JP2003238660A - Epoxy resin composition and semiconductor device - Google Patents
Epoxy resin composition and semiconductor deviceInfo
- Publication number
- JP2003238660A JP2003238660A JP2002039250A JP2002039250A JP2003238660A JP 2003238660 A JP2003238660 A JP 2003238660A JP 2002039250 A JP2002039250 A JP 2002039250A JP 2002039250 A JP2002039250 A JP 2002039250A JP 2003238660 A JP2003238660 A JP 2003238660A
- Authority
- JP
- Japan
- Prior art keywords
- epoxy resin
- resin composition
- semiconductor
- semiconductor device
- solder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003822 epoxy resin Substances 0.000 title claims abstract description 70
- 229920000647 polyepoxide Polymers 0.000 title claims abstract description 70
- 239000000203 mixture Substances 0.000 title claims abstract description 38
- 239000004065 semiconductor Substances 0.000 title claims abstract description 33
- 239000005011 phenolic resin Substances 0.000 claims abstract description 13
- 239000011256 inorganic filler Substances 0.000 claims abstract description 11
- 229910003475 inorganic filler Inorganic materials 0.000 claims abstract description 11
- 238000005538 encapsulation Methods 0.000 claims abstract description 5
- 125000000217 alkyl group Chemical group 0.000 claims abstract description 4
- 125000004432 carbon atom Chemical group C* 0.000 claims abstract description 4
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 4
- 239000001257 hydrogen Substances 0.000 claims abstract description 4
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims abstract description 3
- 239000000126 substance Substances 0.000 claims description 9
- 229910000679 solder Inorganic materials 0.000 abstract description 23
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 9
- 238000000034 method Methods 0.000 description 9
- 238000010521 absorption reaction Methods 0.000 description 8
- 239000004593 Epoxy Substances 0.000 description 7
- 150000001463 antimony compounds Chemical class 0.000 description 6
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical group C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 229920005989 resin Polymers 0.000 description 6
- 239000011347 resin Substances 0.000 description 6
- -1 trioxide Chemical class 0.000 description 6
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical group [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 5
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 5
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 229920003986 novolac Polymers 0.000 description 5
- 239000003063 flame retardant Substances 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 150000002894 organic compounds Chemical class 0.000 description 4
- 239000011342 resin composition Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 238000001721 transfer moulding Methods 0.000 description 4
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 3
- 238000005452 bending Methods 0.000 description 3
- 239000004305 biphenyl Chemical group 0.000 description 3
- 235000010290 biphenyl Nutrition 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 230000035882 stress Effects 0.000 description 3
- CQOZJDNCADWEKH-UHFFFAOYSA-N 2-[3,3-bis(2-hydroxyphenyl)propyl]phenol Chemical compound OC1=CC=CC=C1CCC(C=1C(=CC=CC=1)O)C1=CC=CC=C1O CQOZJDNCADWEKH-UHFFFAOYSA-N 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- 239000006087 Silane Coupling Agent Substances 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- LJCFOYOSGPHIOO-UHFFFAOYSA-N antimony pentoxide Chemical compound O=[Sb](=O)O[Sb](=O)=O LJCFOYOSGPHIOO-UHFFFAOYSA-N 0.000 description 2
- 125000002529 biphenylenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3C12)* 0.000 description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 125000003700 epoxy group Chemical group 0.000 description 2
- 239000005350 fused silica glass Substances 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- QWVGKYWNOKOFNN-UHFFFAOYSA-N o-cresol Chemical compound CC1=CC=CC=C1O QWVGKYWNOKOFNN-UHFFFAOYSA-N 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 2
- 239000001993 wax Substances 0.000 description 2
- KJCVRFUGPWSIIH-UHFFFAOYSA-N 1-naphthol Chemical compound C1=CC=C2C(O)=CC=CC2=C1 KJCVRFUGPWSIIH-UHFFFAOYSA-N 0.000 description 1
- LXBGSDVWAMZHDD-UHFFFAOYSA-N 2-methyl-1h-imidazole Chemical compound CC1=NC=CN1 LXBGSDVWAMZHDD-UHFFFAOYSA-N 0.000 description 1
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- PJANXHGTPQOBST-VAWYXSNFSA-N Stilbene Natural products C=1C=CC=CC=1/C=C/C1=CC=CC=C1 PJANXHGTPQOBST-VAWYXSNFSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000004203 carnauba wax Substances 0.000 description 1
- 235000013869 carnauba wax Nutrition 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229930003836 cresol Natural products 0.000 description 1
- 229910002026 crystalline silica Inorganic materials 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 239000003480 eluent Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 239000000383 hazardous chemical Substances 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Chemical class 0.000 description 1
- 239000002184 metal Chemical class 0.000 description 1
- 150000002903 organophosphorus compounds Chemical class 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- PJANXHGTPQOBST-UHFFFAOYSA-N stilbene Chemical compound C=1C=CC=CC=1C=CC1=CC=CC=C1 PJANXHGTPQOBST-UHFFFAOYSA-N 0.000 description 1
- 235000021286 stilbenes Nutrition 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 235000007586 terpenes Nutrition 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 235000010215 titanium dioxide Nutrition 0.000 description 1
- IMFACGCPASFAPR-UHFFFAOYSA-N tributylamine Chemical compound CCCCN(CCCC)CCCC IMFACGCPASFAPR-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Epoxy Resins (AREA)
- Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
Abstract
(57)【要約】
【課題】 流動性に優れ、かつ耐半田クラック性に優れ
た特性を有するエポキシ樹脂組成物を提供すること。
【解決手段】 (A)二核体含有量が10〜60%であ
る一般式(1)で示されるエポキシ樹脂、(B)フェノ
ール樹脂、(C)無機充填材及び(D)硬化促進剤を必
須成分とすることを特徴とする半導体封止用エポキシ樹
脂組成物。
【化1】
(式中、Rは水素又は炭素数1〜4のアルキル基を表
し、互いに同一もしくは異なっていてもよい。aは0〜
3の整数。nは平均値で、1〜10の正数)(57) [Problem] To provide an epoxy resin composition having excellent fluidity and excellent solder crack resistance. SOLUTION: (A) An epoxy resin represented by the general formula (1) having a binuclear content of 10 to 60%, (B) a phenol resin, (C) an inorganic filler, and (D) a curing accelerator. An epoxy resin composition for semiconductor encapsulation, which is an essential component. Embedded image (Wherein, R represents hydrogen or an alkyl group having 1 to 4 carbon atoms, and may be the same or different from each other.
An integer of 3. n is an average value and a positive number of 1 to 10)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、流動性、耐半田ク
ラック性に優れた特性を有する半導体封止用エポキシ樹
脂組成物及び半導体装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor encapsulating epoxy resin composition and a semiconductor device having excellent fluidity and solder crack resistance.
【0002】[0002]
【従来の技術】IC、LSI等の半導体素子の封止方法
としてエポキシ樹脂組成物のトランスファー成形による
方法が低コスト、大量生産に適した方法として採用され
て久しく、信頼性もエポキシ樹脂や硬化剤であるフェノ
ール樹脂の改良により向上が図られてきた。しかし、近
年の電子機器の小型化、軽量化、高性能化の市場動向に
おいて、半導体の高集積化も年々進み、又半導体装置の
表面実装化が促進されるなかで、半導体封止用エポキシ
樹脂組成物への要求は益々厳しいものとなってきてい
る。このため、従来からのエポキシ樹脂組成物では解決
できない問題点も出てきている。特に半導体装置の表面
実装化が一般的になっている現状では、吸湿した半導体
装置が半田リフロー処理時に高温にさらされ、半導体素
子やリードフレームとエポキシ樹脂組成物の硬化物との
界面に剥離が発生し、ひいては硬化物にクラックを生じ
るなど、半導体装置の信頼性を大きく損なう不良が生
じ、これらの不良の防止、即ち耐半田性の向上が大きな
課題となっている。2. Description of the Related Art As a method for encapsulating semiconductor elements such as ICs and LSIs, transfer molding of an epoxy resin composition has been adopted as a method suitable for mass production at low cost for a long time, and the reliability of epoxy resin and curing agent is high. The improvement has been made by improving the phenol resin. However, in recent market trends of miniaturization, weight reduction, and high performance of electronic devices, semiconductor integration has advanced year by year, and surface mounting of semiconductor devices has been promoted. The demands on the composition are becoming more and more stringent. Therefore, there are some problems that cannot be solved by conventional epoxy resin compositions. In particular, under the current situation where surface mounting of semiconductor devices is becoming common, moisture-absorbed semiconductor devices are exposed to high temperatures during solder reflow processing, and peeling occurs at the interface between the semiconductor element or lead frame and the cured product of the epoxy resin composition. Problems such as cracks that occur in the cured product and that greatly deteriorate the reliability of the semiconductor device occur, and prevention of these defects, that is, improvement of solder resistance has become a major issue.
【0003】更に環境負荷物質の撤廃の一環として、鉛
を含まない半田への代替が進められている。鉛を含まな
い半田では、従来の半田に比べ融点が高いため表面実装
時の半田リフロー温度は、これまでより20℃程度高
く、260℃が必要とされる。鉛を含まない半田対応の
ための半田リフロー温度の変更によりエポキシ樹脂組成
物の硬化物と半導体素子、リードフレーム、インナーリ
ード上の各種メッキされた接合部分との各界面での剥離
に起因する半導体装置のクラックの問題が生じてきた。
これら半田クラックや剥離は、半田リフロー処理前の半
導体装置自身が吸湿し、半田リフロー処理時の高温下で
その水分が水蒸気爆発を起こすことによって生じると考
えられ、それを防ぐためにエポキシ樹脂組成物に低吸湿
性を付与するなどの手法がよく用いられている。その低
吸湿化の手法としては、例えばフェニル又はビフェニル
骨格等の低吸湿性骨格を有するエポキシ樹脂とフェノー
ル樹脂を用いてエポキシ樹脂組成物の硬化物の低吸湿化
を図る方法や低粘度型もしくは低溶融粘度型のエポキシ
樹脂とフェノール樹脂を用いてエポキシ樹脂組成物中の
無機充填材の高充填化によりエポキシ樹脂組成物の硬化
物の低吸湿化を図る方法等がある。しかしながらこれら
の手法を単独又は複合して用いたエポキシ樹脂組成物と
いえども鉛を含まない耐半田クラック性対応樹脂として
は不十分であった。このため260℃での表面実装時の
耐半田クラック性向上を目的として様々な改良が進めら
れてきたが、そのいずれにおいても完全なる解決策とは
ならず、更なる改良が望まれている。Further, as part of the elimination of environmentally hazardous substances, substitution of lead-free solder is being promoted. Since solder containing no lead has a higher melting point than conventional solder, the solder reflow temperature during surface mounting is higher by about 20 ° C. than before, and 260 ° C. is required. A semiconductor caused by peeling at each interface between a cured product of an epoxy resin composition and various plated joints on a semiconductor element, a lead frame, and an inner lead due to a change in the solder reflow temperature for handling solder that does not contain lead. The problem of device cracking has arisen.
These solder cracks and peeling are considered to be caused by moisture absorption by the semiconductor device itself before the solder reflow treatment, and the water vapor explosion under high temperature during the solder reflow treatment, which is caused by the epoxy resin composition in order to prevent it. Techniques such as imparting low hygroscopicity are often used. As a method for lowering the moisture absorption, for example, a method for lowering the moisture absorption of a cured product of an epoxy resin composition using an epoxy resin and a phenol resin having a low hygroscopic skeleton such as a phenyl or biphenyl skeleton, or a low viscosity type or low There is a method of using a melt-viscosity type epoxy resin and a phenol resin to increase the content of an inorganic filler in an epoxy resin composition to lower the moisture absorption of a cured product of the epoxy resin composition. However, even an epoxy resin composition using these methods alone or in combination is insufficient as a lead crack-free resin for solder crack resistance. For this reason, various improvements have been made for the purpose of improving the solder crack resistance during surface mounting at 260 ° C. However, none of them is a complete solution and further improvement is desired.
【0004】一方エポキシ樹脂組成物には難燃剤成分と
して臭素原子含有難燃剤及び三酸化、四酸化、五酸化ア
ンチモンなどのアンチモン化合物が配合されている。し
かしながら、世界的環境保護意識の高まりの中、臭素原
子含有有機化合物やアンチモン化合物を使用しないで難
燃性を有するエポキシ樹脂組成物の要求が大きくなって
きている。更に半導体装置を150〜200℃での高温
で長時間保管すると、難燃剤である臭素原子やアンチモ
ン化合物は半導体素子の抵抗値増加や金線の断線を引き
起こす要因となることが知られている。これの観点か
ら、臭素原子含有有機化合物やアンチモン化合物を使用
しない半導体封止用エポキシ樹脂組成物の開発が求めら
れている。On the other hand, the epoxy resin composition contains a bromine atom-containing flame retardant as a flame retardant component and an antimony compound such as trioxide, tetraoxide or antimony pentoxide. However, with increasing awareness of environmental protection worldwide, there is an increasing demand for an epoxy resin composition having flame retardancy without using a bromine atom-containing organic compound or an antimony compound. Further, it is known that when the semiconductor device is stored at a high temperature of 150 to 200 ° C. for a long time, the flame retardant bromine atom or antimony compound causes an increase in the resistance value of the semiconductor element and a disconnection of the gold wire. From this viewpoint, development of an epoxy resin composition for semiconductor encapsulation that does not use a bromine atom-containing organic compound or an antimony compound is required.
【0005】[0005]
【発明が解決しようとする課題】本発明は、流動性に優
れ、半導体素子、リードフレームなどの各種部材との接
着性の向上、低弾性率化による低応力化により、260
℃での基板実装時における半導体装置の耐半田クラック
性を著しく向上させ、更に臭素原子含有有機化合物、ア
ンチモン化合物を使用せずに難燃性を維持できる特性を
有する半導体封止用エポキシ樹脂組成物及びこれを用い
た半導体装置を提供するものである。DISCLOSURE OF THE INVENTION The present invention has excellent fluidity, has improved adhesiveness to various members such as semiconductor elements and lead frames, and has a low elastic modulus to reduce stress.
Epoxy resin composition for semiconductor encapsulation having characteristics of significantly improving solder crack resistance of a semiconductor device when mounted on a substrate at ℃, and capable of maintaining flame retardancy without using a bromine atom-containing organic compound or antimony compound And a semiconductor device using the same.
【0006】[0006]
【課題を解決するための手段】本発明は、[1](A)
二核体含有量が10〜60%である一般式(1)で示さ
れるエポキシ樹脂、(B)フェノール樹脂、(C)無機
充填材及び(D)硬化促進剤を必須成分とすることを特
徴とする半導体封止用エポキシ樹脂組成物、The present invention provides [1] (A)
An epoxy resin represented by the general formula (1) having a binuclear content of 10 to 60%, (B) a phenol resin, (C) an inorganic filler and (D) a curing accelerator as essential components. An epoxy resin composition for semiconductor encapsulation,
【0007】[0007]
【化2】
(式中、Rは水素又は炭素数1〜4のアルキル基を表
し、互いに同一もしくは異なっていてもよい。aは0〜
3の整数。nは平均値で、1〜10の正数)[Chemical 2] (In the formula, R represents hydrogen or an alkyl group having 1 to 4 carbon atoms, which may be the same or different from each other.
An integer of 3. n is an average value and is a positive number from 1 to 10)
【0008】[2]第[1]項記載のエポキシ樹脂組成
物を用いて半導体素子を封止してなることを特徴とする
半導体装置、である。[2] A semiconductor device comprising a semiconductor element encapsulated with the epoxy resin composition as described in the item [1].
【0009】[0009]
【発明の実施の形態】一般式(1)で示される構造を有
し、二核体含有量が10〜60%の範囲にあるエポキシ
樹脂を用いた樹脂組成物の硬化物は、ガラス転移温度を
越えた高温域での弾性率が低く、低吸湿性であり、表面
実装の半田付け時における熱ストレスを低減させること
ができ、樹脂組成物の硬化物と半導体素子或いはリード
フレーム(42アロイ、銅合金)との接着性に優れてお
り、剥離や樹脂組成物の硬化物のクラック発生を抑える
ことができ、優れたエポキシ樹脂組成物を得ることがで
きる。本発明では二核体含有量が10〜60%のエポキ
シ樹脂を用いるが、二核体とは一般式(1)においてn
=1の構造をいう。二核体量はGPC(Gel Per
meation Chromatography)法に
よりポリスチレン換算して求めた値である。即ち、東ソ
ー(株)製GPCカラム(G1000H×L:1本、G
2000H×L:2本、G3000H×L:1本)を用
い、流量1.0cm3/60秒、溶出溶媒としてテトラ
ヒドロフラン、カラム温度40℃の条件で示差屈折計を
検出器に用いて測定しポリスチレン換算して求めた。二
核体含有量が下限値を下回ると硬化物の熱時低弾性率効
果が小さく、半田リフロー時の密着性に劣るうえに、エ
ポキシ樹脂の粘度が高くなりすぎ、成形時の樹脂組成物
の流動性が劣り、より一層の低吸湿化のための無機充填
材の高充填化が困難となる。二核体含有量が上限値を越
えるとエポキシ樹脂組成物の硬化性が低下し、離型性が
劣る。又、架橋密度の低下により熱時強度が低下し、耐
半田クラック性が低下するという問題がある。一般式
(1)のRは水素又は炭素数1〜4のアルキル基を表
し、互いに同一もしくは異なっていてもよい。aは0〜
3の整数。nは平均値で、1〜10の正数である。nが
上限値を越えると樹脂の粘度が増大し、成形時の樹脂組
成物の流動性が劣り、より一層の低吸湿化のための無機
充填材の高充填化が不可能となる。BEST MODE FOR CARRYING OUT THE INVENTION A cured product of a resin composition using an epoxy resin having a structure represented by the general formula (1) and having a binuclear content of 10 to 60% has a glass transition temperature. It has a low elastic modulus in a high temperature range exceeding 100 ° C., low hygroscopicity, and can reduce thermal stress during soldering of surface mounting, and a cured product of a resin composition and a semiconductor element or a lead frame (42 alloy, It has excellent adhesiveness to a copper alloy), can suppress peeling and cracking of a cured product of the resin composition, and can obtain an excellent epoxy resin composition. In the present invention, an epoxy resin having a binuclear content of 10 to 60% is used, and the binuclear is n in the general formula (1).
= 1. GPC (Gel Per)
It is a value calculated in terms of polystyrene by means of the Meation Chromatography) method. That is, GPC column manufactured by Tosoh Corporation (G1000H × L: 1 piece, G
2000H × L: 2 present, G3000H × L: 1 present) using a flow rate of 1.0 cm 3/60 sec, tetrahydrofuran as eluent, polystyrene measured using a differential refractometer detector under conditions of a column temperature 40 ° C. Calculated and calculated. When the binuclear content is less than the lower limit, the low elastic modulus effect at the time of heat of the cured product is small, the adhesiveness during solder reflow is poor, and the viscosity of the epoxy resin becomes too high. The fluidity is inferior, and it becomes difficult to increase the filling of the inorganic filler for further lowering the moisture absorption. If the content of the binuclear body exceeds the upper limit, the curability of the epoxy resin composition will decrease and the releasability will be poor. Further, there is a problem in that the strength at heat is lowered due to the decrease in the crosslink density, and the solder crack resistance is deteriorated. R in the general formula (1) represents hydrogen or an alkyl group having 1 to 4 carbon atoms, and may be the same or different from each other. a is 0
An integer of 3. n is an average value and is a positive number of 1 to 10. When n exceeds the upper limit, the viscosity of the resin increases, the fluidity of the resin composition at the time of molding deteriorates, and it becomes impossible to increase the filling of the inorganic filler for further lowering the moisture absorption.
【0010】一般式(1)で示されるエポキシ樹脂は、
その特性が損なわれない範囲で他のエポキシ樹脂と併用
してもかまわないが、このエポキシ樹脂の配合量を調節
することにより、耐半田クラック性と難燃性を最大限に
引き出すことができる。これらの効果を引き出すために
は、一般式(1)で示されるエポキシ樹脂を全エポキシ
樹脂量に対して30重量%以上、好ましくは50重量%
以上の使用が望ましい。下限値を下回ると高温時の強度
や低吸湿性が十分に得られず、耐半田クラック性が不十
分となるおそれがあり、又難燃性も低下する傾向にある
からである。併用するエポキシ樹脂としては、分子内に
エポキシ基を有するモノマー、オリゴマー、ポリマー全
般を指す。例えばビスフェノールA型エポキシ樹脂、フ
ェノールノボラック型エポキシ樹脂、オルソクレゾール
ノボラック型エポキシ樹脂、トリフェノールメタン型エ
ポキシ樹脂、ジシクロペンタジエン変性フェノール型エ
ポキシ樹脂、ビフェニル型エポキシ樹脂、スチルベン型
エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェ
ノールアラルキル(ビフェニレン骨格を有する)型エポ
キシ樹脂、ナフトール型エポキシ樹脂などが挙げられ
る。又これらは単独でも混合して用いてもよい。The epoxy resin represented by the general formula (1) is
It may be used in combination with another epoxy resin as long as the characteristics are not impaired, but by adjusting the blending amount of this epoxy resin, solder crack resistance and flame retardancy can be maximized. In order to bring out these effects, the epoxy resin represented by the general formula (1) is contained in an amount of 30% by weight or more, preferably 50% by weight, based on the total amount of the epoxy resin.
The above use is desirable. If it is less than the lower limit, strength at high temperature and low hygroscopicity may not be sufficiently obtained, solder crack resistance may be insufficient, and flame retardancy tends to be lowered. The epoxy resin used in combination refers to all monomers, oligomers and polymers having an epoxy group in the molecule. For example, bisphenol A type epoxy resin, phenol novolac type epoxy resin, orthocresol novolac type epoxy resin, triphenol methane type epoxy resin, dicyclopentadiene modified phenol type epoxy resin, biphenyl type epoxy resin, stilbene type epoxy resin, bisphenol F type epoxy resin. Examples thereof include resins, phenol aralkyl (having a biphenylene skeleton) type epoxy resin, and naphthol type epoxy resin. These may be used alone or in combination.
【0011】本発明に用いるフェノール樹脂としては、
分子内にフェノール性水酸基を有するモノマー、オリゴ
マー、ポリマー全般を指し、例えばフェノールノボラッ
ク樹脂、クレゾールノボラック樹脂、テルペン変性フェ
ノール樹脂、ジシクロペンタジエン変性フェノール樹
脂、トリフェノールメタン型樹脂、フェノールアラルキ
ル(フェニレン骨格、ビフェニレン骨格を有する)樹
脂、ナフトールアラルキル樹脂などが挙げられる。又こ
れらは単独でも混合して用いてもよい。本発明に用いら
れる全エポキシ樹脂のエポキシ基と全フェノール樹脂の
フェノール性水酸基の当量比としては、好ましくは0.
5〜2であり、特に0.7〜1.5がより好ましい。
0.5〜2の範囲を外れると、耐湿性、硬化性などが低
下するので好ましくない。As the phenol resin used in the present invention,
Monomers having a phenolic hydroxyl group in the molecule, oligomers, refers to polymers in general, for example, phenol novolac resin, cresol novolac resin, terpene modified phenol resin, dicyclopentadiene modified phenol resin, triphenol methane type resin, phenol aralkyl (phenylene skeleton, Resins having a biphenylene skeleton), naphthol aralkyl resins, and the like. These may be used alone or in combination. The equivalent ratio of the epoxy groups of all epoxy resins used in the present invention to the phenolic hydroxyl groups of all phenol resins is preferably 0.
5 to 2, and particularly preferably 0.7 to 1.5.
When it is out of the range of 0.5 to 2, moisture resistance, curability and the like are deteriorated, which is not preferable.
【0012】本発明に用いる無機充填材としては、特に
制限はなく、一般に封止材料に使用されているものを使
用することができる。例えば溶融シリカ、結晶シリカ、
2次凝集シリカ、アルミナ、チタンホワイト、窒化珪素
などが挙げられ、これらは単独でも混合して用いてもよ
い。これらの内では、球形度の高い溶融シリカを全量或
いは一部破砕シリカと併用することが望ましい。無機充
填材の平均粒径としては5〜30μm、最大粒径として
は150μm以下が好ましく、特に平均粒径5〜20μ
m、最大粒径74μm以下が好ましい。又粒子の大きさ
の異なるものを混合することにより充填量を多くするこ
とができる。無機充填材は、予めシランカップリング剤
などで表面処理されているものを用いてもよい。更に無
機充填材の含有量としては、全エポキシ樹脂組成物中7
0〜94重量%が好ましい。加熱されても燃焼しない無
機充填材は、炎に曝されたときに熱エネルギーを奪い、
エポキシ樹脂組成物の硬化物の難燃性を向上させる作用
がある。配合量が下限値を下回ると、熱容量が小さなエ
ポキシ樹脂組成物の硬化物となり、難燃試験において燃
焼し易くなるので好ましくない。上限値を越えると、成
形時の流動性が劣るので好ましくない。The inorganic filler used in the present invention is not particularly limited, and those generally used as sealing materials can be used. For example, fused silica, crystalline silica,
Secondary agglomerated silica, alumina, titanium white, silicon nitride, etc. may be mentioned, and these may be used alone or in combination. Among these, it is desirable to use fused silica having a high sphericity together with the total amount or partially crushed silica. The average particle size of the inorganic filler is 5 to 30 μm, and the maximum particle size is preferably 150 μm or less, and particularly the average particle size is 5 to 20 μm.
m, and the maximum particle size is preferably 74 μm or less. Also, the filling amount can be increased by mixing particles having different sizes. As the inorganic filler, one that has been surface-treated with a silane coupling agent or the like in advance may be used. Further, the content of the inorganic filler is 7 in the total epoxy resin composition.
0 to 94% by weight is preferred. Inorganic fillers that do not burn when heated take heat energy when exposed to flames,
It has the effect of improving the flame retardancy of the cured product of the epoxy resin composition. If the blending amount is less than the lower limit value, it becomes a cured product of an epoxy resin composition having a small heat capacity, and it tends to burn in a flame retardant test, which is not preferable. If it exceeds the upper limit, the fluidity at the time of molding becomes poor, which is not preferable.
【0013】本発明に用いる硬化促進剤は、エポキシ樹
脂とフェノール樹脂の反応を促進できるものであれば特
に限定しないが、例えば1,8−ジアザビシクロ(5,
4,0)ウンデセン−7、トリブチルアミン等のアミン
化合物、トリフェニルホスフィン、テトラフェニルホス
フォニウム・テトラフェニルボレート塩などの有機リン
系化合物、2−メチルイミダゾールなどのイミダゾール
化合物などが挙げられ、これらは単独でも混合して用い
てもよい。The curing accelerator used in the present invention is not particularly limited as long as it can accelerate the reaction between the epoxy resin and the phenol resin. For example, 1,8-diazabicyclo (5,5)
4,0) amine compounds such as undecene-7 and tributylamine, organic phosphorus compounds such as triphenylphosphine and tetraphenylphosphonium tetraphenylborate salts, and imidazole compounds such as 2-methylimidazole. These may be used alone or in combination.
【0014】本発明のエポキシ樹脂組成物は、(A)〜
(D)成分の他、必要に応じてエポキシシランなどのシ
ランカップリング剤、カーボンブラックなどの着色剤、
シリコーンオイル、シリコーンゴムなどの低応力成分、
天然ワックス、合成ワックス、高級脂肪酸及びその金属
塩類もしくはパラフィンなどの離型剤、酸化防止剤など
の各種添加剤を配合することができる。本発明のエポキ
シ樹脂組成物は、(A)〜(D)成分及びその他の添加
剤等を、ミキサーを用いて常温混合し、ロール、押出機
等の混練機で混練して、冷却後粉砕して得られる。本発
明のエポキシ樹脂組成物を用いて、半導体素子等の電子
部品を封止し、半導体装置を製造するには、トランスフ
ァーモールド、コンプレッションモールド、インジェク
ションモールドなどの従来からの成形方法で硬化成形す
ればよい。本発明のエポキシ樹脂組成物が適用される半
導体装置としては、QFP、SOP、TSOP、BG
A、その他特に限定はしない。The epoxy resin composition of the present invention comprises (A)-
In addition to the component (D), if necessary, a silane coupling agent such as epoxysilane, a coloring agent such as carbon black,
Low stress components such as silicone oil and silicone rubber,
Various additives such as a natural wax, a synthetic wax, a higher fatty acid and a metal salt thereof or a releasing agent such as paraffin, and an antioxidant can be blended. The epoxy resin composition of the present invention is obtained by mixing components (A) to (D) and other additives at room temperature with a mixer, kneading with a kneader such as a roll or an extruder, and cooling and pulverizing. Obtained. By using the epoxy resin composition of the present invention to seal electronic components such as semiconductor elements and to manufacture semiconductor devices, transfer molding, compression molding, injection molding, etc. Good. Semiconductor devices to which the epoxy resin composition of the present invention is applied include QFP, SOP, TSOP, and BG.
A and others are not particularly limited.
【0015】[0015]
【実施例】以下に本発明の実施例を示すが、本発明はこ
れらに限定されるものではない。配合割合は重量部とす
る。
実施例1
式(2)で示されるエポキシ樹脂(軟化点70℃、エポキシ当量280、二核
体含有量29%) 8.6重量部EXAMPLES Examples of the present invention will be shown below, but the present invention is not limited thereto. The mixing ratio is parts by weight. Example 1 8.6 parts by weight of epoxy resin represented by the formula (2) (softening point 70 ° C., epoxy equivalent 280, binuclear content 29%)
【0016】[0016]
【化3】 [Chemical 3]
【0017】 式(3)で示されるフェノール樹脂(軟化点77℃、水酸基当量174) 5.3重量部[0017] Phenol resin represented by formula (3) (softening point 77 ° C., hydroxyl equivalent 174) 5.3 parts by weight
【0018】[0018]
【化4】 [Chemical 4]
【0019】
溶融球状シリカ(平均粒径15μm) 85.0重量部
1、8−ジアザビシクロ(5,4,0)ウンデセン−7(以下、DBUという
)
0.2重量部
カーボンブラック 0.4重量部
カルナバワックス 0.5重量部
を常温でミキサーを用いて混合した後、二軸ロールを用
いて混練して、冷却後粉砕し、エポキシ樹脂組成物を得
た。得られたエポキシ樹脂組成物を以下の方法で評価し
た。結果を表1に示す。Fused spherical silica (average particle size 15 μm) 85.0 parts by weight 1,8-diazabicyclo (5,4,0) undecene-7 (hereinafter referred to as DBU) 0.2 parts by weight carbon black 0.4 parts by weight Carnauba wax (0.5 parts by weight) was mixed at room temperature with a mixer, kneaded with a twin-screw roll, cooled, and then ground to obtain an epoxy resin composition. The obtained epoxy resin composition was evaluated by the following methods. The results are shown in Table 1.
【0020】評価方法
スパイラルフロー:EMMI−1−66に準じたスパイ
ラルフロー測定用の金型を用いて、金型温度175℃、
注入圧力6.9MPa、硬化時間120秒で測定した。
単位はcm。
熱時曲げ強度・熱時曲げ弾性率:金型温度175℃、注
入圧力6.9MPa、硬化時間120秒にて、10×8
0×4mmの試験片を成形し、175℃、8時間の後硬
化を行い、240℃での曲げ強度・弾性率をJIS K
6911に準じて測定した。単位はN/mm2。
硬化性:エポキシ樹脂組成物を、金型温度175℃、注
入圧力6.9MPa、硬化時間120秒にて、10×8
0×4mmの試験片を成形し、型開き10秒後のバコー
ル硬度(No935)を測定した値。バコール硬度は硬
化性の指標であり、数値が大きい方が硬化性良好であ
る。
吸湿率:低圧トランスファー成形機を用いて、金型温度
175℃、注入圧力7.5MPa、硬化時間120秒で
直径50mm、厚さ3mmの円板を成形し、175℃、
8時間で後硬化し、85℃、相対湿度85%の環境下で
168時間放置し、重量変化を測定して吸湿率を求め
た。単位は重量%。
耐半田性:100ピンTQFPパッケージ(パッケージ
サイズは14×14mm、厚み1.4mm、シリコンチ
ップのサイズは、8.0×8.0mm、リードフレーム
は42アロイ製)を金型温度175℃、注入圧力7.5
MPa、硬化時間120秒で成形を行い、175℃で8
時間の後硬化をした。成形品パッケージを85℃、相対
湿度85%の環境下で168時間放置し、その後成形品
パッケージを別々に240℃と260℃の半田槽に10
秒間浸漬した。各試験には、それぞれ20個のパッケー
ジを使用した。顕微鏡でパッケージを観察し、外部クラ
ック率[(クラック発生パッケージ数)/(全パッケー
ジ数)×100]を%で表示した。又チップとエポキシ
樹脂組成物の硬化物との剥離面積の割合を、超音波探傷
装置を用いて測定し、剥離率[(剥離面積)/(チップ
面積)×100]を%で表示した。
難燃性:トランスファー成形機を用いて、金型温度17
5℃、注入圧力7MPa、硬化時間120秒で、長さ1
27mm、幅12.7mm、厚さ3.2mmと1.6m
mの成形品を成形し、UL−94に準じて、ΣF、Fm
axを測定し、難燃性を判定した。
高温保管特性:模擬素子を25μm径の金線で配線した
16ピンSOPを185℃の高温槽で処理し、一定時間
ごとピン間の抵抗値を測定した。初期値の抵抗値から2
0%抵抗値が増大したパッケージ数が15個中8個以上
になった高温槽処理時間を高温保管特性として表示し
た。この時間が長いと、高温安定性に優れていることを
示す。Evaluation method Spiral flow: Using a mold for spiral flow measurement according to EMMI-1-66, mold temperature 175 ° C.
It was measured at an injection pressure of 6.9 MPa and a curing time of 120 seconds.
The unit is cm. Bending strength during heating / Bending elastic modulus during heating: Mold temperature 175 ° C., injection pressure 6.9 MPa, curing time 120 seconds, 10 × 8
A 0 × 4 mm test piece was molded and post-cured at 175 ° C. for 8 hours, and the bending strength and elastic modulus at 240 ° C. were measured according to JIS K.
It measured according to 6911. The unit is N / mm 2 . Curability: Epoxy resin composition, mold temperature 175 ° C., injection pressure 6.9 MPa, curing time 120 seconds, 10 × 8
A value obtained by molding a 0 × 4 mm test piece and measuring the Bacol hardness (No 935) 10 seconds after the mold was opened. Bacol hardness is an index of curability, and the larger the value, the better the curability. Moisture absorption rate: A low pressure transfer molding machine was used to mold a disk having a diameter of 50 mm and a thickness of 3 mm with a mold temperature of 175 ° C., an injection pressure of 7.5 MPa and a curing time of 120 seconds, and then 175 ° C.
It was post-cured in 8 hours, left for 168 hours in an environment of 85 ° C. and 85% relative humidity, and the weight change was measured to obtain the moisture absorption rate. The unit is% by weight. Solder resistance: 100-pin TQFP package (package size 14 x 14 mm, thickness 1.4 mm, silicon chip size 8.0 x 8.0 mm, lead frame made of 42 alloy) is injected at a mold temperature of 175 ° C. Pressure 7.5
Molded at 120 MPa for 8 seconds at 175 ° C
After a period of time, it was cured. The molded product package is left in an environment of 85 ° C and relative humidity of 85% for 168 hours, and then the molded product package is separately placed in a solder bath at 240 ° C and 260 ° C.
Soaked for 2 seconds. Twenty packages were used for each test. The packages were observed with a microscope, and the external crack ratio [(the number of cracked packages) / (total number of packages) × 100] was expressed in%. The ratio of the peeled area between the chip and the cured product of the epoxy resin composition was measured using an ultrasonic flaw detector, and the peeling rate [(peeled area) / (chip area) x 100] was expressed in%. Flame retardance: Using a transfer molding machine, mold temperature 17
5 ° C, injection pressure 7MPa, curing time 120 seconds, length 1
27 mm, width 12.7 mm, thickness 3.2 mm and 1.6 m
m, molded product, ΣF, Fm according to UL-94
The flame retardancy was determined by measuring ax. High-temperature storage characteristics: A 16-pin SOP in which a simulated element was wired with a gold wire having a diameter of 25 μm was treated in a high-temperature tank at 185 ° C., and the resistance value between pins was measured at regular intervals. 2 from the initial resistance value
The treatment time in the high temperature tank in which the number of packages in which the 0% resistance value increased was 8 or more out of 15 was indicated as the high temperature storage property. When this time is long, it shows that the high temperature stability is excellent.
【0021】実施例2〜8、比較例1〜3
表1の処方に従って配合し、実施例1と同様にしてエポ
キシ樹脂組成物を得、実施例1と同様にして評価した。
結果を表1に示す。実施例2〜8、比較例1〜3で用い
た原料は、以下の性状のものである。式(4)で示され
るエポキシ樹脂(軟化点58℃、エポキシ当量271、
二核体含有量55%)Examples 2 to 8 and Comparative Examples 1 to 3 Compounds were prepared according to the formulations shown in Table 1, epoxy resin compositions were obtained in the same manner as in Example 1, and evaluated in the same manner as in Example 1.
The results are shown in Table 1. The raw materials used in Examples 2 to 8 and Comparative Examples 1 to 3 have the following properties. The epoxy resin represented by the formula (4) (softening point 58 ° C., epoxy equivalent 271,
Dinuclear content 55%)
【0022】[0022]
【化5】 [Chemical 5]
【0023】式(5)で示されるエポキシ樹脂(軟化点
79℃、エポキシ当量297、二核体含有量14%)Epoxy resin represented by the formula (5) (softening point 79 ° C., epoxy equivalent 297, binuclear content 14%)
【0024】[0024]
【化6】 [Chemical 6]
【0025】式(6)で示されるエポキシ樹脂(軟化点
74℃、エポキシ当量291、二核体含有量31%)Epoxy resin represented by the formula (6) (softening point 74 ° C., epoxy equivalent 291, binuclear content 31%)
【0026】[0026]
【化7】 [Chemical 7]
【0027】式(7)で示されるエポキシ樹脂(軟化点
48℃、エポキシ当量263、二核体含有量72%)Epoxy resin represented by the formula (7) (softening point 48 ° C., epoxy equivalent 263, binuclear content 72%)
【0028】[0028]
【化8】 [Chemical 8]
【0029】式(8)で示されるエポキシ樹脂(軟化点
87℃、エポキシ当量335、二核体含有量7%)Epoxy resin represented by the formula (8) (softening point 87 ° C., epoxy equivalent 335, binuclear content 7%)
【0030】[0030]
【化9】 [Chemical 9]
【0031】ビフェニル型エポキシ樹脂(油化シェルエ
ポキシ(株)製、YX−4000HK、融点105℃、
エポキシ当量190)Biphenyl type epoxy resin (Yuka-Shell Epoxy Co., Ltd., YX-4000HK, melting point 105 ° C.,
Epoxy equivalent 190)
【0032】フェノールノボラック型フェノール樹脂
(融点81℃、水産基当量105)Phenol novolac type phenol resin (melting point 81 ° C, marine product equivalent 105)
【0033】[0033]
【表1】 [Table 1]
【0034】[0034]
【発明の効果】本発明のエポキシ樹脂組成物は、流動性
に優れ、半導体素子、リードフレームなどの各種部材と
の接着性の向上、硬化物の高温時における低弾性率化に
よる低応力化により、260℃での基板実装時における
半導体装置の耐半田クラック性を著しく向上させ、更に
臭素原子含有有機化合物、アンチモン化合物を使用せず
にUL−94でのV−0を維持し、V−0判定基準とな
るΣF、Fmaxの値も小さく、より難燃性の優れた特
性を有している。The epoxy resin composition of the present invention has excellent fluidity, improved adhesion to various members such as semiconductor elements and lead frames, and low stress due to low elastic modulus at high temperature. The solder crack resistance of the semiconductor device at the time of mounting on a substrate at 260 ° C. is remarkably improved, and V-0 in UL-94 is maintained without using a bromine atom-containing organic compound or antimony compound. The values of ΣF and Fmax, which are the criteria for judgment, are also small, and the characteristic is that flame retardancy is superior.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 23/29 H01L 23/30 R 23/31 Fターム(参考) 4J002 CC032 CD041 DE136 DE146 DJ006 DJ016 EN027 EU097 EW137 EW177 FD016 FD142 FD157 GQ05 4J036 AE05 CD07 DC05 DC06 DC09 DD07 FB07 GA06 JA07 4M109 AA01 BA01 CA21 CA22 EA03 EB03 EB04 EB12 EC01 EC03 EC20 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) H01L 23/29 H01L 23/30 R 23/31 F term (reference) 4J002 CC032 CD041 DE136 DE146 DJ006 DJ016 EN027 EU097 EW137 EW177 FD016 FD142 FD157 GQ05 4J036 AE05 CD07 DC05 DC06 DC09 DD07 FB07 GA06 JA07 4M109 AA01 BA01 CA21 CA22 EA03 EB03 EB04 EB12 EC01 EC03 EC20
Claims (2)
る一般式(1)で示されるエポキシ樹脂、(B)フェノ
ール樹脂、(C)無機充填材及び(D)硬化促進剤を必
須成分とすることを特徴とする半導体封止用エポキシ樹
脂組成物。 【化1】 (式中、Rは水素又は炭素数1〜4のアルキル基を表
し、互いに同一もしくは異なっていてもよい。aは0〜
3の整数。nは平均値で、1〜10の正数)1. An epoxy resin represented by the general formula (1) having (A) a binuclear content of 10 to 60%, (B) a phenol resin, (C) an inorganic filler and (D) a curing accelerator. An epoxy resin composition for semiconductor encapsulation, comprising: [Chemical 1] (In the formula, R represents hydrogen or an alkyl group having 1 to 4 carbon atoms, which may be the same or different from each other.
An integer of 3. n is an average value and is a positive number from 1 to 10)
いて半導体素子を封止してなることを特徴とする半導体
装置。2. A semiconductor device obtained by encapsulating a semiconductor element using the epoxy resin composition according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002039250A JP2003238660A (en) | 2002-02-15 | 2002-02-15 | Epoxy resin composition and semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002039250A JP2003238660A (en) | 2002-02-15 | 2002-02-15 | Epoxy resin composition and semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003238660A true JP2003238660A (en) | 2003-08-27 |
Family
ID=27780342
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002039250A Pending JP2003238660A (en) | 2002-02-15 | 2002-02-15 | Epoxy resin composition and semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003238660A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005314565A (en) * | 2004-04-28 | 2005-11-10 | Sumitomo Bakelite Co Ltd | Epoxy resin composition and semiconductor device |
JP5577703B2 (en) * | 2008-01-25 | 2014-08-27 | 富士通株式会社 | Component mounting method |
KR101437141B1 (en) | 2010-12-31 | 2014-09-02 | 제일모직주식회사 | Epoxy resin composition for encapsulating semiconductor |
-
2002
- 2002-02-15 JP JP2002039250A patent/JP2003238660A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005314565A (en) * | 2004-04-28 | 2005-11-10 | Sumitomo Bakelite Co Ltd | Epoxy resin composition and semiconductor device |
JP4586405B2 (en) * | 2004-04-28 | 2010-11-24 | 住友ベークライト株式会社 | Epoxy resin composition and semiconductor device |
JP5577703B2 (en) * | 2008-01-25 | 2014-08-27 | 富士通株式会社 | Component mounting method |
KR101437141B1 (en) | 2010-12-31 | 2014-09-02 | 제일모직주식회사 | Epoxy resin composition for encapsulating semiconductor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4692885B2 (en) | Epoxy resin composition and semiconductor device | |
JP4040367B2 (en) | Epoxy resin composition and semiconductor device | |
JP2000281750A (en) | Epoxy resin composition and semiconductor device | |
JP4250987B2 (en) | Epoxy resin composition and semiconductor device | |
JP2003213084A (en) | Epoxy resin composition and semiconductor device | |
JP5098125B2 (en) | Epoxy resin composition and semiconductor device | |
JP2003238660A (en) | Epoxy resin composition and semiconductor device | |
JPH10158360A (en) | Epoxy resin composition | |
JP2006104393A (en) | Epoxy resin composition and semiconductor device | |
JPH08337634A (en) | Epoxy resin composition and semiconductor device sealed therewith | |
JP2005281584A (en) | Epoxy resin composition and semiconductor device | |
JP2003171445A (en) | Epoxy resin composition and semiconductor device | |
JP4724947B2 (en) | Epoxy resin molding material manufacturing method and semiconductor device | |
JP2001240725A (en) | Epoxy resin composition and semiconductor device | |
JP2005132887A (en) | Epoxy resin composition and semiconductor device | |
JP2003064157A (en) | Epoxy resin composition and semiconductor device | |
JP4040370B2 (en) | Epoxy resin composition and semiconductor device | |
JP5673613B2 (en) | Epoxy resin composition and semiconductor device | |
JP2003212962A (en) | Epoxy resin composition and semiconductor device | |
JP2003048961A (en) | Epoxy resin composition and semiconductor device | |
JP2003096159A (en) | Epoxy resin composition and semiconductor device | |
JP2003171444A (en) | Epoxy resin composition and semiconductor device | |
JP4687195B2 (en) | Epoxy resin composition for semiconductor encapsulation and semiconductor device | |
JP2005132890A (en) | Epoxy resin composition and semiconductor device | |
JP4380292B2 (en) | Epoxy resin composition and semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041130 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20061122 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061128 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20070320 |