JP2003240866A - Road condition judgment method - Google Patents
Road condition judgment methodInfo
- Publication number
- JP2003240866A JP2003240866A JP2002043626A JP2002043626A JP2003240866A JP 2003240866 A JP2003240866 A JP 2003240866A JP 2002043626 A JP2002043626 A JP 2002043626A JP 2002043626 A JP2002043626 A JP 2002043626A JP 2003240866 A JP2003240866 A JP 2003240866A
- Authority
- JP
- Japan
- Prior art keywords
- snow
- road surface
- road
- condition
- measurement value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Traffic Control Systems (AREA)
Abstract
(57)【要約】
【課題】 過去に提案されている路面温度計測値、及び
地上気象量計測値に基づいて路面状態を推定する方法を
改良し、積雪状態の判定を可能とする路面状態判定方法
を提供すること。
【解決手段】 路面温度計測値、地上気象量計測値、薬
剤散布情報から道路上の積雪密度を推定し、その推定値
の経時変化に基づいて路面における積雪状態を判定する
ことを特徴とする。
(57) [Summary] [Problem] To improve a method of estimating a road surface state based on a road surface temperature measurement value and a ground meteorological measurement value proposed in the past, and to enable a determination of a snow condition to be possible. Providing a way. SOLUTION: A snow density on a road is estimated from a road surface temperature measurement value, a ground meteorological amount measurement value, and medicine spraying information, and a snow condition on the road surface is determined based on a temporal change of the estimation value.
Description
【0001】[0001]
【発明の属する技術分野】この発明は、低コストで長距
離にわたる道路表面の積雪状態及び圧雪氷板(凍結)を
判定することができる路面状態判定方法に関するもので
ある。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a road surface condition judging method capable of judging a snow cover condition and a pressure snow plate (freezing) on a road surface over a long distance at low cost.
【0002】[0002]
【従来の技術】道路交通において、湿潤、積雪、凍結な
どの路面状態が生じるとスリップ事故が発生しやすい。
このため、路面湿潤や路面凍結などの危険な路面状態を
速やかに検知して、自動車の運転手に注意を促す必要が
ある。しかし、長距離に及ぶ道路を常に巡回監視するの
は、人手及びコストの面で困難であるため、このような
路面の状態を把握する手段として路面状態検出センサが
用いられる。2. Description of the Related Art In road traffic, slip conditions are likely to occur when road surface conditions such as wetness, snowfall, and freezing occur.
For this reason, it is necessary to promptly detect a dangerous road surface condition such as wet road surface or freezing of the road surface and call attention to the driver of the vehicle. However, it is difficult to constantly patrol a long-distance road in terms of manpower and cost. Therefore, the road surface state detection sensor is used as a means for grasping the state of the road surface.
【0003】従来の路面状態検出センサは、主に2つに
分けられる。第1のグループは、道路表面に赤外線又は
電磁波を照射し、路面からの反射率を測定するものであ
る。本センサの代表的な構成を図6に示す。道路22の
近傍に超音波式の距離計23、赤外線照射装置24と赤
外線受光装置25からなる赤外線装置26および信号処
理装置27を設置し、道路への入射光28と反射光29
および反射光30の強度比が、路面状態によって異なる
ことを用いて路面状態を推定する。21は支持ポール、
21aはセンサ取り付け部である。The conventional road surface condition detecting sensor is mainly divided into two. The first group is to irradiate the road surface with infrared rays or electromagnetic waves and measure the reflectance from the road surface. A typical configuration of this sensor is shown in FIG. An ultrasonic distance meter 23, an infrared device 26 including an infrared irradiation device 24 and an infrared light receiving device 25, and a signal processing device 27 are installed in the vicinity of the road 22, and incident light 28 and reflected light 29 on the road are provided.
The road surface state is estimated by using the fact that the intensity ratio of the reflected light 30 differs depending on the road surface state. 21 is a support pole,
21a is a sensor mounting portion.
【0004】第2のグループとしては、道路近傍の気象
量及び路面温度を測定するセンサが挙げられる。路面温
度計測には、熱電対、赤外放射温度計等の単点計測用の
センサに加えて、多点計測が可能で長距離の温度を計測
するのに適した光ファイバー温度レーダを用いる方法が
提案されている。本センサ情報は、道路管理担当者が過
去の知見に基づいて路面状態を推定する材料として用い
られるほかに、道路近傍の気象量観測値と組み合わせて
路面状態を推定する方法も提案されている。The second group includes sensors for measuring the amount of weather and road surface temperature near the road. For road surface temperature measurement, in addition to sensors for single-point measurement such as thermocouples and infrared radiation thermometers, a method using an optical fiber temperature radar that is capable of multipoint measurement and suitable for long-distance temperature measurement is available. Proposed. This sensor information is used as a material for estimating the road surface condition based on past knowledge by a road management person, and a method for estimating the road surface condition in combination with the observed amount of meteorological data near the road has been proposed.
【0005】ところで、赤外線又は電磁波を照射する方
式のセンサを用いて、路面状態を道路の長手方向に沿っ
て連続的に把握するためには、多数のセンサを設置する
必要があり、コストがかかる。一方、路面温度と気象量
を計測する場合は、光ファイバ温度レーダが長距離に敷
設可能であることと、気象量が広範囲の代表値として使
用可能であることから低コストである。しかし、これら
の情報から道路管理者が路面状態を判断するには、経験
が求められること、及び危険と判断する地域を限定する
ことが難しいという問題がある。また、過去に提案され
ている気象量及び路面温度から路面状態を推定する方法
においては、圧雪、シャーベット等の積雪状態の判定
や、積雪の上面が凍って生成される凍結の判定が困難で
ある。特に凍結は、通常の積雪状態によりも摩擦が小さ
いため危険であり、正しく判定することが求められる。By the way, in order to continuously grasp the road surface condition along the longitudinal direction of the road by using a sensor of the type that emits infrared rays or electromagnetic waves, it is necessary to install a large number of sensors, which is costly. . On the other hand, in the case of measuring the road surface temperature and the amount of weather, the optical fiber temperature radar can be installed over a long distance and the amount of weather can be used as a representative value in a wide range, so that the cost is low. However, in order for the road manager to judge the road surface condition from these information, there are problems that experience is required and it is difficult to limit the area judged to be dangerous. Further, in the method of estimating the road surface condition from the meteorological amount and the road surface temperature that has been proposed in the past, it is difficult to judge the snow cover condition such as pressure snow, sorbet, etc., and the freeze condition that the upper surface of the snow cover is frozen. . In particular, freezing is dangerous because friction is small even in a normal snowy state, and correct determination is required.
【0006】[0006]
【発明が解決しようとする課題】そこでこの発明は、前
記のような諸問題に鑑み、過去に提案されている路面温
度計測値、及び地上気象量計測値に基づいて路面状態を
推定する方法を改良し、積雪状態の判定を可能とする路
面状態判定方法を提供することを目的とする。In view of the above problems, the present invention provides a method for estimating the road surface condition based on the road surface temperature measurement value and the ground meteorological measurement value that have been proposed in the past. An object of the present invention is to provide an improved road surface condition determination method that enables determination of the snow cover condition.
【0007】[0007]
【課題を解決するための手段】前記目的を達成するた
め、請求項1の発明は、路面温度計測値、地上気象量計
測値、薬剤散布情報から道路上の積雪密度を推定し、そ
の推定値の経時変化に基づいて路面における積雪状態を
判定することを特徴とする。請求項2の発明は、請求項
1において、積雪状態の判定した後、続けて圧雪氷板を
判定することを特徴とする。請求項3の発明は、請求項
1又は2において、路面温度計測値として、道路内部に
埋設した光ファイバー温度レーダの計測値からの求めた
値を使用することを特徴とする。請求項4の発明は、請
求項1ないし3のいずれかにおいて、積雪状態を新雪、
圧雪、シャーベットの積雪3状態で判定することを特徴
とする。請求項5の発明は、請求項1ないし4のいずれ
かにおいて、積雪状態を判定する際に、道路表面の熱収
支量を用いることを特徴とする。In order to achieve the above-mentioned object, the invention of claim 1 estimates the snow density on the road from the road surface temperature measurement value, the ground meteorological amount measurement value and the chemical spray information, and the estimated value thereof. It is characterized in that the state of snow on the road surface is determined based on the change with time of. The invention of claim 2 is characterized in that, in claim 1, after determining the snow-covered state, the snow-compacted ice plate is subsequently determined. A third aspect of the present invention is characterized in that, in the first or second aspect, a value obtained from a measurement value of an optical fiber temperature radar embedded inside the road is used as the road surface temperature measurement value. According to the invention of claim 4, in any one of claims 1 to 3, the snow accumulation state is fresh snow,
It is characterized in that the judgment is made based on three states of pressure snow and sherbet snow. A fifth aspect of the present invention is characterized in that, in any one of the first to fourth aspects, the heat balance amount of the road surface is used when determining the snow cover state.
【0008】前記請求項1〜5の発明によれば、ある時
間内における道路内部温度計測値の変化量から求められ
る道路表面温度と、気象観測値から求められる道路表面
温度の関係から路面状態ならびに積雪状態時における積
雪厚みを推定し、更に積雪厚みから積雪の密度を推定す
ることが可能である。この推定積雪密度から積雪状態
(積雪3状態:新雪、圧雪、シャーベット)を判定し、
さらにその経時変化に基づいて凍結をも判定できる。According to the first to fifth aspects of the present invention, the road surface condition and the road surface condition are determined from the relationship between the road surface temperature obtained from the change amount of the road internal temperature measurement value within a certain time and the road surface temperature obtained from the meteorological observation value. It is possible to estimate the snow cover thickness in the snow cover state and further estimate the snow cover density from the snow cover thickness. From the estimated snow cover density, determine the snow cover state (snow cover 3 states: fresh snow, compressed snow, sorbet),
Furthermore, freezing can be determined based on the change over time.
【0009】[0009]
【発明の実施の形態】この発明の一実施の形態を、添付
図面を参照して説明する。図1は全体構成図であり、対
象となる道路4の近傍に設置される気温計、風向風速
計、雨雪量計などの各種気象センサ1、道路に埋設され
る光ファイバ2、気象センサ1により計測されたデータ
を、信号線6を介して伝送する信号伝送装置3と、光フ
ァイバ2により計測されたデータを、信号線6を介して
伝送する信号伝送装置5、計測データを受信する情報収
集装置7と、受信したデータに基づいて路面状態判定計
算を行う路面状態推定装置8と、その結果を出力する表
示部9により構成されている。BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described with reference to the accompanying drawings. FIG. 1 is an overall configuration diagram. Various meteorological sensors 1, such as a thermometer, anemometer, and rain / snow meter, which are installed near the target road 4, an optical fiber 2 embedded in the road, and a meteorological sensor 1. The signal transmission device 3 for transmitting the data measured by the signal line 6, the signal transmission device 5 for transmitting the data measured by the optical fiber 2 through the signal line 6, and the information for receiving the measurement data. It is composed of a collection device 7, a road surface state estimation device 8 that performs road surface state determination calculation based on the received data, and a display unit 9 that outputs the result.
【0010】気象センサ1は、電気的な出力が得られる
ものであれば特に限定されない。信号伝送装置3及び5
としては、無線伝送機を使用してもよく、その場合の構
成を図2に示す。信号線6の代わりに受信アンテナ10
が使用される。情報収集装置7は、気象センサ1及び光
ファイバ2からの情報を受信し、データの種類や遅延時
間等を考慮して必要なデータを路面状態推定装置8に与
える。路面状態推定装置8では、これらの入力データに
基づき路面状態を判定する。The weather sensor 1 is not particularly limited as long as it can obtain an electrical output. Signal transmission devices 3 and 5
As the above, a wireless transmitter may be used, and the configuration in that case is shown in FIG. Receiving antenna 10 instead of signal line 6
Is used. The information collecting device 7 receives information from the weather sensor 1 and the optical fiber 2, and gives necessary data to the road surface state estimating device 8 in consideration of the type of data, delay time, and the like. The road surface state estimation device 8 determines the road surface state based on these input data.
【0011】路面状態判定計算の流れを図3に示す。個
々の内容は次の通りである。
(a)基本的な路面状態の判定
計算対象となる時刻・場所の路面温度計測値、地上気象
量計測値、薬剤散布情報等を入力データとして、基本的
な路面状態(乾燥・湿潤・積雪・凍結)の判定を行う。
基本的な路面状態は路面温度計測値及び地上気象量計測
値に基づいて、2つの異なる方法で判定する。この2つ
の異なる方法については本出願人の提案に係る特願20
01−111367号に詳しく記述されており、前記判
定においても同様に用いるので、その説明は省略する。FIG. 3 shows the flow of road surface condition determination calculation. The individual contents are as follows. (A) Basic road surface condition judgment The basic road surface condition (dry / wet / snow / snow cover) Freeze).
The basic road surface condition is determined by two different methods based on the road surface temperature measurement value and the ground meteorological amount measurement value. Regarding these two different methods, Japanese Patent Application No. 20 related to the applicant's proposal
The details are described in No. 01-111367 and used in the above determination as well, and therefore the description thereof is omitted.
【0012】(b)積雪3状態の判定
基本的な路面状態の判定によって、路面状態が積雪と分
類された場合、さらに積雪3状態(新雪、圧雪、シャー
ベット)の判定を行う。基本的な路面状態が積雪以外
(乾燥・湿潤・凍結)の場合には、この判定処理は実行
せずに項目(a)に処理が戻る。
(c)圧雪氷板の判定
基本的な路面状態の判定結果が積雪であり、積雪3状態
の判定が行われた場合には、続けて圧雪氷板(凍結)の
判定を行う。この判定処理は、積雪3状態の判定結果に
係らず実行する。その後、項目(a)に処理が戻る。こ
こでは気象情報から推定した流入熱量Wa、流入熱量W
aに基づいて推定した路面温度Ta、地中の温度変化量
から推定した流入熱量We、流入熱量Weに基づいて推
定した路面温度Teとし、原理の詳細を以下に説明す
る。(B) Judgment of 3 snowfall states When the road surface condition is classified as snowfall by the basic judgment of the road surface condition, the snowfall 3 condition (fresh snow, pressure snow, sherbet) is further judged. When the basic road surface condition is other than snow (dry / wet / freeze), the process returns to item (a) without executing this determination process. (C) Judgment of a snow-packed ice plate When the basic road surface condition is determined to be snow and three snow-packed conditions are judged, the snow-ice plate (frozen) is continuously judged. This determination processing is executed regardless of the determination result of the snow 3 state. Then, the process returns to item (a). Here, the inflow heat amount Wa and the inflow heat amount W estimated from the weather information
The road surface temperature Ta estimated based on a, the inflow heat amount We estimated from the underground temperature change amount, and the road surface temperature Te estimated based on the inflow heat amount We will be described in detail below.
【0013】(1)積雪厚みの検出
積雪路面を、大気―積雪―土壌という3層構造とみなし
た場合の熱収支の関係を図4に示す。積雪厚みが増大す
るほど積雪表面への流入熱量Waと土壌への流入熱量W
eの位相差が増加することを利用して、計測される位相
差から積雪厚みを推定できる。まずWaとWeの経時変
化量をそれぞれフーリエ級数展開し、それらの卓越成分
に着目して両者の位相差を求める。積雪厚みと位相差の
関係は、地中深さと地中の位相差の関係と同様なので、
位相差は積雪厚みに比例し、周期の平方根に比例するた
め、これらの関係から積雪厚みを推定できる。(1) Detection of snow depth The heat balance relationship when the snow road surface is regarded as a three-layer structure of atmosphere-snow-soil is shown in FIG. As the snow cover thickness increases, the heat input Wa to the snow surface and the heat input W to the soil
The snow thickness can be estimated from the measured phase difference by utilizing the fact that the phase difference of e increases. First, the changes with time of Wa and We are respectively subjected to Fourier series expansion, and the phase difference between them is obtained by focusing on their superior components. The relationship between the snow thickness and the phase difference is the same as the relationship between the underground depth and the underground phase difference,
Since the phase difference is proportional to the snow cover thickness and to the square root of the period, the snow cover thickness can be estimated from these relationships.
【0014】(2)積雪状態の物理量検出
積雪厚みdsが分かると、Te,We,Waを用いて積
雪状態での温度Ts,積雪表面への熱流Ws,及び積雪
の物性値(密度、比熱)が分かる。計算方法は光ファイ
バ温度TfからTe,Weを計算する方法と同じであ
る。計算式としては、まず熱等価回路として積雪部分も
組み込む方法が考えられる。積雪表面を従来実施してき
た地表面と同じ考えで取り扱うと、積雪表面の温度T
s,流入熱Wsが求まる。このとき、積雪状態の熱定数
は占氷率ηで近似できるので
ρs=η・ρi
Cs=Ci
λs=η・λi
となる。尚、ρi,Ci,λiはそれぞれ氷の密度、比
熱及び熱伝導率である。このηを変えて計算し
Ws−Wa
に対応するηを求める。このようにすると、積雪状態の
物理量としてρs,Cs,λsがわかる。(2) Detecting physical quantity of snow cover When the snow thickness ds is known, the temperature Ts in the snow cover, the heat flow Ws to the surface of the snow, and the physical properties of the snow (density, specific heat) are determined using Te, We, and Wa. I understand. The calculation method is the same as the method of calculating Te and We from the optical fiber temperature Tf. As a calculation formula, first, a method of incorporating a snow cover part as a heat equivalent circuit can be considered. If the snow surface is treated in the same way as the ground surface that has been conventionally implemented, the temperature T of the snow surface will be
s, inflow heat Ws is obtained. At this time, since the thermal constant in the snow cover state can be approximated by the ice occupancy rate η, ρs = η · ρi Cs = Ci λs = η · λi. Note that ρi, Ci, λi are the density, specific heat and thermal conductivity of ice, respectively. Calculation is performed by changing this η to obtain η corresponding to Ws-Wa. By doing so, ρs, Cs, and λs can be known as physical quantities in the snowy state.
【0015】別の計算方式として、土壌内部の熱計算と
積雪部分の熱計算を独立して行う方法が考えられる。ま
ず、Te,Weは従来方式と同じ等価回路で求める。次
に積雪部分については、積雪の路面から距離をxとし、
積雪内部の温度Ts(x),流入熱Ws(x)を求め
る。地中側の等価回路として
等価温度源:Tes
等価熱抵抗:Res
が必要になるが、これらはTeを求めるときに得られる
値を用いることができる。すなわち、計算時間Δt経過
後の温度Teの変化量として
ΔTe:We=0としてときのTeの変化量
δTe:Weとしてある任意の値δWe変化したときの
Teの変化量
が得られるが、これらの値を用いると
Tes=Te0+ΔTe・(t/ΔT)
Res=δTe/δWe
Te0:計算開始前のTe
このとき、積雪状態の熱定数は占氷率ηで近似できるの
で
ρs=η・ρi
Cs=Ci
λs=η・λi
となる。このηを変えて計算し、境界条件を満足するη
を求めればよい。
X=0のとき
Ws(0)=We
Ts(0)=Te
X=dsのとき
Ws(ds)=Wa
このようにすることで積雪状態の物理量としてρs,C
s,λsを求めることができる。この内のρsが積雪3
状態の判定基準となる。As another calculation method, it is possible to independently calculate the heat inside the soil and the heat in the snow cover. First, Te and We are calculated by the same equivalent circuit as the conventional method. Next, regarding the snow cover, the distance from the snow surface is x,
The temperature Ts (x) inside the snow cover and the inflow heat Ws (x) are obtained. An equivalent temperature source: Tes and an equivalent thermal resistance: Res are required as an equivalent circuit on the ground side, and the values obtained when calculating Te can be used for these. That is, as the change amount of the temperature Te after the lapse of the calculation time Δt, the change amount of Te when ΔTe: We = 0 is set, and the change amount of Te when a certain value δWe is changed as δTe: We is obtained. Using the values, Tes = Te0 + ΔTe · (t / ΔT) Res = δTe / δWe Te0: Te before the start of calculation At this time, the thermal constant in the snow cover state can be approximated by the ice occupancy ratio η, so ρs = η · ρi Cs = Ci λs = η · λi. Calculate by changing this η and satisfy the boundary condition η
You should ask. When X = 0, Ws (0) = We Ts (0) = Te When X = ds, Ws (ds) = Wa By doing in this way, the physical quantity in the snowy state is ρs, C
It is possible to obtain s and λs. Ρs of this is snowfall 3
It will be the criterion for the condition.
【0016】(3)積雪3状態の判定
積雪3状態(新雪、圧雪、シャーベット)における積雪
密度は大きく異なっており、新雪は0.1程度、圧雪は
0.5程度、シャーベットは1.0程度である。したが
って、適切なしきい値を設定することで、算出したρs
から積雪3状態を分離計測可能となる。積雪3状態の判
定の一例を図5に示す。ここでは前記「雪氷の構造と物
性」を参考にしきい値を定めているが、実際の道路で収
集したデータに基づいてしきい値を調整することによ
り、判定精度の向上が可能である。(3) Judgment of three snowfall states The snowfall densities in the three snowfall states (fresh snow, compressed snow, sorbet) are greatly different. Fresh snow is about 0.1, compressed snow is about 0.5, and sorbet is about 1.0. Is. Therefore, by setting an appropriate threshold, the calculated ρs
It becomes possible to separately measure the three snow conditions. FIG. 5 shows an example of determination of the snow cover 3 state. Here, the threshold value is determined with reference to the above-mentioned “structure and physical properties of snow and ice”, but the determination accuracy can be improved by adjusting the threshold value based on the data collected on the actual road.
【0017】(4)圧雪氷板の判定
積雪3状態を判定することにより、以下の情報が常時得
られることになる。
Ts:積雪表面温度
Ws:積雪表面への流入熱
ds:積雪厚み(降雪計の測定値と除雪作業情報も活用
する)
ρs:積雪状態の密度
これらのトレンド情報から圧雪氷板(凍結)を判定す
る。圧雪氷板は新雪、シャーベットからは生成せず、圧
雪状態からのみ生成するので、この点に着目する。圧雪
状態では顕熱過程、融解過程、及び凝固過程が存
在する。は潜熱が無い場合の過程である。一方、、
は潜熱が有る場合の過程であり、日射、薬剤散布、交
通車両の影響によって発生する。特に、凝固過程は放射
冷却の効果が大きいときに発生しやすい。圧雪氷板が生
成するためには、、の過程が必要である。一方、積
雪3状態の判定は、の条件で実施しているので、、
の過程ではの計算結果がどのように変化するのかに
ついて以下に述べる。(4) Judgment of compressed snow ice plate By judging the snow cover 3 state, the following information can be obtained at all times. Ts: Snow surface temperature Ws: Inflow heat to snow surface ds: Snow thickness (uses snowfall measurement values and snow removal work information) ρs: Density of snow cover Snow ice plate (freezing) is determined from these trend information To do. This point is focused on because the compressed snow plate does not generate from fresh snow or sherbet, but only from the compressed snow state. There are sensible heat process, melting process, and solidification process in the snow-blown state. Is the process when there is no latent heat. on the other hand,,
Is a process when there is latent heat, and is generated by the effects of solar radiation, chemical spraying, and traffic vehicles. In particular, the solidification process is likely to occur when the effect of radiative cooling is great. In order to produce a compressed snow plate, the process of and is required. On the other hand, since the determination of the snow cover 3 state is performed under the condition of,
How the calculation result of changes in the process of is described below.
【0018】(a)融解過程
前記の通り、融解過程は日射、薬剤散布、交通車両の影
響によって発生する。積雪表面の雪が解ける場合の融解
熱をΔWmとすると、数式1のようになる。(A) Melting Process As described above, the melting process occurs due to the effects of solar radiation, spraying of chemicals, and traffic vehicles. If the heat of melting when the snow on the snow surface is thawed is ΔWm, then Equation 1 is obtained.
【0019】[0019]
【数式1】ΔWm=Wa−Ws(ds)
融解時にはΔWmがWs(ds)より十分に大きいの
で、ΔWm=0という条件で積雪3状態の判定を行う
と、結果は実態とかけ離れた値となる。すなわち、溶融
過程ではWs(ds)が実際の値より大きく設定されて
いるため、熱伝導率λ(理論最大値は1)が1より大幅
に大きくなる。逆に言えば、λ≧1になる直前からこの
溶融過程が発生したことになる。また、溶融過程ではλ
を定数としてλ=1と仮定して計算することによって、
Ws(ds)を近似的に求めることができるので、数式
1からΔWmを求めることができる。[Formula 1] ΔWm = Wa-Ws (ds) Since ΔWm is sufficiently larger than Ws (ds) during melting, if the snow cover 3 state is judged under the condition of ΔWm = 0, the result is far from the actual value. . That is, since Ws (ds) is set to be larger than the actual value in the melting process, the thermal conductivity λ (theoretical maximum value is 1) becomes significantly larger than 1. In other words, this melting process occurs just before λ ≧ 1. In the melting process, λ
By assuming that λ = 1 as a constant,
Since Ws (ds) can be approximately calculated, ΔWm can be calculated from Equation 1.
【0020】(b)凝固過程
凝固過程は溶融過程とは逆の現象であり、日射、交通車
両の熱より放射冷却の熱が大きいときあるいは薬剤の濃
度が低下したときに発生する。積雪表面の水分が凝固す
るときの凝固熱をΔWrとすると、数式2のようにな
る。(B) Solidification Process The solidification process is a reverse phenomenon to the melting process, and occurs when the heat of radiation cooling is larger than the heat of solar radiation or traffic, or when the concentration of the drug is reduced. Letting ΔWr be the heat of solidification when the water on the surface of the snow is solidified, Equation 2 is obtained.
【0021】[0021]
【数式2】ΔWf=Wa−Ws(ds)
いずれも負の値である。絶対値で見ると、凝固時にはΔ
WfがWs(ds)より十分に大きい値となるので、Δ
Wf=0という条件で積雪3状態の判定を行うと、熱伝
導率 は実態とかけ離れた値となる。凝固過程の前には
融解過程があり、この時点で を固定しているため、
(2)式からΔWfが求まる。以上をまとめると、圧雪
氷板の判定条件は次のようになる。
雨雪量計による降雪の検知、あるいは熱量計算による
積雪判定(積雪状態の持続)により、路面状態が積雪と
なっている。
積雪開始時から現在までの路面状態判定計算におい
て、項目(a)の融解過程を経過している(凝固しうる
水分が存在する)。
項目(b)の凝固過程の計算において、ΔWfが負の
値になっている。## EQU2 ## ΔWf = Wa-Ws (ds) Both are negative values. Seen by absolute value, Δ
Since Wf has a value sufficiently larger than Ws (ds), Δ
If the determination of three snow conditions is made under the condition of Wf = 0, the thermal conductivity will be a value far from the actual state. There is a melting process before the solidification process, and at this point, is fixed,
ΔWf is obtained from the equation (2). Summarizing the above, the conditions for determining the compressed snow ice plate are as follows. The road surface is covered with snow due to the detection of snowfall with a rain gauge or the determination of snowfall due to calorific value calculation (continuation of the snowfall condition). In the road surface condition determination calculation from the start of snow accumulation to the present, the melting process of item (a) has passed (water that can solidify exists). In the calculation of the solidification process of item (b), ΔWf has a negative value.
【0022】[0022]
【発明の効果】請求項1ないし5の発明によれば、実際
の道路(長距離、広範囲)に適用した場合に、赤外線又
は電磁波を照射する方式よりも低コストで路面状態の判
定を実現できる。また、従来の気象量及び路面温度から
路面状態を推定する方法では不可能であった積雪3状態
の判定及び圧雪氷板の判定が可能になり、より適切な道
路情報を提供することができるという優れた効果があ
る。According to the first to fifth aspects of the invention, when applied to an actual road (long distance, wide range), the road surface condition can be determined at a lower cost than the method of irradiating infrared rays or electromagnetic waves. . In addition, it becomes possible to determine the state of snow cover 3 and the determination of pressure snow plates, which was not possible with the conventional method of estimating the road surface condition from the amount of meteorology and road surface temperature, and it is possible to provide more appropriate road information. It has an excellent effect.
【図1】この発明の一実施の形態を示す、全体構成図で
ある。FIG. 1 is an overall configuration diagram showing an embodiment of the present invention.
【図2】信号線の代わりに受信アンテナを用いた別の実
施の形態を示す、全体構成図である。FIG. 2 is an overall configuration diagram showing another embodiment in which a receiving antenna is used instead of a signal line.
【図3】同上における路面状態判定計算フローである。FIG. 3 is a road surface state determination calculation flow in the above.
【図4】積雪中の熱伝導の概念図である。FIG. 4 is a conceptual diagram of heat conduction in snow.
【図5】積雪3状態の判定方法の一例を示す図面であ
る。FIG. 5 is a diagram showing an example of a method for determining the state of three snowfalls.
【図6】従来の電波式路面状態検知センサの構成例を示
す図面である。FIG. 6 is a diagram showing a configuration example of a conventional radio wave type road surface state detection sensor.
1 気象センサ 2 光ファイバ 3 信号伝送装置 4 道路 5 信号伝送装置 6 信号線 7 情報収集装置 8 路面状態推定装置 9 表示部 1 weather sensor 2 optical fiber 3 signal transmission equipment 4 roads 5 Signal transmission equipment 6 signal lines 7 Information collection device 8 Road surface condition estimation device 9 Display
Claims (5)
剤散布情報から道路上の積雪密度を推定し、その推定値
の経時変化に基づいて路面における積雪状態を判定する
ことを特徴とする路面状態判定方法。1. A snowfall density on a road is estimated from a road surface temperature measurement value, a surface meteorological amount measurement value, and chemical spraying information, and a snowfall state on the road surface is determined based on a temporal change of the estimated value. Road condition determination method.
を判定する請求項1記載の路面状態判定方法。2. The road surface condition determining method according to claim 1, wherein after determining the snow cover condition, the pressure snow ice plate is subsequently determined.
した光ファイバー温度レーダの計測値からの求めた値を
使用する請求項1又は2記載の路面状態判定方法。3. The road surface condition determining method according to claim 1, wherein a value obtained from a measurement value of an optical fiber temperature radar embedded inside the road is used as the road surface temperature measurement value.
積雪3状態で判定する請求項1ないし3のいずれかに記
載の路面状態判定方法。4. The road surface condition determination method according to claim 1, wherein the snow accumulation condition is determined based on three snow accumulation conditions of fresh snow, compressed snow, and sorbet.
収支量を用いる請求項1ないし4のいずれかに記載の路
面状態判定方法。5. The road surface condition determining method according to claim 1, wherein the heat balance amount of the road surface is used when determining the snow cover condition.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002043626A JP3605641B2 (en) | 2002-02-20 | 2002-02-20 | Road condition judgment method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002043626A JP3605641B2 (en) | 2002-02-20 | 2002-02-20 | Road condition judgment method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003240866A true JP2003240866A (en) | 2003-08-27 |
JP3605641B2 JP3605641B2 (en) | 2004-12-22 |
Family
ID=27783347
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002043626A Expired - Lifetime JP3605641B2 (en) | 2002-02-20 | 2002-02-20 | Road condition judgment method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3605641B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003240867A (en) * | 2002-02-20 | 2003-08-27 | Natl Inst For Land & Infrastructure Management Mlit | Road surface condition estimation method |
JP2007210445A (en) * | 2006-02-09 | 2007-08-23 | Railway Technical Res Inst | Regulated speed evaluation system for moving objects |
Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6337890B2 (en) * | 1980-06-13 | 1988-07-27 | Omron Tateisi Electronics Co | |
JPH07113877A (en) * | 1993-10-14 | 1995-05-02 | Furukawa Electric Co Ltd:The | Detecting method for amount of snowmelt |
JPH10282250A (en) * | 1997-04-04 | 1998-10-23 | Oki Electric Ind Co Ltd | Method and device for prediction of freezing on road surface |
JPH1114434A (en) * | 1997-06-24 | 1999-01-22 | Wall Natsuto:Kk | Sediment measuring method, sediment measuring device, snow measuring method and snow measuring device |
JPH11174161A (en) * | 1997-12-10 | 1999-07-02 | Takuwa:Kk | Detection method and device for road status |
JPH11211846A (en) * | 1998-01-22 | 1999-08-06 | Yokogawa Electric Corp | Snow depth meter |
JP2976025B1 (en) * | 1998-06-15 | 1999-11-10 | 建設省土木研究所長 | Road surface condition determination device |
JP2981887B1 (en) * | 1998-07-31 | 1999-11-22 | 建設省土木研究所長 | Road surface state detection method and device |
JP2000088653A (en) * | 1998-09-09 | 2000-03-31 | Nagoya Denki Kogyo Kk | Method and apparatus for judging road surface condition |
JP2000241563A (en) * | 1999-02-17 | 2000-09-08 | Hitachi Cable Ltd | Road surface freeze determination method and device, and road surface freeze prediction method and device. |
WO2000075896A1 (en) * | 1999-06-03 | 2000-12-14 | Boschung Mecatronic Ag | Method and warning device for generating glazed frost early warning signal for roads |
JP2000346958A (en) * | 1999-06-03 | 2000-12-15 | Hitachi Cable Ltd | Road surface condition estimation method and device |
JP2000346957A (en) * | 1999-06-02 | 2000-12-15 | Hitachi Cable Ltd | Road surface freeze determination method and device |
JP2001042053A (en) * | 1999-07-30 | 2001-02-16 | Hitachi Cable Ltd | Road surface condition estimation method and system |
JP2001051069A (en) * | 1999-08-11 | 2001-02-23 | Oki Electric Ind Co Ltd | Road surface freezing-predicting system |
JP2001059205A (en) * | 1999-08-24 | 2001-03-06 | Oki Electric Ind Co Ltd | Road face temperature estimation method and device for highway bridge |
JP3219383B2 (en) * | 1997-10-13 | 2001-10-15 | 林野庁森林総合研究所長 | Automatic snow depth measurement system |
JP2002311157A (en) * | 2001-04-10 | 2002-10-23 | Hitachi Cable Ltd | Road surface condition estimation method |
-
2002
- 2002-02-20 JP JP2002043626A patent/JP3605641B2/en not_active Expired - Lifetime
Patent Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6337890B2 (en) * | 1980-06-13 | 1988-07-27 | Omron Tateisi Electronics Co | |
JPH07113877A (en) * | 1993-10-14 | 1995-05-02 | Furukawa Electric Co Ltd:The | Detecting method for amount of snowmelt |
JPH10282250A (en) * | 1997-04-04 | 1998-10-23 | Oki Electric Ind Co Ltd | Method and device for prediction of freezing on road surface |
JPH1114434A (en) * | 1997-06-24 | 1999-01-22 | Wall Natsuto:Kk | Sediment measuring method, sediment measuring device, snow measuring method and snow measuring device |
JP3219383B2 (en) * | 1997-10-13 | 2001-10-15 | 林野庁森林総合研究所長 | Automatic snow depth measurement system |
JPH11174161A (en) * | 1997-12-10 | 1999-07-02 | Takuwa:Kk | Detection method and device for road status |
JPH11211846A (en) * | 1998-01-22 | 1999-08-06 | Yokogawa Electric Corp | Snow depth meter |
JP2976025B1 (en) * | 1998-06-15 | 1999-11-10 | 建設省土木研究所長 | Road surface condition determination device |
JP2981887B1 (en) * | 1998-07-31 | 1999-11-22 | 建設省土木研究所長 | Road surface state detection method and device |
JP2000088653A (en) * | 1998-09-09 | 2000-03-31 | Nagoya Denki Kogyo Kk | Method and apparatus for judging road surface condition |
JP2000241563A (en) * | 1999-02-17 | 2000-09-08 | Hitachi Cable Ltd | Road surface freeze determination method and device, and road surface freeze prediction method and device. |
JP2000346957A (en) * | 1999-06-02 | 2000-12-15 | Hitachi Cable Ltd | Road surface freeze determination method and device |
WO2000075896A1 (en) * | 1999-06-03 | 2000-12-14 | Boschung Mecatronic Ag | Method and warning device for generating glazed frost early warning signal for roads |
JP2000346958A (en) * | 1999-06-03 | 2000-12-15 | Hitachi Cable Ltd | Road surface condition estimation method and device |
JP2001042053A (en) * | 1999-07-30 | 2001-02-16 | Hitachi Cable Ltd | Road surface condition estimation method and system |
JP2001051069A (en) * | 1999-08-11 | 2001-02-23 | Oki Electric Ind Co Ltd | Road surface freezing-predicting system |
JP2001059205A (en) * | 1999-08-24 | 2001-03-06 | Oki Electric Ind Co Ltd | Road face temperature estimation method and device for highway bridge |
JP2002311157A (en) * | 2001-04-10 | 2002-10-23 | Hitachi Cable Ltd | Road surface condition estimation method |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003240867A (en) * | 2002-02-20 | 2003-08-27 | Natl Inst For Land & Infrastructure Management Mlit | Road surface condition estimation method |
JP2007210445A (en) * | 2006-02-09 | 2007-08-23 | Railway Technical Res Inst | Regulated speed evaluation system for moving objects |
Also Published As
Publication number | Publication date |
---|---|
JP3605641B2 (en) | 2004-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4899054B2 (en) | Method and apparatus for predicting sliding friction on road surface and program thereof | |
JP3601344B2 (en) | Road surface freezing prediction method and its apparatus | |
Ghobrial et al. | Continuous monitoring of river surface ice during freeze-up using upward looking sonar | |
JP2972173B2 (en) | Road surface freezing prevention method, road surface information movement collection system, and road surface freezing prevention device | |
JP2018081067A (en) | Empirical snowfall conversion method and system | |
JP2981887B1 (en) | Road surface state detection method and device | |
KR101760900B1 (en) | Method for predicting black ice using image of weather radar | |
Bouilloud et al. | Road surface condition forecasting in France | |
JP2021092412A (en) | Road surface water film thickness measuring method and measuring device | |
JP3809519B2 (en) | Road surface condition estimation method | |
JP4477270B2 (en) | Method and warning device for generating a freezing early warning signal for roads | |
JP3605641B2 (en) | Road condition judgment method | |
JP3767478B2 (en) | Road surface temperature estimation method | |
Magnusson et al. | Real-time high-resolution road condition map for the EU | |
JP3769603B2 (en) | Road surface temperature measurement method | |
JP3603668B2 (en) | Road surface freeze determination method and device | |
Hippi et al. | A statistical forecast model for road surface friction | |
Knollhoff et al. | Evaluation of a frost accumulation model | |
JP4742388B2 (en) | Road surface condition estimation system at fixed observation points and routes | |
JP3677542B2 (en) | Road surface condition estimation method | |
Haavasoja et al. | A compact road weather station | |
JP2001042053A (en) | Road surface condition estimation method and system | |
JP2002156465A (en) | Road surface condition estimation method | |
JP2001059205A (en) | Road face temperature estimation method and device for highway bridge | |
JP2008122133A (en) | Precipitation / precipitation form determination system and road surface freezing condition determination system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20040428 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040513 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040706 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040727 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040907 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3605641 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
EXPY | Cancellation because of completion of term |