよい。例えば、アルミニウム
の表面にフッ素樹脂加工等して200℃以上の温度に耐
えるものでも構わないのである。
The work plane 2 is a plane mainly made of a metal material such as copper, titanium, aluminum, stainless steel, etc., and as will be apparent from the following manufacturing method, in order to bring the resin into a semi-cured state. What has heat resistance with respect to the heat in the heating operation to be performed may be used. For example, the surface of aluminum may be treated with a fluororesin or the like to withstand a temperature of 200 ° C. or higher.

【0016】ここで、液体状の熱硬化性樹脂を用いて、
平坦なワーク平面の上に所定厚さの被膜として液体樹脂
層3を形成する方法には、特段の限定を要しない。塗工
機を用いて均一な厚さに塗工する方法でも、当該ワーク
平面2上に置いた一定量の樹脂をスキージのような治具
で均一な厚さに延ばす方法であっても構わない。また、
「所定厚さの被膜として・・・」と表現しているのは、
従来用いられてきたプリプレグでは骨格材として用いる
骨格材の単位重量当たり同重量の樹脂を含浸させるのが
一般的であるが、骨格材である不織布若しくは織布の厚
さ、骨格材の種類により含浸させる樹脂量が異なるた
め、この段階で明確な数値として定義することが困難だ
からである。現段階で明らかとなっていることを、ここ
に記載しておくと、アラミド不織布を用いた場合にはプ
リプレグ中のアラミド不織布の重量が20wt%〜40
wt%、ガラス不織布を用いた場合にはプリプレグ中の
ガラス不織布の重量が20wt%〜50wt%、となる
ように調整することが銅箔を張り付けた場合の銅張積層
板の引き剥がし強度、耐マイグレーション性能等の品質
安定化の点では好ましい。
Here, using a liquid thermosetting resin,
The method of forming the liquid resin layer 3 as a coating having a predetermined thickness on a flat work plane does not require any particular limitation. A method of applying a uniform thickness using a coating machine or a method of spreading a certain amount of resin placed on the work plane 2 to a uniform thickness with a jig such as a squeegee may be used. . Also,
The expression "as a film of a predetermined thickness ..."
In the prepreg that has been used so far, it is common to impregnate the same weight of resin per unit weight of the skeleton, but depending on the thickness of the non-woven or woven skeleton and the type of skeleton. This is because it is difficult to define a clear numerical value at this stage because the amount of resin used is different. It is described here that it is clear at this stage that when the aramid nonwoven fabric is used, the weight of the aramid nonwoven fabric in the prepreg is 20 wt% to 40%.
The weight of the glass non-woven fabric in the prepreg is adjusted to be 20 wt% to 50 wt% when the glass non-woven fabric is used. It is preferable in terms of quality stabilization such as migration performance.

【0017】工程は、ワーク平面2上に形成した液体
樹脂層3を、図1(2)に模式的に示したように、その
ままの状態で乾燥させることで乾燥樹脂層4とする予備
乾燥工程である。この工程は、本件発明においては非常
に重要な技術的な意味合いを持つ工程となる。この工程
自体は、ワーク平面2上に形成した液体樹脂層3を、そ
のままの状態で乾燥させることで乾燥樹脂層4とするの
であるから、液体樹脂層3を短時間加熱するか、大気中
に一定時間暴露する風乾処理を行うか、これらの双方の
手法を組みあわせるかして、液体状の熱硬化性樹脂を調
整する際に用いた溶剤の除去を行っておくのである。従
って、この乾燥樹脂層4は、溶剤が除去された状態であ
り、風乾のみを行えば硬化の進行していない未硬化の状
態であり、加熱して乾燥を行えば半硬化の状態となるも
のである。このときの液体状の熱硬化性樹脂の溶剤を除
去したときの減少重量を意味する加熱減量は、0wt%
〜10wt%の範囲とすることが好ましい。この加熱減
量の値が大きいほど、含有する溶剤量が多くなり、粘度
の低い状態になることを意味している。そして、ここで
加熱減量0wt%を含めているのは、全く溶剤を用いる
ことのない液体状の熱硬化性樹脂を調整することも可能
だからである。従って、厳密に区別して言えば、溶剤を
用いる場合には、加熱減量は0.1wt%〜10wt%
の範囲とすることが好ましい。
The step is a preliminary drying step in which the liquid resin layer 3 formed on the work plane 2 is dried as it is as shown in FIG. 1 (2) to form a dry resin layer 4. Is. This step has a very important technical meaning in the present invention. In this step itself, the liquid resin layer 3 formed on the work plane 2 is dried as it is to form the dry resin layer 4. Therefore, the liquid resin layer 3 is heated for a short time or exposed to the atmosphere. The solvent used in preparing the liquid thermosetting resin is removed by performing air-drying treatment in which it is exposed for a certain period of time or combining both methods. Therefore, the dry resin layer 4 is in a state in which the solvent is removed, is in an uncured state in which curing has not progressed if only air drying is performed, and is in a semi-cured state if heated and dried. Is. At this time, the weight loss due to heating when the solvent of the liquid thermosetting resin is removed is 0 wt%.
It is preferably in the range of 10 wt%. The larger the value of this heating loss, the larger the amount of the solvent contained, and the lower the viscosity. The heating loss of 0 wt% is included here because it is possible to prepare a liquid thermosetting resin that does not use a solvent at all. Therefore, strictly speaking, when a solvent is used, the heating loss is 0.1 wt% to 10 wt%.
It is preferable to set it as the range.

【0018】仮に、溶剤を用いた液体樹脂層3を乾燥状
態とすることなく、ワーク平面2上の液体樹脂層3の表
面に骨格材を直接重ね、骨格材に樹脂を含浸させ、加熱
して樹脂乾燥を行おうとすると、溶剤の除去に伴って発
生するバブルが、骨格材の繊維間にトラップされたよう
にしてプリプレグ内に残留し、良好なプリプレグを得る
ことが出来ないこととなるのである。従って、加熱減量
が10wt%以上の場合には、風乾を用いて溶剤除去を
行うのに長時間を要し、十分な溶剤除去を行うことが困
難となりバブル発生が見られる確率が高くなるのであ
る。これに対して、加熱減量が0.1wt%以下の場合
には、加熱した場合の硬化の進行が進みやすく、以下に
述べる樹脂を再流動化させた後に、プリプレグに適した
半硬化状態として残すことが困難となるのである。
It is assumed that the skeleton material is directly placed on the surface of the liquid resin layer 3 on the work plane 2 without impregnating the liquid resin layer 3 using a solvent in a dry state, and the skeleton material is impregnated with the resin and heated. When attempting to dry the resin, the bubbles generated by the removal of the solvent remain in the prepreg as if they were trapped between the fibers of the skeleton, and it is not possible to obtain a good prepreg. . Therefore, when the weight loss due to heating is 10 wt% or more, it takes a long time to remove the solvent by using air drying, and it becomes difficult to sufficiently remove the solvent, and the probability of occurrence of bubbles increases. . On the other hand, when the loss on heating is 0.1 wt% or less, curing progresses easily when heated, and after the resin described below is re-fluidized, it remains in a semi-cured state suitable for prepreg. Will be difficult.

【0019】液体樹脂層3を乾燥樹脂層4とした後に行
う工程は、図2(3)として模式的に示したように、
ワーク平面2上にある前記乾燥樹脂層4の表面に、骨格
材5を重ね合わせ、予備加熱して圧着することで骨格材
付乾燥樹脂層7とする骨格材予備接着工程である。この
骨格材予備接着工程は、ワーク平面2上にある前記乾燥
樹脂層4の表面に、骨格材である不織布若しくは織布5
を張り合わせる工程であるが、「予備加熱して圧着す
る」とあるように、単に前記乾燥樹脂層4の表面に、骨
格材である不織布若しくは織布5を張り合わせるのみで
あり、樹脂含浸までは行わない。
The process performed after the liquid resin layer 3 is changed to the dry resin layer 4 is, as schematically shown in FIG.
This is a skeleton material pre-bonding step in which the skeleton material 5 is superposed on the surface of the dry resin layer 4 on the work plane 2, preheated and pressure-bonded to form the skeleton material-containing dry resin layer 7. In this pre-bonding step of the skeleton material, a non-woven fabric or a woven cloth 5 as a skeleton material is formed on the surface of the dry resin layer 4 on the work plane 2.
In the process of laminating, the non-woven fabric or woven fabric 5 which is a skeleton material is simply laminated to the surface of the dry resin layer 4 as described in “Preheating and crimping”, and even resin impregnation is performed. Does not.

【0020】予備加熱して圧着するためには、加熱ロー
ル6を用いて乾燥樹脂層4の表面に骨格材5をシワ等の
不良の無きように平面的に均一に張り付けるか、乾燥樹
脂層4の表面に骨格材である不織布若しくは織布5を載
置して低圧力で瞬間的に加熱プレス板等で押さえて均一
に張り付け加工する等して行うものである。ここで得ら
れたものを、本明細書における説明の都合上、「骨格材
付乾燥樹脂層」と称しているのである。このように一
旦、半硬化状態とした樹脂層に骨格材を張り付けること
で、骨格材のシワ、折れ等のない良好な平面状態を形成
することが容易であり、しかも、加熱ロール又は加熱プ
レス板で押さえつけた状態で樹脂含浸させないことか
ら、これらの加工装置の樹脂付着を防止し、繰り返して
の連続操業を可能とするのである。
In order to preheat and press-bond the skeleton material 5 to the surface of the dry resin layer 4 using a heating roll 6, the skeleton material 5 is evenly and uniformly applied to the surface of the dry resin layer 4 without wrinkles or other defects. A non-woven fabric or a woven fabric 5, which is a skeleton material, is placed on the surface of 4, and is momentarily pressed by a heating press plate or the like at a low pressure so as to be evenly attached. The one obtained here is referred to as a “dry resin layer with a skeleton material” for the sake of explanation in this specification. In this way, by attaching the skeleton material to the semi-cured resin layer once, it is easy to form a good flat state without wrinkles, breakage, etc. of the skeleton material. Since the resin is not impregnated in the state of being pressed by the plate, resin adhesion to these processing devices is prevented and repeated continuous operation is possible.

【0021】ここで用いる骨格材5の厚さは、特に限定
を要するものではないが、本件発明の目的を考えれば、
公称厚さが70μm以下の不織布、公称厚さが30μm
以下の織布を用いることになる。また、当該不織布若し
くは織布の種類も、アラミド繊維、ガラス繊維等のプリ
ント配線板のプリプレグに使用できる材質である限り使
用することが可能である。特に、織布の場合には、織布
を構成する繊維が平面的に開繊し、縦横のストランドの
断面形状が扁平化したSPクロスを用いることが、レー
ザー穴明け加工性を考慮すれば、より好ましい物とな
る。更に、これらの骨格材を構成する繊維の表面は、樹
脂との濡れ性を向上させるため、アミノ系シランカップ
リング剤塔によるシランカップリング剤処理を施してお
くことが、ボイド発生防止、界面剥離の観点から好まし
いのである。
The thickness of the skeleton material 5 used here is not particularly limited, but considering the object of the present invention,
Nonwoven fabric with a nominal thickness of 70 μm or less, nominal thickness of 30 μm
The following woven fabric will be used. Also, the type of the non-woven fabric or woven fabric can be used as long as it is a material such as aramid fiber or glass fiber that can be used for a prepreg of a printed wiring board. In particular, in the case of a woven fabric, it is preferable to use an SP cloth in which the fibers constituting the woven fabric are opened flatly and the cross-sectional shape of the longitudinal and lateral strands is flattened, considering the laser drilling processability. It will be more preferable. Furthermore, in order to improve the wettability with the resin, the surface of the fibers constituting these skeleton materials should be treated with a silane coupling agent by an amino-based silane coupling agent tower to prevent the occurrence of voids and delamination of the interface. From the viewpoint of, it is preferable.

【0022】そして、工程は、図3(4)に模式的に
示したように、ワーク平面2上に骨格材付乾燥樹脂層7
を載置したまま、乾燥樹脂層4の樹脂が再流動可能とな
る温度で加熱し、当該骨格材5に熱硬化性樹脂成分を含
浸させる樹脂含浸工程である。ここに至るまでの工程か
ら明らかなように、たとえ薄い骨格材を用いても、骨格
材自体に、余分な負荷をかけることは行っていない。そ
して、この樹脂含浸工程でも、ワーク平面2上に骨格材
付乾燥樹脂層7を載置したまま、樹脂が再流動可能な温
度で加熱し、当該骨格材5に熱硬化性樹脂成分を含浸さ
せるのである。そのため、含浸した樹脂重量が骨格材自
体に負荷を与えることがないため、骨格材が樹脂重量で
引っ張られることが無くなり、例え薄くとも破断するこ
とも無くなるのである。
Then, in the process, as schematically shown in FIG. 3 (4), the dry resin layer 7 with the skeleton material is formed on the work plane 2.
Is a resin impregnation step of heating the resin of the dry resin layer 4 at a temperature at which the resin can be reflowed while the above is placed, and impregnating the frame material 5 with the thermosetting resin component. As is clear from the steps up to this point, no extra load is applied to the skeleton itself even if a thin skeleton is used. Also in this resin impregnation step, while the dried resin layer 7 with the skeleton material is placed on the work plane 2, the resin is heated at a temperature at which the resin can reflow to impregnate the skeleton material 5 with the thermosetting resin component. Of. Therefore, the weight of the impregnated resin does not give a load to the skeleton itself, so that the skeleton is not pulled by the resin weight, and even if it is thin, it is not broken.

【0023】樹脂含浸工程では、骨格材付乾燥樹脂層7
の乾燥樹脂層を構成する樹脂を、再流動させるだけで硬
化することのない温度で加熱することになる。再流動化
した樹脂は、骨格材5の繊維間の隙間に進入し、毛細管
現象により骨格材によって吸い上げられることになる。
そして、本件発明者等が確認する限り、再流動化した樹
脂は、骨格材5を透過して骨格材5の全体を包み込むよ
うになり、従来のプリプレグと同様の含浸状態を得るこ
とが出来るのである。
In the resin impregnation step, the skeletal material-added dry resin layer 7
The resin forming the dry resin layer is heated at a temperature at which it does not cure only by reflowing. The re-fluidized resin enters the gaps between the fibers of the skeleton material 5 and is sucked up by the skeleton material due to the capillary phenomenon.
As far as the inventors of the present invention confirm, the refluidized resin permeates the skeleton material 5 and wraps the entire skeleton material 5, so that the same impregnation state as that of the conventional prepreg can be obtained. is there.

【0024】樹脂含浸が終了すると、工程として、図
3(5)に模式的に示したように、含浸した熱硬化性樹
脂の完全硬化を防止するため、直ちに降温操作を行い、
骨格材5に含浸させた熱硬化性樹脂の半硬化状態を維持
してプリプレグ状態となるようにする降温工程を設ける
のである。ここでは、降温工程と称しているが、放冷を
行っても、図3(5)に示した如きエアブロワ装置10
を用いて衝風冷却を行ってもよい。特に、室温以下に冷
却した冷気を出すことのできるような装置を用いての降
温操作を要するというものではない。
Upon completion of the resin impregnation, as a step, as shown schematically in FIG. 3 (5), the temperature is lowered immediately to prevent the impregnated thermosetting resin from being completely cured.
A temperature lowering step is provided to maintain the semi-cured state of the thermosetting resin impregnated in the skeleton material 5 and bring it into the prepreg state. Although referred to as a temperature lowering step here, the air blower device 10 as shown in FIG.
May be used for cooling with wind. In particular, it is not necessary to perform the temperature lowering operation using an apparatus capable of discharging cold air cooled to room temperature or lower.

【0025】降温操作が完了すると、骨格材5が熱硬化
性樹脂を含浸した状態で、当該熱硬化性樹脂が半硬化状
態にあるプリプレグ1が得られることとなるのである。
以上のように骨格材5に対する樹脂含浸を、樹脂含浸作
業台の平面上に載置した状態のまま行えるため、含浸さ
せた樹脂重量が骨格材自体に負荷されることがなくな
る。この結果、骨格材5の厚さが極めて薄くなっても、
骨格材5が樹脂重量で引っ張られて破断するという工程
不良を解消できるようになるのである。
When the temperature lowering operation is completed, the prepreg 1 in which the skeletal material 5 is impregnated with the thermosetting resin and the thermosetting resin is in the semi-cured state is obtained.
As described above, since the skeleton 5 can be impregnated with the resin while being placed on the flat surface of the resin impregnation workbench, the weight of the impregnated resin is not applied to the skeleton itself. As a result, even if the skeletal member 5 becomes extremely thin,
This makes it possible to eliminate a process defect in which the skeleton material 5 is pulled by the resin weight and is broken.

【0026】上述してきたプリプレグの製造方法を実施
するに当たっては、以下に述べるような連続製造方法を
用いることが非常に生産効率を高める観点から望ましい
ものである。この連続製造方法を実施するための製造ラ
インを模式的に示したのが図4である。以下この図を参
照しつつ、説明する。
In carrying out the prepreg manufacturing method described above, it is desirable to use the continuous manufacturing method as described below from the viewpoint of extremely improving the production efficiency. FIG. 4 schematically shows a production line for carrying out this continuous production method. Hereinafter, description will be given with reference to this figure.

【0027】即ち、「無限軌道をもってエンドレス走行
するメタルベルト、熱硬化性の液体樹脂層を前記メタル
ベルト上に形成するための樹脂供給手段、前記液体樹脂
層を乾燥樹脂層とするための予備乾燥手段、骨格材を製
造ライン内に連続供給する骨格材供給手段、前記骨格材
を前記乾燥樹脂層に予備的に圧着する骨格材予備接着手
段、前記骨格材を前記乾燥樹脂層に予備的に圧着した部
位を加熱し樹脂含浸を行う樹脂含浸手段、樹脂含浸の終
了後に降温操作を行いプリプレグの状態とする降温手
段、及び完成したプリプレグの採取手段を組みあわせて
一つの製造ラインとした請求項1に記載のプリプレグの
製造方法を実施するために用いる製造装置であって、メ
タルベルトは、工程内を一次側から二次側に向けて、樹
脂供給手段から降温手段までを、少なくとも一貫して走
行するものであり、樹脂供給手段は、液体状の熱硬化性
樹脂を前記メタルベルト上に連続供給し前記メタルベル
ト上に均一な所定厚さの液体樹脂層を形成させることの
できる樹脂ディスペンサを、当該メタルベルトの一次側
の起端部に配し、前記樹脂供給手段の二次側に、前記メ
タルベルト上の前記液体樹脂層を乾燥樹脂層とするため
の予備乾燥手段として加熱乾燥又は風乾を行うための乾
燥ゾーンを配し、前記予備乾燥手段の二次側に、骨格材
原料ロールから当該メタルベルトの走行速度と同期して
連続的に骨格材を繰り出す骨格材供給手段を配し、前記
骨格材供給手段の二次側に、前記メタルベルト上の前記
乾燥樹脂層の表面に、骨格材供給手段より供給された骨
格材を加熱ロールを用いて加熱圧着する骨格材予備接着
手段を配し、前記骨格材予備接着手段の二次側に、骨格
材を予備接着した乾燥樹脂層の部位を樹脂の硬化温度以
下の温度で加熱し、熱硬化性樹脂の再流動化を行わせ、
流動化した樹脂を張り合わせた骨格材に含浸させる加熱
ゾーンを樹脂含浸手段として設け、前記樹脂含浸手段の
二次側に、樹脂含浸の終了後に降温操作を行いプリプレ
グの状態とする放冷又は強制冷却することで、骨格材に
含浸させた熱硬化性樹脂の半硬化状態を維持してプリプ
レグの状態とする冷却ゾーンを降温手段として配し、前
記降温手段の2次側に完成したプリプレグをロール状に
するための巻き取り器又はカットシートとするカット装
置をプリプレグの採取手段として配したことを特徴とす
る骨格材に熱硬化性樹脂を含浸させたプリント配線板製
造に用いるプリプレグの連続製造装置。」である。
That is, "a metal belt that runs endlessly on an endless track, a resin supply means for forming a thermosetting liquid resin layer on the metal belt, and a pre-drying for making the liquid resin layer a dry resin layer. Means, skeleton material supplying means for continuously supplying skeleton material to the production line, skeleton material pre-bonding means for preliminarily crimping the skeleton material to the dry resin layer, preliminarily crimping the skeleton material to the dry resin layer 2. A manufacturing line comprising a resin impregnating means for heating the formed portion to impregnate the resin, a temperature lowering means for performing a temperature lowering operation after completion of the resin impregnation to obtain a prepreg state, and a means for collecting the completed prepreg. The manufacturing apparatus used for carrying out the method for manufacturing a prepreg according to claim 1, wherein the metal belt has a temperature drop from the resin supply means in the process from the primary side to the secondary side. At least consistently traveling up to the step, the resin supply means continuously supplies a liquid thermosetting resin onto the metal belt to form a liquid resin layer having a uniform predetermined thickness on the metal belt. A resin dispenser that can be formed is arranged on the primary end of the metal belt, and the liquid resin layer on the metal belt is used as a dry resin layer on the secondary side of the resin supply means. As a preliminary drying means, a drying zone for performing heat drying or air drying is arranged, and the skeleton material is continuously fed from the skeleton material raw material roll to the secondary side of the preliminary drying means in synchronization with the traveling speed of the metal belt. A skeleton material supplying means is arranged, and the skeleton material supplied from the skeleton material supplying means is heated and pressure-bonded to the surface of the dry resin layer on the metal belt on the secondary side of the skeleton material supplying means by using a heating roll. You A skeleton material pre-adhesion means is provided, and the portion of the dry resin layer to which the skeleton material is pre-adhered is heated to a temperature not higher than the curing temperature of the resin on the secondary side of the skeleton material pre-adhesion means, and the thermosetting resin Fluidize,
A heating zone for impregnating the skeleton laminated with fluidized resin is provided as a resin impregnating means, and the secondary side of the resin impregnating means is cooled to a prepreg state after the resin impregnation is finished or forced cooling. By doing so, the cooling zone for maintaining the semi-cured state of the thermosetting resin impregnated in the skeletal material to the state of the prepreg is arranged as the temperature lowering means, and the completed prepreg is rolled on the secondary side of the temperature lowering means. A continuous prepreg manufacturing apparatus used for manufacturing a printed wiring board in which a skeletal material is impregnated with a thermosetting resin, characterized in that a winding device or a cutting device serving as a cut sheet is arranged as a means for collecting the prepreg. It is.

【0028】この連続製造装置11の中心には、無限軌
道をもってエンドレス走行するメタルベルト12が配置
される。このメタルベルト12は、工程内を一次側から
二次側に向けて、樹脂供給手段から降温手段までを、少
なくとも一貫して走行するものである。「少なくとも一
貫して」としているのは、装置の設計によってはメタル
ベルトの走行領域が変動しうるからである。ここで言う
メタルベルト12とは、ベルトコンベアのような無限軌
道をもってエンドレス走行することのできる柔軟性を持
つ金属製帯である。従って、200℃以上の耐熱性を備
えていれば銅、銅合金、アルミニウム、ステンレス、特
にメタルベルトを構成する金属材の種類は限定しない。
しかし、柔軟性を持つためには、ある程度厚さの薄い金
属条、金属箔の如き物であり、均一な平面を作り出す観
点からすれば50μm〜400μmの厚さのものが使用
されることになる。
At the center of the continuous manufacturing apparatus 11, a metal belt 12 which runs endlessly on an endless track is arranged. The metal belt 12 travels at least consistently from the resin supply means to the temperature lowering means in the process from the primary side to the secondary side. The term "at least consistent" is used because the running area of the metal belt may vary depending on the design of the device. The metal belt 12 referred to here is a metal belt having flexibility such that it can run endlessly on an endless track like a belt conveyor. Therefore, as long as it has a heat resistance of 200 ° C. or higher, copper, copper alloy, aluminum, stainless steel, in particular, the kind of metal material constituting the metal belt is not limited.
However, in order to have flexibility, a metal strip or metal foil having a certain thickness is used, and a thickness of 50 μm to 400 μm is used from the viewpoint of forming a uniform plane. .

【0029】また、メタルベルト12の表面は、滑らか
な平滑面であっても、ある程度の凹凸のあるものであっ
ても構わない。ある程度の凹凸とは、電解銅箔の基材樹
脂と張り付ける面として使用する接着面の粗さ程度、具
体的には、表面粗さ(Rz)が5.0μm〜24.0μ
m程度のものが好ましい。ある程度の凹凸があると、以
下に述べる液体状の熱硬化性樹脂を前記メタルベルト1
2上に連続供給し、メタルベルト12上に液体樹脂層3
を形成する際に、当該液体樹脂の粘度が低くなっても、
メタルベルト12上での樹脂の横流れを防止でき、形成
した液体樹脂層3の形状維持性能に優れることになるの
である。メタルベルト12表面の凹凸の粗さがRz=2
4.0μmとなると、以下に述べる液体樹脂層3の厚さ
を均一にすることはできず、メタルベルト12表面の凹
凸の粗さがRz=5.0μmとなると、液体樹脂層3の
形状維持性能が鏡面の場合同等になるのである。
Further, the surface of the metal belt 12 may be a smooth smooth surface or may have irregularities to some extent. A certain degree of unevenness is a degree of roughness of an adhesive surface used as a surface to be adhered to a base resin of an electrolytic copper foil, specifically, a surface roughness (Rz) of 5.0 μm to 24.0 μm.
It is preferably about m. If the metal belt 1 has a certain degree of unevenness, the liquid thermosetting resin described below is added to the metal belt 1.
2 and the liquid resin layer 3 on the metal belt 12 continuously supplied.
When forming the, even if the viscosity of the liquid resin becomes low,
The lateral flow of the resin on the metal belt 12 can be prevented, and the shape retention performance of the formed liquid resin layer 3 is excellent. The roughness of the surface of the metal belt 12 is Rz = 2.
When the thickness becomes 4.0 μm, the thickness of the liquid resin layer 3 described below cannot be made uniform, and when the roughness of the irregularities on the surface of the metal belt 12 becomes Rz = 5.0 μm, the shape of the liquid resin layer 3 is maintained. The performance is the same when it is a mirror surface.

【0030】まず、このメタルベルト12の一次側の起
端部に、樹脂供給手段を配するのである。本件明細書で
は、この樹脂供給手段を、液体状の熱硬化性樹脂を前記
メタルベルト12上に連続供給し、前記メタルベルト1
2上に均一な所定厚さの液体樹脂層3を形成させること
のできる樹脂ディスペンサ13としている。ここで言う
樹脂ディスペンサ13とは、メタルベルト12上に液体
状の熱硬化性樹脂を連続的に供給する機能、及び、メタ
ルベルト12上で均一な所定厚さの液体樹脂層3を形成
する機能を同時に果たすことの出来るエッジコータ又は
リップコータの如き一体の装置でも、これらの機能を分
離した部位それぞれ行う一つのユニットとして捉えられ
る装置の双方を含む概念として記載しているのであり、
同様の機能を果たすことの出来る装置であれば問題なく
使用可能なものである。
First, a resin supply means is arranged at the primary end of the metal belt 12. In the present specification, the resin supply means continuously supplies a liquid thermosetting resin onto the metal belt 12, and the metal belt 1
The resin dispenser 13 is capable of forming the liquid resin layer 3 having a uniform and predetermined thickness on the resin dispenser 13. The resin dispenser 13 mentioned here has a function of continuously supplying a liquid thermosetting resin onto the metal belt 12 and a function of forming a liquid resin layer 3 having a uniform predetermined thickness on the metal belt 12. Even an integrated device such as an edge coater or a lip coater capable of simultaneously performing the above is described as a concept including both devices that are regarded as one unit that performs these functions separately.
Any device that can perform the same function can be used without problems.

【0031】そして、メタルベルト12上で、均一な所
定厚さの液体樹脂層3となった部位は、前記樹脂供給手
段の二次側に、予備乾燥手段として乾燥ゾーン14を配
することで、前記メタルベルト12上の前記液体樹脂層
3を乾燥樹脂層4とするのである。この乾燥ゾーンで
は、ライン速度が早い場合には、図4に示したように加
熱乾燥を採用し素早く乾燥させ、ライン速度が十分に遅
い場合には風乾を採用することが可能となる。ここで言
う風乾とは、単に大気中に放置した状態か、ファンで送
り出した風を衝風するか等の意味で使用している。
Then, a portion of the metal belt 12 where the liquid resin layer 3 having a uniform thickness is formed is provided with a drying zone 14 as a preliminary drying means on the secondary side of the resin supply means. The liquid resin layer 3 on the metal belt 12 is the dry resin layer 4. In this drying zone, when the line speed is high, it is possible to adopt the heat drying as shown in FIG. 4 for quick drying, and when the line speed is sufficiently low, it is possible to adopt the air drying. The term "air-dried" is used to mean that it is simply left in the atmosphere, or that the air blown out by a fan is blown.

【0032】次に、前記予備乾燥手段の二次側に、骨格
材5を製造ライン内に連続供給する骨格材供給手段を配
する。この骨格材供給手段は、骨格材原料ロール15か
ら連続的に繰り出された骨格材5を、前記メタルベルト
12上の前記乾燥樹脂層4となった表面に連続的に供給
し、重ね合わせるものである。このとき、骨格材原料ロ
ール15からの骨格材5の繰り出し速度とメタルベルト
12の走行速度とを一致させ、同期するようにする。骨
格材を平面的に均一且つシワの発生無きように張り付け
るためである。
Next, a skeleton material supplying means for continuously supplying the skeleton material 5 into the manufacturing line is arranged on the secondary side of the preliminary drying means. This skeleton material supply means continuously supplies the skeleton material 5 continuously fed from the skeleton material raw material roll 15 to the surface of the metal belt 12 which has become the dry resin layer 4, and superimposes it. is there. At this time, the feeding speed of the skeleton material 5 from the skeleton material raw material roll 15 and the traveling speed of the metal belt 12 are made to coincide with each other and synchronized. This is for sticking the skeleton material in a plane and without wrinkles.

【0033】そして、その骨格材供給手段の2次側に
は、骨格材予備接着手段を配する。この骨格材予備接着
手段は、加熱ロール6を用いて、骨格材供給手段より供
給された骨格材5を、乾燥樹脂層4の表面に連続的に加
熱圧着し、骨格材付乾燥樹脂層7の状態にするものであ
る。この加熱ロール6による骨格材5の圧着は、加熱ロ
ール6の熱により乾燥樹脂層4の表層の樹脂のみが再流
動化し、骨格材5が問題なく張り付くが、骨格材5を通
して流動化した乾燥樹脂層4の樹脂が滲み出してこない
程度の低圧力を採用して行う。いわゆる仮接着を行うが
如きものである。樹脂が滲み出すと加熱ロール6の表面
に付着し、連続製造が不可能となるからである。
Then, a skeleton material pre-bonding means is arranged on the secondary side of the skeleton material supply means. This skeleton material pre-adhesion means continuously heat-bonds the skeleton material 5 supplied from the skeleton material supply means to the surface of the dry resin layer 4 by using a heating roll 6 to form a skeleton material-containing dry resin layer 7. It is to make it a state. When the skeleton material 5 is pressure-bonded by the heating roll 6, only the resin on the surface layer of the dry resin layer 4 is reflowed by the heat of the heating roll 6 and the skeleton material 5 sticks without any problem, but the dried resin fluidized through the skeleton material 5 is used. The pressure is set so low that the resin of the layer 4 does not seep out. So-called temporary adhesion is performed. This is because if the resin oozes out, it adheres to the surface of the heating roll 6 and continuous production becomes impossible.

【0034】次には、前記骨格材予備接着手段の二次側
に、骨格材付乾燥樹脂層7の状態になった部位を樹脂の
硬化温度以下の温度で加熱し、熱硬化性樹脂の再流動化
を行わせ、流動化した樹脂を張り合わせた骨格材5に含
浸させる加熱ゾーン16を樹脂含浸手段として設けるの
である。ここでは、樹脂含浸を行うのであるから、乾燥
樹脂層4を構成する熱硬化性樹脂の全体が再流動化する
ことが必要である。従って、樹脂含浸手段は、所謂加熱
炉を採用し、その加熱方式は特に問わない。この樹脂含
浸手段の加熱ゾーン16内で十分な樹脂の再流動化が起
こると、短時間の内に骨格材5が再流動化した樹脂を吸
い上げることとなり、含浸が行えるのである。
Next, on the secondary side of the preliminarily adhering means for the skeleton material, the portion in the state of the dry resin layer with skeleton material 7 is heated at a temperature not higher than the curing temperature of the resin to re-add the thermosetting resin. The heating zone 16 for fluidizing and impregnating the skeleton material 5 to which the fluidized resin is bonded is provided as a resin impregnating means. Since the resin impregnation is performed here, it is necessary that the entire thermosetting resin forming the dry resin layer 4 be refluidized. Therefore, a so-called heating furnace is adopted as the resin impregnating means, and the heating system is not particularly limited. When sufficient refluidization of the resin occurs in the heating zone 16 of the resin impregnating means, the skeleton material 5 sucks up the refluidized resin within a short time, and impregnation can be performed.

【0035】骨格材5への樹脂含浸の終了した部位は、
樹脂含浸手段として加熱ゾーン16を出ると、直ちに降
温操作を行いプリプレグの状態となる。従って、この降
温操作を行うための降温手段は、前記樹脂含浸手段の二
次側に配するものであり、放冷又はファンを用いて衝風
する等して強制冷却するものである。図4の中には、エ
アブロワ装置10を例示的に記載している。
The part where the resin is impregnated into the skeleton 5 is
Upon exiting the heating zone 16 as a resin impregnating means, the temperature is immediately lowered, and the prepreg is formed. Therefore, the temperature lowering means for performing the temperature lowering operation is arranged on the secondary side of the resin impregnating means, and is forcibly cooled by allowing air to cool or by using a fan to blow air. In FIG. 4, the air blower device 10 is described as an example.

【0036】最後に、前記降温手段の2次側に、完成し
たプリプレグ1をロール状とするための巻き取り機又は
カットシートとするカット装置をプリプレグ1の採取手
段として配するのである。以上のようにして、骨格材5
に熱硬化性樹脂を含浸させたプリント配線板製造に用い
るプリプレグ1の連続製造が可能となるのである。この
装置を用いることで、骨格材5に対する樹脂含浸を、メ
タルベルト12の平面上に載置した状態のままで行える
ため、含浸させた樹脂重量が骨格材自体に負荷されるこ
とがなく、骨格材の厚さが極めて薄くなっても、骨格材
が樹脂重量で破断するという工程不良は解消でき、従来
使用不可能であった薄い骨格材を骨格材に用いたプリプ
レグ1の安定生産が可能となるのである。
Finally, on the secondary side of the temperature lowering means, a winding device for making the completed prepreg 1 into a roll or a cutting device as a cut sheet is arranged as a means for collecting the prepreg 1. As described above, the skeleton material 5
Thus, it becomes possible to continuously manufacture the prepreg 1 used for manufacturing a printed wiring board in which the thermosetting resin is impregnated. By using this apparatus, the skeletal member 5 can be impregnated with the resin while being placed on the flat surface of the metal belt 12, so that the weight of the impregnated resin is not loaded on the skeletal member itself, Even if the thickness of the material is extremely thin, the process failure that the skeleton material is broken by the weight of the resin can be solved, and stable production of the prepreg 1 using the thin skeleton material that was previously unusable can be achieved. It will be.

【0037】以上に述べてきた製造方法を採用すること
で、従来、プリプレグに使用不可能であった70μm以
下の厚さの不織布及び30μm以下の厚さの織布を骨格
材に用いることが可能となり、結果として極めて薄い骨
格材を用いた薄いプリプレグを用いて銅張積層板を製造
できる。そして、この銅張積層板は、その層間絶縁層内
の骨格材が不織布、若しくは極めて薄い織布であること
から、炭酸ガスレーザーによる穴明け加工性が良好とな
るのである。
By adopting the manufacturing method described above, it is possible to use a non-woven fabric having a thickness of 70 μm or less and a woven fabric having a thickness of 30 μm or less, which cannot be conventionally used for a prepreg, as a skeleton material. As a result, a copper clad laminate can be manufactured using a thin prepreg using an extremely thin skeleton material. Since the skeleton material in the interlayer insulating layer is a non-woven fabric or an extremely thin woven fabric, this copper-clad laminate has good drilling workability with a carbon dioxide laser.

【0038】そして、上述してきた製造方法を応用し
て、ワーク平面上で行った操作を銅箔の表面上で行うこ
とで、簡単に絶縁層付銅箔の状態の製品を得ることが出
来るのである。即ち、請求項には、「骨格材に熱硬化性
樹脂を含浸させた絶縁層を片面に備えた絶縁層付銅箔の
製造方法であって、以下に示す〜の各工程を備えた
ことを特徴とする絶縁層付銅箔の製造方法。 液体
状の熱硬化性樹脂を用いて、銅箔の片面上に所定厚さの
被膜として液体樹脂層を形成する液体樹脂被膜形成工
程。 銅箔の片面上にある液体樹脂層を、そのままの
状態で乾燥させることで乾燥樹脂層とする予備乾燥工
程。 銅箔の片面上にある前記乾燥樹脂層の表面に、
骨格材を重ね合わせ、予備加熱して圧着することで骨格
材付乾燥樹脂層とする骨格材予備接着工程。 銅箔の
片面上に骨格材付乾燥樹脂層を載置したまま、樹脂が再
流動可能な温度で加熱し、当該骨格材に熱硬化性樹脂成
分を含浸させる樹脂含浸工程。 樹脂含浸が終了する
と、熱硬化性樹脂を完全硬化させることなく、直ちに降
温操作を行い、骨格材に含浸させた熱硬化性樹脂の半硬
化状態を維持して絶縁層付銅箔の状態する冷却工程。」
としている。この工程は、敢えて図6〜図8に、そのフ
ローを示したが、図1〜図3のワーク平面を銅箔Cに置
き換えただけで表せるものである。従って、各工程の説
明は重複する物となるため、ここでの説明は省略する。
この製造方法により、図8(5)に示した模式断面の状
態そのままの絶縁層付銅箔18が得られるのである。
By applying the above-described manufacturing method and performing the operation performed on the surface of the work on the surface of the copper foil, the product in the state of the copper foil with the insulating layer can be easily obtained. is there. That is, in the claims, "a method for producing an insulating layer-provided copper foil having an insulating layer having a skeletal material impregnated with a thermosetting resin on one surface thereof, comprising: A method for producing a copper foil with an insulating layer, characterized in that a liquid resin film forming step of forming a liquid resin layer as a film having a predetermined thickness on one surface of a copper foil by using a liquid thermosetting resin. Preliminary drying step of drying the liquid resin layer on one side as it is to form a dry resin layer on the surface of the dry resin layer on one side of the copper foil,
Pre-bonding process for the skeleton material by stacking the skeleton materials, preheating and pressing to form a dry resin layer with skeleton material. A resin impregnation step of heating the resin at a temperature at which the resin can be reflowed while the dried resin layer with the skeleton material is placed on one surface of the copper foil to impregnate the skeleton material with the thermosetting resin component. When the resin impregnation is completed, the temperature is lowered immediately without completely curing the thermosetting resin, and the semi-cured state of the thermosetting resin impregnated into the skeleton is maintained to cool the copper foil with an insulating layer. Process. "
I am trying. The flow of this step is intentionally shown in FIGS. 6 to 8, but it can be expressed only by replacing the work plane of FIGS. 1 to 3 with the copper foil C. Therefore, the description of each step will be redundant and will not be repeated here.
By this manufacturing method, the copper foil 18 with an insulating layer in the state of the schematic cross section shown in FIG. 8 (5) can be obtained.

【0039】このような製造方法で得られた絶縁層付銅
箔の絶縁層は、骨格材を含む物ではあるが、その骨格材
は、従来のプリプレグに用いるものに比べ、非常に薄い
ものを用いることが可能であり、結果して薄い絶縁層と
することが出来るのである。従って、この絶縁層付銅箔
を用いた銅張積層板は、その厚さを薄くすることがで
き、しかも骨格材の折れ、割れ等の不良が殆ど無いもの
となるのである。。
The insulating layer of the copper foil with an insulating layer obtained by such a manufacturing method includes a skeleton material, but the skeleton material is much thinner than that used for a conventional prepreg. It can be used, resulting in a thin insulating layer. Therefore, the copper clad laminate using this copper foil with an insulating layer can be made thin, and there are almost no defects such as breakage and cracking of the skeleton material. .

【0040】[0040]

【発明の実施の形態】以下、本件発明に係るプリプレグ
の製造方法について、最良と思われる実施形態について
説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the most preferred embodiment of the method for producing a prepreg according to the present invention will be described.

【0041】第1実施形態: 本実施形態では、バッジ
方式で、骨格材である30μm厚さのアラミド繊維を用
いた不織布にエポキシ系の熱硬化性樹脂を含浸させたプ
リント配線板製造に用いるプリプレグ1の製造方法につ
いて述べる。以下、図1〜図3を参照しつつ、各工程の
順を追って説明することとする。
First Embodiment: In the present embodiment, a prepreg used in the production of a printed wiring board by a badge method in which a non-woven fabric made of aramid fiber having a thickness of 30 μm which is a skeleton material is impregnated with an epoxy thermosetting resin. The manufacturing method of No. 1 will be described. Hereinafter, the steps will be sequentially described with reference to FIGS. 1 to 3.

【0042】最初に図1(1)に示したように液体樹脂
被膜形成工程で、液体状のエポキシ系の熱硬化性樹脂を
用いて、平坦な55cm×55cmサイズのワーク平面
2の上に約16μm厚さの被膜として、50cm×50
cmの領域に液体樹脂層3を形成した。ここで用いた液
体状のエポキシ系の熱硬化性樹脂は、ビスフェノールA
型エポキシ樹脂(商品名:YD−128、東都化成社
製)30重量部、o−クレゾール型エポキシ樹脂(商品
名:ESCN−195XL80、住友化学社製)50重
量部、エポキシ樹脂硬化剤として固形分25%のジメチ
ルホルムアルデヒド溶液の形でジシアンジアミド(ジシ
アンジアミドとして4重量部)を16重量部、硬化促進
剤として2−エチル4−メチルイミダゾール(商品名:
キャゾール2E4MZ、四国化成社製)を0.1重量部
をメチルエチルケトンとジメチルホルムアルデヒドとの
混合溶剤(混合比:メチルエチルケトン/ジメチルホル
ムアルデヒド=4/6)に溶解して固形分60重量%と
したエポキシ樹脂組成物とした。
First, in a liquid resin film forming step as shown in FIG. 1A, a liquid epoxy thermosetting resin is used to form a flat surface on a work surface 2 having a size of 55 cm × 55 cm. 50 cm x 50 as a 16 μm thick coating
The liquid resin layer 3 was formed in the cm area. The liquid epoxy thermosetting resin used here is bisphenol A.
Type epoxy resin (trade name: YD-128, Toto Kasei Co., Ltd.) 30 parts by weight, o-cresol type epoxy resin (trade name: ESCN-195XL80, Sumitomo Chemical Co., Ltd.) 50 parts by weight, solid content as epoxy resin curing agent 16 parts by weight of dicyandiamide (4 parts by weight as dicyandiamide) in the form of a 25% dimethylformaldehyde solution, and 2-ethyl 4-methylimidazole as a curing accelerator (trade name:
Epoxy resin composition having a solid content of 60 wt% by dissolving 0.1 part by weight of Cazol 2E4MZ, manufactured by Shikoku Kasei Co., Ltd. in a mixed solvent of methyl ethyl ketone and dimethyl formaldehyde (mixing ratio: methyl ethyl ketone / dimethyl formaldehyde = 4/6) It was a thing.

【0043】そして、図1(2)に示した予備乾燥工程
では、この前記ワーク平面2の上にある液体樹脂層3
を、室温で30分間放置して、熱風乾燥機を用いて15
0℃の温風を2分間衝風することで、半硬化状態に乾燥
させ乾燥樹脂層4とした。このときの乾燥樹脂層4の塗
布量は、乾燥後の樹脂厚として40μmとなるようにし
た。ここで用いたワーク平面は、表面を光沢仕上げした
1cm厚さの銅板を用いた。
Then, in the pre-drying step shown in FIG. 1B, the liquid resin layer 3 on the work plane 2 is
Let stand for 30 minutes at room temperature, and use a hot air drier for 15 minutes.
By blowing hot air at 0 ° C. for 2 minutes, the resin was dried to a semi-cured state to form a dry resin layer 4. The coating amount of the dry resin layer 4 at this time was 40 μm as the resin thickness after drying. As the work plane used here, a 1 cm-thick copper plate having a glossy surface was used.

【0044】次に、乾燥樹脂層4の上に、公称厚さ30
μm厚の50cm×50cmサイズのアラミド繊維の不
織布5を張り合わせた。この張り合わせは、図2(3)
に示したように形成した乾燥樹脂層4の表面に当該不織
布5を重ね合わせて、150℃の温度で、6kg/cm
のラミネート圧力を掛けることの出来るようにした加
熱ロール6を、20cm/分の速度で押し当てることに
より、不織布付乾燥樹脂層7とした。
Next, on the dry resin layer 4, a nominal thickness of 30
A non-woven fabric 5 of aramid fibers having a thickness of 50 μm and a size of 50 cm was laminated. This attachment is shown in Figure 2 (3).
The nonwoven fabric 5 is superposed on the surface of the dry resin layer 4 formed as shown in FIG.
A heating roll 6 capable of applying a laminating pressure of 2 was pressed at a speed of 20 cm / min to form a dry resin layer 7 with a nonwoven fabric.

【0045】以上のようにして得られた不織布付乾燥樹
脂層7をワーク平面2に乗せたまま、図3(4)に示す
ように加熱炉8内に入れ、ヒータ9で加熱して、乾燥樹
脂層4の構成樹脂を再流動化させ、不織布5に含浸させ
た。加熱炉内の温度150℃で3分間加熱することとし
た。
The dried resin layer 7 with a nonwoven fabric obtained as described above is placed in the heating furnace 8 as shown in FIG. 3 (4) while being placed on the work plane 2 and heated by the heater 9 to be dried. The constituent resin of the resin layer 4 was re-fluidized and impregnated into the non-woven fabric 5. It was decided to heat at a temperature of 150 ° C. in the heating furnace for 3 minutes.

【0046】樹脂含浸が含浸が終了すると、図3(5)
に示すように、降温工程として、樹脂含浸した不織布5
をワーク平面2に乗せたまま加熱炉8から取り出し、清
浄化した空気の吹き出し口を複数備えたエアブロワ10
により、衝風降温を行った。このようにして、厚さ50
μmのプリプレグ1を製造した。このときのプリプレグ
1の重量内、不織布重量は25wt%であった。以上の
製造過程において、工程上の問題は見られず、不織布5
が破断するという現象も当然になかった。
When the resin impregnation is completed, FIG. 3 (5)
As shown in FIG.
The air blower 10 is provided with a plurality of clean air outlets, which are taken out from the heating furnace 8 while being placed on the work plane 2.
Due to this, the temperature of the blast was lowered. In this way, the thickness 50
A μm prepreg 1 was produced. The weight of the non-woven fabric in the weight of the prepreg 1 at this time was 25 wt%. In the above manufacturing process, no problem in the process was found, and the non-woven fabric 5
Naturally, there was no phenomenon of breaking.

【0047】そして、このプリプレグ1を用いて、その
片面に公称厚さ3μmの電解銅箔層を備えたキャリア箔
付電解銅箔をプレス加工し、キャリア箔を除去すること
で、片面銅張積層板10を製造した。このときのプレス
加工条件は、プレス温度180℃、プレス圧力20kg
/cm、硬化時間90分とした。
Then, using this prepreg 1, an electrolytic copper foil with a carrier foil having an electrolytic copper foil layer having a nominal thickness of 3 μm on one surface thereof is pressed, and the carrier foil is removed to form a single-sided copper clad laminate. The board 10 was manufactured. The press processing conditions at this time are: a press temperature of 180 ° C. and a press pressure of 20 kg.
/ Cm 2 , and the curing time was 90 minutes.

【0048】以上のようにして得られた片面銅張積層板
の3μmの電解銅箔層を、電解メッキ法で約18μmの
厚さとなるようにメッキアップし、プリプレグ1が硬化
した基材側に100μm厚の硬化したFR−4基板を接
着剤を用いて張り付け補強して、引き剥がし強度測定用
試料とした。この状態で、0.2mmの回路をエッチン
グ法にて形成し、引き剥がし強度を測定した結果、常態
引き剥がし強度1.66kgf/cm、半田後引き剥が
し強度1.58kgf/cmと非常に良好な値を示して
いた。
A 3 μm electrolytic copper foil layer of the single-sided copper-clad laminate obtained as described above was plated up to a thickness of about 18 μm by an electrolytic plating method, and the prepreg 1 was hardened on the base material side. A cured FR-4 substrate having a thickness of 100 μm was attached and reinforced with an adhesive to obtain a sample for peeling strength measurement. In this state, a 0.2 mm circuit was formed by an etching method and the peel strength was measured. As a result, the normal peel strength was 1.66 kgf / cm, and the peel strength after soldering was 1.58 kgf / cm, which was very good. It was showing the value.

【0049】また、この銅張積層板の3μm厚の銅箔層
を残したまま、炭酸ガスレーザー穴明け加工機を用い
て、直径100μmのブラインドバイアホールを200
穴あける試験を行った。このときの炭酸ガスレーザー照
射条件は、周波数2000Hz、マスク径5.0mm、
パルス幅60μsec.、パルスエネルギー16.0m
J、オフセット0.8、レーザー光径130μmとし、
100μmの加工径の穴を形成することを予定して行っ
たものである。その結果、200穴全てが良好に穴明け
可能であり、平均穴径が108μmであった。
Further, a blind via hole having a diameter of 100 μm was made 200 by using a carbon dioxide laser drilling machine while leaving a copper foil layer having a thickness of 3 μm of the copper clad laminate.
A drilling test was performed. The carbon dioxide laser irradiation conditions at this time were a frequency of 2000 Hz, a mask diameter of 5.0 mm,
Pulse width 60 μsec. , Pulse energy 16.0m
J, offset 0.8, laser beam diameter 130 μm,
This is done by planning to form a hole having a processing diameter of 100 μm. As a result, all 200 holes could be satisfactorily drilled, and the average hole diameter was 108 μm.

【0050】第2実施形態: 本実施形態では、図4に
模式的に示した連続製造装置11を用いてプリプレグ1
の製造を行った。連続製造装置11の、無限軌道をもっ
てエンドレス走行するメタルベルト12には、幅52c
m、厚さ200μmで片側走行長さ10mとなる鏡面仕
上げしたステンレスベルトを採用した。このメタルベル
ト12は、図4に示したように工程内を一次側から二次
側に向けて、樹脂供給手段から降温手段までを、少なく
とも一貫して走行するようにした。
Second Embodiment: In this embodiment, the prepreg 1 is manufactured by using the continuous manufacturing apparatus 11 schematically shown in FIG.
Was manufactured. The width 52c is set on the metal belt 12 of the continuous manufacturing apparatus 11 which runs endlessly on an endless track.
The mirror-finished stainless steel belt with a thickness of 200 m and a running length of 10 m on one side was adopted. As shown in FIG. 4, the metal belt 12 is configured to travel at least consistently from the resin supply means to the temperature lowering means from the primary side to the secondary side in the process.

【0051】そして、このメタルベルト12の一次側の
起端部に、樹脂供給手段としてエッジコータータイプの
樹脂ディスペンサ13を配し、第1実施形態で用いたと
同様の液体状の熱硬化性樹脂を当該樹脂ディスペンサ1
3の貯留槽に入れ、樹脂吐き出し部より、前記メタルベ
ルト12上に連続供給し、前記メタルベルト12上に4
0μmの均一な厚さで液体樹脂層3を形成させた。
An edge coater type resin dispenser 13 is provided as a resin supply means at the primary end of the metal belt 12, and the same liquid thermosetting resin as used in the first embodiment is used. The resin dispenser 1
3 into the storage tank, and the resin is continuously supplied onto the metal belt 12 from the resin discharge portion, and the metal belt 12 is supplied onto the metal belt 12 continuously.
The liquid resin layer 3 was formed with a uniform thickness of 0 μm.

【0052】そして、メタルベルト12上に形成した液
体樹脂層3は、前記樹脂供給手段の二次側に配した予備
乾燥手段として、1.5mの距離を自然乾燥する状態で
走行させ、その後、乾燥ゾーン14で5秒間の短時間加
熱を行うことで、前記メタルベルト12上の前記液体樹
脂層3を半硬化状態の乾燥樹脂層4としたのである。
The liquid resin layer 3 formed on the metal belt 12 is run as a preliminary drying means arranged on the secondary side of the resin supply means at a distance of 1.5 m in a state of being naturally dried, and thereafter, By heating for a short time of 5 seconds in the drying zone 14, the liquid resin layer 3 on the metal belt 12 is changed to the semi-cured dry resin layer 4.

【0053】一方、前記予備乾燥手段の二次側に、不織
布5を製造ライン内に連続供給する骨格材供給手段を配
した。この骨格材供給手段は、骨格材原料ロール15か
ら連続的に繰り出された幅50cm、厚さ70μmの不
織布5を、前記メタルベルト12上の前記乾燥樹脂層4
となった部位の表面に連続的に供給し、重ね合わせる
た。このとき、骨格材原料ロール15からの不織布5の
繰り出し速度とメタルベルト12の走行速度とは、20
cm/分として一致させ、不織布5を平面的に均一且つ
シワの発生無きよう張り付けた。
On the other hand, a skeleton material supplying means for continuously supplying the non-woven fabric 5 into the production line was arranged on the secondary side of the preliminary drying means. The skeleton material supplying means is configured to continuously feed the nonwoven fabric 5 having a width of 50 cm and a thickness of 70 μm from the skeleton material roll 15 to the dry resin layer 4 on the metal belt 12.
Was continuously supplied and superposed on the surface of the part. At this time, the feeding speed of the non-woven fabric 5 from the skeleton raw material roll 15 and the traveling speed of the metal belt 12 are 20
The non-woven fabric 5 was adhered uniformly in a plane and without generation of wrinkles by making the same in cm / min.

【0054】そして、その骨格材供給手段の2次側に
は、不織布予備接着手段を配した。この不織布予備接着
手段の加熱ロール6を用い、骨格材供給手段より供給さ
れた不織布5を、乾燥樹脂層4の表面に連続的に加熱圧
着した。この加熱ロール6による不織布5の圧着は、1
50℃に加熱し、6kg/cmのラミネート圧力を掛
けるようにした加熱ロール6により乾燥樹脂層4の表層
の樹脂のみを再流動化させ、不織布付乾燥樹脂層7の状
態とした。このとき、不織布5を通して流動化した乾燥
樹脂層4の樹脂の滲み出しはなかった。
Then, a non-woven fabric pre-bonding means was arranged on the secondary side of the skeleton material supplying means. Using the heating roll 6 of this non-woven fabric pre-bonding means, the non-woven fabric 5 supplied from the skeleton material supplying means was continuously thermocompression bonded to the surface of the dry resin layer 4. The pressure bonding of the nonwoven fabric 5 by the heating roll 6 is 1
Only the resin in the surface layer of the dry resin layer 4 was refluidized by heating to 50 ° C. and a laminating pressure of 6 kg / cm 2 was applied, and the dry resin layer 7 with a nonwoven fabric was formed. At this time, the resin of the dried resin layer 4 fluidized through the nonwoven fabric 5 did not exude.

【0055】前記不織布予備接着手段の二次側には、樹
脂含浸手段としての60cm長さの加熱ゾーン16を設
けた。不織布付乾燥樹脂層7の状態になった部位を、ヒ
ータ9を用いて樹脂の硬化温度以下の150℃の温度で
3分間加熱し、熱硬化性樹脂の再流動化を行わせ、流動
化した樹脂を張り合わせた不織布5に吸い上げさせ含浸
させた。
On the secondary side of the non-woven fabric pre-bonding means, a heating zone 16 having a length of 60 cm was provided as a resin impregnating means. The portion of the non-woven fabric-attached dry resin layer 7 was heated for 3 minutes at a temperature of 150 ° C., which is lower than the curing temperature of the resin, using the heater 9 to re-fluidize the thermosetting resin and fluidize it. The non-woven fabric 5 to which the resin was stuck was sucked up and impregnated.

【0056】不織布5への樹脂含浸の終了した部位は、
加熱ゾーン16を出ると、図4の中に示したエアブロワ
装置10で、3m距離の間を空気を衝風することにより
降温操作を行い90μm厚のプリプレグの状態とした。
The part of the non-woven fabric 5 that has been impregnated with resin is
Upon exiting the heating zone 16, the air blower device 10 shown in FIG. 4 blows air for a distance of 3 m to lower the temperature, and a prepreg having a thickness of 90 μm is obtained.

【0057】最後に、前記降温手段の2次側に、完成し
たプリプレグ1をロール状とするための巻き取り機17
をプリプレグ1の採取手段として配した。以上のように
して、不織布5に熱硬化性樹脂を含浸させたプリント配
線板製造に用いる幅50cmのプリプレグ1の連続製造
を行った。このときのプリプレグ1の重量内、不織布重
量は25wt%であった。この装置を用いることで、不
織布5に対する樹脂含浸を、メタルベルト12の平面上
に載置した状態で行ったため、含浸させた樹脂重量が不
織布自体に負荷されることがなく、不織布5の厚さが7
0μmであっても、不織布5が樹脂重量で破断するとい
う工程不良は起きず、連続的に薄い不織布を骨格材に用
いたプリプレグ1の安定生産が可能であった。
Finally, a winding machine 17 for rolling the completed prepreg 1 on the secondary side of the temperature lowering means.
Was arranged as a means for collecting prepreg 1. As described above, the prepreg 1 having a width of 50 cm used for manufacturing a printed wiring board in which the nonwoven fabric 5 was impregnated with the thermosetting resin was continuously manufactured. The weight of the non-woven fabric in the weight of the prepreg 1 at this time was 25 wt%. By using this device, the non-woven fabric 5 was impregnated with the resin while being placed on the flat surface of the metal belt 12. Therefore, the weight of the impregnated resin was not applied to the non-woven fabric itself, and the thickness of the non-woven fabric 5 was increased. Is 7
Even if the thickness was 0 μm, the process failure that the nonwoven fabric 5 was broken by the weight of the resin did not occur, and it was possible to stably produce the prepreg 1 using the continuously thin nonwoven fabric as the skeleton material.

【0058】ここで得られたプリプレグ1を用いて、第
1実施形態と同様の方法で、その片面に公称厚さ3μm
の電解銅箔層を備えたキャリア箔付電解銅箔をプレス加
工し、キャリア箔を除去することで、片面銅張積層板1
0を製造し、引き剥がし強度の測定を行った。その結
果、常態引き剥がし強度1.63kgf/cm、半田後
引き剥がし強度1.60kgf/cmと非常に良好な値
を示していた。また、この銅張積層板を、炭酸ガスレー
ザー穴明け加工機により、第1実施形態と同様の穴明け
試験を行ったところ、200穴全てが良好に穴明け可能
であり、平均穴径が109μmであった。
Using the prepreg 1 obtained here, a nominal thickness of 3 μm is formed on one surface of the prepreg 1 in the same manner as in the first embodiment.
The one-sided copper-clad laminate 1 is obtained by pressing the electrolytic copper foil with carrier foil having the electrolytic copper foil layer and removing the carrier foil.
0 was manufactured and the peel strength was measured. As a result, the peel strength under normal conditions was 1.63 kgf / cm, and the peel strength after soldering was 1.60 kgf / cm, which were very good values. Further, this copper clad laminate was subjected to a drilling test similar to that of the first embodiment using a carbon dioxide laser drilling machine. As a result, all 200 holes could be drilled well, and the average hole diameter was 109 μm. Met.

【0059】第3実施形態: 本実施形態では、バッジ
方式で、骨格材に15μm厚さの織布であるSPガラス
クロスを用い、それにエポキシ系の熱硬化性樹脂を含浸
させたプリント配線板製造に用いるプリプレグ1の製造
方法について述べる。以下、図1〜図3を参照しつつ、
各工程の順を追って説明することとする。なお、骨格材
であるSPガラスクロスは、上記の不織布と共通する符
号を用い、その他説明の都合上共通の性質を持つ用語に
関しては第1実施形態と共通する符号を用いている。
Third Embodiment: In this embodiment, a printed wiring board is manufactured by a badge method in which SP glass cloth, which is a woven cloth having a thickness of 15 μm, is used as a skeleton material and is impregnated with an epoxy thermosetting resin. The manufacturing method of the prepreg 1 used for the above will be described. Hereinafter, referring to FIGS. 1 to 3,
Each step will be described in order. The SP glass cloth, which is a skeleton material, uses the same reference numerals as those of the above-mentioned non-woven fabric, and the terms having common properties for convenience of explanation are the same as those of the first embodiment.

【0060】最初に第1実施形態と同様に、図1(1)
に示したように液体樹脂被膜形成工程で、液体状のエポ
キシ系の熱硬化性樹脂を用いて、平坦な55cm×55
cmサイズのワーク平面2の上に約16μm厚さの被膜
として、50cm×50cmの領域に液体樹脂層3を形
成した。ここで用いた液体状のエポキシ系の熱硬化性樹
脂は、第1実施形態と同じであるため、ここでの詳細な
説明は省略する。
First, as in the first embodiment, FIG.
In the liquid resin film forming step as shown in, a liquid epoxy thermosetting resin is used, and a flat 55 cm × 55 cm
A liquid resin layer 3 was formed in a region of 50 cm × 50 cm as a film having a thickness of about 16 μm on the work surface 2 having a size of cm. Since the liquid epoxy thermosetting resin used here is the same as that in the first embodiment, detailed description thereof is omitted here.

【0061】そして、図1(2)に示した予備乾燥工程
では、この前記ワーク平面2の上にある液体樹脂層3
を、室温で30分間放置して、熱風乾燥機を用いて15
0℃の温風を2分間衝風することで、半硬化状態に乾燥
させ乾燥樹脂層4とした。このときの乾燥樹脂層4の塗
布量は、乾燥後の樹脂厚として15μmであった。ここ
で用いたワーク平面は、表面を光沢仕上げした1cm厚
さの銅板を用いた。
Then, in the preliminary drying step shown in FIG. 1B, the liquid resin layer 3 on the work plane 2 is
Let stand for 30 minutes at room temperature, and use a hot air drier for 15 minutes.
By blowing hot air at 0 ° C. for 2 minutes, the resin was dried to a semi-cured state to form a dry resin layer 4. The coating amount of the dry resin layer 4 at this time was 15 μm as the resin thickness after drying. As the work plane used here, a 1 cm-thick copper plate having a glossy surface was used.

【0062】次に、乾燥樹脂層4の上に、公称厚さ15
μm厚の50cm×50cmサイズのSPガラスクロス
5を張り合わせた。この張り合わせは、図2(3)に示
したように形成した乾燥樹脂層4の表面に当該SPガラ
スクロス5を重ね合わせて、150℃の温度で、6kg
/cmのラミネート圧力を掛けることの出来るように
した加熱ロール6を、20cm/分の速度で押し当てる
ことにより、SPガラスクロス付乾燥樹脂層7とした。
Next, on the dried resin layer 4, a nominal thickness of 15
A 50 cm × 50 cm size SP glass cloth 5 having a thickness of μm was laminated. This bonding is performed by superposing the SP glass cloth 5 on the surface of the dry resin layer 4 formed as shown in FIG.
A heating roll 6 capable of applying a laminating pressure of / cm 2 was pressed at a speed of 20 cm / min to form an SP glass cloth-attached dry resin layer 7.

【0063】以上のようにして得られたSPガラスクロ
ス付乾燥樹脂層7をワーク平面2に乗せたまま、図3
(4)に示すように加熱炉8内に入れ、ヒータ9で加熱
して、乾燥樹脂層4の構成樹脂を再流動化させ、SPガ
ラスクロス5に含浸させた。加熱炉内の温度150℃で
3分間加熱することとした。
The dry resin layer 7 with SP glass cloth obtained as described above is placed on the work plane 2 as shown in FIG.
As shown in (4), it was placed in the heating furnace 8 and heated by the heater 9 to re-fluidize the constituent resin of the dry resin layer 4 and impregnate the SP glass cloth 5 with it. It was decided to heat at a temperature of 150 ° C. in the heating furnace for 3 minutes.

【0064】樹脂含浸が含浸が終了すると、図3(5)
に示すように、降温工程として、樹脂含浸したSPガラ
スクロス5をワーク平面2に乗せたまま加熱炉8から取
り出し、清浄化した空気の吹き出し口を複数備えたエア
ブロワ10により、衝風降温を行った。このようにし
て、厚さ20μmのプリプレグ1を製造した。このとき
のプリプレグ1の重量内、不織布重量は28wt%であ
った。以上の製造過程において、工程上の問題は見られ
ず、15μmと非常に薄いSPガラスクロス5が破断す
るという現象も当然になかった。
When the impregnation of the resin is completed, FIG. 3 (5)
As shown in FIG. 3, as a temperature lowering step, the resin impregnated SP glass cloth 5 is taken out from the heating furnace 8 while being placed on the work plane 2 and the air blower 10 is provided with an air blower 10 having a plurality of cleaned air outlets. It was Thus, the prepreg 1 having a thickness of 20 μm was manufactured. The weight of the non-woven fabric in the weight of the prepreg 1 at this time was 28 wt%. In the above manufacturing process, no process problems were observed, and naturally, there was no phenomenon that the SP glass cloth 5 as thin as 15 μm was broken.

【0065】そして、このプリプレグ1を用いて、その
片面に公称厚さ3μmの電解銅箔層を備えたキャリア箔
付電解銅箔をプレス加工し、キャリア箔を除去すること
で、片面銅張積層板10を製造した。このときのプレス
加工条件は、プレス温度180℃、プレス圧力20kg
/cm、硬化時間90分とした。
Then, using this prepreg 1, an electrolytic copper foil with a carrier foil having an electrolytic copper foil layer having a nominal thickness of 3 μm on one surface thereof is pressed, and the carrier foil is removed to form a single-sided copper clad laminate. The board 10 was manufactured. The press processing conditions at this time are: a press temperature of 180 ° C. and a press pressure of 20 kg.
/ Cm 2 , and the curing time was 90 minutes.

【0066】以上のようにして得られた片面銅張積層板
の3μmの電解銅箔層を、電解メッキ法で約18μmの
厚さとなるようにメッキアップし、プリプレグ1が硬化
した基材側に100μm厚の硬化したFR−4基板を接
着剤を用いて張り付け補強して、引き剥がし強度測定用
試料とした。この状態で、0.2mmの回路をエッチン
グ法にて形成し、引き剥がし強度を測定した結果、常態
引き剥がし強度1.63kgf/cm、半田後引き剥が
し強度1.61kgf/cmと非常に良好な値を示して
いた。
A 3 μm electrolytic copper foil layer of the single-sided copper clad laminate obtained as described above was plated up to a thickness of about 18 μm by an electrolytic plating method, and the prepreg 1 was hardened on the base material side. A cured FR-4 substrate having a thickness of 100 μm was attached and reinforced with an adhesive to obtain a sample for peeling strength measurement. In this state, a 0.2 mm circuit was formed by an etching method, and the peel strength was measured. As a result, the normal peel strength was 1.63 kgf / cm, and the peel strength after soldering was 1.61 kgf / cm, which was very good. It was showing the value.

【0067】また、第1実施形態と同様の方法で炭酸ガ
スレーザー穴明け加工機を用いて、レーザー加工性を評
価したが、200穴全てが良好に穴明け可能であり、平
均穴径が101μmであった。
Further, the laser workability was evaluated using a carbon dioxide laser drilling machine in the same manner as in the first embodiment. All 200 holes could be drilled well, and the average hole diameter was 101 μm. Met.

【0068】第4実施形態: 本実施形態では、バッジ
方式で、骨格材である30μm厚さのアラミド繊維を用
いた不織布にエポキシ系の熱硬化性樹脂を含浸させた絶
縁層を備えた絶縁層付銅箔の製造方法について述べる。
以下、図6〜図8を参照しつつ、各工程の順を追って説
明することとする。
Fourth Embodiment: In the present embodiment, an insulating layer is provided by a badge method, which comprises an insulating layer obtained by impregnating a non-woven fabric using aramid fiber having a thickness of 30 μm, which is a skeleton material, with an epoxy thermosetting resin. A method of manufacturing the attached copper foil will be described.
Hereinafter, the steps will be sequentially described with reference to FIGS. 6 to 8.

【0069】最初に図6(1)に示したように液体樹脂
被膜形成工程で、液体状のエポキシ系の熱硬化性樹脂を
用いて、平坦な面上に置いた55cm×55cmサイズ
の18μm厚さの銅箔Cの接着面の上に被膜として、5
0cm×50cmの領域に液体樹脂層3を形成した。こ
こで用いた液体状のエポキシ系の熱硬化性樹脂は、第1
実施形態で用いたものと同様であるため、説明を省略す
る。
First, as shown in FIG. 6 (1), in a liquid resin film forming step, a liquid epoxy thermosetting resin was used, and a 55 μm × 55 cm size 18 μm thick plate was placed on a flat surface. 5 as a film on the adhesive surface of the copper foil C
The liquid resin layer 3 was formed in an area of 0 cm × 50 cm. The liquid epoxy thermosetting resin used here is the first
The description is omitted because it is the same as that used in the embodiment.

【0070】そして、図6(2)に示した予備乾燥工程
では、この前記ワーク平面2の上にある液体樹脂層3
を、室温で30分間放置して、熱風乾燥機を用いて15
0℃の温風を2分間衝風することで、半硬化状態に乾燥
させ乾燥樹脂層4とした。このときの乾燥樹脂層4の塗
布量は、乾燥後の樹脂厚として40μmとなるようにし
た。ここで用いたワーク平面は、表面を光沢仕上げした
1cm厚さの銅板を用いた。
Then, in the preliminary drying step shown in FIG. 6 (2), the liquid resin layer 3 on the work plane 2 is
Let stand for 30 minutes at room temperature, and use a hot air drier for 15 minutes.
By blowing hot air at 0 ° C. for 2 minutes, the resin was dried to a semi-cured state to form a dry resin layer 4. The coating amount of the dry resin layer 4 at this time was 40 μm as the resin thickness after drying. As the work plane used here, a 1 cm-thick copper plate having a glossy surface was used.

【0071】次に、乾燥樹脂層4の上に、公称厚さ30
μm厚の50cm×50cmサイズのアラミド繊維の不
織布5を張り合わせた。この張り合わせは、図7(3)
に示したように形成した乾燥樹脂層4の表面に当該不織
布5を重ね合わせて、150℃の温度で、6kg/cm
のラミネート圧力を掛けることの出来るようにした加
熱ロール6を、20cm/分の速度で押し当てることに
より、不織布付乾燥樹脂層7とした。
Next, on the dried resin layer 4, a nominal thickness of 30
A non-woven fabric 5 of aramid fibers having a thickness of 50 μm and a size of 50 cm was laminated. This attachment is shown in Figure 7 (3).
The nonwoven fabric 5 is superposed on the surface of the dry resin layer 4 formed as shown in FIG.
A heating roll 6 capable of applying a laminating pressure of 2 was pressed at a speed of 20 cm / min to form a dry resin layer 7 with a nonwoven fabric.

【0072】以上のようにして得られた不織布付乾燥樹
脂層7を銅箔C上に乗せたまま、図8(4)に示すよう
に加熱炉8内に入れ、ヒータ9で加熱して、乾燥樹脂層
4の構成樹脂を再流動化させ、不織布5に含浸させた。
加熱炉内の温度150℃で3分間加熱することとした。
The non-woven fabric-attached dry resin layer 7 obtained as described above is placed on the copper foil C, placed in a heating furnace 8 as shown in FIG. 8 (4), and heated by a heater 9. The constituent resin of the dry resin layer 4 was re-fluidized and impregnated into the nonwoven fabric 5.
It was decided to heat at a temperature of 150 ° C. in the heating furnace for 3 minutes.

【0073】樹脂含浸が含浸が終了すると、図8(5)
に示すように、降温工程として、清浄化した空気の吹き
出し口を複数備えたエアブロワ10により、衝風降温を
行い、厚さ50μmの絶縁層を備える絶縁層付銅箔18
が製造出来たのである。このときの絶縁層内の不織布重
量は25wt%であった。
When the resin impregnation is completed, FIG. 8 (5)
As shown in FIG. 5, in the temperature lowering step, the air blower 10 having a plurality of outlets for the cleaned air is used to cool down the airflow, and the copper foil with an insulating layer 18 having an insulating layer with a thickness of 50 μm is provided.
Was able to be manufactured. The weight of the nonwoven fabric in the insulating layer at this time was 25 wt%.

【0074】[0074]

【発明の効果】本件発明に係るプリプレグの製造方法を
用いることで、従来のプリプレグの製造方法では量産使
用することのできなかった70μm以下の厚さの不織
布、又は30μm以下の織布を用いたプリプレグの安定
生産が可能となる。従って、不織布を骨格材に用いるこ
とで得られる優れたレーザー穴明け加工性を確保し、従
来になく薄い不織布若しくは織布を用いたプリプレグの
提供ができることになるのである。また、更に、このプ
リプレグの製造方法を応用することで、容易に非常に薄
い絶縁層を備えた絶縁層付銅箔の供給が可能になり、薄
物プリント配線板の製造が容易になるのである。
By using the method for producing a prepreg according to the present invention, a nonwoven fabric having a thickness of 70 μm or less or a woven fabric having a thickness of 30 μm or less, which cannot be mass-produced by the conventional method for producing a prepreg, is used. Enables stable production of prepreg. Therefore, it is possible to secure excellent laser drilling processability obtained by using a non-woven fabric as a skeleton material, and to provide a prepreg using a thin non-woven fabric or woven fabric, which has never been obtained before. Further, by applying this prepreg manufacturing method, it becomes possible to easily supply the copper foil with an insulating layer provided with a very thin insulating layer, and to manufacture the thin printed wiring board easily.

【図面の簡単な説明】[Brief description of drawings]

【図1】本件発明に係るプリプレグの製造方法のフロー
を説明するための模式図。
FIG. 1 is a schematic diagram for explaining a flow of a method of manufacturing a prepreg according to the present invention.

【図2】本件発明に係るプリプレグの製造方法のフロー
を説明するための模式図。
FIG. 2 is a schematic diagram for explaining a flow of a method of manufacturing a prepreg according to the present invention.

【図3】本件発明に係るプリプレグの製造方法のフロー
を説明するための模式図。
FIG. 3 is a schematic diagram for explaining a flow of a method of manufacturing a prepreg according to the present invention.

【図4】本件発明に係るプリプレグの連続製造装置のレ
イアウト概念を説明するための側面模式図。
FIG. 4 is a schematic side view for explaining the layout concept of the continuous prepreg manufacturing apparatus according to the present invention.

【図5】従来のプリプレグの製造方法を表す模式図。FIG. 5 is a schematic view showing a conventional prepreg manufacturing method.

【図6】本件発明に係るプリプレグの製造方法のフロー
を説明するための模式図。
FIG. 6 is a schematic diagram for explaining a flow of a method of manufacturing a prepreg according to the present invention.

【図7】本件発明に係るプリプレグの製造方法のフロー
を説明するための模式図。
FIG. 7 is a schematic diagram for explaining a flow of a method of manufacturing a prepreg according to the present invention.

【図8】本件発明に係るプリプレグの製造方法のフロー
を説明するための模式図。
FIG. 8 is a schematic diagram for explaining a flow of a method of manufacturing a prepreg according to the present invention.

【符号の説明】[Explanation of symbols]

1 プリプレグ 2 ワーク平面 3 液体樹脂層 4 乾燥樹脂層 5 不織布 6 加熱ロール 7 不織布付乾燥樹脂層 8 加熱炉 9 ヒータ 10 エアブロワ 11 連続製造装置 12 メタルベルト 13 樹脂ディスペンサ 14 乾燥ゾーン 15 骨格材原料ロール 16 加熱ゾーン 17 巻き取り機 18 絶縁層付銅箔 C 銅箔 1 prepreg 2 Work plane 3 Liquid resin layer 4 Dry resin layer 5 non-woven fabric 6 heating rolls 7 Dry resin layer with non-woven fabric 8 heating furnace 9 heater 10 Air blower 11 Continuous manufacturing equipment 12 metal belt 13 resin dispenser 14 Drying zone 15 Skeletal material roll 16 heating zone 17 Winder 18 Copper foil with insulating layer C copper foil

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4F072 AA01 AA07 AB06 AB09 AB11 AD11 AD23 AG03 AH00 AH21 AH22 AJ00 AJ04 AJ11 AJ19 AK02 AK05 AL12 AL13 4F100 AB17B AB33B AG00A AK01A AK47A AK53 BA02 DG01A DG11A DG15 DH01A EC01 EC012 EH46 EH462 EJ17 EJ172 EJ42 EJ422 EJ50 EJ502 EJ82 EJ822 EJ86 EJ862 GB43 JB13A JG04A JL01    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4F072 AA01 AA07 AB06 AB09 AB11                       AD11 AD23 AG03 AH00 AH21                       AH22 AJ00 AJ04 AJ11 AJ19                       AK02 AK05 AL12 AL13                 4F100 AB17B AB33B AG00A AK01A                       AK47A AK53 BA02 DG01A                       DG11A DG15 DH01A EC01                       EC012 EH46 EH462 EJ17                       EJ172 EJ42 EJ422 EJ50                       EJ502 EJ82 EJ822 EJ86                       EJ862 GB43 JB13A JG04A                       JL01

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 骨格材に熱硬化性樹脂を含浸させたプリ
ント配線板製造に用いるプリプレグの製造方法であっ
て、以下に示す〜の各工程を備えたことを特徴とす
る薄型のプリプレグの製造方法。 液体状の熱硬化性樹脂を用いて、平坦なワーク平面
の上に所定厚さの被膜として液体樹脂層を形成する液体
樹脂被膜形成工程。 ワーク平面上にある液体樹脂層を、そのままの状態
で乾燥させることで乾燥樹脂層とする予備乾燥工程。 ワーク平面上にある前記乾燥樹脂層の表面に、骨格
材を重ね合わせ、予備加熱して圧着することで骨格材付
乾燥樹脂層とする骨格材予備接着工程。 ワーク平面上に骨格材付乾燥樹脂層を載置したま
ま、樹脂が再流動可能な温度で加熱し、当該骨格材に熱
硬化性樹脂成分を含浸させる樹脂含浸工程。 樹脂含浸が終了すると、熱硬化性樹脂を完全硬化さ
せることなく、直ちに降温操作を行い、骨格材に含浸さ
せた熱硬化性樹脂の半硬化状態を維持してプリプレグ状
態となるようにする冷却工程。
1. A method of manufacturing a prepreg used for manufacturing a printed wiring board in which a skeletal material is impregnated with a thermosetting resin, the method comprising the steps of to: Method. A liquid resin film forming step of forming a liquid resin layer as a film having a predetermined thickness on a flat work plane using a liquid thermosetting resin. A pre-drying process in which the liquid resin layer on the work plane is dried as it is to form a dry resin layer. A skeleton material pre-bonding step of forming a skeleton material-dried resin layer by superposing a skeleton material on the surface of the dry resin layer on the plane of the work, preheating and pressing. A resin impregnation process in which the dried resin layer with the skeleton material is placed on the work plane and heated at a temperature at which the resin can reflow to impregnate the skeleton material with the thermosetting resin component. When the resin impregnation is completed, the temperature is lowered immediately without completely curing the thermosetting resin, and the thermosetting resin impregnated into the skeletal material is maintained in a semi-cured state to become a prepreg state. .
【請求項2】 無限軌道をもってエンドレス走行するメ
タルベルト、熱硬化性の液体樹脂層を前記メタルベルト
上に形成するための樹脂供給手段、前記液体樹脂層を乾
燥樹脂層とするための予備乾燥手段、骨格材を製造ライ
ン内に連続供給する骨格材供給手段、前記骨格材を前記
乾燥樹脂層に予備的に圧着する骨格材予備接着手段、前
記骨格材を前記乾燥樹脂層に予備的に圧着した部位を加
熱し樹脂含浸を行う樹脂含浸手段、樹脂含浸の終了後に
降温操作を行いプリプレグの状態とする降温手段、及び
完成したプリプレグの採取手段を組みあわせて一つの製
造ラインとした請求項1に記載のプリプレグの製造方法
を実施するために用いる製造装置であって、 メタルベルトは、工程内を一次側から二次側に向けて、
樹脂供給手段から降温手段までを、少なくとも一貫して
走行するものであり、 樹脂供給手段は、液体状の熱硬化性樹脂を前記メタルベ
ルト上に連続供給し前記メタルベルト上に均一な所定厚
さの液体樹脂層を形成させることのできる樹脂ディスペ
ンサを、当該メタルベルトの一次側の起端部に配し、 前記樹脂供給手段の二次側に、前記メタルベルト上の前
記液体樹脂層を乾燥樹脂層とするための予備乾燥手段と
して加熱乾燥又は風乾を行うための乾燥ゾーンを配し、 前記予備乾燥手段の二次側に、骨格材原料ロールから当
該メタルベルトの走行速度と同期して連続的に骨格材を
繰り出す骨格材供給手段を配し、 前記骨格材供給手段の二次側に、前記メタルベルト上の
前記乾燥樹脂層の表面に、骨格材供給手段より供給され
た骨格材を加熱ロールを用いて加熱圧着し骨格材付乾燥
樹脂層の状態にする骨格材予備接着手段を配し、 前記骨格材予備接着手段の二次側に、骨格材を予備接着
した乾燥樹脂層の部位を樹脂の硬化温度以下の温度で加
熱し、熱硬化性樹脂の再流動化を行わせ、流動化した樹
脂を張り合わせた骨格材に含浸させる加熱ゾーンを樹脂
含浸手段として設け、 前記樹脂含浸手段の二次側に、樹脂含浸の終了後に降温
操作を行いプリプレグの状態とする放冷又は強制冷却す
ることで、骨格材に含浸させた熱硬化性樹脂の半硬化状
態を維持してプリプレグの状態とする冷却ゾーンを降温
手段として配し、 前記降温手段の2次側に完成したプリプレグをロール状
にするための巻き取り器又はカットシートとするカット
装置をプリプレグの採取手段として配したことを特徴と
する骨格材に熱硬化性樹脂を含浸させたプリント配線板
製造に用いるプリプレグの連続製造装置。
2. A metal belt which runs endlessly on an endless track, a resin supply means for forming a thermosetting liquid resin layer on the metal belt, and a pre-drying means for making the liquid resin layer a dry resin layer. A skeleton material supplying means for continuously supplying the skeleton material into the production line; a skeleton material pre-bonding means for preliminarily crimping the skeleton material to the dry resin layer; and a preliminarily crimping skeleton material to the dry resin layer. A manufacturing line comprising a resin impregnating means for heating a part to impregnate the resin, a temperature lowering means for performing a temperature lowering operation after completion of the resin impregnation to obtain a prepreg state, and a means for collecting the completed prepreg into one production line. A manufacturing apparatus used for carrying out the manufacturing method of the prepreg described, wherein the metal belt is in the process from the primary side to the secondary side,
At least consistent running from the resin supply means to the temperature lowering means is performed, and the resin supply means continuously supplies a liquid thermosetting resin onto the metal belt to provide a uniform predetermined thickness on the metal belt. A resin dispenser capable of forming the liquid resin layer of the metal belt is disposed at the primary end of the metal belt, and the liquid resin layer on the metal belt is dried on the secondary side of the resin supply means. A drying zone for performing heat drying or air drying is arranged as a preliminary drying means for forming a layer, and on the secondary side of the preliminary drying means, continuous from the skeleton raw material roll in synchronization with the traveling speed of the metal belt. A skeleton material supplying means for feeding the skeleton material is disposed on the secondary side of the skeleton material supplying means, and the skeleton material supplied from the skeleton material supplying means is heated on the surface of the dry resin layer on the metal belt. A skeleton material pre-adhesion means for placing the skeleton material in a dry resin layer state by thermocompression using a roll is provided, and a portion of the dry resin layer pre-bonded with the skeleton material is provided on the secondary side of the skeleton material pre-adhesion means. Is heated at a temperature equal to or lower than the curing temperature of the resin to cause the thermosetting resin to re-fluidize, and a heating zone for impregnating the fluidized resin into the skeleton material bonded is provided as the resin impregnating means. On the secondary side, a temperature lowering operation is performed after completion of resin impregnation to leave the prepreg in a state of standing cooling or forced cooling, thereby maintaining the semi-cured state of the thermosetting resin impregnated in the skeleton material and the prepreg state. A cooling device for prepreg is arranged on the secondary side of the temperature lowering means, and a cutting device for winding the completed prepreg into a roll or a cut sheet is arranged as a means for collecting the prepreg. Continuous production apparatus for a prepreg used for manufacturing a printed wiring board impregnated with thermosetting resin in skeletal material that.
【請求項3】 請求項1に記載の製造方法によって製造
された骨格材に熱硬化性樹脂を含浸させたプリント配線
板製造に用いるプリプレグであって、 前記骨格材は、公称厚さが70μm以下の厚さであるア
ラミド繊維又はガラス繊維を用いた不織布であることを
特徴とするプリプレグ。
3. A prepreg used for manufacturing a printed wiring board, wherein a skeletal material manufactured by the manufacturing method according to claim 1 is impregnated with a thermosetting resin, and the skeletal material has a nominal thickness of 70 μm or less. A prepreg, which is a non-woven fabric using aramid fiber or glass fiber having a thickness of 1.
【請求項4】 請求項1に記載の製造方法によって製造
された骨格材に熱硬化性樹脂を含浸させたプリント配線
板製造に用いるプリプレグであって、 前記骨格材は、公称厚さが30μm以下の厚さであるガ
ラスクロスであることを特徴とするプリプレグ。
4. A prepreg used for manufacturing a printed wiring board, wherein a skeletal material manufactured by the manufacturing method according to claim 1 is impregnated with a thermosetting resin, and the skeletal material has a nominal thickness of 30 μm or less. A prepreg characterized by being a glass cloth having a thickness of.
【請求項5】 骨格材に熱硬化性樹脂を含浸させた絶縁
層を片面に備えた絶縁層付銅箔の製造方法であって、以
下に示す〜の各工程を備えたことを特徴とする絶縁
層付銅箔の製造方法。 液体状の熱硬化性樹脂を用いて、銅箔の片面上に所
定厚さの被膜として液体樹脂層を形成する液体樹脂被膜
形成工程。 銅箔の片面上にある液体樹脂層を、そのままの状態
で乾燥させることで乾燥樹脂層とする予備乾燥工程。 銅箔の片面上にある前記乾燥樹脂層の表面に、骨格
材を重ね合わせ、予備加熱して圧着することで骨格材付
乾燥樹脂層とする骨格材予備接着工程。 銅箔の片面上に骨格材付乾燥樹脂層を載置したま
ま、樹脂が再流動可能な温度で加熱し、当該骨格材に熱
硬化性樹脂成分を含浸させる樹脂含浸工程。 樹脂含浸が終了すると、熱硬化性樹脂を完全硬化さ
せることなく、直ちに降温操作を行い、骨格材に含浸さ
せた熱硬化性樹脂の半硬化状態を維持して絶縁層付銅箔
の状態する冷却工程。
5. A method for producing a copper foil with an insulating layer, which comprises an insulating layer having a skeletal material impregnated with a thermosetting resin on one side, the method comprising the steps of: Manufacturing method of copper foil with insulating layer. A liquid resin film forming step of forming a liquid resin layer as a film having a predetermined thickness on one surface of a copper foil using a liquid thermosetting resin. A pre-drying step in which the liquid resin layer on one side of the copper foil is dried as it is to form a dry resin layer. A skeleton material pre-bonding step of forming a skeleton material-dried resin layer by superimposing a skeleton material on the surface of the dry resin layer on one surface of the copper foil, preheating and press-bonding. A resin impregnation step of heating the resin at a temperature at which the resin can be reflowed while the dried resin layer with the skeleton material is placed on one surface of the copper foil to impregnate the skeleton material with the thermosetting resin component. When the resin impregnation is completed, the temperature is lowered immediately without completely curing the thermosetting resin, and the semi-cured state of the thermosetting resin impregnated into the skeleton is maintained to cool the copper foil with an insulating layer. Process.
【請求項6】 請求項5に記載の製造方法で得られた絶
縁層付銅箔。
6. A copper foil with an insulating layer obtained by the manufacturing method according to claim 5.
JP2002207674A 2001-12-18 2002-07-17 Manufacturing method of prepreg, manufacturing apparatus of prepreg, and manufacturing method of copper foil with insulating layer Expired - Fee Related JP4136509B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2002207674A JP4136509B2 (en) 2001-12-18 2002-07-17 Manufacturing method of prepreg, manufacturing apparatus of prepreg, and manufacturing method of copper foil with insulating layer
TW91134283A TW564215B (en) 2001-12-18 2002-11-26 Method and device for producing prepreg and prepreg obtained by the production method, and method for producing copper foil with insulating layer and copper foil with insulating layer obtained by the production method
MYPI20024400A MY134752A (en) 2001-12-18 2002-11-26 Prepreg production method and prepreg production device and prepreg obtained by the production method and production method for insulating layer attached copper foil and insulating layer attached copper foil obtained by the production method
US10/470,166 US7144472B2 (en) 2001-12-18 2002-12-12 Prepreg production method and prepeg production device and prepreg obtained by the production method and production method for insulating layer attached copper foil and insulating layer attached copper foil obtained by the production method
PCT/JP2002/013004 WO2003051964A1 (en) 2001-12-18 2002-12-12 Prepreg production method and prepreg production device and prepreg obtained by the production method and production method for insulating layer attached copper foil and insulating layer attached copper foil obtained by the production method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-385087 2001-12-18
JP2001385087 2001-12-18
JP2002207674A JP4136509B2 (en) 2001-12-18 2002-07-17 Manufacturing method of prepreg, manufacturing apparatus of prepreg, and manufacturing method of copper foil with insulating layer

Publications (2)

Publication Number Publication Date
JP2003249739A true JP2003249739A (en) 2003-09-05
JP4136509B2 JP4136509B2 (en) 2008-08-20

Family

ID=26625123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002207674A Expired - Fee Related JP4136509B2 (en) 2001-12-18 2002-07-17 Manufacturing method of prepreg, manufacturing apparatus of prepreg, and manufacturing method of copper foil with insulating layer

Country Status (5)

Country Link
US (1) US7144472B2 (en)
JP (1) JP4136509B2 (en)
MY (1) MY134752A (en)
TW (1) TW564215B (en)
WO (1) WO2003051964A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005060324A1 (en) * 2003-12-16 2005-06-30 Mitsui Mining & Smelting Co., Ltd. Multilayer printed wiring board and method for manufacturing the multilayer printed wiring board
JP2007318071A (en) * 2006-04-28 2007-12-06 Hitachi Chem Co Ltd Insulating base board, base board with metal foil, and printed circuit board
KR100818470B1 (en) * 2004-03-04 2008-04-02 히다치 가세고교 가부시끼가이샤 Prepreg, metal-clad laminate and printed circuit board using same
WO2015012376A1 (en) 2013-07-24 2015-01-29 Jx日鉱日石金属株式会社 Surface-treated copper foil, copper foil with carrier, substrate, resin substrate, printed circuit board, copper-clad laminate, and method for manufacturing printed circuit board
WO2015012327A1 (en) 2013-07-23 2015-01-29 Jx日鉱日石金属株式会社 Treated surface copper foil, copper foil with carrier, substrate, resin substrate, printed circuit board, copper clad laminate, and printed circuit board manufacturing method
KR101586679B1 (en) * 2014-09-04 2016-01-22 정병직 Manufacturing apparatus for copper clad laminate with excellent dimensional stability and method of manufacturing the same
EP3046400A2 (en) 2015-01-16 2016-07-20 JX Nippon Mining & Metals Corporation Copper foil provided with carrier, laminate, printed wiring board, electronic device, and method for fabricating printed wiring board
EP3048864A2 (en) 2015-01-21 2016-07-27 JX Nippon Mining & Metals Corporation Copper foil provided with carrier, laminate, printed wiring board, and method for fabricating printed wiring board
EP3054751A2 (en) 2015-02-06 2016-08-10 JX Nippon Mining & Metals Corporation Copper foil provided with carrier, laminate, printed wiring board, electronic device and method for fabricating printed wiring board
EP3232747A1 (en) 2016-04-15 2017-10-18 JX Nippon Mining & Metals Corp. Copper foil, copper foil for high-frequency circuit, carrier-attached copper foil, carrier-attached copper foil for high-frequency circuit, laminate, method of manufacturing printed wiring board, and method of manufacturing electronic device

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1930219B (en) * 2004-03-04 2010-06-02 日立化成工业株式会社 Prepregs, metal foil laminates and printed circuit boards using them
KR100856326B1 (en) * 2006-07-19 2008-09-03 삼성전기주식회사 Method of manufacturing a printed circuit board with a thin film capacitor having a dielectric thin film using a laser lift-off, and a printed circuit board with a thin film capacitor manufactured therefrom
US20100300351A1 (en) * 2008-02-29 2010-12-02 Yasui Seiki Co., Ltd. Apparatus for production of composite material sheet
SG192780A1 (en) * 2011-02-24 2013-09-30 Isola Usa Corp Ultrathin laminates
DE102011081263A1 (en) * 2011-08-12 2013-02-14 Sgl Carbon Se Solidified fiber bundles
KR20140059542A (en) * 2012-11-08 2014-05-16 삼성전기주식회사 Copper clad laminate, manufacturing method thereof and printed circuit board
CN105109068B (en) * 2015-09-02 2018-02-06 江苏恒神股份有限公司 A kind of non-autoclave shaping preimpregnation preparation method for material
JP6535553B2 (en) * 2015-09-10 2019-06-26 積水化成品工業株式会社 Metal panel reinforcement and method of reinforcing metal panel
GB2546962A (en) * 2015-12-21 2017-08-09 Hexcel Composites Ltd Apparatus and method of impregnating reinforcement material
CN105960098B (en) * 2016-05-23 2019-10-29 深圳先进技术研究院 A kind of preparation process of high-frequency high-speed organic substrate
CN108017796A (en) * 2016-11-01 2018-05-11 深圳光启尖端技术有限责任公司 A kind of prepreg and its manufacture method
US10462900B2 (en) 2016-11-30 2019-10-29 International Business Machines Corporation Glass fiber coatings for improved resistance to conductive anodic filament formation
US10590037B2 (en) 2017-03-27 2020-03-17 International Business Machines Corporation Liquid immersion techniques for improved resistance to conductive anodic filament formation
US10381322B1 (en) 2018-04-23 2019-08-13 Sandisk Technologies Llc Three-dimensional memory device containing self-aligned interlocking bonded structure and method of making the same
US10879260B2 (en) 2019-02-28 2020-12-29 Sandisk Technologies Llc Bonded assembly of a support die and plural memory dies containing laterally shifted vertical interconnections and methods for making the same
CN112810289A (en) * 2021-03-17 2021-05-18 重庆科技学院 Copper-clad plate processing is with multistage hot press

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01310908A (en) * 1988-06-09 1989-12-15 Hitachi Chem Co Ltd Manufacture of prepreg
JPH0262385B2 (en) * 1986-02-03 1990-12-25 Intaanashonaru Bijinesu Mashiinzu Corp
JPH04211910A (en) * 1990-08-03 1992-08-03 Ube Ind Ltd Manufacturing method of fiber reinforced prepreg
JPH10337785A (en) * 1997-06-09 1998-12-22 Sumitomo Bakelite Co Ltd Manufacture of laminate
JP2001269955A (en) * 2000-03-28 2001-10-02 Sumitomo Bakelite Co Ltd Manufacturing method of laminated board

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4087300A (en) * 1974-01-07 1978-05-02 Edward Adler Process for producing metal-plastic laminate
JPS58118241A (en) * 1982-01-06 1983-07-14 松下電工株式会社 Manufacture of metal lined laminated board
US4496415A (en) * 1982-04-08 1985-01-29 Westinghouse Electric Corp. Method for impregnating resin powder directly into a laminate lay up
JPS58185216A (en) * 1982-04-23 1983-10-28 Asahi Chem Ind Co Ltd Method and apparatus for producing prepreg
US4909886A (en) * 1987-12-02 1990-03-20 Mitsubishi Gas Chemical Company, Inc. Process for producing copper-clad laminate
JPH11320758A (en) * 1998-05-20 1999-11-24 Sumitomo Bakelite Co Ltd Production of copper clad laminated sheet
US6224965B1 (en) 1999-06-25 2001-05-01 Honeywell International Inc. Microfiber dielectrics which facilitate laser via drilling
JP2001096665A (en) * 1999-10-01 2001-04-10 Tdk Corp Substrate
JP2001177199A (en) * 1999-12-17 2001-06-29 Hitachi Chem Co Ltd Laminated board for printed-wiring board

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0262385B2 (en) * 1986-02-03 1990-12-25 Intaanashonaru Bijinesu Mashiinzu Corp
JPH01310908A (en) * 1988-06-09 1989-12-15 Hitachi Chem Co Ltd Manufacture of prepreg
JPH04211910A (en) * 1990-08-03 1992-08-03 Ube Ind Ltd Manufacturing method of fiber reinforced prepreg
JPH10337785A (en) * 1997-06-09 1998-12-22 Sumitomo Bakelite Co Ltd Manufacture of laminate
JP2001269955A (en) * 2000-03-28 2001-10-02 Sumitomo Bakelite Co Ltd Manufacturing method of laminated board

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005060324A1 (en) * 2003-12-16 2007-12-13 三井金属鉱業株式会社 Multilayer printed wiring board and method for producing multilayer printed wiring board
US7485361B2 (en) 2003-12-16 2009-02-03 Mitsui Mining & Smelting Co., Ltd. Multilayered printed wiring board and manufacturing method thereof
KR100906857B1 (en) * 2003-12-16 2009-07-08 미쓰이 긴조꾸 고교 가부시키가이샤 Multilayer printed wiring board
JP2010258486A (en) * 2003-12-16 2010-11-11 Mitsui Mining & Smelting Co Ltd Multilayered printed wiring board and manufacturing method of the multilayered printed wiring board
JP4895611B2 (en) * 2003-12-16 2012-03-14 三井金属鉱業株式会社 Multilayer printed wiring board and method for producing multilayer printed wiring board
WO2005060324A1 (en) * 2003-12-16 2005-06-30 Mitsui Mining & Smelting Co., Ltd. Multilayer printed wiring board and method for manufacturing the multilayer printed wiring board
KR100818470B1 (en) * 2004-03-04 2008-04-02 히다치 가세고교 가부시끼가이샤 Prepreg, metal-clad laminate and printed circuit board using same
JP2007318071A (en) * 2006-04-28 2007-12-06 Hitachi Chem Co Ltd Insulating base board, base board with metal foil, and printed circuit board
WO2015012327A1 (en) 2013-07-23 2015-01-29 Jx日鉱日石金属株式会社 Treated surface copper foil, copper foil with carrier, substrate, resin substrate, printed circuit board, copper clad laminate, and printed circuit board manufacturing method
WO2015012376A1 (en) 2013-07-24 2015-01-29 Jx日鉱日石金属株式会社 Surface-treated copper foil, copper foil with carrier, substrate, resin substrate, printed circuit board, copper-clad laminate, and method for manufacturing printed circuit board
KR101586679B1 (en) * 2014-09-04 2016-01-22 정병직 Manufacturing apparatus for copper clad laminate with excellent dimensional stability and method of manufacturing the same
EP3046400A2 (en) 2015-01-16 2016-07-20 JX Nippon Mining & Metals Corporation Copper foil provided with carrier, laminate, printed wiring board, electronic device, and method for fabricating printed wiring board
EP3048864A2 (en) 2015-01-21 2016-07-27 JX Nippon Mining & Metals Corporation Copper foil provided with carrier, laminate, printed wiring board, and method for fabricating printed wiring board
EP3054751A2 (en) 2015-02-06 2016-08-10 JX Nippon Mining & Metals Corporation Copper foil provided with carrier, laminate, printed wiring board, electronic device and method for fabricating printed wiring board
US9839124B2 (en) 2015-02-06 2017-12-05 Jx Nippon Mining & Metals Corporation Copper foil provided with carrier, laminate, printed wiring board, electronic device and method for fabricating printed wiring board
EP3232747A1 (en) 2016-04-15 2017-10-18 JX Nippon Mining & Metals Corp. Copper foil, copper foil for high-frequency circuit, carrier-attached copper foil, carrier-attached copper foil for high-frequency circuit, laminate, method of manufacturing printed wiring board, and method of manufacturing electronic device

Also Published As

Publication number Publication date
JP4136509B2 (en) 2008-08-20
TW200302155A (en) 2003-08-01
WO2003051964A1 (en) 2003-06-26
US7144472B2 (en) 2006-12-05
TW564215B (en) 2003-12-01
US20040062858A1 (en) 2004-04-01
MY134752A (en) 2007-12-31

Similar Documents

Publication Publication Date Title
JP2003249739A (en) Method of manufacturing prepreg, prepreg obtained with the same method, method of manufacturing copper foil with insulation layer, and copper foil with insulation layer manufactured with the same method
US7927453B2 (en) Method of manufacturing copper foil with insulating layer, copper foil with insulating layer obtained with the same method, and printed circuit board using the same copper foil with insulating layer
US8992713B2 (en) Process for producing multilayer printed wiring board
JP2650071B2 (en) Method for producing unidirectional reinforced PWB laminate
US6996902B2 (en) Method for manufacturing a circuit board
TWI428236B (en) Method for manufacturing laminate and laminate
JP4895611B2 (en) Multilayer printed wiring board and method for producing multilayer printed wiring board
WO2009119621A1 (en) Insulating resin sheet and method for manufacturing multilayer printed wiring board using the insulating resin sheet
JP4286060B2 (en) Method for producing copper foil with insulating layer
JP2008239826A (en) Method for producing resin film-laminated prepreg
JP4436714B2 (en) Manufacturing method of rigid flexible metal-clad laminate and manufacturing method of rigid flexible printed wiring board
JP2005288966A (en) Manufacturing method for double-sided metal-clad laminate, and double-sided metal-clad laminate obtained by the manufacturing method
JPH10338758A (en) Production of prepreg and laminated sheet
JP2004072071A (en) Method of manufacturing multilayer wiring board, and multilayer wiring board
JPH0359596B2 (en)
JPH10303569A (en) Multilayer laminated board with copper foil and high density multilayer printed wiring board using it and their manufacture
JP2004284192A (en) Insulating sheet with metal foil and its manufacturing method
JP2003023222A (en) Printed circuit board
JPH088537A (en) Manufacture of multilayer printed wiring board
JP2008254451A (en) Insulating sheet with metal foil
JP2000077847A (en) Manufacture of multilayered printed wiring board
JP2004292626A (en) Composite, prepreg and laminated board
HK1049763A (en) Microfiber dielectrics which facilitate laser via drilling

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071018

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080220

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080415

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080523

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080603

R150 Certificate of patent or registration of utility model

Ref document number: 4136509

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140613

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees