JP2003231951A - High-strength precipitation-hardening stainless steel, stainless steel wire and high-strength fastening member using this steel wire - Google Patents
High-strength precipitation-hardening stainless steel, stainless steel wire and high-strength fastening member using this steel wireInfo
- Publication number
- JP2003231951A JP2003231951A JP2002030589A JP2002030589A JP2003231951A JP 2003231951 A JP2003231951 A JP 2003231951A JP 2002030589 A JP2002030589 A JP 2002030589A JP 2002030589 A JP2002030589 A JP 2002030589A JP 2003231951 A JP2003231951 A JP 2003231951A
- Authority
- JP
- Japan
- Prior art keywords
- stainless steel
- less
- steel wire
- strength
- hardening
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910001220 stainless steel Inorganic materials 0.000 title claims abstract description 50
- 239000010935 stainless steel Substances 0.000 title claims abstract description 27
- 238000004881 precipitation hardening Methods 0.000 title claims abstract description 18
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 12
- 239000010959 steel Substances 0.000 title claims abstract description 10
- 229910001566 austenite Inorganic materials 0.000 claims abstract description 26
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 10
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 9
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 9
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 9
- 229910052802 copper Inorganic materials 0.000 claims abstract description 7
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 5
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 5
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 5
- 230000032683 aging Effects 0.000 claims description 25
- 238000010438 heat treatment Methods 0.000 claims description 18
- 238000005242 forging Methods 0.000 claims description 6
- 229910052715 tantalum Inorganic materials 0.000 claims description 4
- 229910052720 vanadium Inorganic materials 0.000 claims description 4
- 230000001050 lubricating effect Effects 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- 229910052726 zirconium Inorganic materials 0.000 claims description 3
- 229910000963 austenitic stainless steel Inorganic materials 0.000 abstract 1
- 238000005482 strain hardening Methods 0.000 description 24
- 239000000463 material Substances 0.000 description 16
- 238000003483 aging Methods 0.000 description 14
- 239000010949 copper Substances 0.000 description 14
- 230000000052 comparative effect Effects 0.000 description 13
- 230000007797 corrosion Effects 0.000 description 13
- 238000005260 corrosion Methods 0.000 description 13
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 12
- 238000012545 processing Methods 0.000 description 12
- 239000011651 chromium Substances 0.000 description 10
- 238000010586 diagram Methods 0.000 description 8
- 238000005553 drilling Methods 0.000 description 8
- 229910000734 martensite Inorganic materials 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 239000000203 mixture Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 238000010079 rubber tapping Methods 0.000 description 6
- 229910000859 α-Fe Inorganic materials 0.000 description 6
- 238000012360 testing method Methods 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 230000000717 retained effect Effects 0.000 description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000010622 cold drawing Methods 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 210000004283 incisor Anatomy 0.000 description 2
- 229910001105 martensitic stainless steel Inorganic materials 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000010273 cold forging Methods 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 238000011900 installation process Methods 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、冷間加工と時効硬
化により高強度の圧造部品、例えばセルフドリリングね
じ、タッピングねじ、釘、ピンをはじめとする種々の締
結用部品として用い得る析出硬化型ステンレス鋼、ステ
ンレス鋼線並びにその鋼線による締結用高強度部品に関
するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a precipitation hardening type which can be used as various fastening parts such as self-drilling screws, tapping screws, nails and pins by high-strength forging parts by cold working and age hardening. The present invention relates to stainless steel, stainless steel wire, and high-strength parts for fastening with the steel wire.
【0002】[0002]
【従来の技術】従来、圧造成形によって製造されるねじ
やボルトなどのステンレス製圧造品は、例えばJIS
G 4314に規定されているように、SUS304や
SUS316、SUSXM7などオーステナイト系ステ
ンレス鋼の他、SUS410やSUS430などによる
クロム系ステンレス鋼も使用されており、いずれの材料
を選択するかはその使用目的や仕上げ寸法などによって
選択されている。また、最近では、付設工程を短縮する
ためにそれ自体に穿孔機能を持たせたセルフドリリング
ねじやタッピングねじなどの高強度締結用部品も使用さ
れており、そのための材料として、例えば焼入れ焼戻し
処理や冷間加工によって所定の高強度特性を可能にする
SUS410等のクロム系ステンレス鋼が一般的に用い
られている。2. Description of the Related Art Conventionally, forgings made of stainless steel such as screws and bolts produced by forging are manufactured according to JIS, for example.
As specified in G 4314, in addition to austenitic stainless steels such as SUS304, SUS316, and SUSXM7, chromium-based stainless steels such as SUS410 and SUS430 are also used. Which material is selected depends on the purpose of use and It is selected according to finishing dimensions. In addition, recently, high-strength fastening components such as self-drilling screws and tapping screws that have a drilling function have been used in order to shorten the installation process, and as a material therefor, for example, quenching and tempering treatment Chromium-based stainless steel such as SUS410, which enables predetermined high strength properties by cold working, is generally used.
【0003】しかし、ステンレス鋼においてこのような
高強度特性を持たせる材料は焼入れなどの熱処理ができ
るクロム系ステンレス鋼に限られるため、耐食性に劣る
ものであり、また、強度的な面においても十分なもので
ないことから、めっきや窒化などの表面処理が必要とな
り、工程増加によるコストップの一因となっている。こ
うした問題に対応するものとして、例えば特開平6−2
64194号公報ではマルテンサイト系ステンレス鋼に
よるものとしたり、特開2001−107192号公報
では、0.10〜0.20%C、2〜5%Siを添加す
ることで加工誘起マルテンサイトの形成を容易にし、オ
ーステナイト相を硬化する方法などが提案されている。However, the material of stainless steel having such high strength characteristics is limited to chromium-based stainless steel which can be heat treated such as quenching, so that it is inferior in corrosion resistance, and also in terms of strength. Since this is not the case, surface treatment such as plating and nitriding is required, which is one of the causes of co-stop due to the increase in processes. To deal with such a problem, for example, JP-A-6-2
In Japanese Patent No. 64194, martensitic stainless steel is used, and in Japanese Patent Laid-Open No. 2001-107192, formation of work-induced martensite is performed by adding 0.10 to 0.20% C and 2 to 5% Si. Methods for facilitating and hardening the austenite phase have been proposed.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、これら
従来のステンレス鋼は、最終製品とするための成形加工
やその使用用途との関係で見ると十分なものと言えず、
表面処理や用途的制限を設けることが必要となるもので
ある。すなわち、特開平6−264194号公報による
線材は、Cr:12〜16%、Ni:1〜2.5%を含
むマルテンサイト系ステンレス鋼であるため、中間や仕
上げ時に行う熱処理に長時間を要し、また、その仕上げ
状態についても表面に酸化スケールを有するなどの問題
があることから、光輝な表面状態を得ることは困難であ
る。しかも、得られた線の機械的特性についても、引張
強さ800〜1200N/mm2 と非常に高いものであ
り、過酷なヘッダー加工を必要とする圧造製品にあって
は、製品歩留りが悪く、生産性において問題を有するも
のである。However, these conventional stainless steels cannot be said to be sufficient in view of the molding process for making the final product and the uses thereof,
It is necessary to provide surface treatment and application restrictions. That is, since the wire according to Japanese Patent Laid-Open No. 6-264194 is a martensitic stainless steel containing Cr: 12 to 16% and Ni: 1 to 2.5%, it takes a long time to perform heat treatment during intermediate processing and finishing. However, it is difficult to obtain a brilliant surface state because the finished state has a problem such as having oxide scale on the surface. Moreover, the mechanical properties of the obtained wire are also very high with a tensile strength of 800 to 1200 N / mm 2, and the product yield is poor for a forged product that requires severe header processing, It has a problem in productivity.
【0005】一方、特開2001−107192号公報
によるステンレス鋼ではSiを2〜5%と大きくするも
のであるため、固溶化熱処理状態での硬さが高く冷間加
工性が阻害されるという問題がある。また、例えばSU
S630などのようなマルテンサイト系析出硬化型ステ
ンレス鋼では冷却マルテンサイト中の時効硬化によって
Cu相を析出させることで硬化させるものであるが、冷
間加工性や耐食性、耐水素脆性、靱性などに劣るもので
あった。従って、このような材料ではヘッダー加工時や
使用時における頭飛びなどの発生が大きいという点が指
摘されている。On the other hand, in the stainless steel according to Japanese Patent Laid-Open No. 2001-107192, since Si is increased to 2 to 5%, the hardness in the solution heat treatment state is high and the cold workability is impaired. There is. Also, for example, SU
Martensitic precipitation hardening stainless steels such as S630 harden by precipitating a Cu phase by age hardening in cooled martensite, but in cold workability, corrosion resistance, hydrogen embrittlement resistance, toughness, etc. It was inferior. Therefore, it has been pointed out that such a material causes a large amount of head jump during header processing and during use.
【0006】[0006]
【課題を解決するための手段】上述したような問題を解
消するために、発明者らは鋭意開発を進めた結果、本発
明では、加工前(固溶化熱処理)の組織を実質的にオー
ステナイト相とすることにより良好な冷間加工性を持た
せる一方、C/N比、Ms、Md30などの成分比率を調
整することにより、成形加工後の時効処理での硬化率を
高め得る特性とした高強度析出硬化型ステンレス鋼を提
供するものである。In order to solve the above-mentioned problems, the inventors of the present invention have made earnest developments, and as a result, in the present invention, the structure before processing (solution heat treatment) is substantially austenite phase. By adjusting the C / N ratio, Ms, Md 30 and other component ratios, it is possible to increase the curing rate in the aging treatment after the molding process, while providing good cold workability. A high-strength precipitation hardening stainless steel is provided.
【0007】その発明の要旨とするところは、
(1)質量%で、C:0.01〜0.1%、Si:2%
以下、Mn:2〜4%、Ni:4〜8%、Cr:12〜
18%、Mo:2%以下、Cu:1.5〜4%、Nb:
0.5%以下、N:0.05〜0.25%を少なくとも
含み、かつ、C/N:1以下、下記式Ni−bal:−
2以上、Ms:−100℃以下、Md30:−30℃以上
に調整することにより冷間加工性を向上させたことを特
徴とする高強度析出硬化型ステンレス鋼。
Ni−bal=Ni+27C+23N+0.1Mn+
0.3Cu−1.2(Cr+Mo)−0.5Si+10
Ms(℃)=1684−60.8Cr−89.2Ni−
48.7Mn−40.6Si−2433(C+N)
Md30(℃)=551−462(C+N)−9.2Si
−8.1Mn−13.7Cr−29(Ni+Cu)−1
8.5Mo−68NbThe gist of the invention is as follows: (1)% by mass, C: 0.01 to 0.1%, Si: 2%
Hereinafter, Mn: 2 to 4%, Ni: 4 to 8%, Cr: 12 to 12
18%, Mo: 2% or less, Cu: 1.5 to 4%, Nb:
0.5% or less, N: 0.05 to 0.25% at least, and C / N: 1 or less, the following formula Ni-bal:-
High strength precipitation hardening type stainless steel characterized by improving cold workability by adjusting to 2 or more, Ms: -100 ° C or less, and Md 30 : -30 ° C or more. Ni-bal = Ni + 27C + 23N + 0.1Mn +
0.3Cu-1.2 (Cr + Mo) -0.5Si + 10 Ms (° C) = 1684-60.8Cr-89.2Ni-
48.7Mn-40.6Si-2433 (C + N) Md 30 (℃) = 551-462 (C + N) -9.2Si
-8.1Mn-13.7Cr-29 (Ni + Cu) -1
8.5Mo-68Nb
【0008】(2)さらに、Ti、Zr、V、Taのい
ずれか1種または2種以上を合計で0.002〜0.5
%添加した前記(1)に記載の高強度析出硬化型ステン
レス鋼。
(3)ステンレス鋼は、Ca、Mgのいずれか1種また
は2種を合計で0.001〜0.1%添加した前記
(1)または(2)に記載の高強度析出硬化型ステンレ
ス鋼。(2) Further, any one or more of Ti, Zr, V and Ta is added in a total amount of 0.002 to 0.5.
% High-strength precipitation hardening stainless steel as described in (1) above. (3) The stainless steel is the high-strength precipitation hardening stainless steel according to (1) or (2) above, in which one or two of Ca and Mg are added in a total amount of 0.001 to 0.1%.
【0009】(4)質量%で、C:0.01〜0.1
%、Si:2%以下、Mn:2〜4%、Ni:4〜8
%、Cr:12〜18%、Mo:2%以下、Cu:1.
5〜4%、Nb:0.5%以下、N:0.05〜0.2
5%を少なくとも含み、かつ、C/N:1以下、下記式
Ni−bal:−2以上、Ms:−100℃以下、Md
30:−30℃以上に調整するとともに、固溶化熱処理ま
たは、さらに該熱処理に引き続くスキンパス加工によっ
てオーステナイト量を80体積%以上にしたことを特徴
とする高強度析出硬化型ステンレス鋼線。
Ni−bal=Ni+27C+23N+0.1Mn+
0.3Cu−1.2(Cr+Mo)−0.5Si+10
Ms(℃)=1684−60.8Cr−89.2Ni−
48.7Mn−40.6Si−2433(C+N)
Md30(℃)=551−462(C+N)−9.2Si
−8.1Mn−13.7Cr−29(Ni+Cu)−1
8.5Mo−68Nb(4) C: 0.01 to 0.1 by mass%
%, Si: 2% or less, Mn: 2 to 4%, Ni: 4 to 8
%, Cr: 12 to 18%, Mo: 2% or less, Cu: 1.
5-4%, Nb: 0.5% or less, N: 0.05-0.2
5% at least and C / N: 1 or less, the following formula Ni-bal: -2 or more, Ms: -100 ° C or less, Md
30 : A high-strength precipitation hardening stainless steel wire characterized by being adjusted to -30 ° C or higher and having an austenite amount of 80% by volume or more by solution heat treatment or skin pass working subsequent to the heat treatment. Ni-bal = Ni + 27C + 23N + 0.1Mn +
0.3Cu-1.2 (Cr + Mo) -0.5Si + 10 Ms (° C) = 1684-60.8Cr-89.2Ni-
48.7Mn-40.6Si-2433 (C + N) Md 30 (℃) = 551-462 (C + N) -9.2Si
-8.1Mn-13.7Cr-29 (Ni + Cu) -1
8.5Mo-68Nb
【0010】(5)鋼線は、その表面を潤滑皮膜により
被覆された前記(4)に記載のステンレス鋼線。
(6)引張強さ500〜850N/mm2 で、伸び特性
20〜50%の特性を有する前記(4)または(5)に
記載のステンレス鋼線。
(7)前記(4)〜(6)のいずれかに記載のステンレ
ス鋼線を圧造成形加工によって所定形状に成形するとと
もに、さらに時効処理によってその少なくとも一部分の
Hv硬さを500以上としたことを特徴とする締結用高
強度部品である。(5) The steel wire is the stainless steel wire according to (4), the surface of which is coated with a lubricating film. (6) The stainless steel wire according to (4) or (5), which has a tensile strength of 500 to 850 N / mm 2 and an elongation property of 20 to 50%. (7) The stainless steel wire according to any one of (4) to (6) is formed into a predetermined shape by forging, and at least a part of the Hv hardness is set to 500 or more by aging treatment. It is a characteristic high-strength component for fastening.
【0011】上述したように、本発明は、ステンレス鋼
としての前記基本組成と、必要に応じて若干の第3元素
を加え、さらに各元素同士の配合バランスを各々調整す
ることによって成形加工性を高めるとともに、該加工後
の析出硬化処理での硬化率を向上させることによって、
高強度の締結用部品を効率よく製造できるものとしてい
る。その成分バランスとして、本発明ではC/N、Ni
−bal、Ms、Md 30の各値を前記所定値になるよう
に調整している。なお、本発明では「ステンレス鋼線」
とは、ステンレス鋼の棒鋼や線材を引抜き加工したもの
や、これにさらにそのまま圧造などの成形加工によって
所定の締結部品を製造できるように仕上げ処理されたも
のである。前記ステンレス鋼を例えば所定線径に引抜き
加工した後、固溶化熱処理したもの、あるいはさらに軽
度のスキンパス加工(例えば、加工率3〜10%程度)
を行ったものが相当し、表面には潤滑剤を付与したもの
が好ましい。As mentioned above, the present invention is directed to stainless steel.
The basic composition as described above and, if necessary, some third element
And adjust the compounding balance of each element.
By improving the moldability by
By improving the curing rate in the precipitation hardening treatment of
It should be possible to efficiently manufacture high-strength fastening parts.
It In the present invention, C / N and Ni are used as the component balance.
-Bal, Ms, Md 30So that each value of
Is adjusted to. In the present invention, "stainless steel wire"
Is a stainless steel bar or wire drawn
Or by further forming processing such as forging as it is
Finished so that the required fasteners can be manufactured
Of. For example, the stainless steel is drawn to a predetermined wire diameter.
After processing, solution heat treated or lighter
Degree skin pass processing (for example, processing rate of about 3-10%)
Corresponding to those that have been subjected to the
Is preferred.
【0012】このような処理によって、本発明では材料
中のオーステナイト量(γ量)を80体積%以上、好ま
しくは90〜99.5%のものとし、さらに、引張強さ
500〜850N/mm2 で、伸び特性20〜50%の
特性を有するものともしている。なお、前記オーステナ
イト量については、例えばX線解析装置などにより線の
表面や断面を直接計測することが望ましいが、困難な場
合は、公知の任意方法によりその材料のマルテンサイト
量やフェライト量などを求め、その合計を除いた残量を
オーステナイト量と見なす間接法によるものであっても
よく、必要に応じて数点の測定値の平均値で示される。
また、ステンレス鋼線の表面には、例えば銅やニッケ
ル、その他無機材料等による潤滑剤を付与させておくこ
とが好ましいが、その種類や付着量、付着方法などにつ
いては、これまでにも多くの文献の中に示されているこ
とから、特に特定まではしない。According to the present invention, the amount of austenite (γ amount) in the material is 80% by volume or more, preferably 90 to 99.5%, and the tensile strength is 500 to 850 N / mm 2 by such treatment. In addition, it is assumed that the material has an elongation property of 20 to 50%. Regarding the amount of austenite, it is desirable to directly measure the surface or cross section of the wire by, for example, an X-ray analyzer, but when it is difficult, the amount of martensite or the amount of ferrite of the material can be measured by a known arbitrary method. It may be determined by an indirect method in which the remaining amount obtained by subtracting the total amount is regarded as the amount of austenite, and may be indicated by the average value of several measured values as necessary.
Further, it is preferable to apply a lubricant such as copper, nickel, or other inorganic material to the surface of the stainless steel wire. Since it is shown in the literature, it is not specified.
【0013】一方、締結部品については、前記した縷々
製品に使用できるものであるが、特に自己穿孔性が求め
られるセルフドリリングねじやタッピングねじに有効で
あり、その成形加工は、例えば、ヘッダー加工や転造な
ど公知の方法が実施される。また、ステンレス鋼は加工
後の機械的性質を高める目的から比較的低温での時効処
理や析出硬化熱処理が行われることから、本発明でもこ
のような熱処理(例えば、350〜500℃×5分〜2
時間)を行うこととしている。この処理によってさらに
締結用部品としての硬度アップが図られる。On the other hand, the fastening parts, which can be used in the above-mentioned products, are particularly effective for self-drilling screws and tapping screws which are required to have self-piercing properties. A known method such as rolling is performed. Further, since stainless steel is subjected to an aging treatment or a precipitation hardening heat treatment at a relatively low temperature for the purpose of enhancing mechanical properties after processing, even in the present invention, such a heat treatment (for example, 350 to 500 ° C. × 5 min. Two
Time). By this process, the hardness of the fastening component is further increased.
【0014】[0014]
【発明の実施の形態】以下、本発明において各成分組成
の限定理由を述べる。
C:0.01〜0.1%
Cは、強度を高める基本的な元素であり、0.01%未
満ではオーステナイト相や加工誘起マルテンサイト相の
硬化が十分とは言えず、しかも、NbCによる硬化が不
足する。一方、0.1%を超える添加は、耐食性ととも
に成形加工性が劣る。従って、その範囲を0.01〜
0.1%とするが、より望ましくは0.02〜0.08
%とする。BEST MODE FOR CARRYING OUT THE INVENTION The reasons for limiting the composition of each component in the present invention will be described below. C: 0.01 to 0.1% C is a basic element that enhances the strength, and if it is less than 0.01%, the austenite phase and the work-induced martensite phase cannot be said to be sufficiently hardened, and moreover, due to NbC. Insufficient curing. On the other hand, addition of more than 0.1% is inferior in corrosion resistance and molding processability. Therefore, the range is 0.01 to
0.1%, but more preferably 0.02 to 0.08
%.
【0015】Si:2%以下
Siは、脱酸剤であり、また、強度を付与する元素でも
あるが2%を超えると冷間加工性が劣化するので、その
上限を2%とする。望ましくは1%以下とする。
Mn:2〜4%
Mnは、Siと同様に、脱酸剤であり、また、オーステ
ナイトを安定化する元素である。その作用を発揮させる
ためには2%以上必要であるが、4%を超えると加工硬
化しにくくなり高硬度が出ないので、その上限を4%と
した。望ましくは2.2〜3.8%とする。Si: 2% or less Si is a deoxidizing agent and is an element that imparts strength, but if it exceeds 2%, the cold workability deteriorates, so the upper limit is made 2%. It is preferably 1% or less. Mn: 2 to 4% Mn, like Si, is a deoxidizing agent and an element that stabilizes austenite. In order to exert its action, 2% or more is necessary, but if it exceeds 4%, work hardening becomes difficult and high hardness does not appear, so the upper limit was made 4%. It is preferably set to 2.2 to 3.8%.
【0016】Ni:4〜8%
Niは、ステンレス鋼においてオーステナイト組織を安
定化する元素であり、靱性向上と耐食性向上に寄与する
元素であり、少なくとも4%以上必要である。また、4
%未満では造塊時においてNブローホールが発生すると
いう問題もある。しかし、8%を超える添加は加工硬化
しにくくなり高硬度が達成できない。従って、その範囲
を4〜8%としており、望ましくは4.5〜7%とす
る。Ni: 4-8% Ni is an element that stabilizes the austenite structure in stainless steel, contributes to the improvement of toughness and corrosion resistance, and is required to be at least 4% or more. Also, 4
If it is less than%, there is also a problem that N blowholes are generated during the ingot making. However, if added in excess of 8%, work hardening becomes difficult and high hardness cannot be achieved. Therefore, the range is set to 4 to 8%, preferably 4.5 to 7%.
【0017】Cr:12〜18%
Crは、耐食性を向上させる元素である。従って、耐食
性を向上させるためには12%以上必要である。しか
し、18%を超える添加はδフェライト生成で成形加工
性が劣化する。従って、その範囲を12〜18%、望ま
しくは14〜17%とする。
Mo:2%以下
Moは、耐食性を向上させる元素である。しかし2%を
超えるとδフェライト生成で冷間加工性が劣化する。従
って、その上限を2%、望ましくは1%とする。Cr: 12-18% Cr is an element which improves the corrosion resistance. Therefore, 12% or more is required to improve the corrosion resistance. However, addition of more than 18% results in the formation of δ-ferrite, resulting in deterioration of moldability. Therefore, the range is set to 12 to 18%, preferably 14 to 17%. Mo: 2% or less Mo is an element that improves corrosion resistance. However, if it exceeds 2%, cold workability deteriorates due to the formation of δ ferrite. Therefore, the upper limit is set to 2%, preferably 1%.
【0018】Cu:1.5〜4%
Cuは、時効硬化に必要であるとともに、冷間加工時の
加工硬化率を低減し加工性を向上させる元素である。し
かし、1.5%未満では時効熱処理後の材料硬化率が小
さく好ましくない。また、4%を超えると加工硬化しに
くくなり高硬度が得られない。従って、その範囲を1.
5〜4%とする。望ましくは2.1〜2.9%とする。Cu: 1.5 to 4% Cu is an element which is necessary for age hardening and reduces the work hardening rate during cold working to improve workability. However, if it is less than 1.5%, the material curing rate after the aging heat treatment is small, which is not preferable. On the other hand, if it exceeds 4%, work hardening becomes difficult, and high hardness cannot be obtained. Therefore, the range is 1.
5 to 4%. It is preferably set to 2.1 to 2.9%.
【0019】Nb:0.5%以下
Nbは、NbCを形成し硬度を向上させる作用を有す
る。しかし、0.5%を超えると粗大な炭窒化物を形成
し、また、δフェライトが生じやすくなるため冷間加工
性が劣化することとなる。従って、上限を0.5%とし
た。しかしながら、0.1%未満ではNbCによる硬化
が不足することから、望ましくは0.1〜0.3%とす
る。Nb: 0.5% or less Nb acts to form NbC and improve hardness. However, if it exceeds 0.5%, coarse carbonitrides are formed and δ-ferrite is liable to be formed, so that cold workability is deteriorated. Therefore, the upper limit is set to 0.5%. However, if it is less than 0.1%, the curing by NbC will be insufficient, so 0.1 to 0.3% is desirable.
【0020】N:0.05〜0.25%
Nは、オーステナイトの硬化による強度を付与するのに
必要な元素である。しかし、0.05%未満ではオース
テナイトの硬化が十分でなく、一方、0.25%を超え
ると造塊時にNブローホールが発生すると共に冷間加工
性が劣化するこことなる。従って、その範囲を0.05
〜0.25%とする。望ましくは0.06〜0.2%、
より望ましくは0.06〜0.15%とする。N: 0.05 to 0.25% N is an element necessary for imparting strength by hardening austenite. However, if it is less than 0.05%, the austenite is not sufficiently hardened, while if it exceeds 0.25%, N blowholes are generated during the ingot making and the cold workability is deteriorated. Therefore, the range is 0.05
~ 0.25%. Desirably 0.06 to 0.2%,
More preferably, it is 0.06 to 0.15%.
【0021】本発明のステンレス鋼およびステンレス鋼
線は、このような組成を少なくとも含むものとし、さら
に必要に応じて若干の第3元素を添加することができる
ものであって、残部Feと不可避的不純物で構成するも
のとしている。前記第3元素としては、例えばTi,Z
r,V,Taなどの他、CaやMg等が用いられる。特
に前者Ti,Zr,V,Taは、いずれも時効硬化性を
向上させる働きがあるものの、多量に含有させたもので
は冷間加工性が劣化することとなるため、これら元素単
体では0.002〜0.5%とし、また、その2種類以
上を併用させる場合にあっても、合計含有量は0.5%
以下にするのがよい。The stainless steel and the stainless steel wire of the present invention contain at least such a composition, and can further contain a slight amount of a third element, if necessary, with the balance Fe and inevitable impurities. It is supposed to consist of. Examples of the third element include Ti and Z
Besides r, V, Ta, etc., Ca, Mg, etc. are used. In particular, the former Ti, Zr, V, and Ta all have the function of improving the age hardenability, but if they are contained in a large amount, the cold workability deteriorates. To 0.5%, and even when two or more of them are used in combination, the total content is 0.5%.
The following is recommended.
【0022】また、後者Ca,Mgは、共に熱間加工性
を向上させる働きを有するものであるが、0.1%を超
えるとその効果は飽和することとなるため、各元素単体
の場合には、0.001〜0.1%とするのがよく、ま
た、その両者を併用する場合にあっても、上限0.1%
以下とするのがよい。一方、本発明において不可避的不
純物としては、例えばP,S,Alなどが想定され、P
やSについては材料の靱性を劣化させることから、多量
添加は好ましくなく、その上限として、Pでは0.1
%、望ましくは0.05%以下とし、また、Sについて
も、0.03%以下、望ましくは0.02%以下とする
ことがよい。The latter Ca and Mg both have the function of improving the hot workability, but if the content exceeds 0.1%, the effect will be saturated, so in the case of each element alone. Is preferably 0.001 to 0.1%, and even when both are used in combination, the upper limit is 0.1%.
The following is recommended. On the other hand, as unavoidable impurities in the present invention, for example, P, S, Al, etc. are assumed, and P
For S and S, the toughness of the material is deteriorated, so it is not preferable to add a large amount.
%, Preferably 0.05% or less, and S is also 0.03% or less, preferably 0.02% or less.
【0023】さらに、Alは、ステンレス鋼製造段階で
脱酸剤として用いられるものであるが、その含有量が
0.1%を超えると粗大な窒化物を生成させることにな
り、冷間加工性が劣化することから、その上限は0.1
%、好ましくは0.05%以下とすることが望ましい。
本発明は、このような組成とともに、特に冷間加工性と
時効硬化性を高めるために、各組成同士の成分量バラン
スとして、C/N:1以下、Ni−bal:−2以上、
Ms:−100℃以下、Md30:−30℃以上の各要件
についても設定しており、それらの算出にあっては前述
した式から求めることができる。Further, Al is used as a deoxidizing agent in the stage of producing stainless steel, but if its content exceeds 0.1%, coarse nitrides will be formed, and cold workability will be caused. Is deteriorated, the upper limit is 0.1
%, Preferably 0.05% or less.
In order to improve cold workability and age-hardenability together with such a composition, the present invention provides C / N: 1 or less, Ni-bal: -2 or more as a component amount balance between the compositions.
The requirements for Ms: −100 ° C. or lower and Md 30 : −30 ° C. or higher are also set, and the calculation thereof can be obtained from the above-described formula.
【0024】C/N:1以下
C/Nは、本発明において最も重要なパラメータであ
る。C/Nは、オーステナイト相の硬化による強度を付
与させるための規制値としており、CよりもNの方がオ
ーステナイト相を加工硬化させるためオーステナイト相
の硬化に対して有効との知見を得ており、また、耐食性
の面からもCよりNを添加する方が有利である。なお、
本発明では、Cについて、NbCによる時効硬化性確保
のために、0.01%以上を添加することとしており、
その場合にあっても、C/Nが1を超えるとオーステナ
イト相の硬化が不足することとなる。従って、その上限
を1としており、望ましくは0.8とする。C / N: 1 or less C / N is the most important parameter in the present invention. C / N is a regulation value for imparting strength by hardening of the austenite phase, and it has been found that N is more effective than the C for hardening the austenite phase because it works-hardens the austenite phase. Also, from the viewpoint of corrosion resistance, it is more advantageous to add N than C. In addition,
In the present invention, C is added in an amount of 0.01% or more in order to secure the age hardenability of NbC,
Even in that case, if the C / N exceeds 1, the hardening of the austenite phase will be insufficient. Therefore, the upper limit is set to 1, preferably 0.8.
【0025】図1は、冷間加工硬さに及ぼすC/Nの影
響を示した図であり、図2は、時効硬さに及ぼすC/N
の影響を示している。この図1および図2に示すよう
に、冷間加工硬さおよび時効硬さはMd30にも影響を受
けているが、C/Nが小さくなるに従って高くなってお
り、C/Nを小さくすることによって高硬度が得られる
ことが理解される。
Ni−bal:−2以上
Ni−balは、δフェライト生成を抑制するためのN
iバランスを規制するものであり、この値が−2未満で
はδフェライト生成で冷間加工性を劣化させる。従っ
て、その下限を−2とした。FIG. 1 is a diagram showing the influence of C / N on the cold work hardness, and FIG. 2 is the C / N on the aging hardness.
Shows the effect of. As shown in FIGS. 1 and 2, the cold working hardness and the aging hardness are also affected by Md 30 , but the C / N becomes higher as the C / N becomes smaller, and the C / N becomes smaller. It is understood that high hardness is obtained by this. Ni-bal: -2 or more Ni-bal is N for suppressing the formation of δ ferrite.
i balance is regulated, and if this value is less than −2, δ ferrite is formed and cold workability is deteriorated. Therefore, the lower limit is set to -2.
【0026】Ms:−100℃以下
Msは、オーステナイト量を規制するための温度であ
り、加工前(固溶化熱処理)状態でオーステナイト相が
少ない(マルテンサイト相が多い)と、冷間加工により
加工硬化しにくいので、Msを−100℃以下として固
溶化熱処理後のオーステナイト量を80体積%以上に
し、冷間加工、時効硬化後に高硬度を得る。しかし、−
100℃を超えるとオーステナイト量が80体積%未満
になり冷間加工や時効硬化後の硬さが不足するので、そ
の上限を−100℃とした。
Md30:−30℃以上
Md30は、加工硬化性および時効硬化性に関する規制温
度であり、その値が−30℃未満では加工硬化性および
時効硬化性は低下することから、その下限値を−30℃
とした。Ms: -100.degree. C. or less Ms is a temperature for controlling the amount of austenite, and if it has a small amount of austenite phase (large amount of martensite phase) before working (solution heat treatment), it is worked by cold working. Since it is difficult to harden, the amount of austenite after solution heat treatment is set to 80% by volume or more by setting Ms to −100 ° C. or less, and high hardness is obtained after cold working and age hardening. However, −
If it exceeds 100 ° C, the amount of austenite becomes less than 80% by volume, and the hardness after cold working or age hardening becomes insufficient, so the upper limit was made -100 ° C. Md 30 : −30 ° C. or higher Md 30 is a regulation temperature for work-hardening property and age-hardening property, and if the value is less than −30 ° C., work-hardening property and age-hardening property decrease, so the lower limit value is −. 30 ° C
And
【0027】図3は、時効硬化度△Ha(時効硬さ−加
工硬さ)に及ぼすCuの影響を示した図である。この図
に示すように、時効硬化度はCu2.5%付近で最大で
あることが判る。これはCu量が少ないと十分な時効硬
化度が得られないのは時効硬化に寄与するCu相の析出
が少ないためだと推察される。逆にCu量が多すぎると
マトリックスの加工硬化率が減少するため十分な時効硬
化度が得られないためだと考えられる。FIG. 3 is a diagram showing the influence of Cu on the age hardening degree ΔHa (aging hardness-working hardness). As shown in this figure, it is understood that the age hardening degree is maximum in the vicinity of Cu 2.5%. It is speculated that the reason why a sufficient age hardening degree cannot be obtained when the amount of Cu is small is that the precipitation of the Cu phase contributing to age hardening is small. On the contrary, it is considered that when the Cu content is too large, the work hardening rate of the matrix is reduced and a sufficient age hardening degree cannot be obtained.
【0028】[0028]
【実施例】(実施例1)表1に示す化学成分組成のステ
ンレス鋼100kgを真空溶解炉にて溶解した後インゴ
ットに鋳造し、1150℃に加熱後、φ20素材に鍛伸
し1025℃に加熱、30分保持後水冷の固溶化熱処理
した後試験片を加工して試験を行った。表2に試験結果
を示す。固溶化熱処理(ST)後の残留オーステナイト
(γ)量はX線回折により測定し、さらにHv硬さも併
せて測定した。また、冷間加工性を評価するため固溶化
熱処理後の限界据込率を測定した(φ14×21L、1
号拘束型試験片、日本塑性加工学会冷間鍛造分科会)、
また、加工硬化特性と時効硬化特性を評価するために冷
間加工(50%据込み)後のHv硬さを測定し、冷間加
工後に時効処理(440℃、30分保持、空冷)を施し
た後のHv硬さを測定した。また、50%冷間加工と4
40℃時効処理を施した後の耐食性(JISZ 237
1塩水噴霧試験50℃、24h噴霧)を評価した。評価
基準は○:発錆なし、△:発錆ありとした。さらに、表
3に一部の鋼について50%冷間加工、440℃、30
分保持、空冷の時効処理後のシャルピー衝撃値を測定
(常温、Uノッチ試験片)した結果を示す。また、冷間
加工、時効処理後のオーステナイト量をX線回折を用い
て測定した結果について併記する。Example 1 100 kg of stainless steel having the chemical composition shown in Table 1 was melted in a vacuum melting furnace, cast into an ingot, heated to 1150 ° C., forged into a φ20 material and heated to 1025 ° C. After holding for 30 minutes, water-cooled solution heat treatment was performed, and then the test piece was processed and tested. Table 2 shows the test results. The amount of retained austenite (γ) after solution heat treatment (ST) was measured by X-ray diffraction, and the Hv hardness was also measured. Further, in order to evaluate the cold workability, the critical upsetting rate after solution heat treatment was measured (φ14 × 21L, 1
No. Restraint type test piece, Cold Forging Subcommittee of Japan Society for Plastic Processing),
Further, in order to evaluate the work hardening property and the age hardening property, the Hv hardness after cold working (50% upsetting) was measured, and after the cold working, an aging treatment (440 ° C., holding for 30 minutes, air cooling) was performed. After that, the Hv hardness was measured. Also, 50% cold working and 4
Corrosion resistance after aging treatment at 40 ° C (JISZ 237
1 salt spray test, 50 ° C., 24 h spray) was evaluated. The evaluation criteria were ◯: no rusting, and Δ: rusting. Further, Table 3 shows that some steels are 50% cold worked, 440 ° C, 30
The results of measuring the Charpy impact value after aging treatment of holding for minutes and air cooling (normal temperature, U-notch test piece) are shown. In addition, the results of measuring the amount of austenite after cold working and aging treatment using X-ray diffraction are also shown.
【0029】[0029]
【表1】 [Table 1]
【0030】[0030]
【表2】 [Table 2]
【0031】[0031]
【表3】 [Table 3]
【0032】表1〜2に示すNo.1〜18は本発明例
であり、いずれもST後γ量が80体積%以上、ST後
硬さが200Hv以下、限界据込率が50%以上、冷間
加工硬さが400Hv以上、時効後硬さが450Hv以
上、時効後の耐食性が全て良好であり、優れた特性を示
している。一方、No.19〜33は比較例である。比
較例No.19、22、23はC/Nが大きく冷間加工
硬さ、時効硬さが低い。比較例No.20、21、2
2、26はMd30が低く冷間加工硬さ、時効硬さが低
い。Nos. Shown in Tables 1-2. Nos. 1 to 18 are examples of the present invention, and the γ amount after ST is 80 vol% or more, the hardness after ST is 200 Hv or less, the critical upsetting ratio is 50% or more, the cold work hardness is 400 Hv or more, and after aging. The hardness is 450 Hv or more, the corrosion resistance after aging is all good, and excellent properties are exhibited. On the other hand, No. 19 to 33 are comparative examples. Comparative Example No. 19, 22, and 23 have large C / N and low cold work hardness and aging hardness. Comparative Example No. 20, 21, 2
2, 26 have low Md 30 and low cold work hardness and aging hardness.
【0033】比較例No.23はCが高く冷間加工性、
耐食性が悪い。比較例No.24はNが高く冷間加工性
が悪い。比較例No.25はMsが高く冷間加工性が悪
く、ST後γ量が少ないためにMd30が同等である本発
明例No.2に比べて冷間加工硬さ、時効硬さが低い。
比較例No.27はSiが高いため冷間加工性が悪く、
耐食性も悪い。比較例No.28はNi−balが低
く、冷間加工性、耐食性が悪い。比較例No.29はA
lが高く冷間加工性が悪い。Comparative Example No. 23 has a high C and cold workability,
Corrosion resistance is poor. Comparative Example No. 24 has high N and poor cold workability. Comparative Example No. Inventive Example No. 25, in which Ms is high, Ms is high, cold workability is poor, and γ amount after ST is small, so that Md 30 is equivalent. Cold working hardness and aging hardness are lower than those of 2.
Comparative Example No. In No. 27, since Si is high, cold workability is poor,
Corrosion resistance is also poor. Comparative Example No. No. 28 has a low Ni-bal and is poor in cold workability and corrosion resistance. Comparative Example No. 29 is A
1 is high and cold workability is poor.
【0034】なお、図4は、靱性に及ぼすC/Nの影響
を示した図である。この図4に示すように、C/Nが
0.71である本発明例No.11はC,N以外の組成
が本発明例No.11とほぼ同等であり、C/Nが1.
40である比較例No.22に比べて高硬度であるにも
かかわらず残留オーステナイト(γ)量が多いため高い
靱性を示している。また、従来鋼であるマルテンサイト
系のSUS630に比べても優れた靱性を示している。
このことにより、C/Nを1以下にすることによって、
残留オーステナイト量が多くても高硬度が得られ、かつ
得られた靱性を有することが判る。FIG. 4 is a diagram showing the influence of C / N on the toughness. As shown in FIG. 4, the invention example No. 1 having a C / N of 0.71. No. 11 has the composition other than C and N of the present invention example No. 11 and C / N is 1.
Comparative example No. 40 which is 40. Despite having a higher hardness than No. 22, it exhibits high toughness due to the large amount of retained austenite (γ). Further, it exhibits excellent toughness as compared with the conventional steel, martensitic SUS630.
Therefore, by setting C / N to 1 or less,
It can be seen that even if the amount of retained austenite is large, high hardness is obtained and the obtained toughness is obtained.
【0035】(実施例2)実施例1、表1のNo.3お
よびNo.15のステンレス鋼について、4.0mmφ
の線径にまで冷間伸線加工を行った後、さらに固溶化光
輝熱処理を連続焼鈍炉によって行い、表面には蓚酸潤滑
皮膜を施し、加工率6%のスキンパス加工を行い圧造成
形用のステンレス鋼線を得た。なお、この場合の固溶化
熱処理としては、例えば温度900〜1200℃、時間
10sec〜30分程度の条件で可能であるが、本実施
例では温度1150℃、時間100secを選択し、ア
ルゴンガスなどの不活性雰囲気内で行った。また、本発
明の効果を比較するための比較材としては、No.29
およびNo.32を用い上記と同様の処理を行ったもの
を用いた。得られた鋼線の機械的特性については、表4
に示しており、本発明によるステンレス鋼線はいずれも
引張強さ690〜730N/mm2 の軟質状態のもので
あり、比較材より軟質で優れた特性を有していることが
判る。また、参考としてこれら材料の冷間伸線加工率に
伴う引張強さの変化を加工硬化特性として図5に示して
おり、これら結果から、本発明の鋼線は十分な冷間加工
性と加工硬化性を有するものであることが判る。(Embodiment 2) In Embodiment 1, No. 1 in Table 1. 3 and No. For 15 stainless steels, 4.0 mmφ
After cold-drawing to the wire diameter of, the solution annealing bright heat treatment is further carried out in the continuous annealing furnace, the surface is coated with oxalic acid lubricating film, and the skin pass processing with a processing rate of 6% is performed. Got a steel wire. The solution heat treatment in this case can be performed, for example, under the conditions of a temperature of 900 to 1200 ° C. and a time of 10 seconds to 30 minutes, but in the present embodiment, a temperature of 1150 ° C. and a time of 100 seconds are selected, and argon gas or the like is selected. Performed in an inert atmosphere. Further, as a comparative material for comparing the effects of the present invention, No. 29
And No. 32 was used and the same treatment as above was performed. Table 4 shows the mechanical properties of the obtained steel wire.
It can be seen that all of the stainless steel wires according to the present invention are in a soft state with a tensile strength of 690 to 730 N / mm 2, and are softer and have superior characteristics to the comparative material. Further, as a reference, the change in tensile strength with cold drawing ratio of these materials is shown in FIG. 5 as work hardening characteristics. From these results, the steel wire of the present invention has sufficient cold workability and workability. It can be seen that it has curability.
【0036】[0036]
【表4】 [Table 4]
【0037】(実施例3)次に、実施例2で得られた各
ステンレス鋼線(No.3およびNo.15)につい
て、冷間圧造によるヘッダー加工により図6に示すドリ
リングタッピングねじを試作し、冷間圧造性と工具寿命
を評価し、さらに得られたねじ製品を温度420〜48
0℃×30minの時効処理を不活性雰囲気中で行った
後の刃先先端部におけるHv硬さを測定した。その結果
を表5に示す。比較材としてはSUS304を用いた。
本発明によるステンレス鋼線は、圧造性、工具寿命と
もに問題なく、安定作業ができた。上述した、本発明に
よる締結部品の一例として、図6にドリリングタッピン
グねじを示しており、先端に自己穿孔用の切歯部Aを備
えている。このようなねじ部品において、先端切歯部A
の機械的特性はそのまま製品品質の要件となるものであ
り、その保有硬度がHv500以上の高強度特性となる
よう成形加工と析出硬化処理(時効処理)によって達成
される。Example 3 Next, for each stainless steel wire (No. 3 and No. 15) obtained in Example 2, a drilling tapping screw shown in FIG. , Cold forgeability and tool life were evaluated, and the screw products obtained were further tested at temperatures of 420-48.
The Hv hardness at the tip of the cutting edge was measured after aging treatment at 0 ° C. for 30 min in an inert atmosphere. The results are shown in Table 5. SUS304 was used as a comparative material.
The stainless steel wire according to the present invention had stable press workability and tool life, and could be stably operated. As an example of the fastening component according to the present invention described above, a drilling tapping screw is shown in FIG. 6, and a cutting tooth portion A for self-drilling is provided at the tip. In such screw parts, the tip incisor A
The mechanical characteristics of (1) are directly required for product quality, and are achieved by molding and precipitation hardening treatment (aging treatment) so that the retained hardness has high strength characteristics of Hv500 or higher.
【0038】[0038]
【表5】 [Table 5]
【0039】また、各時効処理温度における歯先先端部
のHv硬さの変化を図7に示しており、温度460℃以
下での特性が最も優れていることが判る。特に、材料N
o.3ではHv600近い特性を示すものとなり、本発
明のステンレス鋼線は固溶化熱処理状態では軟質で加工
しやすく、一方、成形加工後の時効処理では極めて硬質
な特性を有するものになるという時効硬化率の大きい材
料であることが判る。FIG. 7 shows the change in Hv hardness of the tip of the tooth tip at each aging treatment temperature, and it can be seen that the characteristics at the temperature of 460 ° C. or less are the best. In particular, the material N
o. In 3, the stainless steel wire of the present invention exhibits characteristics close to Hv600, and the stainless steel wire of the present invention is soft in the solution heat treatment state and easy to be processed, while the aging treatment after forming has extremely hard characteristics. It turns out that this is a large material.
【0040】[0040]
【発明の効果】以上述べたように、本発明による冷間加
工で加工誘起マルテンサイトを生成させることによる硬
化、時効処理による硬化の他に、C,Nの適量添加とC
/Nの規制によって冷間加工後に残留しているオーステ
ナイト相を硬化させる冷間加工性に優れた高強度析出硬
化型ステンレス鋼が得られ、極めて優れた効果を奏する
ものである。As described above, in addition to hardening by forming work-induced martensite by cold working and hardening by aging treatment according to the present invention, addition of appropriate amounts of C and N and C
According to the regulation of / N, a high strength precipitation hardening type stainless steel excellent in cold workability which hardens the austenite phase remaining after cold working can be obtained, and an extremely excellent effect is exhibited.
【図1】加工硬さに及ぼすC/Nの影響を示した図であ
る。FIG. 1 is a diagram showing the influence of C / N on work hardness.
【図2】時効硬さに及ぼすC/Nの影響を示した図であ
る。FIG. 2 is a diagram showing the effect of C / N on aging hardness.
【図3】時効硬化度△Ha(時効硬さ−加工硬さ)に及
ぼすCuの影響を示した図である。FIG. 3 is a diagram showing an influence of Cu on an age hardening degree ΔHa (aging hardness-working hardness).
【図4】靱性に及ぼすC/Nの影響を示した図である。FIG. 4 is a diagram showing the effect of C / N on toughness.
【図5】冷間伸線加工の加工率に伴う引張強さの変化を
示す加工硬化曲線である。FIG. 5 is a work hardening curve showing a change in tensile strength with a working rate of cold drawing.
【図6】ドリリングタッピングねじの正面図である。FIG. 6 is a front view of a drilling tapping screw.
【図7】時効処理温度がねじ製品のHv硬さに及ぼす関
係を示す図である。FIG. 7 is a diagram showing a relationship between an aging treatment temperature and an Hv hardness of a screw product.
A 先端切歯部 A Tip incisor
フロントページの続き (72)発明者 貴傳名 一成 兵庫県姫路市飾磨区中島字一文字3007番地 山陽特殊製鋼株式会社内 (72)発明者 磯本 辰郎 兵庫県姫路市飾磨区中島字一文字3007番地 山陽特殊製鋼株式会社内 (72)発明者 谷本 好則 大阪府枚方市池之宮4丁目17番1号 日本 精線株式会社内 (72)発明者 辛木 保 大阪府枚方市池之宮4丁目17番1号 日本 精線株式会社内 (72)発明者 鈴木 陽一 大阪府枚方市池之宮4丁目17番1号 日本 精線株式会社内Continued front page (72) Inventor Takanori Kazunari No. 3007 Nakajima-Character Nakashima, Himeji City, Hyogo Prefecture Sanyo Special Steel Co., Ltd. (72) Inventor Tatsuro Isomoto No. 3007 Nakajima-Character Nakashima, Himeji City, Hyogo Prefecture Sanyo Special Steel Co., Ltd. (72) Inventor Yoshinori Tanimoto 4-17-1, Ikenomiya, Hirakata-shi, Osaka Japan Seisen Co., Ltd. (72) Inventor Tamotsu Kariki 4-17-1, Ikenomiya, Hirakata-shi, Osaka Japan Seisen Co., Ltd. (72) Inventor Yoichi Suzuki 4-17-1, Ikenomiya, Hirakata-shi, Osaka Japan Seisen Co., Ltd.
Claims (7)
−bal:−2以上、Ms:−100℃以下、Md30:
−30℃以上に調整することにより冷間加工性を向上さ
せたことを特徴とする高強度析出硬化型ステンレス鋼。 Ni−bal=Ni+27C+23N+0.1Mn+
0.3Cu−1.2(Cr+Mo)−0.5Si+10 Ms(℃)=1684−60.8Cr−89.2Ni−
48.7Mn−40.6Si−2433(C+N) Md30(℃)=551−462(C+N)−9.2Si
−8.1Mn−13.7Cr−29(Ni+Cu)−1
8.5Mo−68Nb1. In mass%, C: 0.01 to 0.1%, Si: 2% or less, Mn: 2 to 4%, Ni: 4 to 8%, Cr: 12 to 18%, Mo: 2 % Or less, Cu: 1.5 to 4%, Nb: 0.5% or less, N: 0.05 to 0.25% at least, and C / N: 1 or less, the following formula Ni
−bal: −2 or more, Ms: −100 ° C. or less, Md 30 :
A high-strength precipitation hardening stainless steel characterized by having improved cold workability by being adjusted to -30 ° C or higher. Ni-bal = Ni + 27C + 23N + 0.1Mn +
0.3Cu-1.2 (Cr + Mo) -0.5Si + 10 Ms (° C) = 1684-60.8Cr-89.2Ni-
48.7Mn-40.6Si-2433 (C + N) Md 30 (℃) = 551-462 (C + N) -9.2Si
-8.1Mn-13.7Cr-29 (Ni + Cu) -1
8.5Mo-68Nb
か1種または2種以上を合計で0.002〜0.5%添
加した請求項1に記載の高強度析出硬化型ステンレス
鋼。2. The high-strength precipitation hardening stainless steel according to claim 1, further containing one or more of Ti, Zr, V, and Ta in a total amount of 0.002 to 0.5%.
1種または2種を合計で0.001〜0.1%添加した
請求項1または2に記載の高強度析出硬化型ステンレス
鋼。3. The high-strength precipitation hardening stainless steel according to claim 1, wherein the stainless steel contains 0.001 to 0.1% in total of one or two of Ca and Mg.
−bal:−2以上、Ms:−100℃以下、Md30:
−30℃以上に調整するとともに、固溶化熱処理また
は、さらに該熱処理に引き続くスキンパス加工によって
オーステナイト量を80体積%以上にしたことを特徴と
する高強度析出硬化型ステンレス鋼線。 Ni−bal=Ni+27C+23N+0.1Mn+
0.3Cu−1.2(Cr+Mo)−0.5Si+10 Ms(℃)=1684−60.8Cr−89.2Ni−
48.7Mn−40.6Si−2433(C+N) Md30(℃)=551−462(C+N)−9.2Si
−8.1Mn−13.7Cr−29(Ni+Cu)−1
8.5Mo−68Nb4. In mass%, C: 0.01 to 0.1%, Si: 2% or less, Mn: 2 to 4%, Ni: 4 to 8%, Cr: 12 to 18%, Mo: 2 % Or less, Cu: 1.5 to 4%, Nb: 0.5% or less, N: 0.05 to 0.25% at least, and C / N: 1 or less, the following formula Ni
−bal: −2 or more, Ms: −100 ° C. or less, Md 30 :
A high-strength precipitation hardening stainless steel wire, which is adjusted to -30 ° C or higher, and whose austenite amount is set to 80% by volume or more by solution heat treatment or further skin pass working subsequent to the heat treatment. Ni-bal = Ni + 27C + 23N + 0.1Mn +
0.3Cu-1.2 (Cr + Mo) -0.5Si + 10 Ms (° C) = 1684-60.8Cr-89.2Ni-
48.7Mn-40.6Si-2433 (C + N) Md 30 (℃) = 551-462 (C + N) -9.2Si
-8.1Mn-13.7Cr-29 (Ni + Cu) -1
8.5Mo-68Nb
された請求項4に記載のステンレス鋼線。5. The stainless steel wire according to claim 4, wherein the surface of the steel wire is covered with a lubricating film.
伸び特性20〜50%の特性を有する請求項4または5
に記載のステンレス鋼線。6. A tensile strength of 500 to 850 N / mm 2 ,
6. An elongation characteristic having a characteristic of 20 to 50%.
Stainless steel wire described in.
レス鋼線を圧造成形加工によって所定形状に成形すると
ともに、さらに時効処理によってその少なくとも一部分
のHv硬さを500以上としたことを特徴とする締結用
高強度部品。7. The stainless steel wire according to any one of claims 4 to 6 is formed into a predetermined shape by forging forming, and at least a part of the Hv hardness is set to 500 or more by aging treatment. High strength parts for fastening.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002030589A JP3863030B2 (en) | 2002-02-07 | 2002-02-07 | High strength precipitation hardening stainless steel, stainless steel wire and high strength parts for fastening with the steel wire |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002030589A JP3863030B2 (en) | 2002-02-07 | 2002-02-07 | High strength precipitation hardening stainless steel, stainless steel wire and high strength parts for fastening with the steel wire |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003231951A true JP2003231951A (en) | 2003-08-19 |
JP3863030B2 JP3863030B2 (en) | 2006-12-27 |
Family
ID=27774290
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002030589A Expired - Fee Related JP3863030B2 (en) | 2002-02-07 | 2002-02-07 | High strength precipitation hardening stainless steel, stainless steel wire and high strength parts for fastening with the steel wire |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3863030B2 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007107073A (en) * | 2005-10-17 | 2007-04-26 | Sanyo Special Steel Co Ltd | METHOD FOR PRODUCING Fe-Cr MARTENSITIC STAINLESS STEEL BAR |
JP2008063596A (en) * | 2006-09-05 | 2008-03-21 | Nippon Steel & Sumikin Stainless Steel Corp | Inexpensive low-magnetic and medium-strength stainless steel bolt wires, steel wires, and bolts with excellent trimming and cold forging properties |
US20080206560A1 (en) * | 2007-02-27 | 2008-08-28 | Park Ju Hwan | Phospahte coated stainless steel wire for cold heading and self-drilling screw using the stainless steel wire |
WO2010087766A1 (en) * | 2009-01-30 | 2010-08-05 | ≤Sandvik Intellectual Property Ab | Stainless austenitic low ni steel alloy |
JP2011208269A (en) * | 2010-03-29 | 2011-10-20 | Nippon Seisen Co Ltd | High strength stainless steel material for working having excellent hydrogen embrittlement resistance, stainless steel wire thereof and stainless steel formed part |
WO2016129925A1 (en) * | 2015-02-12 | 2016-08-18 | 주식회사 하이스텐 | Thin hollow casting austenitic stainless steel fitting product having corrosion resistance, and manufacturing method therefor |
CN110983191A (en) * | 2019-12-31 | 2020-04-10 | 九牧厨卫股份有限公司 | High-corrosion-resistance stainless steel plate, stainless steel trough and preparation method thereof |
CN111057967A (en) * | 2019-12-31 | 2020-04-24 | 九牧厨卫股份有限公司 | High-corrosion-resistance and scratch-resistance stainless steel plate, stainless steel trough and preparation method thereof |
CN112458366A (en) * | 2020-11-07 | 2021-03-09 | 上海落日新材料科技有限公司 | Stainless steel with high tissue stability in marine environment and manufacturing method thereof |
WO2021153549A1 (en) * | 2020-01-27 | 2021-08-05 | 日立金属株式会社 | Method for producing martensitic stainless steel strip, and martensitic stainless steel strip |
CN115261724A (en) * | 2022-08-01 | 2022-11-01 | 马鞍山钢铁股份有限公司 | Steel for ultrahigh-strength and high-toughness fastener and production method and heat treatment process thereof |
-
2002
- 2002-02-07 JP JP2002030589A patent/JP3863030B2/en not_active Expired - Fee Related
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007107073A (en) * | 2005-10-17 | 2007-04-26 | Sanyo Special Steel Co Ltd | METHOD FOR PRODUCING Fe-Cr MARTENSITIC STAINLESS STEEL BAR |
JP2008063596A (en) * | 2006-09-05 | 2008-03-21 | Nippon Steel & Sumikin Stainless Steel Corp | Inexpensive low-magnetic and medium-strength stainless steel bolt wires, steel wires, and bolts with excellent trimming and cold forging properties |
US20080206560A1 (en) * | 2007-02-27 | 2008-08-28 | Park Ju Hwan | Phospahte coated stainless steel wire for cold heading and self-drilling screw using the stainless steel wire |
WO2010087766A1 (en) * | 2009-01-30 | 2010-08-05 | ≤Sandvik Intellectual Property Ab | Stainless austenitic low ni steel alloy |
JP2012516390A (en) * | 2009-01-30 | 2012-07-19 | サンドビック インテレクチュアル プロパティー アクティエボラーグ | Stainless austenitic low Ni steel alloy |
US8540933B2 (en) | 2009-01-30 | 2013-09-24 | Sandvik Intellectual Property Ab | Stainless austenitic low Ni steel alloy |
JP2011208269A (en) * | 2010-03-29 | 2011-10-20 | Nippon Seisen Co Ltd | High strength stainless steel material for working having excellent hydrogen embrittlement resistance, stainless steel wire thereof and stainless steel formed part |
CN107002163A (en) * | 2015-02-12 | 2017-08-01 | 株式会社Hi-Sten | The hollow type casting Austenitic stainless steel pipe part product and its manufacture method of minimal thickness with corrosion resistance |
WO2016129925A1 (en) * | 2015-02-12 | 2016-08-18 | 주식회사 하이스텐 | Thin hollow casting austenitic stainless steel fitting product having corrosion resistance, and manufacturing method therefor |
CN110983191A (en) * | 2019-12-31 | 2020-04-10 | 九牧厨卫股份有限公司 | High-corrosion-resistance stainless steel plate, stainless steel trough and preparation method thereof |
CN111057967A (en) * | 2019-12-31 | 2020-04-24 | 九牧厨卫股份有限公司 | High-corrosion-resistance and scratch-resistance stainless steel plate, stainless steel trough and preparation method thereof |
WO2021153549A1 (en) * | 2020-01-27 | 2021-08-05 | 日立金属株式会社 | Method for producing martensitic stainless steel strip, and martensitic stainless steel strip |
JP7581621B2 (en) | 2020-01-27 | 2024-11-13 | 株式会社プロテリアル | Manufacturing method of martensitic stainless steel strip and martensitic stainless steel strip |
CN112458366A (en) * | 2020-11-07 | 2021-03-09 | 上海落日新材料科技有限公司 | Stainless steel with high tissue stability in marine environment and manufacturing method thereof |
CN115261724A (en) * | 2022-08-01 | 2022-11-01 | 马鞍山钢铁股份有限公司 | Steel for ultrahigh-strength and high-toughness fastener and production method and heat treatment process thereof |
CN115261724B (en) * | 2022-08-01 | 2023-05-09 | 马鞍山钢铁股份有限公司 | Steel for ultrahigh-strength and high-toughness fastener, production method thereof and heat treatment process |
Also Published As
Publication number | Publication date |
---|---|
JP3863030B2 (en) | 2006-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8293037B2 (en) | Method for producing duplex stainless steel pipe | |
US8017071B2 (en) | Corrosion-resistant, cold-formable, machinable, high strength, martensitic stainless steel | |
RU2497974C2 (en) | Hardened martensitic steel with low content of cobalt, method for making part from that steel, and part obtained by means of above said method | |
JP5328785B2 (en) | Hardened martensitic steel with low or no cobalt content, method for producing parts from the steel, and parts thus obtained | |
US20120000580A1 (en) | Corrosion-Resistant Austenitic Steel | |
TW201413011A (en) | Precipitation strengthening type martensite steel and method for fabricating the same | |
JP5974623B2 (en) | Age-hardening bainite non-tempered steel | |
JP2002235153A (en) | High strength and highly corrosion resistant nonmagnetic stainless steel | |
JP3863030B2 (en) | High strength precipitation hardening stainless steel, stainless steel wire and high strength parts for fastening with the steel wire | |
JP3587330B2 (en) | High hardness martensitic stainless steel with excellent pitting resistance | |
JPH10504354A (en) | High hardness martensitic stainless steel with excellent pitting resistance | |
CN1333383A (en) | High-strength steel plate with fine working property and coating layer bond strength and method for making same | |
JP7323791B2 (en) | Carburized gear steel, carburized gear, and method for manufacturing carburized gear | |
RU2254394C1 (en) | High-strength austenitic stainless steel and method of final hardening of articles made from such steel | |
JPH10245656A (en) | Martensitic stainless steel excellent in cold forgeability | |
JP2006097039A (en) | Free-cutting stainless steel with excellent corrosion resistance, cold forgeability and hot workability | |
JP2002348637A (en) | Steel for screw with high strength, screw with high strength and manufacturing method therefor | |
JP2003293095A (en) | High-strength martensitic stainless steel material | |
JP3204080B2 (en) | Method for producing precipitation-hardened martensitic stainless steel with excellent cold forgeability | |
JPH07103446B2 (en) | Tension material for oil ring and manufacturing method thereof | |
JP3958193B2 (en) | Austenitic free-cutting stainless steel | |
JP7295417B2 (en) | Carburized gear steel, carburized gear, and method for manufacturing carburized gear | |
JP5375406B2 (en) | Precipitation hardening stainless steel for strain generating body | |
JP6822548B2 (en) | Nitriding parts and their manufacturing methods | |
JP2006009150A (en) | Steel for carburizing and its production method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20020305 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040915 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20040914 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20041119 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060308 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060418 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060612 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060926 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060927 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101006 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111006 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111006 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121006 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121006 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131006 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |