JP2003249238A - Manufacturing method of grooved plate material, grooved plate material manufactured by the method - Google Patents
Manufacturing method of grooved plate material, grooved plate material manufactured by the methodInfo
- Publication number
- JP2003249238A JP2003249238A JP2002048391A JP2002048391A JP2003249238A JP 2003249238 A JP2003249238 A JP 2003249238A JP 2002048391 A JP2002048391 A JP 2002048391A JP 2002048391 A JP2002048391 A JP 2002048391A JP 2003249238 A JP2003249238 A JP 2003249238A
- Authority
- JP
- Japan
- Prior art keywords
- plate material
- mold
- groove
- grooved
- manufacturing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Fuel Cell (AREA)
Abstract
(57)【要約】
【課題】 破断の発生が抑制される、溝付き部材の製造
方法が提供される。
【解決手段】 表面が平坦な面になっている複数の溝部
を金属板1Aに形成する溝付き板材の製造方法であっ
て、波形形状の型面20a,20bを有する第1金型2
0A,20Bで金属板1Aを予備成形して波形形状に変
形した板材とし、ついで、形成目標の溝部と同一形状の
型面を有する第2金型で板材を本成形する溝付き板材の
製造方法。
(57) [Problem] To provide a method for manufacturing a grooved member, in which occurrence of breakage is suppressed. SOLUTION: This is a method for manufacturing a grooved plate material in which a plurality of grooves having a flat surface are formed in a metal plate 1A, the first die 2 having corrugated mold surfaces 20a, 20b.
A method of manufacturing a grooved plate material in which a metal plate 1A is preformed at 0A and 20B to form a plate material deformed into a corrugated shape, and then the plate material is completely formed by a second mold having a mold surface having the same shape as a groove portion to be formed. .
Description
【0001】[0001]
【発明の属する技術分野】本発明は、溝付き板材とその
製造方法に関し、更に詳しくは、例えば燃料電池に組み
込まれる金属セパレータとして使用可能な溝付き板材
と、それを高い歩留まりの塑性加工で製造する方法に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a grooved plate material and a method for manufacturing the same, and more particularly, to a grooved plate material that can be used as a metal separator incorporated in a fuel cell, and manufactured by plastic working with a high yield. On how to do.
【0002】[0002]
【従来の技術】クリーンエネルギ源として期待を集めて
いる燃料電池は、概ね、次のようにして組み立てられ
る。まず、電解質層を燃料極と空気極で挟み込んで発電
要素とする。そして燃料極には、一方の表面に燃料通路
が形成され、他方の表面に空気通路が形成されているセ
パレータの前記燃料通路側の表面を重ね合わせ、また空
気極には、別のセパレータの空気通路側の表面を重ね合
わせる。そして、前者のセパレータの空気通路側の表面
に別の発電要素の空気極側を配置し、後者のセパレータ
の燃料通路側の表面に更に別の発電要素の燃料極側を配
置する。2. Description of the Related Art A fuel cell, which has been expected as a clean energy source, is generally assembled as follows. First, an electrolyte layer is sandwiched between a fuel electrode and an air electrode to form a power generation element. A fuel passage is formed on one surface of the fuel electrode, and an air passage is formed on the other surface of the separator. Overlap the aisle side surfaces. Then, the air electrode side of another power generating element is arranged on the surface of the former separator on the air passage side, and the fuel electrode side of another power generating element is arranged on the surface of the latter separator on the fuel passage side.
【0003】このようにして、セパレータを介して発電
要素が次々と積層されて所定段数の燃料電池が組み立て
られる。このような燃料電池に組み込まれるセパレータ
の材料としては、電解質に対する耐食性が優れ、低抵抗
で導電性が優れているということから、従来、黒鉛材料
が主流であった。In this way, the power generating elements are successively laminated via the separator to assemble a fuel cell having a predetermined number of stages. As a material for a separator incorporated in such a fuel cell, a graphite material has been mainly used in the past because of its excellent corrosion resistance against an electrolyte, low resistance and excellent conductivity.
【0004】ところで最近は車搭載用の燃料電池の開発
研究も盛んに行われているが、その場合、燃料電池の小
型化ということが重要な課題になっている。そしてその
ためには、前記した発電要素やセパレータの薄形化が必
要になる。しかしながら、黒鉛セパレータを薄くしてい
くと、燃料である水素が透過してしまい、セパレータと
しての機能喪失を招くので、その厚みは5mm程度が限界
であるとされている。同時に、燃料や空気の通路の加工
が非常に困難となって非常に高コスト化するという問題
がある。By the way, recently, research and development of a fuel cell mounted on a vehicle have been actively conducted, but in that case, miniaturization of the fuel cell has become an important issue. For that purpose, it is necessary to reduce the thickness of the power generation element and the separator described above. However, if the graphite separator is made thinner, hydrogen, which is a fuel, will permeate and the function of the separator will be lost. Therefore, it is said that the thickness is limited to about 5 mm. At the same time, there is a problem that processing of fuel and air passages becomes very difficult and the cost becomes very high.
【0005】このようなことから、最近では、薄い金属
板で製造したセパレータが提案されはじめている。代表
的な金属セパレータの1例を図10に示す。この金属セ
パレータは、1枚の金属板1Aの周縁部を枠状に残し、
その周縁部を除いた箇所に、後述する複数の溝部と台形
部が交互に平行配列した構造になっている。Under these circumstances, recently, a separator made of a thin metal plate has been proposed. An example of a typical metal separator is shown in FIG. This metal separator leaves a peripheral portion of one metal plate 1A in a frame shape,
A plurality of groove portions and a trapezoidal portion, which will be described later, are alternately arranged in parallel at a position excluding the peripheral portion.
【0006】図10のXI−XI線に沿う断面の一部を図1
1に示す。なお、図11では、金属セパレータ1の両面
にそれぞれ発電要素が積層された状態を仮想線で示して
いる。この金属セパレータ1は溝部Aと台形部Bを有し
ている。溝部Aと台形部Bの断面形状は同じになってい
て、これらは紙面と直交する方向に互いに平行に延びて
いる。そして、燃料電池の組み立て時にあっては、溝部
Aの開口は燃料極で封じられ、台形部Bの頂部b1は燃
料極と接触している。また台形部Bの開口は空気極で封
じられ、溝部Aの底部a1は空気極と接触する。したが
って、溝部Aは燃料通路として機能し、台形部Bの内部
は空気通路として機能する。FIG. 1 shows a part of a cross section taken along line XI-XI in FIG.
Shown in 1. In addition, in FIG. 11, the state in which the power generating elements are laminated on both surfaces of the metal separator 1 is shown by an imaginary line. This metal separator 1 has a groove portion A and a trapezoidal portion B. The groove A and the trapezoid B have the same cross-sectional shape, and they extend parallel to each other in the direction orthogonal to the plane of the drawing. At the time of assembling the fuel cell, the opening of the groove A is closed by the fuel electrode, and the top b 1 of the trapezoidal portion B is in contact with the fuel electrode. Further, the opening of the trapezoidal portion B is sealed by the air electrode, and the bottom portion a 1 of the groove portion A contacts the air electrode. Therefore, the groove A functions as a fuel passage, and the inside of the trapezoidal portion B functions as an air passage.
【0007】ここで、溝部Aの底部a1と台形部Bの頂
部b1は、いずれも、発電要素のそれぞれの極との接触
面積を大きくして発電要素からの電流を効率よく取り出
すために平坦な面になっている。また溝部Aの側面a2
は底部a1から角度θで立ち上がる平坦な傾斜面になっ
ている。この金属セパレータは金型を用いた塑性加工で
製造することができる。例えば、図12で示したよう
に、型面2a,2bが目的とする金属セパレータの溝部
(または台形部)と同じ形状になっている一対の金型2
A,2Bの間に所望厚み(例えば2μm)の金属板1A
を配置したのち、金型2A,2Bで1度にプレス成形す
ればよい。Here, both the bottom a 1 of the groove A and the top b 1 of the trapezoidal portion B have a large contact area with each pole of the power generating element so that the current from the power generating element can be efficiently extracted. It has a flat surface. In addition, the side surface a 2 of the groove A
Has a flat inclined surface rising from the bottom portion a 1 at an angle θ. This metal separator can be manufactured by plastic working using a mold. For example, as shown in FIG. 12, a pair of molds 2 in which the mold surfaces 2a and 2b have the same shape as the groove portion (or trapezoidal portion) of the target metal separator.
A metal plate 1A having a desired thickness (for example, 2 μm) between A and 2B
After arranging, the molds 2A and 2B may be pressed once.
【0008】[0008]
【発明が解決しようとする課題】ところで、上記した製
造方法の場合、次のような問題がある。図12の金型成
形(以後、一発成形という)においては、図13で示し
たように、まず、金型2Bの台形部が金型2Aの溝部に
位置する金属板1Aの部分と接触する。ついで、その部
分を金型2Aの溝部に一気に押し込んで目的とする凹凸
形状が成形される。However, the above-mentioned manufacturing method has the following problems. In the die molding of FIG. 12 (hereinafter referred to as one-shot molding), as shown in FIG. 13, first, the trapezoidal portion of the die 2B comes into contact with the portion of the metal plate 1A located in the groove of the die 2A. . Then, that portion is pushed into the groove portion of the mold 2A at a stretch to form a desired uneven shape.
【0009】その場合、金属板1Aにおける部分1aは
大きく延伸されて図11で示した溝部A(台形部B)に
おける傾斜面a2(b2)に成形され、また部分1bはあ
まり延伸されずに溝部A(台形部B)における底面a1
(頂部b1)に成形される。すなわち、一発成形時にあ
っては、金属板1Aは全体として一様に延伸されている
のではなく、傾斜面に成形される箇所を中心にして局部
的な伸びが発生している。In this case, the portion 1a of the metal plate 1A is largely stretched to form the inclined surface a 2 (b 2 ) in the groove A (trapezoidal portion B) shown in FIG. 11, and the portion 1b is not stretched so much. Bottom surface a 1 in groove A (trapezoid B)
(Top b 1 ) is formed. That is, at the time of one-shot molding, the metal plate 1A is not uniformly stretched as a whole, but local elongation is generated around the portion formed on the inclined surface.
【0010】そのため、傾斜面に成形される箇所には歪
みが集中し、そこに局部的な伸びが集中し、破断が発生
しやすい。とくに、図10で示した金属セパレータの場
合、枠状の周縁部を残した状態で複数の溝部Aと台形部
Bを一発成形で形成するので、金属板1Aの上記した局
部的な伸びは顕著となり、破断が頻発してくる。Therefore, the strain is concentrated on the portion formed on the inclined surface, the local elongation is concentrated there, and the breakage is likely to occur. Particularly, in the case of the metal separator shown in FIG. 10, since the plurality of groove portions A and the trapezoidal portion B are formed by one-shot molding while leaving the frame-shaped peripheral edge portion, the above-described local extension of the metal plate 1A is It becomes noticeable and breaks frequently.
【0011】また、用いる金属板1Aが冷間圧延材であ
る場合には、圧延時の歪みは残留していてその変形能が
低いので、1発成形時に破断が起こりやすく、目的とす
る金属セパレータの製造歩留まりが低くなる。本発明は
一発成形で溝付き板材を製造する際の上記した問題を解
決し、成形時における金属板の破断はほとんど発生せ
ず、高い歩留まりで溝付き板材を製造する方法と、その
方法で製造された溝付き板材を提供する。When the metal plate 1A used is a cold-rolled material, distortion during rolling remains and its deformability is low, so that breakage easily occurs during one-shot molding, and the desired metal separator is obtained. Manufacturing yield is reduced. The present invention solves the above-mentioned problems in producing a grooved plate material by one-shot molding, almost no breakage of a metal plate during molding occurs, and a method for producing a grooved plate material with a high yield, and the method. A manufactured grooved plate material is provided.
【0012】[0012]
【課題を解決するための手段】上記した目的を達成する
ために、本発明においては、表面が平坦な面になってい
る複数の溝部を金属板に形成する溝付き板材の製造方法
であって、波形形状の型面を有する第1金型で前記金属
板を予備成形して波形形状に変形した板材とし、つい
で、形成目標の溝部と同一形状の型面を有する第2金型
で前記板材を本成形することを特徴とする溝付き板材の
製造方法が提供される。In order to achieve the above object, the present invention provides a method for producing a grooved plate material in which a plurality of groove portions each having a flat surface are formed on a metal plate. A metal plate that is preformed by a first mold having a corrugated mold surface into a corrugated shape, and then a second mold that has a mold surface having the same shape as the groove to be formed. The present invention provides a method for producing a grooved plate material, which comprises:
【0013】その場合、前記第1金型の波形形状におけ
る山部と谷部との高さ距離は、形成目標の溝部の深さよ
りも大きくなっており、また、前記第1金型の波形形状
における前記山部の頂点と前記谷部の最低点の近傍は、
いずれも、曲率0.3mm以上の曲線形状になっている。
また、本発明においては、上記した方法で製造された溝
付き板材であって、底面と側面がいずれも平坦な面にな
っている複数の溝部が互いに平行して金属板に形成され
ており、前記溝部の折曲部位近傍における硬度が、平均
硬度の−40%〜+40%の範囲内にあることを特徴と
する溝付き板材が提供される。In this case, the height distance between the peaks and the troughs in the corrugated shape of the first mold is larger than the depth of the groove to be formed, and the corrugated shape of the first mold is used. In the vicinity of the peak of the mountain and the lowest point of the valley in
Both have a curved shape with a curvature of 0.3 mm or more.
Further, in the present invention, in the grooved plate material manufactured by the above method, a plurality of groove portions each having a flat bottom surface and side surface are formed in parallel with each other on the metal plate, There is provided a grooved plate material characterized in that the hardness in the vicinity of the bent portion of the groove is within the range of -40% to + 40% of the average hardness.
【0014】[0014]
【発明の実施の形態】本発明は金属板に2段階の金型成
形を行って、当該金属板に底面と側面がいずれも平坦な
面になっている複数の溝部を形成する方法である。ま
ず、図1で示したように、型面20a,20bが同一の
波形形状になっている一対の第1金型20A,20Bの
間に金属板1Aを配置したのち、第1金型20A,20
Bで1度にプレス成形する(予備成形)。BEST MODE FOR CARRYING OUT THE INVENTION The present invention is a method for forming a plurality of groove portions, each of which has a flat bottom surface and a flat side surface, on a metal plate by carrying out two-step mold forming. First, as shown in FIG. 1, a metal plate 1A is placed between a pair of first molds 20A, 20B having mold surfaces 20a, 20b having the same corrugated shape, and then the first mold 20A, 20
Press molding with B at once (preliminary molding).
【0015】この予備成形時においては、図2で示した
ように、まず金型20Aの波形形状の型面20aにおけ
る山部20a1の頂点20a2が、金型20Bの型面20
bにおける谷部20b1の最低点20b2の直上に位置す
る金属板1Aの部分と接触し、ついで、その部分を一気
に谷部2b1に押し込んで成形が終了する。その結果、
金属板1Aは、図3で示したように、金型の型面と同じ
波形形状をした板材1A1に変形する。During this preforming, as shown in FIG. 2, first , the apex 20a 2 of the peak portion 20a 1 on the corrugated mold surface 20a of the mold 20A is the mold surface 20 of the mold 20B.
The portion of the metal plate 1A located immediately above the lowest point 20b 2 of the valley portion 20b 1 at point b is contacted, and then that portion is pushed all at once into the valley portion 2b 1 to complete the forming. as a result,
Metal plate 1A, as shown in FIG. 3, deformed plate 1A 1 in which the same waveform shape as the mold surface of the mold.
【0016】この予備成形において、金型20Aの型面
20aにおける山部20a1の頂点20a2の両脇に位置
する金属板の部分1a,1aが両金型の型面に沿う状態
で比較的均一に延伸されるので、図13で示した従来の
一発成形の場合のような局部的に集中した伸びは発生し
ていない。したがって、図3で示した板材1A1は、一
対の第1金型の型面と同一形状になっているが、そこで
は伸びが局部的に集中した状態になっておらず、全体と
して均一な伸び加工が施されており、破断の発生が抑制
されている。[0016] In this preformed, relatively in a state where the metal plate portion 1a which is located on both sides of the vertex 20a 2 of the ridge portions 20a 1 of the mold surface 20a of the mold 20A, 1a extends along the mold surface of the dies Since it is stretched uniformly, the locally concentrated elongation as in the case of the conventional one-shot molding shown in FIG. 13 does not occur. Therefore, the plate material 1A 1 shown in FIG. 3 has the same shape as the mold surfaces of the pair of first molds, but the elongation is not locally concentrated there, and is uniform as a whole. Elongation processing is applied to prevent the occurrence of fracture.
【0017】予備成形で得られた板材1A1を、次に、
図4で示したように、目標形状の溝部(または台形部)
が型面2a,2bに形成されている一対の第2金型2
A,2Bの間に配置してプレス成形する(本成形)。そ
の場合、板材1A1の山部は金型2Aの溝部に、また板
材1A1の谷部は金型2Aの山部を受容するように位置
合わせをする。The plate material 1A 1 obtained by preforming was
As shown in Fig. 4, the groove (or trapezoid) of the target shape
Pair of second molds 2 in which the mold surfaces 2a and 2b are formed
It is arranged between A and 2B and press-molded (main molding). In that case, the crest of the plate 1A 1 is the groove of the mold 2A, also valleys of the plate 1A 1 is aligned to receive the crest portion of the die 2A.
【0018】この本成形においては、均一な伸び加工状
態にある板材1A1は金型2A,2Bで圧縮成形される
ので、板材の破断は全く起こらないで成形が進み、図1
1で示したように、底面a1(頂部b1)と傾斜面a
2(b2)がいずれも平坦な面になっている溝部A(また
は台形部B)が形成される。ここで、予備成形で用いる
第1金型の型面における波形形状の山部20a1の頂点
20a2(または谷部20b1の最低点20b)の近傍
は、曲率が0.3mm以上である曲面形状となるように設
計される。In this main forming, since the plate material 1A 1 in a uniform stretched state is compression-molded by the molds 2A and 2B, the plate material is not fractured at all and the molding proceeds.
1, the bottom surface a 1 (top b 1 ) and the inclined surface a 1
The groove portion A (or the trapezoid portion B) in which 2 (b 2 ) is a flat surface is formed. Here, in the vicinity of the apex 20a 2 of the corrugated peak 20a 1 (or the lowest point 20b of the valley 20b 1 ) on the mold surface of the first mold used for preforming, a curved surface having a curvature of 0.3 mm or more Designed to be shaped.
【0019】曲率が0.3mmより小さい場合は、鋭角で
ありすぎて、予備成形時に金属板を突き破るという事態
が起こりやすいからである。また、第1金型の波形形状
においては、谷部20b1の最低点20b2と山部20a
1の頂点20a2との垂直方向における高さ距離(h)
は、目標とする溝部の深さ(または台形部の高さ):H
に対し、50〜150%程度の値に設計される。本成形
に板材1A1の頂部近傍は幅方向に張り出して例えば山
部の高さは低くなるからである。If the curvature is less than 0.3 mm, the angle is too acute and the metal plate is likely to break through during preforming. Further, in the corrugated shape of the first mold, the lowest point 20b 2 of the valley 20b 1 and the peak 20a
Height distance (h) in the vertical direction from the vertex 20a 2 of 1
Is the target groove depth (or trapezoid height): H
On the other hand, it is designed to have a value of about 50 to 150%. This is because in the main forming, the vicinity of the top of the plate material 1A 1 projects in the width direction and the height of the mountain portion becomes low, for example.
【0020】第1金型の型面における波形形状の好適例
としては、sin曲線に類似した形状をあげることができ
る。本発明を適用することにより、金属板の変形能が小
さく、かつ薄い冷間圧延材である場合であっても、破断
の発生を抑制して、微細で多数の溝部を形成することが
できる。例えば、オーステナイト系の薄いSUS板にA
u,Pd、またはPtから成る数10nm程度の薄層をめ
っき形成したのち5%以上の圧下率で冷間圧延して製造
した厚み0.15mm程度のクラッド板に対しても、複数
の溝部を形成して燃料電池用の金属セパレータを製造す
ることができる。A preferable example of the corrugated shape on the die surface of the first die is a shape similar to a sin curve. By applying the present invention, even if the metal plate has a small deformability and is a thin cold-rolled material, it is possible to suppress the occurrence of breakage and form a large number of fine groove portions. For example, on an austenitic thin SUS plate,
A plurality of grooves are formed even on a clad plate having a thickness of about 0.15 mm, which is produced by plating a thin layer of several tens of nm of u, Pd, or Pt and cold rolling at a reduction rate of 5% or more. It can be formed to manufacture a metal separator for a fuel cell.
【0021】ところで、図11で示したような底面a1
と傾斜面a2のいずれもが平坦な面になっている溝部
(または台形部)を金型で一発成形すると、溝部(また
は台形部)における折曲部位は強加工されるため、当該
部位の硬度は他の箇所に比べて非常に高くなり、全体と
しての硬度のばらつきは大きくなる。しかしながら、本
発明の場合のように、一旦、予備成形を行ってから本成
形で上記した形状の溝部(または台形部)を形成する
と、溝部(または台形部)における折曲部位は上記した
ような強加工を受けることがないため、当該部位の硬度
は、他の箇所の硬度より高いとはいえ、上記した一発成
形時の場合よりも低く、したがって、全体としての硬度
のばらつきは小さくなる。By the way, the bottom surface a 1 as shown in FIG.
When a groove (or trapezoidal portion) in which both the inclined surface a 2 and the inclined surface a 2 are flat surfaces is formed by a single shot with a mold, the bent portion in the groove (or trapezoidal portion) is strongly processed. The hardness of is much higher than that of other parts, and the variation in hardness as a whole is large. However, as in the case of the present invention, if the groove portion (or trapezoidal portion) having the above-described shape is formed in the main forming after performing the preliminary molding, the bent portion in the groove portion (or trapezoidal portion) is as described above. Since it is not subjected to heavy working, the hardness of the portion is higher than the hardness of other portions, but is lower than the case of the above-described one-shot molding, and therefore the variation in hardness as a whole is small.
【0022】本発明方法を適用すると、最終的に成形さ
れた溝部(または台形部)において、その折曲部位の硬
度は、板材全体の硬度の平均値に対し−40%〜+40
%の範囲内にあり、ばらつきは小さくなっている。When the method of the present invention is applied, in the finally formed groove portion (or trapezoidal portion), the hardness of the bent portion is -40% to +40 with respect to the average value of the hardness of the whole plate material.
Within the range of%, the variation is small.
【0023】[0023]
【実施例】実施例1〜4,比較例1,2
次のような金属セパレータを成形目標とした。まず、成
形する溝部は、図5で示したように、溝部A−A間のピ
ッチは2.7mm,溝部Aの深さH(および台形部Bの高
さ)は0.7mm,溝部Aの底部a1と台形部Bの頂部b1
の幅はいずれも0.9mm,傾斜面の角度θはtan-1(0.
7/0.45),溝部Aの折曲部位の曲率は0.05mm,
台形部Bの折曲部位の曲率は0.25mmとする。EXAMPLES Examples 1 to 4, Comparative Examples 1 and 2 The following metal separators were used as molding targets. First, as shown in FIG. 5, the grooves to be formed have a pitch between the grooves A-A of 2.7 mm, a depth H of the grooves A (and a height of the trapezoid B) of 0.7 mm, and a groove A of the grooves A. Bottom a 1 and top b 1 of trapezoid B
Has a width of 0.9 mm, and the angle θ of the inclined surface is tan -1 (0.9.
7 / 0.45), the curvature of the bent part of the groove A is 0.05 mm,
The curvature of the bent portion of the trapezoidal portion B is 0.25 mm.
【0024】一方、金属板として、板厚が0.2mmで硬
度(HV)が170〜180であるSUS316板と、
SUS316板に厚み40nmのAuをめっきしたのち1
5%の圧下率で冷間圧延し、板厚が0.2mmで、硬度
(HV)が310〜330であるクラッド板の2種類を
用意した。また、予備成形用の第1金型として、型面が
図6で示した波形形状になっている一対の金型(1),
型面が図7で示した波形形状になっている一対の金型
(2)、および型面が図8で示した波形形状になってい
る一対の金型(3)を用意した。On the other hand, as a metal plate, a SUS316 plate having a plate thickness of 0.2 mm and a hardness (HV) of 170 to 180,
After plating SUS316 plate with Au of thickness 40nm, 1
Cold rolling was performed at a rolling reduction of 5%, and two types of clad plates having a plate thickness of 0.2 mm and a hardness (HV) of 310 to 330 were prepared. Further, as the first mold for preforming, a pair of molds (1) whose mold surfaces have the corrugated shape shown in FIG.
A pair of molds (2) whose mold surfaces have the corrugated shape shown in FIG. 7 and a pair of molds (3) whose mold surfaces have the corrugated shape shown in FIG. 8 were prepared.
【0025】各第1金型で金属板を予備成形したのち、
得られた板材に、型面が図5で示した形状になっている
一対の金型で本成形を行って溝付き板材を成形した。比
較のために、型面が図5と同じ形状の金型を用いて一発
成形を行い、溝付き板材を製造した。得られた板材につ
き、溝部(および台形部)における破断の有無を目視観
察した。1個も破断が認められない場合を○,1個でも
破断が認められた場合を×とした。After preforming a metal plate with each first mold,
The plate material thus obtained was subjected to main molding with a pair of molds whose mold surfaces had the shape shown in FIG. 5 to mold a grooved plate material. For comparison, one-shot molding was performed using a mold having a mold surface having the same shape as in FIG. 5 to manufacture a grooved plate material. With respect to the obtained plate material, the presence or absence of breakage in the groove portion (and the trapezoidal portion) was visually observed. The case where no rupture was observed was ◯, and the case where even one rupture was observed was x.
【0026】その結果を表1に示した。The results are shown in Table 1.
【0027】[0027]
【表1】 [Table 1]
【0028】表1から明らかなように、HV:170〜
180のSUS316板に対しては、いずれの金型を用
いた場合であっても破断を生ずることなく目標とする溝
付き板材を製造することができる。一方、HV:310
〜330と高硬度のクラッド板に対しては、金型(1)
を用いた予備成形を行っても、その山部の頂点が鋭角で
あるため破断が生じている。しかしながら、山部の頂点
の曲率が大きい金型(2)と金型(3)を用いれば、破
断を生ずることなく、目的とする溝付き板材を製造する
ことができる。As is apparent from Table 1, HV: 170-
With respect to the SUS316 plate of 180, the target grooved plate material can be manufactured without causing breakage regardless of which mold is used. On the other hand, HV: 310
~ 330 for high hardness clad plate, mold (1)
Even when preforming is performed, the peaks of the ridges are sharp, and fracture occurs. However, by using the mold (2) and the mold (3) in which the peaks of the ridges have a large curvature, the target grooved plate material can be manufactured without causing breakage.
【0029】次に、厚みが0.2mmでHV値が248で
あるSUS316板を用い、図5で示した型面の金型を
用いた一発成形を行って板材(比較例2)を製造し、ま
た図7で示した型面の金型を用いた本発明方法を行って
板材(実施例4)を製造し、各板材につき、5本の溝部
と5本の台形部の各箇所における硬度(HV)を測定し
た。全ての箇所で測定された硬度の平均値を図9に示し
た。また、板材の平均硬度,(最大硬度−平均硬度)×
100/平均硬度,(最小硬度−平均硬度)×100/
平均硬度を表2に示した。Next, using a SUS316 plate having a thickness of 0.2 mm and an HV value of 248, one-shot molding using the mold having the mold surface shown in FIG. 5 was carried out to manufacture a plate material (Comparative Example 2). Further, a plate material (Example 4) was manufactured by carrying out the method of the present invention using the mold having the mold surface shown in FIG. 7, and at each position of 5 groove portions and 5 trapezoidal portions for each plate material. Hardness (HV) was measured. The average value of hardness measured at all points is shown in FIG. Also, the average hardness of the plate material, (maximum hardness-average hardness) x
100 / average hardness, (minimum hardness-average hardness) x 100 /
The average hardness is shown in Table 2.
【0030】[0030]
【表2】 [Table 2]
【0031】図9と表2から明らかなように、本発明方
法は、従来の一発成形に比べて、製造された板材におけ
る折曲部位の硬度は低く、かつ、そのばらつきが小さく
なっている。As is clear from FIG. 9 and Table 2, in the method of the present invention, the hardness of the bent portion in the manufactured plate material is low and the variation thereof is small as compared with the conventional one-shot molding. .
【0032】[0032]
【発明の効果】以上の説明で明らかなように、本発明
は、底面と側面がいずれも平坦な面になっている溝部と
台形部を1枚の金属板に成形する際に、波形形状の型面
を有する金型を用いて金属板を一旦予備成形したのち、
正規形状の型面の金型で本成形を行っているので、溝部
の傾斜面における伸びの集中が抑制されて従来の一発成
形で起こっていた金属板の破断は発生しなくなり、設計
目標の溝付き板材を高い歩留まりで製造することができ
る。As is apparent from the above description, according to the present invention, when a groove portion and a trapezoidal portion each having a flat bottom surface and a flat side surface are formed into a single metal plate, After preforming a metal plate using a mold with a mold surface,
Since main forming is performed with a die having a regular shape, the concentration of elongation on the inclined surface of the groove is suppressed, and the metal plate breakage that occurred in conventional one-shot forming does not occur, so The grooved plate material can be manufactured with a high yield.
【0033】本発明は、燃料電池に組み込まれる金属セ
パレータの製造に適用して極めて有効である。The present invention is extremely effective when applied to the production of a metal separator incorporated in a fuel cell.
【図1】本発明の予備成形時に用いる金型例を示す断面
図である。FIG. 1 is a cross-sectional view showing an example of a mold used for preforming of the present invention.
【図2】予備成形によって得られた板材を示す断面図で
ある。FIG. 2 is a cross-sectional view showing a plate material obtained by preforming.
【図3】予備成形時に金属板の破断が抑制される理由を
説明するための説明図である。FIG. 3 is an explanatory diagram for explaining the reason why breakage of a metal plate is suppressed during preforming.
【図4】本発明の本成形を示す断面図である。FIG. 4 is a sectional view showing the main molding of the present invention.
【図5】実施例で目標とする溝部と台形部の寸法形状の
仕様を説明する説明図である。FIG. 5 is an explanatory view illustrating specifications of dimensions and shapes of a groove portion and a trapezoid portion which are targets in the embodiment.
【図6】予備成形で用いる金型(1)の型面の波形形状
を示す図である。FIG. 6 is a view showing a waveform shape of a mold surface of a mold (1) used for preforming.
【図7】予備成形で用いる金型(2)の型面の波形形状
を示す図である。FIG. 7 is a view showing a waveform shape of a mold surface of a mold (2) used for preforming.
【図8】予備成形で用いる金型(3)の型面の波形形状
を示す図である。FIG. 8 is a view showing a waveform shape of a mold surface of a mold (3) used for preforming.
【図9】実施例4の板材と比較例2の板材の硬度分布を
示すグラフである。9 is a graph showing the hardness distributions of the plate material of Example 4 and the plate material of Comparative Example 2. FIG.
【図10】金属セパレータの1例を示す斜視図である。FIG. 10 is a perspective view showing an example of a metal separator.
【図11】図10のXI−XI線に沿う断面図である。11 is a sectional view taken along line XI-XI of FIG.
【図12】従来の一発成形を示す断面図である。FIG. 12 is a cross-sectional view showing conventional one-shot molding.
【図13】一発成形で傾斜面に伸びが集中する理由を説
明する説明図である。FIG. 13 is an explanatory diagram for explaining the reason why elongation concentrates on an inclined surface in one-shot molding.
1A 金属板 1A1 予備成形で得られた板材 A 溝部 B 台形部 2A,2B 目標形状の型面を有する金型 2a,2b 金型2A,2Bの型面 20A,20B 型面が波形形状をしている金型 20a,20b 金型20A,20Bの型面 20a1 山部 20a2 山部20a1の頂点 20b1 谷部 20b2 谷部20b1の最低点1A Metal plate 1A 1 Plate material obtained by preforming A Groove portion B Trapezoidal portion 2A, 2B Molds 2a, 2b having target shape mold surfaces 2A, 2B Mold surfaces 20A, 20B Mold 20a, 20b Mold surface 20a 1 of mold 20A, 20B 1 peak 20a 2 peak 20b 1 peak 20b 1 valley 20b 2 valley 20b 1 lowest point
───────────────────────────────────────────────────── フロントページの続き (72)発明者 久田 建男 愛知県名古屋市南区大同町二丁目30番地 大同特殊鋼株式会社技術開発研究所内 (72)発明者 高木 忍 愛知県名古屋市南区大同町二丁目30番地 大同特殊鋼株式会社技術開発研究所内 Fターム(参考) 5H026 AA02 BB02 BB04 CC03 CC05 EE02 HH00 HH03 HH05 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Takeo Hisada 2-30, Daido-cho, Minami-ku, Nagoya-shi, Aichi Daido Steel Co., Ltd. Technology Development Laboratory (72) Inventor Shinobu Takagi 2-30, Daido-cho, Minami-ku, Nagoya-shi, Aichi Daido Steel Co., Ltd. Technology Development Laboratory F term (reference) 5H026 AA02 BB02 BB04 CC03 CC05 EE02 HH00 HH03 HH05
Claims (7)
を金属板に形成する溝付き板材の製造方法であって、 波形形状の型面を有する第1金型で前記金属板を予備成
形して波形形状に変形した板材とし、ついで、 形成目標の溝部と同一形状の型面を有する第2金型で前
記板材を本成形することを特徴とする溝付き板材の製造
方法。1. A method for manufacturing a grooved plate material, which comprises forming a plurality of groove portions having a flat surface on a metal plate, wherein the metal plate is preliminarily prepared by a first mold having a corrugated mold surface. A method for manufacturing a grooved plate material, which comprises forming a plate material deformed into a corrugated shape, and then finally forming the plate material with a second mold having a mold surface having the same shape as the target groove portion.
谷部との高さ距離は、形成目標の溝部の深さよりも大き
くなっている請求項1の溝付き板材の製造方法。2. The method for manufacturing a grooved plate material according to claim 1, wherein the height distance between the peak and the valley in the corrugated shape of the first mold is larger than the depth of the groove targeted for formation.
部の頂点と前記谷部の最低点の近傍は、いずれも、曲率
0.3mm以上の曲線形状になっている請求項1または2
の溝付き板材の製造方法。3. A curved shape having a curvature of 0.3 mm or more in the vicinity of the peak of the peak and the lowest point of the valley in the corrugated shape of the first mold.
For manufacturing a grooved plate material.
箇所に形成されている請求項1〜3のいずれかの溝付き
板材の製造方法。4. The method for manufacturing a grooved plate member according to claim 1, wherein the groove is formed at a position excluding the peripheral edge of the metal plate.
から成る薄層が表面に形成され、かつ、5%以上の圧下
率で冷間圧延されたクラッド板である請求項1〜4のい
ずれかの溝付き板材の製造方法。5. The metal plate is Au, Pt, or Pd.
A method for producing a grooved plate material according to any one of claims 1 to 4, which is a clad plate on which a thin layer made of is formed on the surface and which is cold-rolled at a rolling reduction of 5% or more.
いる複数の溝部が互いに平行して金属板に形成されてお
り、前記溝部の折曲部位近傍における硬度が、平均硬度
の−40%〜+40%の範囲内にあることを特徴とする
溝付き板材。6. A plurality of groove portions each having a flat bottom surface and side surface are formed in parallel with each other on a metal plate, and a hardness in the vicinity of a bent portion of the groove portions is an average hardness of −40. % To + 40%, a grooved plate material characterized by being in the range of + 40%.
である請求項6の溝付き板材。7. The grooved plate material according to claim 6, which is a metal separator incorporated in a fuel cell.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002048391A JP2003249238A (en) | 2002-02-25 | 2002-02-25 | Manufacturing method of grooved plate material, grooved plate material manufactured by the method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002048391A JP2003249238A (en) | 2002-02-25 | 2002-02-25 | Manufacturing method of grooved plate material, grooved plate material manufactured by the method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003249238A true JP2003249238A (en) | 2003-09-05 |
Family
ID=28661204
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002048391A Pending JP2003249238A (en) | 2002-02-25 | 2002-02-25 | Manufacturing method of grooved plate material, grooved plate material manufactured by the method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003249238A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2372824A1 (en) * | 2010-03-30 | 2011-10-05 | L'AIR LIQUIDE, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude | Fuel cell plate and corresponding cell and fuel cell |
JP2013008701A (en) * | 2012-10-05 | 2013-01-10 | Nissan Motor Co Ltd | Method of manufacturing separator for fuel cell |
US8895208B2 (en) | 2009-12-22 | 2014-11-25 | Topsoe Fuel Cell A/S | Manufacture and calibration process for an interconnect for a fuel cell or a cell stack |
WO2014196277A1 (en) * | 2013-06-04 | 2014-12-11 | 日産自動車株式会社 | Forming method for eliminating separator distortion and forming device for eliminating separator distortion |
JP2014231075A (en) * | 2013-05-29 | 2014-12-11 | トヨタ自動車株式会社 | Press molding method |
JP2017001072A (en) * | 2015-06-12 | 2017-01-05 | 株式会社三井ハイテック | Metal plate forming method and forming apparatus used therefor |
JP2017064775A (en) * | 2015-10-02 | 2017-04-06 | 株式会社三井ハイテック | Press working apparatus and press working method |
DE112016004387T5 (en) | 2015-09-28 | 2018-06-21 | Mitsui High-Tec, Inc. | SEPARATORHERSTELLUNGSVERFAHREN |
CN110125249A (en) * | 2018-02-09 | 2019-08-16 | 株式会社三井高科技 | The manufacturing method of metal forming body |
CN116154208A (en) * | 2022-12-11 | 2023-05-23 | 同济大学 | High-precision high-corrosion-resistance titanium bipolar plate for fuel cell, preparation method thereof and die assembly |
US12311425B2 (en) | 2020-06-29 | 2025-05-27 | Toyota Boshoku Kabushiki Kaisha | Workpiece production apparatus |
-
2002
- 2002-02-25 JP JP2002048391A patent/JP2003249238A/en active Pending
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8895208B2 (en) | 2009-12-22 | 2014-11-25 | Topsoe Fuel Cell A/S | Manufacture and calibration process for an interconnect for a fuel cell or a cell stack |
FR2958456A1 (en) * | 2010-03-30 | 2011-10-07 | Air Liquide | FUEL CELL PLATE, CORRESPONDING CELL AND BATTERY |
EP2372824A1 (en) * | 2010-03-30 | 2011-10-05 | L'AIR LIQUIDE, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude | Fuel cell plate and corresponding cell and fuel cell |
JP2013008701A (en) * | 2012-10-05 | 2013-01-10 | Nissan Motor Co Ltd | Method of manufacturing separator for fuel cell |
JP2014231075A (en) * | 2013-05-29 | 2014-12-11 | トヨタ自動車株式会社 | Press molding method |
JPWO2014196277A1 (en) * | 2013-06-04 | 2017-02-23 | 日産自動車株式会社 | Molding method for removing separator distortion and molding apparatus for removing separator distortion |
CN105264699A (en) * | 2013-06-04 | 2016-01-20 | 日产自动车株式会社 | Forming method for eliminating separator distortion and forming device for eliminating separator distortion |
WO2014196277A1 (en) * | 2013-06-04 | 2014-12-11 | 日産自動車株式会社 | Forming method for eliminating separator distortion and forming device for eliminating separator distortion |
US10020519B2 (en) | 2013-06-04 | 2018-07-10 | Nissan Motor Co., Ltd. | Molding method for removing separator distortion and molding device for removing separator distortion |
JP2017001072A (en) * | 2015-06-12 | 2017-01-05 | 株式会社三井ハイテック | Metal plate forming method and forming apparatus used therefor |
DE112016004387T5 (en) | 2015-09-28 | 2018-06-21 | Mitsui High-Tec, Inc. | SEPARATORHERSTELLUNGSVERFAHREN |
US10876192B2 (en) | 2015-09-28 | 2020-12-29 | Mitsui High-Tec, Inc. | Separator production method |
JP2017064775A (en) * | 2015-10-02 | 2017-04-06 | 株式会社三井ハイテック | Press working apparatus and press working method |
CN110125249A (en) * | 2018-02-09 | 2019-08-16 | 株式会社三井高科技 | The manufacturing method of metal forming body |
US12311425B2 (en) | 2020-06-29 | 2025-05-27 | Toyota Boshoku Kabushiki Kaisha | Workpiece production apparatus |
CN116154208A (en) * | 2022-12-11 | 2023-05-23 | 同济大学 | High-precision high-corrosion-resistance titanium bipolar plate for fuel cell, preparation method thereof and die assembly |
CN116154208B (en) * | 2022-12-11 | 2024-03-12 | 同济大学 | High-precision high-corrosion-resistance titanium bipolar plate for fuel cell, preparation method thereof and die assembly |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6103147B2 (en) | Fine mold for molding fuel cell separator, method for manufacturing fuel cell separator, and fuel cell separator | |
EP2124274B1 (en) | Reformed battery grids | |
US9364883B2 (en) | Method of producing a separator | |
JP2003249238A (en) | Manufacturing method of grooved plate material, grooved plate material manufactured by the method | |
JP2000317531A (en) | Pressing method of plate material | |
CN106862380B (en) | Metal frame and preparation method thereof, electronic device | |
US8778567B1 (en) | Unique pre-form design for two-step forming of stainless steel fuel cell bipolar plates | |
JP6798292B2 (en) | Molding method and molding equipment for metal plates | |
CN104220182B (en) | Close manufacture method and the device of cross section structure parts | |
JP2002313354A (en) | Method and apparatus for manufacturing separator for polymer electrolyte fuel cell | |
US8104181B2 (en) | Outer blade for reciprocation-type electric shaver and method of producing the same | |
CN113967691A (en) | Production process of metal plate of hydrogen energy battery | |
JP3798299B2 (en) | Method for manufacturing deformed strip and method for manufacturing lead frame | |
CN111384414B (en) | Bipolar plate for fuel cell and method for making the same | |
JP7564448B2 (en) | Manufacturing method and manufacturing equipment for press-molded products | |
US20130145613A1 (en) | Single Punch Method of Making Battery Plates for Lead-Acid Batteries | |
JP2003338295A (en) | Solid polymer fuel cell metal separator with little warpage and method of manufacturing the same | |
CN1385623A (en) | Rivet-free metal riveting method | |
JP2009076304A (en) | Metal separator for fuel cell and manufacturing method thereof | |
JP4769570B2 (en) | Metal sheet forming method | |
JP2005349463A (en) | Method for forming stripe-shaped convex and concave, and metal separator for fuel cell manufactured in the same method | |
JP2021500710A (en) | Gas distribution plate for gas distribution and flow guidance in electrolytic cells and fuel cells | |
JP4388389B2 (en) | Method for producing metal separator for fuel cell | |
CN210730803U (en) | Welding pin shaping device | |
JP2006043719A (en) | Element for continuously variable transmission and method for manufacturing the same |