[go: up one dir, main page]

JP2003247753A5 - - Google Patents

Download PDF

Info

Publication number
JP2003247753A5
JP2003247753A5 JP2002047420A JP2002047420A JP2003247753A5 JP 2003247753 A5 JP2003247753 A5 JP 2003247753A5 JP 2002047420 A JP2002047420 A JP 2002047420A JP 2002047420 A JP2002047420 A JP 2002047420A JP 2003247753 A5 JP2003247753 A5 JP 2003247753A5
Authority
JP
Japan
Prior art keywords
hot water
temperature
storage tank
heat
water storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002047420A
Other languages
Japanese (ja)
Other versions
JP3747250B2 (en
JP2003247753A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2002047420A priority Critical patent/JP3747250B2/en
Priority claimed from JP2002047420A external-priority patent/JP3747250B2/en
Publication of JP2003247753A publication Critical patent/JP2003247753A/en
Publication of JP2003247753A5 publication Critical patent/JP2003247753A5/ja
Application granted granted Critical
Publication of JP3747250B2 publication Critical patent/JP3747250B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【書類名】 明細書
【発明の名称】 多機能給湯機
【特許請求の範囲】
【請求項1】 加熱手段と、前記加熱手段で加熱した温水を上部から貯湯する貯湯槽と
、前記貯湯槽上部の温水を熱源とする放熱手段と、温調手段と、前記放熱手段に流入する温水温度を所定温度となるように制御する制御手段とを備えた多機能給湯機。
【請求項2】 加熱手段と、前記加熱手段で加熱した温水を上部から貯湯する貯湯槽と
、前記貯湯槽上部の温水を熱源とする放熱手段と、温調手段と、前記放熱手段に流入する温水温度を所定温度となるように制御する制御手段とを備え、前記温調手段は、放熱手段を循環する温水の循環回路に設けた循環ポンプと、前記循環回路に設けたバイパス回路と、前記放熱手段から前記バイパス回路を流れる温水と前記貯湯槽側から流れてきた高温水をミキシングする温度調整弁とから構成し、さらに制御手段は、前記温度調整弁を制御して放熱手段に流入する温水温度を制御するようにしたことを特徴とする多機能給湯機。
【請求項3】 放熱手段に流入する温水の循環流量を可変する流量制御手段を備えた請求項1または2記載の多機能給湯機。
【請求項4】 貯湯槽上部から流出する温水を貯湯槽中間部に戻す回路と貯湯槽下部に戻す回路に切換える切換え手段を備えた請求項1または2記載の多機能給湯機。
【請求項5】 放熱手段からの温水が戻る貯湯槽中間部の近傍に形成した貯湯槽接続口を出湯管に接続するための中間温度出湯管と、前記中間温度出湯管から出湯する貯湯水と貯湯槽上部から出湯する貯湯水との混合を制御する出湯調整弁と、前記貯湯槽接続口近傍の貯湯温度を検出する温度検出手段と、前記温度検出手段の検出信号を基に前記出湯調整弁を制御する制御手段を備えた請求項1または2記載の記載の多機能給湯機。
【請求項6】 放熱手段からの温水が戻る貯湯槽中間部より上部の貯湯槽湯温が所定温度に達した時、加熱手段の運転を開始する運転制御手段を備えた請求項1または2記載の多機能給湯機。
【請求項7】 加熱手段を圧縮機を備えたヒートポンプとした請求項1または2記載の多機能給湯機。
【請求項8】 ヒートポンプに封入する冷媒を二酸化炭素とした請求項7記載の多機能給湯機。
【発明の詳細な説明】
【0001】
【発明の属する技術分野】
本発明は風呂追焚きあるいは暖房など多機能を備えるヒートポンプ給湯機に関するものである。
【0002】
【従来の技術】
従来、この種の給湯装置としては、例えば、特開平11−83156号公報に示すものがあった。図14は前記公報に記載された従来の風呂追焚き機能を備えた給湯装置を示すものである。図14において、1は貯湯槽、2は沸上げヒータ、3は急速沸上げヒータ、4、5は温度検出手段、6は電磁開閉弁、7は給湯管、8は浴槽、9は循環ポンプ、10は熱交換手段であり、貯湯槽1の上部の湯と浴槽8の水を熱交換して風呂追焚きするものである。
【0003】
【発明が解決しようとする課題】
しかしながら、前記従来の構成では、放熱手段としての風呂追焚きの場合、風呂追焚き運転時に貯湯槽1の上部の湯が温度低下するため、放熱手段へ流入する温水温度が不安定となり、利便性も悪い。例えば、風呂追焚き回数を重ねる度に貯湯槽1上部の湯温と風呂追焚き循環水との温度差が少なくなって放熱量が小さくなる。また、加熱されて浴槽8にもどる温水温度も低くなる。さらに、貯湯槽1の上部の湯の利用温度に限界があって、有効に利用できない。
【0004】
本発明は、前記従来の課題を解決するもので、貯湯槽の湯を高効率で貯湯運転するとともに、貯湯温度の低下を防止して、放熱手段へ安定した温水温度を流し、放熱手段の利便性をはかるものである。
【0005】
【課題を解決するための手段】
前記従来の課題を解決するために、本発明の多機能給湯機は、加熱手段と、前記加熱手段で加熱した温水を上部から貯湯する貯湯槽と、前記貯湯槽上部の温水を熱源とする放熱手段と、温調手段と、前記放熱手段に流入する温水温度を所定温度となるように制御する制御手段とを備えたものである。
【0006】
これによって、安価な深夜電力を利用して貯湯した熱を放熱手段の目的に応じて放熱手段へ流す温水温度を制御、あるいは負荷に対応した温水温度に制御する。従って、非常に安価な運転費で利便性の良い多機能給湯機となる。
【0007】
【発明の実施の形態】
第1の発明は、加熱手段と、前記加熱手段で加熱した温水を上部から貯湯する貯湯槽と、前記貯湯槽上部の温水を熱源とする放熱手段と、温調手段と、前記放熱手段に流入する温水温度を所定温度となるように制御する制御手段とを備えたものである。これによって非常に安価な運転費で利便性の高い多機能給湯機を実現する。
【0008】
第2の発明は、加熱手段と、前記加熱手段で加熱した温水を上部から貯湯する貯湯槽と、前記貯湯槽上部の温水を熱源とする放熱手段と、温調手段と、前記放熱手段に流入する温水温度を所定温度となるように制御する制御手段を備え、前記温調手段は、放熱手段を循環する温水の循環回路に設けた循環ポンプと、循環回路に設けたバイパス回路と、前記放熱手段から前記バイパス回路を流れる温水と前記貯湯槽側から流れてきた高温水をミキシングする温度調整弁とから構成し、さらに制御手段は、前記温度調整弁を制御して放熱手段に流入する温水温度を制御するようにしたことを特徴とする。
【0009】
従って、放熱手段に送られる湯温は安定したものとなり、しかも貯湯槽上部から流れ出る高温湯の湯量も少なくなるため、長時間、貯湯熱を利用できるものとなり、非常に安価な運転費で利便性の良い多機能給湯機を実現できる。
【0010】
第3の発明は、前述の構成に加え、放熱手段に流入する温水の循環流量を可変する流量制御手段を備え、放熱手段へ送る温水温度一定にして流量を変化し、負荷に対応した放熱量に制御する。
【0011】
第4の発明は、前述の構成に、貯湯槽上部から流出する温水を貯湯槽中間部に戻す回路と貯湯槽下部に戻す回路に切換える切換え手段を備え、貯湯槽内の湯量、湯温と放熱手段の用途によって使い分けする。例えば、深夜時刻帯に沸き上げた貯湯槽内の高温の湯量は朝方は満杯に近い。そして、朝方、放熱手段として暖房などに利用すると、中温水が貯湯槽にもどるけれども、貯湯槽中間部に戻すと中間部より下部の貯湯槽内の湯は温度低下して放熱手段の熱源として利用できなくなる。この場合には、貯湯槽下部に中温水を戻すことによって、貯湯槽内の高温湯量を確保する。逆に、夕方に放熱手段として使う暖房、風呂追焚きの場合、給湯に使われて貯湯槽内の高温湯量が少ない。従って、貯湯槽中間部に戻すことによって、放熱手段の熱源として再利用できる。そして、貯湯槽下部に戻す弊害として、貯湯槽下部の低温水と混合して貯湯槽下部の低温水が温度上昇する。
【0012】
第5の発明は、前述の構成に、放熱手段からの温水が戻る貯湯槽中間部の近傍に形成した貯湯槽接続口を出湯管に接続するための中間温度出湯管と、前記中間温度出湯管から出湯する貯湯水と貯湯槽上部から出湯する貯湯水との混合を制御する出湯調整弁と、前記貯湯槽接続口近傍の貯湯温度を検出する温度検出手段と、前記温度検出手段の検出信号を基に前記出湯調整弁を制御する制御手段を備えたもので、合理的な給湯が可能となる。
【0013】
第6の発明は、前述の構成に、放熱手段からの温水が戻る貯湯槽中間部より上部の貯湯槽湯温が所定温度に達した時、加熱手段の運転を開始する運転制御手段を備えたもので、貯湯槽内の高温湯量が少なくなった時、加熱手段を運転して貯湯槽内の高温湯量を増加して放熱手段および給湯の負荷に対応するため、利便性が高い。
【0014】
第7の発明は、前述の構成に加え、加熱手段をヒートポンプとすることによって、高能力省エネ化をはかることができる。
【0015】
第8の発明は、前述の構成に加え、ヒートポンプに封入する冷媒を二酸化炭素とするようにして、高温高効率化と地球環境保全を実現した。
【0016】
【実施例】
以下、本発明の実施例について、図面を参照しながら説明する。なお、従来例および各実施例において、同じ構成、同じ動作をするものについては同一符号を付し、一部説明を省略する。
【0017】
(実施例1)図1は本発明の第1の実施例における多機能給湯機の構成図を示す。
【0018】
図1において、11は加熱手段であり、圧縮機12、放熱器13、減圧装置14、大気熱を吸熱する大気熱交換器15からなるヒートポンプサイクルを構成したヒートポンプ熱源である。そして、高圧側の冷媒圧力が臨界圧力以上となる二酸化炭素を冷媒とする。
【0019】
16は貯湯槽であり、下部から給水管16aを通って給水し、上部の出湯管16bから端末へ出湯する。17は循環ポンプ、18は給湯熱交換器であり、放熱器13と熱交換関係を有して、放熱器13を流れる冷媒と給湯熱交換器18を流れる水を対向流で熱交換する構成である。
【0020】
そして、貯湯槽16の下部から循環ポンプ17、給湯熱交換器18、貯湯槽16の上部を順次接続する給湯回路を構成する。19は温度検出手段であり、ヒートポンプ熱源15で加熱する湯温を検出するため給湯熱交換器18の出口に設けられている。
【0021】
20は湯水制御手段であり、給湯熱交換器18の出口湯水が所定温度となるように循環ポンプ17の回転数を制御して給湯回路の循環流量を制御する。21は放熱手段となる、例えば床暖房機であり、貯湯槽16上部の温水が循環して暖房する。22は温水温度検出手段であり、放熱手段21へ流れる温水温度を検出する。
【0022】
23はバイパス回路であり、放熱手段21から流出する温水を貯湯槽16をバイパスして放熱手段21へ流入する温水回路に合流させる接続回路である。24は温度調整弁であり、貯湯槽16から流れてきた高温水と放熱手段から流出してきた中温水をミキシングする。25は制御手段であり、温水温度検出手段22の温度検出信号が設定温度となるよう温度調整弁24を制御する。26は放熱用ポンプであり、放熱手段へ温水を流す。
【0023】
以上のように構成された多機能給湯機について、以下その動作、作用を説明する。図1において、ヒートポンプ熱源で大気熱を利用して給湯運転する場合について説明する。圧縮機12から吐出する臨界圧力以上の高温高圧の冷媒が放熱器13に流入し、ここで貯湯槽16下部から送られてきた水と給湯熱交換器18を介して熱交換する。
【0024】
そして、放熱器13に流入する高温冷媒と給湯熱交換器18から流出する水を対向流にして熱交換し、放熱器13に流入する高温冷媒で給湯熱交換器18の出口湯水が所定温度となるように循環ポンプ17の回転数を制御する。そして、所定温度の湯が貯湯槽16上部から流入し貯湯される。
【0025】
一方、放熱器13に流入した高温冷媒は放熱作用によって、温度を下げて放熱器13から流出して減圧装置14に流入し、減圧されて大気熱交換器15に流入する。そして、大気熱を吸熱して蒸発ガス化して圧縮機12へ戻る。このサイクルを繰り返しながら高温湯を貯湯槽16上部から貯湯槽16下部まで貯湯する。
【0026】
次に、貯湯槽に貯湯された高温水を給湯利用する場合について説明する。給湯に利用する場合は、端末のカランが開放されると給水圧によって貯湯槽16下部から給水されながら上部の出湯管16bから出湯して利用する。そして、貯湯槽16内の高温湯は出湯される度に上部に移動する。
【0027】
次に、貯湯槽に貯湯された高温水を放熱手段で利用する運転について説明する。放熱手段が運転開始されると放熱用ポンプ26が貯湯槽16上部の高温湯を放熱手段21側に流す。そして、放熱手段21から流出する中低温水がバイパス回路23を通り貯湯槽16側から流れ出る高温湯とミキシングする。
【0028】
その際に、温度調整弁24がバイパス回路23の流量と貯湯槽16側の高温水の流量を調整して放熱手段21へ流す温水温度を所定温度となるように制御する。そして、所定温度となった温水が放熱手段21に流れて暖房する。一方、放熱手段21から流出してバイパス回路23に流れない中低温水は貯湯槽16に戻る。よって、床暖房機に流れる温水温度を一定にするため快適暖房が得られる。勿論、放熱手段21へ流れる温水温度を好みの所定温度に設定変更して、設定温度の温水を放熱手段21へ流すことは容易である。
【0029】
そして、放熱負荷が大きい場合には、放熱手段21から流出する温水温度は低温となるため、所定の温水温度にミキシングする際には貯湯槽16の高温水のミキシング流量割合が大きくなる。逆に、放熱負荷が少なくなった場合には、放熱手段から流出する温水温度は比較的高温であるため、所定の温水温度にミキシングする際には貯湯槽16の高温水のミキシング流量割合が少なくなる。従って、放熱負荷に応じて、貯湯槽16の高温水を利用できる。
【0030】
そして、図1に示す如く、温度調整弁24でミキシングした後と放熱手段21の入口の間に放熱用ポンプ26を設けることにより、1台の循環ポンプで実現できる。
【0031】
また、図2に示す如く、温度調整弁の代わりにバイパス回路23に流量調整弁27を設けてバイパス流量を調整し、所定温度にミキシングして放熱手段に送っても同様の効果がある。
【0032】
また、図3に示す如く、循環回路にバイパス回路を使うことなく、貯湯槽16からの高温水と放熱手段21から流れてきた中低温水を熱交換する温調用熱交換器28を設けて、貯湯槽16から流出する高温水を放熱手段21から流れてきた中低温水で温度調整して、放熱手段21へ流れる温水温度を所定温度にする。この場合には、ヒートポンプで沸き上げる給湯熱交換器18出口の温度、即ち貯湯槽16に貯湯する温度と放熱負荷の変動が少ない場合には、設計的に勿論可能である。
【0033】
また、図4に示す如く、放熱手段21に流入する温水の循環流量を可変する流量制御手段29を設けて、負荷が非常に大きい場合、例えば、暖房の立ち上げ時に高能力暖房したい場合には、放熱手段21へ循環する温水温度を所定温度に維持しながら流量制御手段となる放熱用ポンプ26の回転数を増加して循環回路の循環流量を大きくして放熱量を増加する。そして、負荷が小さい場合には、放熱用ポンプ26の回転数を低減して循環回路の循環流量を小さくして放熱量を少なくする。よって、温水温度を所定温度に維持しながら好みの能力を実現する。
【0034】
また、加熱手段としてヒートポンプ熱源を利用するため高能力あるいは低消費電力量を実現する。
【0035】
さらに、ヒートポンプ熱源に封入する冷媒を二酸化炭素とすることによって、貯湯槽に高温湯(およそ90℃)を貯湯する。そのため、貯湯槽の蓄熱量が増加して、放熱手段の放熱量、運転時間が増大する。また、地球環境保全にも貢献する。さらに、高温湯から中温湯まで沸き上げ温度の巾が大きくなって放熱手段の利便性が向上する。
【0036】
また、本発明では、放熱手段21として、床暖房で説明したけれども、当然、乾燥機、温風暖房機など、放熱機能を有するものは含む。
【0037】
(実施例2)
図5は本発明の実施例2の多機能給湯機の構成図である。図5において、30は熱交換器であり、貯湯槽16上部から貯湯槽16中間部あるいは下部に循環する貯湯槽16内の温水と放熱手段21を循環する循環水と熱交換する。31は貯湯水ポンプであり、貯湯槽16上部の温水を熱交換器30に循環して貯湯槽16中間部あるいは下部に戻す。
【0038】
以上の構成において、その動作、作用について説明する。貯湯槽上部から流出する高温水を熱交換器30に流して、放熱手段21から流出する循環回路の中低温水を加熱する。その際、温水温度検出手段22の温度検出信号が所定温度となるように温度調整弁24が温度調整し、所定温度の温水を放熱手段21に循環して放熱する。一方、熱交換器30で温度低下した貯湯槽水を貯湯槽の中間部あるいは下部に戻す。
【0039】
また、貯湯水ポンプ31を用いないで、熱交換器30で放熱する際の温水密度差を利用して自然循環でおこなっても同様の効果が得られる。そして、貯湯水ポンプ31の消費電力は削減できる。
【0040】
また、図6に示す如く、放熱手段として浴槽32の風呂加熱に利用する場合、熱交換器30を設けることによって、貯湯槽16の温水と浴槽32水を別回路に分離して利用できる。そして、好みの温度にした温水を浴槽に流入することがでるため、マイルドな風呂加熱、風呂追焚きができる。また、温度調整弁24を制御し、バイパス回路23の流量を制御することによって、高温高能力で風呂追焚きを実現する。
【0041】
(実施例3)
図7は本発明の実施例3の多機能ヒートポンプ機の構成図である。図7において、33は温度検出手段であり、放熱手段21に流入する温水温度を検出する。34は貯湯水流量制御手段であり、温度検出手段33の温度検出信号が所定温度の信号となるように貯湯水ポンプ31を制御する。
【0042】
以上の構成において、その動作、作用について説明する。貯湯槽16上部から流出する高温水を熱交換器30に流して、放熱手段21から流出する循環回路の中低温水を加熱する。そして、放熱手段21に流入する温水温度が所定温度となるように貯湯水の流量を制御する。例えば、放熱手段21に流入する温水温度が所定温度より低温の場合には、貯湯水の流量を増加し、逆に、放熱手段21に流入する温水温度が所定温度より高温の場合には、貯湯水の流量を減少する。従って、放熱手段の負荷あるいは温水温度に対応して貯湯湯を最適流量で利用するため、効果的に貯湯熱、貯湯湯量を利用する。
【0043】
(実施例4)
図8は本発明の実施例4の多機能ヒートポンプ機の構成図である。図8において、35は温度検出手段であり、貯湯槽の温水が熱交換器30から流出する温度を検出する。36は循環水温度検出手段であり、放熱手段21から流出して熱交換器30に流入する温水温度を検出する。37は貯湯水制御手段であり、温度検出手段35の検出信号が所定温度の信号となるように貯湯水ポンプ31を制御する。ここで所定温度とは、貯湯水温度検出手段36の温度検出信号による温水温度を基に、予め設定された温度差を上乗せした温度とする。
【0044】
以上の構成において、その動作、作用について説明する。貯湯槽16上部から流出する高温水を熱交換器30に流して、熱交換器30に流入する循環回路の中低温水が所定温度となるように加熱する。その際、熱交換器30から流出する貯湯水の温度を熱交換器30に流入する循環回路の低温水温度より所定温度(設定温度だけ高温)となるように貯湯水の流量を制御する。従って、貯湯水温と放熱手段を循環する水温の温度差を最小かつ最適温度差にすることができるため、貯湯熱の効果的利用を実現する。
【0045】
(実施例5)
図9は本発明の実施例5の多機能ヒートポンプ機の構成図である。図9において、38は切換え手段であり、貯湯槽上部から流出する温水を貯湯槽中間部に戻す回路A39と、貯湯槽上部から流出する温水を貯湯槽下部に戻す回路B40に切換える。41は残湯温度検出手段であり、貯湯槽16中間部に戻る位置近傍の貯湯槽内の残湯温度を検出する。42は制御手段であり、残湯温度検出手段41の温度信号を基に切換え手段38に指令する。そして、給湯、風呂追焚き、暖房などに使われる1日の総湯量に対して僅かの残湯となるように通常は貯湯槽容量を設定するため、ここで、貯湯槽中間部とは、風呂追き時、あるいは夕方の暖房時に貯湯槽下部から給水した低温水が貯水されている位置となる。
【0046】
以上の構成において、その動作、作用について説明する。最初に、貯湯槽16内に高温の湯量が多い場合について説明する。例えば、深夜時刻帯に沸き上げた貯湯槽16内の高温の湯量は朝方は満杯に近い。そして、朝方、放熱手段21として暖房などに利用する場合、貯湯槽16の高温湯を放熱手段に流入して暖房する。そして、放熱手段21から流出する中温水を回路40により貯湯槽16下部に戻す。従って、貯湯槽内の高温湯を維持するため、放熱手段へ安定した温水温度を流すことができる。そして、貯湯槽内の高温湯を長時間効果的に暖房熱源として利用する。
【0047】
次に、貯湯槽内に高温の湯量が少ない場合について説明する。例えば、朝昼時間帯の給湯、また、風呂の湯張に使って貯湯槽内の高温湯量が少ない場合に、暖房、あるいは風呂追焚きに貯湯槽16内の高温湯を利用する時、貯湯槽16中間部近傍に低温水がある場合には、放熱手段21から流出する中温水を回路39により貯湯槽16中間部に戻す。
【0048】
そして、貯湯槽16内の高温湯と接している低温水は中間部から流入する中温水によって昇温する。そのため、高温湯の下部に中温水を貯湯することになり、給湯、あるいは中温水で利用する放熱手段に再利用することができる。従って、ヒートポンプで貯湯槽下部の低温水をヒートポンプで沸き上げるため、貯湯運転時の効率が良くなる。特に二酸化炭素を冷媒としたヒートポンプは著しい効率低下と加熱能力低下を防止できる。よって、貯湯槽内の湯量、湯温に対応して効果的に使い分けする。
【0049】
また、図10に示す如く、熱交換器30を介して貯湯槽16の湯と放熱手段21を循環する循環水を熱交換する場合も、同様の効果である。
【0050】
(実施例6)
図11は本発明の実施例6の多機能ヒートポンプ機の構成図である。図11において、43は中間温度出湯管であり、貯湯槽16中間部に戻した位置近傍の貯湯槽の中間接続口44と出湯管16bと接続する。45は出湯調整弁であり、中間温度出湯管43から出湯する貯湯水と貯湯槽16上部から出湯する貯湯水を制御する。
【0051】
46は温度検出手段であり、貯湯槽接続口近傍の貯湯温度を検出する。47は制御手段であり、温度検出手段46の検出信号を基に出湯調整弁45を制御する。例えば、中間温度出湯管43の湯温で給湯温度を満たす場合には、中間温度出湯管43から出湯する。そして、中間温度出湯管43の湯温が給湯温度を満たない場合には、貯湯槽16上部から出湯する、あるいは中間温度出湯管43の湯と貯湯槽16上部の高温湯をミキシングして出湯する。
【0052】
以上の構成において、その動作、作用について説明する。貯湯槽16の高温湯を上部から流出して放熱手段の熱源として利用した中温水の湯を貯湯槽16中間部に戻す。そして、放熱手段21による運転を継続する間、貯湯槽16の中間部で中温水の湯を貯湯する。そして、貯湯槽16の中間部の湯温で給湯温度を満たす場合には、中間温度出湯管43から出湯する。
【0053】
また、中間温度出湯管43の湯温が給湯温度を満たない場合には、貯湯槽16上部から出湯する、あるいは中間温度出湯管43の湯と貯湯槽16上部の高温湯をミキシングして出湯する。よって、放熱手段の熱源として利用した中温水を再度、貯湯槽中間部の中間温度出湯管から出湯して給湯に利用するようにして、貯湯槽上部からの高温出湯をできる限り少なくして、放熱に利用する。
【0054】
(実施例7)
図12は本発明の実施例7の多機能ヒートポンプ機の構成図である。図12において、48は追焚き温度検出手段であり、貯湯槽中間部に戻した位置より上部の貯湯槽内の残湯温度を検出する。49は運転制御手段であり、追焚き温度検出手段48の温度検出信号が所定の温度信号に低下した時、ヒートポンプ運転を開始する。
【0055】
以上の構成において、その動作、作用について説明する。貯湯槽の湯を出湯中、あるいは暖房など放熱手段を運転中に高温湯が少なくなって追焚き温度検出手段48の検出信号が所定温度に低下した時、ヒートポンプ運転を開始して貯湯槽上部から高温湯を貯湯する。よって、貯湯槽上部の高温湯量が増加するため、安定して放熱手段に湯を供給することができる。
【0056】
(実施例8)
図13は本発明の実施例8の多機能ヒートポンプ機の構成図である。図13において、50は開閉弁であり、貯湯槽16の温水が流れる回路に設ける。51は開閉弁制御手段であり、放熱手段21の運転停止信号52を基に開閉弁50を閉じる。
【0057】
以上の構成において、その動作、作用について説明する。放熱用ポンプ26など放熱手段21の運転停止信号52を検出して開閉弁50を閉じる。そのため、貯湯槽16、熱交換器30、貯湯槽16の温水回路において、回路内の温水が放熱して温度低下した場合でも、貯湯槽16内の高温湯と回路内の低温水の密度差によって貯湯槽16上部から回路内を下降する自然循環することがない。
【0058】
従って、貯湯槽上部の高温湯量を有効に利用できる。
【0059】
なお、実施例1〜8で加熱手段をヒートポンプを例にとって説明したが、加熱手段として、電気ヒータ、燃料電池、エンジン等の廃熱を利用しても良い。
【0060】
【発明の効果】
以上のように、本発明によれば、貯湯槽の湯を高効率で貯湯運転するとともに、貯湯温度の低下を防止して、放熱手段へ安定した温水温度を流し、放熱手段の利便性をはかるものである。
【図面の簡単な説明】
【図1】
本発明の実施例1の多機能給湯機の構成図
【図2】
本発明の実施例1の他の多機能給湯機の構成図
【図3】
本発明の実施例1の他の多機能給湯機の構成図
【図4】
本発明の実施例1の他の多機能給湯機の構成図
【図5】
本発明の実施例2の多機能給湯機の構成図
【図6】
本発明の実施例2の他の多機能給湯機の構成図
【図7】
本発明の実施例3の多機能給湯機の構成図
【図8】
本発明の実施例4の多機能給湯機の構成図
【図9】
本発明の実施例5の多機能給湯機の構成図
【図10】
本発明の実施例5の他の多機能給湯機の構成図
【図11】
本発明の実施例6の多機能給湯機の構成図
【図12】
本発明の実施例7の多機能給湯機の構成図
【図13】
本発明の実施例8の多機能給湯機の構成図
【図14】
従来の多機能給湯装置の構成図
【符号の説明】
11 加熱手段
12 圧縮機
13 放熱器
14 減圧装置
15 大気熱交換器
16 貯湯槽
16a 給水管
16b 出湯管
17 循環ポンプ(温調手段)
18 給湯熱交換器
19 温度検出手段
20 湯水制御手段
21 放熱手段
22 温水温度検出手段
23 バイパス回路(温調手段)
24 温度調整弁(温調手段)
25 制御手段
26 放熱用ポンプ
27 流量制御弁
28 温調用熱交換器
29 流量制御手段
30 熱交換器
31 貯湯水ポンプ
32 浴槽
33 温度検出手段
34 貯湯水流量制御手段
35 温度検出手段
36 循環水温度検出手段
37 貯湯水制御手段
38 切換え手段
39 回路A
40 回路B
41 残湯温度検出手段
42 制御手段
43 中間温度出湯管
44 中間接続口(貯湯槽接続口)
45 出湯調整弁
46 温度検出手段
47 制御手段
48 追焚き温度検出手段
49 運転制御手段
50 開閉弁
51 開閉弁制御手段
[Document name] statement
[Title of the Invention] Multifunctional water heater
[Claim of claim]
  1. A heating means, and a hot water storage tank for storing hot water heated by the heating means from above.
A multi-functional water heater comprising: a heat dissipating means using the hot water in the upper portion of the hot water storage tank as a heat source; a temperature control means; and a control means controlling the temperature of the hot water flowing into the heat dissipating means to be a predetermined temperature.
  [Claim 2] Heating means, and a hot water storage tank for storing hot water heated by the heating means from above
A heat dissipating means using the hot water in the upper portion of the hot water storage tank as a heat source; a temperature control means; and a control means for controlling the temperature of the hot water flowing into the heat dissipating means to a predetermined temperature; A circulating pump provided in a circulating circuit of hot water circulating through the means, a bypass circuit provided in the circulating circuit, and a temperature at which hot water flowing from the heat radiating means through the bypass circuit and high temperature water flowing from the hot water storage tank side It is composed of a regulating valve, and the control means controls the temperature regulating valve to control the temperature of the hot water flowing into the heat radiating means.Feature multi-functional water heater.
  [Claim 3] The flow control means according to claim 1 or 2, further comprising a flow control means for changing the circulation flow rate of the hot water flowing into the heat dissipation means.Multifunctional water heater.
  [Claim 4] The switching circuit according to claim 1 or 2, further comprising: a circuit for returning the hot water flowing out from the upper portion of the hot water storage tank to the intermediate portion of the hot water storage tank and a circuit for switching to a circuit for returning the hot water to the lower portion of the hot water storage tank.Multifunctional water heater.
  [Claim 5] An intermediate temperature outlet pipe for connecting a storage tank connection port formed in the vicinity of the storage tank intermediate part to which warm water from the heat radiation means returns to the outlet pipe, the storage water discharged from the intermediate temperature outlet pipe and the outlet tank Control valve for controlling the outlet adjusting valve based on the detection signal of the temperature detecting means for detecting the temperature of the storage water in the vicinity of the storage tank connection port for controlling the outlet adjusting valve for controlling mixing with the stored hot water The description of Claim 1 or 2 provided withMultifunctional water heater.
  [6] The operation control means according to claim 1 or 2, further comprising operation control means for starting the operation of the heating means when the temperature of the hot water storage tank above the hot water storage tank middle part to which the hot water from the heat radiation means returns reaches a predetermined temperature.Multifunctional water heater.
  [7] The heating means is a heat pump provided with a compressor.Multifunctional water heater.
  [Claim 8] The refrigerant according to claim 7, wherein the refrigerant sealed in the heat pump is carbon dioxide.Multifunctional water heater.
Detailed Description of the Invention
      [0001]
  Field of the Invention
  TECHNICAL FIELD The present invention relates to a heat pump water heater provided with multiple functions such as after bath or heating.
      [0002]
  [Prior Art]
  Heretofore, as this kind of water heating apparatus, for example, there has been one shown in JP-A-11-83156. FIG. 14 shows a conventional hot-water supply device provided with a bath-following function described in the above-mentioned publication. In FIG. 14, 1 is a hot water storage tank, 2 is a boiling heater, 3 is a rapid heating heater, 4 and 5 are temperature detection means, 6 is a solenoid on-off valve, 7 is a hot water supply pipe, 8 is a bathtub, 9 is a circulation pump, A heat exchange means 10 exchanges heat between the hot water in the upper portion of the hot water storage tank 1 and the water in the bath 8 to follow the bath.
      [0003]
  [Problems to be solved by the invention]
  However, in the conventional configuration, in the case of bath reheating as the heat dissipating means, the temperature of the hot water at the top of the hot water storage tank 1 drops during the bath reheating operation, so the temperature of the hot water flowing into the heat dissipating means becomes unstable. Too bad. For example, the temperature difference between the temperature of the upper portion of the hot water storage tank 1 and the circulating water after bathing decreases as the number of times after bathing increases, and the amount of heat dissipation decreases. In addition, the temperature of the heated water returned to the bath 8 also decreases. Furthermore, the utilization temperature of the hot water of the upper part of the hot water storage tank 1 has a limit, and it can not utilize effectively.
      [0004]
  The present invention solves the above-mentioned conventional problems, and operates the hot water of the hot water storage tank with high efficiency, prevents the decrease of the hot water storage temperature, flows the stable warm water temperature to the heat dissipation means, and the convenience of the heat dissipation means It is a good sex.
      [0005]
  [Means for Solving the Problems]
  In order to solve the above-mentioned conventional problems, the multifunctional water heater according to the present invention includes a heating means, a storage tank for storing hot water heated by the heating means from the upper part, and heat radiation using the hot water in the upper part of the storage tank as a heat source And temperature control means, and control means for controlling the temperature of the hot water flowing into the heat release means to be a predetermined temperature.
      [0006]
  In this way, the temperature of the hot water supplied to the heat radiating means is controlled according to the purpose of the heat radiating means, or the hot water temperature corresponding to the load is controlled, in accordance with the purpose of the heat radiating means. Therefore, it becomes a multifunctional hot-water supply device with good convenience at a very low operating cost.
      [0007]
  BEST MODE FOR CARRYING OUT THE INVENTION
  The first invention isHeating means, a hot water storage tank for storing hot water heated by the heating means from above, heat radiating means using the hot water at the upper portion of the hot water storage tank as a heat source, temperature control means, warm water temperature flowing into the heat radiating means And control means for performing control such that This realizes a highly convenient multi-functional water heater with a very low operating cost.
      [0008]
  A second aspect of the invention relates to heating means, a hot water storage tank for storing hot water heated by the heating means from above, heat radiating means using the hot water at the upper portion of the hot water tank as heat sources, temperature control means, and the heat radiating means. Control means for controlling the temperature of the hot water to a predetermined temperature, and the temperature control means includes a circulation pump provided in a circulation circuit of hot water circulating in the heat radiation means, a bypass circuit provided in the circulation circuit, and the heat radiation Means comprising a temperature control valve for mixing the hot water flowing through the bypass circuit and the high temperature water flowing from the hot water storage tank side, and the control means controls the temperature control valve to flow into the heat dissipation means It is characterized in that it controls the
      [0009]
  Therefore, the temperature of the hot water sent to the heat dissipation means becomes stable, and the amount of hot water flowing out from the upper part of the hot water storage tank also decreases, so that the hot water storage heat can be used for a long time, and the operation cost is very low. Can realize a good multifunctional water heater.
      [0010]
  The third invention has a flow rate control means for changing the circulation flow rate of hot water flowing into the heat dissipation means in addition to the above-described configuration, changes the flow rate at a constant temperature of hot water sent to the heat dissipation means, Control.
      [0011]
  The fourth aspect of the present invention has the configuration described above, including a circuit for returning the hot water flowing out from the upper part of the hot water storage tank to the intermediate part of the hot water storage tank and switching means for switching to a circuit for returning the hot water tank to the lower part of the hot water storage tank. Use properly depending on the application of the means. For example, the amount of high-temperature hot water in the hot water storage tank that has been heated in the late-night time zone is almost full in the morning. Then, in the morning, when utilizing as heating means as heat radiation means, middle warm water returns to the hot water storage tank, but when it returns to the hot water storage tank middle part, the temperature of the hot water in the hot water storage tank below the middle part falls and is used as a heat source become unable. In this case, the amount of hot water in the hot water storage tank is secured by returning the middle warm water to the lower part of the hot water storage tank. On the contrary, in the case of heating used as a heat radiation means in the evening, and in the case of after-bath, it is used for hot water supply and the amount of high temperature hot water in the storage tank is small. Therefore, it can reuse as a heat source of a thermal radiation means by returning to a hot water storage tank middle part. And as a bad effect returned to the storage tank lower part, it mixes with the low temperature water of the storage tank lower part, and the temperature of the low temperature water of the storage tank lower part rises.
      [0012]
  According to a fifth aspect of the present invention, an intermediate temperature outlet pipe for connecting a storage tank connection port formed in the vicinity of the storage tank intermediate portion to which hot water from the heat radiating means returns to the outlet pipe, and the intermediate temperature outlet pipe A hot water outlet control valve for controlling mixing of the hot water to be discharged from the hot water and the hot water to be discharged from the upper portion of the hot water storage tank, a temperature detection means for detecting the hot water storage temperature near the hot water storage tank connection port, and a detection signal of the temperature detection means Based on the control means for controlling the hot water outlet control valve, rational hot water supply is possible.
      [0013]
  The sixth aspect of the present invention is, in addition to the above-described configuration, provided with operation control means for starting the operation of the heating means when the temperature of the hot water storage tank above the hot water storage tank middle reaches a predetermined temperature. When the amount of high temperature hot water in the hot water storage tank decreases, the heating means is operated to increase the amount of high temperature hot water in the hot water storage tank to cope with the load of the heat radiating means and the hot water supply.
      [0014]
  The seventh invention isIn addition to the previous configuration,By using a heat pump as the heating means, high-performance energy saving can be achieved.
      [0015]
  In the eighth invention, in addition to the above-mentioned constitution, the refrigerant sealed in the heat pump is carbon dioxide to realize high temperature high efficiency and global environmental preservation.
      [0016]
  【Example】
  Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the prior art and each embodiment, the same reference numerals are given to components having the same configuration and the same operation, and the description thereof is partially omitted.
      [0017]
  (First Embodiment) FIG. 1 is a block diagram of a multifunctional water heater according to a first embodiment of the present invention.
      [0018]
  In FIG. 1, reference numeral 11 denotes heating means, which is a heat pump heat source constituting a heat pump cycle including a compressor 12, a radiator 13, a pressure reducing device 14, and an atmospheric heat exchanger 15 for absorbing atmospheric heat. Then, carbon dioxide whose refrigerant pressure on the high pressure side is equal to or higher than the critical pressure is used as the refrigerant.
      [0019]
  A hot water storage tank 16 supplies water from the lower part through the water supply pipe 16a, and supplies hot water from the upper outlet pipe 16b to the terminal. The reference numeral 17 denotes a circulation pump, and 18 denotes a hot water supply heat exchanger, which has a heat exchange relationship with the radiator 13 to exchange heat between the refrigerant flowing through the radiator 13 and the water flowing through the hot water supply heat exchanger 18 by countercurrent flow. is there.
      [0020]
  And the hot water supply circuit which connects the circulation pump 17, the hot water supply heat exchanger 18, and the upper part of the hot water storage tank 16 sequentially from the lower part of the hot water storage tank 16 is comprised. A temperature detection means 19 is provided at the outlet of the hot water supply heat exchanger 18 to detect the temperature of the hot water heated by the heat pump heat source 15.
      [0021]
  Reference numeral 20 denotes a hot water control means, which controls the number of revolutions of the circulation pump 17 to control the circulation flow rate of the hot water supply circuit so that the outlet hot water of the hot water supply heat exchanger 18 has a predetermined temperature. Reference numeral 21 denotes a heat radiating means, for example, a floor heater, and the hot water in the upper portion of the hot water storage tank 16 circulates and heats. A hot water temperature detection means 22 detects the temperature of the hot water flowing to the heat radiation means 21.
      [0022]
  A bypass circuit 23 is a connection circuit for bypassing the hot water tank 16 and joining the hot water flowing out of the heat radiating means 21 to the hot water circuit flowing into the heat radiating means 21. A temperature control valve 24 mixes the high temperature water flowing from the hot water storage tank 16 with the warm water flowing from the heat radiation means. A control means 25 controls the temperature control valve 24 so that the temperature detection signal of the warm water temperature detection means 22 becomes the set temperature. Reference numeral 26 denotes a heat radiation pump, which flows hot water to the heat radiation means.
      [0023]
  The operation and action of the multifunctional water heater configured as described above will be described below. In FIG. 1, a case where hot water supply operation is performed using atmospheric heat as a heat pump heat source will be described. The high-temperature and high-pressure refrigerant discharged from the compressor 12 flows into the radiator 13, where it exchanges heat with the water sent from the lower part of the hot water storage tank 16 via the hot water supply heat exchanger 18.
      [0024]
  Then, the high temperature refrigerant flowing into the radiator 13 and the water flowing out of the hot water supply heat exchanger 18 are exchanged as a counterflow, and heat exchange is performed with the high temperature refrigerant flowing into the radiator 13. The rotational speed of the circulation pump 17 is controlled so that Then, hot water having a predetermined temperature flows from the upper portion of the hot water storage tank 16 and is stored.
      [0025]
  On the other hand, the high temperature refrigerant flowing into the radiator 13 lowers the temperature by the heat radiation action and flows out from the radiator 13, flows into the pressure reducing device 14, is depressurized and flows into the atmospheric heat exchanger 15. Then, the heat is absorbed by atmospheric heat to be vaporized and returned to the compressor 12. While repeating this cycle, hot water is stored from the upper part of the hot water storage tank 16 to the lower part of the hot water storage tank 16.
      [0026]
  Next, the case where the high temperature water stored in the hot water storage tank is supplied with hot water will be described. In the case of using for hot water supply, when the callan of the terminal is opened, the water is supplied from the lower part of the hot water storage tank 16 by the water supply pressure and the hot water is discharged from the upper hot water discharge pipe 16b and used. Then, the high temperature water in the hot water storage tank 16 moves to the top each time the hot water is discharged.
      [0027]
  Next, an operation in which the high temperature water stored in the hot water storage tank is used by the heat dissipation means will be described. When the heat dissipating means is started, the heat dissipating pump 26 causes the high temperature water at the top of the hot water storage tank 16 to flow to the heat dissipating means 21 side. Then, the medium low temperature water flowing out from the heat radiating means 21 is mixed with the high temperature water flowing out from the side of the hot water storage tank 16 through the bypass circuit 23.
      [0028]
  At that time, the temperature control valve 24 adjusts the flow rate of the bypass circuit 23 and the flow rate of high temperature water on the side of the hot water storage tank 16 to control the temperature of the hot water flowing to the heat dissipation means 21 to be a predetermined temperature. And the warm water which became predetermined temperature flows into the thermal radiation means 21, and heats. On the other hand, the medium low temperature water flowing out of the heat radiating means 21 and not flowing to the bypass circuit 23 returns to the hot water storage tank 16. Therefore, comfortable heating can be obtained to keep the temperature of the hot water flowing to the floor heater constant. Of course, it is easy to change the temperature of the hot water flowing to the heat dissipating means 21 to a desired predetermined temperature and allow the hot water having the set temperature to flow to the heat dissipating means 21.
      [0029]
  When the heat radiation load is large, the temperature of the hot water flowing out of the heat radiating means 21 is low, and therefore, the mixing flow rate ratio of the high temperature water of the hot water storage tank 16 becomes large when mixing to a predetermined hot water temperature. Conversely, when the heat radiation load decreases, the temperature of the warm water flowing out of the heat radiating means is relatively high temperature, so the mixing flow rate ratio of the high temperature water of the hot water storage tank 16 is small when mixing to a predetermined warm water temperature Become. Therefore, the high temperature water of the hot water storage tank 16 can be used according to the heat radiation load.
      [0030]
  Then, as shown in FIG. 1, by providing the heat radiation pump 26 between the mixing by the temperature control valve 24 and the inlet of the heat radiation means 21, it can be realized by one circulation pump.
      [0031]
  Further, as shown in FIG. 2, instead of the temperature control valve, the flow control valve 27 is provided in the bypass circuit 23 to adjust the bypass flow, and the same effect can be obtained by mixing to a predetermined temperature and sending it to the heat dissipation means.
      [0032]
  Further, as shown in FIG. 3, a temperature control heat exchanger 28 is provided to exchange heat between the high temperature water from the hot water storage tank 16 and the low temperature water flowing from the heat radiation means 21 without using a bypass circuit in the circulation circuit. The temperature of the high temperature water flowing out of the hot water storage tank 16 is adjusted with the medium low temperature water flowing from the heat radiating means 21 so that the temperature of the hot water flowing to the heat radiating means 21 becomes a predetermined temperature. In this case, the temperature at the outlet of the hot water supply heat exchanger 18 that is heated by the heat pump, that is, the temperature stored in the hot water tank 16 and the variation of the heat radiation load are naturally possible in design.
      [0033]
  Further, as shown in FIG. 4, a flow control means 29 for changing the circulation flow rate of hot water flowing into the heat radiating means 21 is provided, and when the load is very large, for example, when high capacity heating is desired at the start of heating. While maintaining the temperature of the hot water circulating to the heat dissipating means 21 at a predetermined temperature, the number of rotations of the heat dissipating pump 26 serving as the flow rate control means is increased to increase the circulation flow rate of the circulation circuit to increase the heat release amount. When the load is small, the number of rotations of the heat radiation pump 26 is reduced to decrease the circulation flow rate of the circulation circuit to reduce the amount of heat radiation. Therefore, a favorite capability is realized while maintaining the warm water temperature at a predetermined temperature.
      [0034]
  Moreover, high capacity or low power consumption is realized because a heat pump heat source is used as the heating means.
      [0035]
  Furthermore, hot water (approximately 90 ° C.) is stored in the storage tank by using carbon dioxide as the refrigerant sealed in the heat pump heat source. Therefore, the heat storage amount of the hot water storage tank increases, and the heat release amount of the heat dissipation means and the operation time increase. It also contributes to global environmental protection. Furthermore, the range of the boiling temperature from high temperature water to medium temperature water is increased, and the convenience of the heat dissipation means is improved.
      [0036]
  Further, in the present invention, although the floor heating has been described as the heat radiation means 21, naturally, one having a heat radiation function, such as a dryer or a warm air heater, is included.
      [0037]
  (Example 2)
  FIG. 5 is a block diagram of a multifunction water heater according to a second embodiment of the present invention. In FIG. 5, reference numeral 30 denotes a heat exchanger, which exchanges heat with the hot water in the hot water storage tank 16 circulating from the upper part of the hot water storage tank 16 to the middle part or lower part of the hot water storage tank 16 and circulating water circulating through the heat radiating means 21. A hot water storage pump 31 circulates the hot water at the upper portion of the hot water storage tank 16 to the heat exchanger 30, and returns the hot water to the middle or lower part of the hot water storage tank 16.
      [0038]
  The operation and action of the above configuration will be described. The high temperature water flowing out from the upper portion of the hot water storage tank is made to flow to the heat exchanger 30, and the medium low temperature water in the circulation circuit flowing out from the heat radiating means 21 is heated. At that time, the temperature control valve 24 adjusts the temperature so that the temperature detection signal of the warm water temperature detection means 22 becomes a predetermined temperature, and the warm water of the predetermined temperature is circulated to the heat dissipation means 21 to radiate heat. On the other hand, the storage tank water whose temperature has been lowered by the heat exchanger 30 is returned to the middle or lower part of the storage tank.
      [0039]
  The same effect can be obtained by natural circulation using the hot water density difference at the time of heat release by the heat exchanger 30 without using the hot water storage pump 31. And the power consumption of the hot water storage pump 31 can be reduced.
      [0040]
  Moreover, as shown in FIG. 6, when utilizing for the bath heating of the bathtub 32 as a thermal radiation means, the warm water of the hot water storage tank 16 and the bathtub 32 water can be isolate | separated and used for another circuit by providing the heat exchanger 30. And since the warm water which made it a favorite temperature can be flowed into a bathtub, mild bath heating and a bath pursuit can be performed. Also, by controlling the temperature control valve 24 and controlling the flow rate of the bypass circuit 23, it is possible to realize bath follow-up with high temperature and high capacity.
      [0041]
  (Example 3)
  FIG. 7 is a block diagram of a multifunction heat pump according to a third embodiment of the present invention. In FIG. 7, reference numeral 33 denotes a temperature detection unit, which detects the temperature of the hot water flowing into the heat dissipation unit 21. A storage water flow rate control means 34 controls the storage water water pump 31 so that the temperature detection signal of the temperature detection means 33 becomes a signal of a predetermined temperature.
      [0042]
  The operation and action of the above configuration will be described. The high temperature water flowing out from the upper portion of the hot water storage tank 16 is allowed to flow to the heat exchanger 30 to heat the middle low temperature water of the circulation circuit flowing out from the heat radiating means 21. Then, the flow rate of the stored hot water is controlled so that the temperature of the hot water flowing into the heat dissipation means 21 becomes a predetermined temperature. For example, when the temperature of the hot water flowing into the heat radiating means 21 is lower than a predetermined temperature, the flow rate of the stored hot water is increased, and conversely, when the temperature of the hot water flowing into the heat radiating means 21 is higher than the predetermined temperature Reduce the water flow rate. Therefore, in order to use the stored hot water at the optimum flow rate corresponding to the load of the heat radiating means or the temperature of the hot water, the amount of stored heat and the stored hot water are effectively used.
      [0043]
  (Example 4)
  FIG. 8 is a block diagram of a multifunction heat pump according to a fourth embodiment of the present invention. In FIG. 8, reference numeral 35 denotes a temperature detection means, which detects the temperature at which the hot water of the hot water storage tank flows out of the heat exchanger 30. Reference numeral 36 denotes a circulating water temperature detecting means, which detects the temperature of the hot water flowing out of the heat radiating means 21 and flowing into the heat exchanger 30. Reference numeral 37 denotes a storage water control means, which controls the storage water pump 31 so that the detection signal of the temperature detection means 35 becomes a signal of a predetermined temperature. Here, the predetermined temperature is a temperature obtained by adding a preset temperature difference based on the warm water temperature based on the temperature detection signal of the stored hot water temperature detection means 36.
      [0044]
  The operation and action of the above configuration will be described. The high temperature water flowing out from the upper portion of the hot water storage tank 16 is caused to flow to the heat exchanger 30, and the medium low temperature water in the circulation circuit flowing into the heat exchanger 30 is heated to a predetermined temperature. At that time, the flow rate of the stored hot water is controlled so that the temperature of the stored hot water flowing out from the heat exchanger 30 becomes a predetermined temperature (higher by the set temperature) than the low temperature water temperature of the circulation circuit flowing into the heat exchanger 30. Therefore, since the temperature difference between the stored water temperature and the water temperature circulating through the heat radiation means can be minimized and the optimum temperature difference, it is possible to realize effective use of the stored water heat.
      [0045]
  (Example 5)
  FIG. 9 is a block diagram of a multifunction heat pump according to a fifth embodiment of the present invention. In FIG. 9, 38 is a switching means, and switches to a circuit A39 for returning the warm water flowing out of the upper portion of the hot water storage tank to the intermediate portion of the hot water storage tank and a circuit B40 for returning the hot water flowing out of the upper portion of the hot water storage tank to the lower portion of the hot water storage tank. Reference numeral 41 denotes a residual water temperature detection means, which detects the residual water temperature in the hot water storage tank near the position where it returns to the middle of the hot water storage tank 16. Reference numeral 42 denotes control means, which instructs the switching means 38 based on the temperature signal of the remaining hot water temperature detection means 41. And, in order to set the capacity of the hot-water storage tank normally so that it is a small amount of remaining hot water to the total amount of hot water used for hot-water supply, bath reheating, heating, etc. It is a position where low temperature water supplied from the lower part of the hot water storage tank is stored at the time of heating in the follow up or evening.
      [0046]
  The operation and action of the above configuration will be described. First, the case where the amount of hot water in the hot water storage tank 16 is large will be described. For example, the amount of hot water in the hot water storage tank 16 that has been boiled in the late-night time zone is almost full in the morning. And when utilizing for heating etc. as the heat radiation means 21 in the morning, the high temperature water of the hot water storage tank 16 flows into the heat radiation means to heat it. Then, the middle warm water flowing out of the heat radiating means 21 is returned to the lower part of the hot water storage tank 16 by the circuit 40. Therefore, in order to maintain the high temperature water in the hot water storage tank, it is possible to flow a stable hot water temperature to the heat radiating means. And the high temperature hot water in the hot water storage tank is effectively used as a heating heat source for a long time.
      [0047]
  Next, the case where the amount of hot water in the hot water storage tank is small will be described. For example, when using hot water in the morning and lunch time zone or using hot water in the hot water storage tank 16 for heating or after the bath when the hot water content in the hot water storage tank is small when used for hot water filling in the bath When low temperature water is present in the vicinity of the middle portion 16, the middle warm water flowing out of the heat radiating means 21 is returned to the middle portion of the hot water storage tank 16 by the circuit 39.
      [0048]
  Then, the low temperature water in contact with the high temperature water in the hot water storage tank 16 is heated by the medium warm water flowing in from the intermediate portion. Therefore, middle warm water is stored under the high temperature water, and it can be reused as hot water supply or heat radiation means used by middle warm water. Therefore, since the low temperature water of the lower part of the hot water storage tank is heated by the heat pump by the heat pump, the efficiency at the time of the hot water storage operation is improved. In particular, a heat pump using carbon dioxide as a refrigerant can prevent a significant decrease in efficiency and a decrease in heating capacity. Therefore, it is used properly depending on the amount of hot water in the hot water storage tank and the temperature of the hot water.
      [0049]
  Further, as shown in FIG. 10, the same effect can be obtained when heat exchange between the hot water of the hot water storage tank 16 and the circulating water circulating through the heat radiating means 21 through the heat exchanger 30 is performed.
      [0050]
  (Example 6)
  FIG. 11 is a block diagram of a multifunction heat pump according to a sixth embodiment of the present invention. In FIG. 11, reference numeral 43 denotes an intermediate temperature tapping pipe, which is connected to the intermediate connection port 44 of the hot water storage tank near the position returned to the middle portion of the hot water storage tank 16 and the tapping pipe 16b. A hot water adjustment valve 45 controls the hot water discharging from the intermediate temperature hot water pipe 43 and the hot water discharging from the upper portion of the hot water storage tank 16.
      [0051]
  46 is a temperature detection means, which detects the temperature of the hot water storage near the hot water storage tank connection port. Reference numeral 47 denotes control means, which controls the tapping control valve 45 based on the detection signal of the temperature detection means 46. For example, when the hot water temperature of the intermediate temperature outlet tube 43 is satisfied to satisfy the hot water supply temperature, the intermediate temperature outlet tube 43 discharges hot water. Then, when the temperature of the intermediate temperature outlet tube 43 does not satisfy the hot water supply temperature, the outlet of the upper portion of the hot water storage tank 16 is performed, or the hot water of the intermediate temperature outlet tube 43 and the high temperature water of the upper portion of the storage tank 16 are mixed and output. .
      [0052]
  The operation and action of the above configuration will be described. The high temperature water of the hot water storage tank 16 flows out from the upper part, and the hot water of middle warm water used as the heat source of the heat radiation means is returned to the intermediate part of the hot water storage tank 16. And while continuing the driving | operation by the thermal radiation means 21, the hot water of middle warm water is stored in the intermediate part of the hot water storage tank 16. As shown in FIG. Then, when the hot water supply temperature is satisfied by the hot water temperature of the middle portion of the hot water storage tank 16, the hot water is discharged from the intermediate temperature hot water discharge pipe 43.
      [0053]
  Also, if the temperature of the intermediate temperature outlet tube 43 does not satisfy the hot water supply temperature, the outlet from the upper portion of the hot water storage tank 16 or the hot water of the intermediate temperature outlet tube 43 and the high temperature water at the upper portion of the storage tank 16 . Therefore, the medium temperature water used as the heat source of the heat radiation means is again discharged from the intermediate temperature water outlet pipe of the hot water storage tank middle part and used for hot water supply, and the high temperature water discharge from the upper part of the water storage tank is reduced as much as possible. Use for
      [0054]
  (Example 7)
  FIG. 12 is a block diagram of a multifunction heat pump according to a seventh embodiment of the present invention. In FIG. 12, reference numeral 48 denotes a reheating temperature detection means, which detects the temperature of the remaining hot water in the hot water storage tank above the position returned to the middle of the hot water storage tank. An operation control means 49 starts the heat pump operation when the temperature detection signal of the follow-up temperature detection means 48 falls to a predetermined temperature signal.
      [0055]
  The operation and action of the above configuration will be described. When hot water in hot water storage tank is poured out, or high temperature hot water decreases during operation of heat dissipation means such as heating and the detection signal of reheating temperature detection means 48 falls to a predetermined temperature, heat pump operation is started and from the upper part of hot water storage tank Store hot water. Accordingly, the amount of high-temperature water at the upper portion of the hot water storage tank increases, so that the hot water can be stably supplied to the heat dissipation means.
      [0056]
  (Example 8)
  FIG. 13 is a block diagram of a multifunction heat pump according to an eighth embodiment of the present invention. In FIG. 13, reference numeral 50 denotes an on-off valve, which is provided in a circuit through which the hot water of the hot water storage tank 16 flows. Reference numeral 51 denotes an on-off valve control means, which closes the on-off valve 50 based on the operation stop signal 52 of the heat radiation means 21.
      [0057]
  The operation and action of the above configuration will be described. The open / close valve 50 is closed by detecting the operation stop signal 52 of the heat radiating means 21 such as the heat radiating pump 26. Therefore, in the hot water circuit of the hot water storage tank 16, the heat exchanger 30, and the hot water storage tank 16, even if the hot water in the circuit dissipates heat and the temperature drops, the density difference between the hot water in the hot water storage tank 16 and the low temperature water in the circuit There is no natural circulation that descends in the circuit from the top of the hot water storage tank 16.
      [0058]
  Therefore, the amount of hot water at the top of the hot water storage tank can be effectively used.
      [0059]
  In the first to eighth embodiments, the heating means has been described using a heat pump as an example, but waste heat of an electric heater, a fuel cell, an engine or the like may be used as the heating means.
      [0060]
  【Effect of the invention】
  As above,According to the inventionThe hot water of the hot water storage tank is stored and operated with high efficiency, and the decrease of the hot water storage temperature is prevented, the stable hot water temperature is supplied to the heat dissipation means, and the convenience of the heat dissipation means is realized.is there.
Brief Description of the Drawings
  [Fig. 1]
  The block diagram of the multifunctional water heater of Example 1 of this invention
  [Fig. 2]
  Configuration diagram of another multifunctional water heater according to the first embodiment of the present invention
  [Fig. 3]
  Configuration diagram of another multifunctional water heater according to the first embodiment of the present invention
  [Fig. 4]
  Configuration diagram of another multifunctional water heater according to the first embodiment of the present invention
  [Fig. 5]
  The block diagram of the multifunctional water heater of Example 2 of this invention
  [Fig. 6]
  Configuration diagram of another multifunctional water heater according to the second embodiment of the present invention
  [Fig. 7]
  The block diagram of the multifunctional water heater of Example 3 of this invention
  [Fig. 8]
  The block diagram of the multifunctional water heater of Example 4 of this invention
  [Fig. 9]
  The block diagram of the multifunctional water heater of Example 5 of this invention
  [Fig. 10]
  Configuration diagram of another multifunctional water heater according to the fifth embodiment of the present invention
  [Fig. 11]
  The block diagram of the multifunctional water heater of Example 6 of this invention
  [Fig. 12]
  The block diagram of the multifunctional water heater of Example 7 of this invention
  [Fig. 13]
  The block diagram of the multifunctional water heater of Example 8 of this invention
  [Fig. 14]
  Configuration diagram of the conventional multi-functional water heater
  [Description of the code]
  11 Heating means
  12 compressor
  13 Radiator
  14 pressure reducing device
  15 Atmospheric heat exchanger
  16 hot water storage tank
  16a water supply pipe
  16b hot water discharge pipe
  17 Circulating pump (temperature control means)
  18 Hot water supply heat exchanger
  19 Temperature detection means
  20 hot water control means
  21 Heat dissipation means
  22 Hot water temperature detection means
  23 Bypass circuit (temperature control means)
  24 Temperature control valve (temperature control means)
  25 Control means
  26 Heat radiation pump
  27 Flow control valve
  28 Heat exchanger for temperature control
  29 Flow control means
  30 heat exchanger
  31 hot water storage pump
  32 bathtub
  33 Temperature detection means
  34 Hot water flow control means
  35 Temperature detection means
  36 Means for detecting circulating water temperature
  37 Hot water control means
  38 Switching means
  39 Circuit A
  40 Circuit B
  41 Remaining hot water temperature detection means
  42 Control means
  43 Intermediate temperature outlet pipe
  44 intermediate connection port (hot water storage tank connection port)
  45 Hot water adjustment valve
  46 Temperature detection means
  47 Control means
  48 Additional temperature detection means
  49 Operation control means
  50 on-off valve
  51 On-off valve control means

JP2002047420A 2002-02-25 2002-02-25 Multi-function water heater Expired - Fee Related JP3747250B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002047420A JP3747250B2 (en) 2002-02-25 2002-02-25 Multi-function water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002047420A JP3747250B2 (en) 2002-02-25 2002-02-25 Multi-function water heater

Related Child Applications (4)

Application Number Title Priority Date Filing Date
JP2004283892A Division JP4033184B2 (en) 2004-09-29 2004-09-29 Multi-function water heater
JP2005027601A Division JP2005164237A (en) 2005-02-03 2005-02-03 Multi-function water heater
JP2005027600A Division JP3945511B2 (en) 2005-02-03 2005-02-03 Multi-function water heater
JP2005027602A Division JP2005156156A (en) 2005-02-03 2005-02-03 Multi-function water heater

Publications (3)

Publication Number Publication Date
JP2003247753A JP2003247753A (en) 2003-09-05
JP2003247753A5 true JP2003247753A5 (en) 2005-05-26
JP3747250B2 JP3747250B2 (en) 2006-02-22

Family

ID=28660481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002047420A Expired - Fee Related JP3747250B2 (en) 2002-02-25 2002-02-25 Multi-function water heater

Country Status (1)

Country Link
JP (1) JP3747250B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4749945B2 (en) * 2006-06-16 2011-08-17 株式会社コロナ Hot water storage heater
JP4743039B2 (en) * 2006-08-07 2011-08-10 ダイキン工業株式会社 Hot water circulation heating system for heating by circulating hot water in buildings
JP4412419B2 (en) * 2008-02-01 2010-02-10 ダイキン工業株式会社 Hot water storage type heating water heater
JP4539777B2 (en) 2008-02-01 2010-09-08 ダイキン工業株式会社 Hot water storage water heater and hot water heater
JP4502020B2 (en) * 2008-02-01 2010-07-14 ダイキン工業株式会社 Heating and hot water supply equipment
JP4561920B2 (en) * 2008-02-04 2010-10-13 ダイキン工業株式会社 Heating and hot water supply equipment
JP5481942B2 (en) * 2008-05-30 2014-04-23 ダイキン工業株式会社 Heating system
JP5247335B2 (en) * 2008-09-30 2013-07-24 三洋電機株式会社 Heating system
JP2011021829A (en) * 2009-07-16 2011-02-03 Aisin Seiki Co Ltd Cogeneration system
CN103047753A (en) * 2012-12-24 2013-04-17 苏宇贵 Domestic heat-pump hot water and drying dual-purpose machine system

Similar Documents

Publication Publication Date Title
JP3956925B2 (en) Water heater
JP2003247753A5 (en)
JP3747250B2 (en) Multi-function water heater
JP2006105434A (en) Heat pump hot water supply heating device
JP5146731B2 (en) Hot water supply apparatus and hot water supply system
JP4016870B2 (en) Heat pump water heater
JP2005315480A (en) Heat pump water heater
JP4026654B2 (en) Water heater
JP3741103B2 (en) Water heater
JP4033184B2 (en) Multi-function water heater
JP3743375B2 (en) Heat pump water heater
JP2005164237A (en) Multi-function water heater
JP3869801B2 (en) Heat pump water heater / heater
JP2005121331A (en) Water heater
JP2005156156A (en) Multi-function water heater
JP3772837B2 (en) Water heater
JP4146402B2 (en) Hot water storage heater
JP3945511B2 (en) Multi-function water heater
JP3930835B2 (en) Multi-function heat pump hot water supply system
JP4339293B2 (en) Regenerative water heater
JP2006010187A (en) Hot water storage type hot water supply heating device
JP2005003211A (en) Water heater
JP2006132873A (en) Hot water supply apparatus
JP2006002960A (en) Heat pump device
JP2002364912A (en) Multifunctional water-heater