[go: up one dir, main page]

JP2003221398A - Histone deacetylase activity assay using fluorescent or chromogenic substrate - Google Patents

Histone deacetylase activity assay using fluorescent or chromogenic substrate

Info

Publication number
JP2003221398A
JP2003221398A JP2002335840A JP2002335840A JP2003221398A JP 2003221398 A JP2003221398 A JP 2003221398A JP 2002335840 A JP2002335840 A JP 2002335840A JP 2002335840 A JP2002335840 A JP 2002335840A JP 2003221398 A JP2003221398 A JP 2003221398A
Authority
JP
Japan
Prior art keywords
lys
gly
leu
ala
ser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002335840A
Other languages
Japanese (ja)
Inventor
Minoru Yoshida
稔 吉田
Norikazu Nishino
憲和 西野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2002335840A priority Critical patent/JP2003221398A/en
Publication of JP2003221398A publication Critical patent/JP2003221398A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)

Abstract

(57)【要約】 【課題】 非放射能によるヒストンデアセチラーゼ(H
DAC)測定を可能にする上、HDACのサブタイプを
同定することができるばかりか、これまで不可能とされ
ていた各サブタイプ酵素に特異的な酵素阻害剤のスクリ
ーニングを可能にするHDAC測定用の基質や、当該基
質を用いるHDAC酵素活性測定方法やHDAC阻害剤
のスクリーニング方法を提供すること。 【解決手段】 ヒストンH4、p53等のアセチル化部
位近傍配列を含む一般式[I](R1はH又はアミノ末
端の保護基を示し、R2はHDACにより脱アセチル化
される基を示し、R3はリシンのカルボニル末端とアミ
ド結合し、この結合が加水分解されてアミンがフリーに
なることで蛍光又は発色特性の変化する蛍光基又は発色
基を示し、Xは1個以上のアミノ酸残基を示し、Kはリ
シン残基を示す。)で表される化合物HDAC測定用基
質とする。 【化1】
(57) [Summary] [PROBLEMS] Non-radioactive histone deacetylase (H)
DAC) not only enables HDAC subtypes to be identified, but also makes it possible to screen for enzyme inhibitors specific to each subtype enzyme, which was previously impossible. And a method for measuring HDAC enzyme activity and a method for screening for HDAC inhibitors using the substrate. SOLUTION: General formula [I] including a sequence near an acetylation site such as histone H4 and p53 (R 1 represents H or an amino-terminal protecting group, R 2 represents a group deacetylated by HDAC, R 3 represents an amide bond with the carbonyl terminal of lysine, and this bond is hydrolyzed to give an amine free, and represents a fluorescent group or a coloring group whose fluorescence or coloring characteristics change, and X represents one or more amino acid residues. , And K represents a lysine residue.) Embedded image

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ヒストンデアセチ
ラーゼ(HDAC)の基質となる化合物、例えば、種々
のオリゴペプチドのカルボキシ末端にアセチル化リシン
と蛍光基MCAを結合させたペプチジルLys(Ac)
−MCAや、この化合物を用いるHDACの酵素活性の
測定方法や、この化合物を用いるHDAC阻害剤のスク
リーニング方法や、ヒストンデアセチラーゼサブタイプ
の同定方法等に関する。
TECHNICAL FIELD The present invention relates to a compound which is a substrate of histone deacetylase (HDAC), for example, peptidyl Lys (Ac) in which acetylated lysine and a fluorescent group MCA are bound to the carboxy terminus of various oligopeptides.
-MCA, a method for measuring the enzymatic activity of HDAC using this compound, a method for screening an HDAC inhibitor using this compound, a method for identifying a histone deacetylase subtype, and the like.

【0002】[0002]

【従来の技術】ヒストンデアセチラーゼ(HDAC)
は、転写調節及び核リン酸化タンパク質のホモログとし
て同定された(例えば、非特許文献1参照。)、ヒスト
ンの脱アセチル化を行う酵素であり、このHDACの作
用が亢進すると、細胞の適正な分化や形態正常化が阻害
されることから、このHDACは遺伝子の発現調節を行
う酵素とされ、癌をはじめとする様々な疾病に関与する
と考えられている。このHDACの酵素活性を阻害する
と、ヒストンからの脱アセチル化が抑制される結果、ヒ
ストンの高アセチル化が引き起こされ、分化や形態正常
化に必要な遺伝子発現が誘導されることから、その特異
的阻害剤の医薬としての可能性が注目されている(例え
ば、非特許文献2〜5参照。)。そして、HDACには
10種類以上のサブタイプ酵素が存在し、ヒストンのみ
ならず様々なタンパク質の脱アセチル化に関与すると考
えられている。また、リジン残基のεアミノ基に導入さ
れたアセチル基等に作用する脱アセチル化酵素活性の測
定方法として、基質ペプチドと試料とを、脱アセチル化
酵素による脱アセチル化反応に必要な条件下で接触させ
る工程、ペプチドを基質とするペプチダーゼの切断活性
の変化を指標として検出される基質ペプチドのアセチル
化のレベルを判定する工程を含む方法が提案されてお
り、基質としてBoc−Val−Leu−Lys(A
c)−MCAやBoc−Glu−Lys−Lys(A
c)−MCAが記載されている(例えば、特許文献1参
照。)。
2. Description of the Related Art Histone deacetylase (HDAC)
Is an enzyme that performs deacetylation of histones, which has been identified as a transcriptional regulatory and homologue of nuclear phosphorylation protein (see, for example, Non-Patent Document 1). When the action of this HDAC is enhanced, proper differentiation of cells is achieved. It is considered that this HDAC is an enzyme that regulates gene expression and is involved in various diseases such as cancer because it inhibits normalization of morphology and morphology. Inhibition of this HDAC enzymatic activity results in suppression of deacetylation from histone, resulting in hyperacetylation of histone and induction of gene expression required for differentiation and morphological normalization. The potential of the inhibitor as a medicine is drawing attention (for example, see Non-Patent Documents 2 to 5). HDAC has 10 or more subtype enzymes and is considered to be involved in deacetylation of various proteins as well as histones. In addition, as a method for measuring the deacetylase activity that acts on the acetyl group introduced into the ε-amino group of the lysine residue, the substrate peptide and the sample are treated under the conditions necessary for the deacetylation reaction by the deacetylase. Has been proposed, and a step of determining the level of acetylation of the substrate peptide detected by using the change in the cleavage activity of the peptidase with the peptide as an index has been proposed, and Boc-Val-Leu-as the substrate. Lys (A
c) -MCA and Boc-Glu-Lys-Lys (A
c) -MCA is described (for example, refer to Patent Document 1).

【0003】HDACの酵素活性の測定には、従来は放
射能標識したヒストンを基質として利用する測定方法が
用いられていたが、非放射能標識のHDAC活性測定法
が最近報告(例えば、非特許文献6参照。)されてい
る。このHDAC活性の非同位体測定法は、アセチル化
リシンのアミノクマリン誘導体を基質とし、脱アセチル
化反応後にHPLC−クロマトグラフィーにより測定す
る方法である。
Conventionally, for measuring the enzymatic activity of HDAC, a measuring method using radiolabeled histone as a substrate has been used, but a nonradioactive HDAC activity measuring method has recently been reported (for example, non-patent reference). See Reference 6.). This non-isotopic measurement of HDAC activity is a method in which an aminocoumarin derivative of acetylated lysine is used as a substrate and HPLC-chromatography is used after the deacetylation reaction.

【0004】[0004]

【特許文献1】特開2001−149081号公報[Patent Document 1] JP 2001-149081 A

【非特許文献1】Science 272, 408-411, 1996, 2[Non-Patent Document 1] Science 272, 408-411, 1996, 2

【非特許文献2】Proc. Natl. Acad. Sci. USA 94, 112
95-11300, 1997
[Non-Patent Document 2] Proc. Natl. Acad. Sci. USA 94, 112.
95-11300, 1997

【非特許文献3】Chem. Biol., 4, 783-789, 1998[Non-Patent Document 3] Chem. Biol., 4, 783-789, 1998.

【非特許文献4】Nature, 391, 815-818, 1998[Non-Patent Document 4] Nature, 391, 815-818, 1998.

【非特許文献5】Oncogene, 16, 2283-2285, 1998[Non-Patent Document 5] Oncogene, 16, 2283-2285, 1998

【非特許文献6】Nucleic Acids Research, vol. 27, N
o.9, 2057-2058, 1999
[Non-Patent Document 6] Nucleic Acids Research, vol. 27, N
o.9, 2057-2058, 1999

【0005】[0005]

【発明が解決しようとする課題】ヒストンデアセチラー
ゼ(HDAC)には10種類以上のサブタイプ酵素が存
在し、ヒストンのみならず様々なタンパク質の脱アセチ
ル化に関わっていると考えられているが、それぞれのサ
ブタイプ酵素固有の基質や機能についてはほとんど解明
されておらず、また、それぞれのサブタイプ酵素に対す
る特異的な阻害剤も知られていない。本発明の課題は、
単に非放射能によるHDAC測定を可能にするばかりで
なく、これまで不可能とされていた各サブタイプ酵素に
特異的な酵素阻害剤のスクリーニングを可能にするHD
AC測定用の基質や、該基質を用いるHDAC酵素活性
測定方法やHDAC阻害剤のスクリーニング方法や、ヒ
ストンデアセチラーゼサブタイプの同定方法を提供する
ことにある。
Histone deacetylase (HDAC) has more than 10 types of subtype enzymes, which are considered to be involved in deacetylation of not only histone but also various proteins. , Substrates and functions specific to each subtype enzyme have hardly been elucidated, and specific inhibitors for each subtype enzyme have not been known. The object of the present invention is to
HD that not only enables non-radioactive HDAC measurement but also enables screening of enzyme inhibitors specific for each subtype enzyme, which was previously impossible
The object is to provide a substrate for AC measurement, a method for measuring HDAC enzyme activity using the substrate, a method for screening an HDAC inhibitor, and a method for identifying a histone deacetylase subtype.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記課題
を解決するために鋭意研究し、ヒストンH4、p53等
のアセチル化部位近傍配列のオリゴペプチドのカルボキ
シ末端にアセチル化リシンと蛍光基MCAを結合させた
ペプチジルLys(Ac)−MCAを基質としたHDA
C活性測定法について検討し、上記ペプチジルLys
(Ac)−MCAを基質としてHDACによる脱アセチ
ル化反応を行った後、トリプシンを作用させることによ
り、AMC(7-amino-4-methyl-coumarin)を生成さ
せ、生成したAMCをプレートリーダー式蛍光測定装置
で測定することによりHDAC活性を簡便に測定するこ
とができるばかりでなく、幾つかのHDACサブタイプ
の活性を測定したところ、酵素間で親和性の違いがあ
り、ヒストンデアセチラーゼサブタイプの同定が可能で
あることを確認し、本発明を完成するに至った。
[Means for Solving the Problems] The inventors of the present invention have conducted extensive studies to solve the above problems and found that acetylated lysine and a fluorescent group were added to the carboxy terminus of an oligopeptide having a sequence near the acetylation site such as histone H4 and p53. HDA using peptidyl Lys (Ac) -MCA to which MCA is bound as a substrate
A method for measuring C activity was examined, and the above-mentioned peptidyl Lys
After deacetylation reaction with HDAC using (Ac) -MCA as a substrate, trypsin is allowed to act to generate AMC (7-amino-4-methyl-coumarin), and the generated AMC is subjected to plate reader fluorescence. Not only can HDAC activity be easily measured by measuring with a measuring device, but when the activities of several HDAC subtypes were measured, there was a difference in affinity between the enzymes, and the histone deacetylase subtype Was confirmed to be possible, and the present invention has been completed.

【0007】すなわち本発明は、一般式[I]で表され
る化合物又はその塩
That is, the present invention provides a compound represented by the general formula [I] or a salt thereof.

【0008】[0008]

【化2】 [Chemical 2]

【0009】(一般式[I]中、R1は水素原子又はア
ミノ末端の保護基を示し、R2はヒストンデアセチラー
ゼにより脱アセチル化される基を示し、R3はリシンの
カルボニル末端とアミド結合し、この結合が加水分解さ
れてアミンがフリーになることで蛍光又は発色特性の変
化する蛍光基又は発色基を示し、X−Kが、ヒストンH
4,ヒストンH2A,ヒストンH2B,ヒストンH3,
p53,チューブリンα1(tubulin alpha 1),赤血
球クルッペル様ファクター(erythroid Kruppel-like f
actor),E2F1,RCH1(IMPORTIN ALPHA-7),
HNF−4−ALPHA(HEPATOCYTE NUCLEAR FACTOR
4-ALPHA),GATA−1(ERYTHROID TRANSCRIPTION F
ACTOR)に由来する配列である。但し、Boc−Lys
(Ac)−MCA、Boc−Val−Leu−Lys
(Ac)−MCAやBoc−Glu−Lys−Lys
(Ac)−MCAを除く。)(請求項1)や、ペプチド
のアミン末端の保護基を示すR1が、−HCO,−CH3
CO,−CH3CH2CO又はBoc基であることを特徴
とする請求項1記載の化合物又はその塩(請求項2)
や、ヒストンデアセチラーゼにより脱アセチル化される
基を示すR2が、−COCH3,−COCF3,−COC
HF2,−COCH2F,−COCl3又はCOCBr3
あることを特徴とする請求項1又は2記載の化合物又は
その塩(請求項3)や、蛍光基を示すR3が、MCA(7
-amino-4-methylcoumarin)基,ANS(2-aminonaphth
arene-6-sulfonic acid)基,CMCA(7-amino-4-chl
oromethylcoumarin)基,FMCA(7-amino-4-trifluo
romethylcoumarin)基,AMP(2-amino-7-mathylpuri
ne-6-thiol)基,R110(rhodamine 110)基又はR
110モノアミド(rhodamine 110 monoamido)基であ
ることを特徴とする請求項1〜3のいずれか記載の化合
物又はその塩。(請求項4)や、発色基を示すR3が、
pNA(p-nitroaniline)基又はβAN(β-amino nap
htharene)基であることを特徴とする請求項1〜3のい
ずれか記載の化合物又はその塩(請求項5)や、Prp
−Lys(Ac)−MCA、Bz−Lys(Ac)−M
CA、Tos−Lys(Ac)−MCA、Ac−Lys
(Ac)−ANS・Na、Lys(Ac)−MCA・H
Cl、Boc−Lys(Tfa)−MCA、Boc−G
ly−Lys(Ac)−MCA、Boc−Gly−Ly
s(Tfa)−MCA、Ac−Leu−Gly−Lys
(Ac)−MCA、Ac−Leu−Gly−Lys(T
fa)−MCA、Ac−Lys−Gly−Leu−Gl
y−Lys(Ac)−MCA、Ac−Lys(Ac)−
Gly−Leu−Gly−Lys(Ac)−MCA、A
c−Leu−Lys−Ser−Lys−Lys(Ac)
−MCA、Ac−Ser−Arg−His−Lys−L
ys(Ac)−MCA、又はAc−Met−Pro−S
er―Asp―Lys(Ac)−MCAであることを特
徴とする請求項1記載の化合物又はその塩(請求項6)
に関する。また本発明は、請求項1〜6のいずれか記載
の化合物又はその塩からなるヒストンデアセチラーゼ測
定用基質(請求項7)や、請求項7記載のヒストンデア
セチラーゼ測定用基質又はBoc−Lys(Ac)−M
CAに、ヒストンデアセチラーゼ含有試料を作用させ、
次いでプロテアーゼを作用させて、蛍光体又は発色体を
分離することを特徴とするヒストンデアセチラーゼの活
性測定方法(請求項8)や、請求項7記載のヒストンデ
アセチラーゼ測定用基質又はBoc−Lys(Ac)−
MCAに、被検物質の存在下にヒストンデアセチラーゼ
を作用させ、次いでプロテアーゼを作用させて、蛍光体
又は発色体を分離することにより測定したヒストンデア
セチラーゼ活性を評価することを特徴とするヒストンデ
アセチラーゼ阻害剤のスクリーニング方法(請求項9)
や、請求項9記載のスクリーニング方法により得られる
ことを特徴とするヒストンデアセチラーゼ阻害剤(請求
項10)や、請求項7記載のヒストンデアセチラーゼ測
定用基質又はBoc−Lys(Ac)−MCAから選ば
れる2種以上の基質に、ヒストンデアセチラーゼ含有試
料をそれぞれ作用させ、次いでプロテアーゼを作用させ
て、蛍光体又は発色体を分離し、ヒストンデアセチラー
ゼの活性を測定することを特徴とするヒストンデアセチ
ラーゼサブタイプの同定方法(請求項11)に関する。
(In the general formula [I], R 1 represents a hydrogen atom or a protecting group at the amino terminal, R 2 represents a group deacetylated by histone deacetylase, and R 3 represents a carbonyl terminal of lysine. X-K represents a histone H, which is a fluorescent group or a chromophoric group that undergoes an amide bond and the bond is hydrolyzed to free the amine to change fluorescence or chromogenic properties.
4, histone H2A, histone H2B, histone H3
p53, tubulin alpha 1, erythroid Kruppel-like f
actor), E2F1, RCH1 (IMPORTIN ALPHA-7),
HNF-4-ALPHA (HEPATOCYTE NUCLEAR FACTOR
4-ALPHA), GATA-1 (ERYTHROID TRANSCRIPTION F
Sequence derived from ACTOR). However, Boc-Lys
(Ac) -MCA, Boc-Val-Leu-Lys
(Ac) -MCA and Boc-Glu-Lys-Lys
(Ac) -Excluding MCA. ) (Claim 1) or R 1 representing a protecting group at the amine end of the peptide is —HCO, —CH 3
CO, -CH 3 CH 2 CO or a compound or a salt thereof according to claim 1, characterized in that the Boc group (claim 2)
And R 2 which represents a group that is deacetylated by histone deacetylase is —COCH 3 , —COCF 3 , —COC.
HF 2, -COCH 2 F, the compound or a salt thereof (claim 3) or claim 1 or 2, wherein the a -COCl 3 or COCBr 3, wherein R 3 showing a fluorescent group, MCA (7
-amino-4-methylcoumarin) group, ANS (2-aminonaphth)
arene-6-sulfonic acid) group, CMCA (7-amino-4-chl
oromethylcoumarin) group, FMCA (7-amino-4-trifluo
romethylcoumarin) group, AMP (2-amino-7-mathylpuri
ne-6-thiol) group, R110 (rhodamine 110) group or R
110. A compound or salt thereof according to any one of claims 1 to 3, which is a 110 monoamide group. (Claim 4) and R 3 which represents a color-forming group,
pNA (p-nitroaniline) group or βAN (β-amino nap)
htharene) group, the compound according to any one of claims 1 to 3 or a salt thereof (claim 5), or Prp.
-Lys (Ac) -MCA, Bz-Lys (Ac) -M
CA, Tos-Lys (Ac) -MCA, Ac-Lys
(Ac) -ANS / Na, Lys (Ac) -MCA / H
Cl, Boc-Lys (Tfa) -MCA, Boc-G
ly-Lys (Ac) -MCA, Boc-Gly-Ly
s (Tfa) -MCA, Ac-Leu-Gly-Lys
(Ac) -MCA, Ac-Leu-Gly-Lys (T
fa) -MCA, Ac-Lys-Gly-Leu-Gl
y-Lys (Ac) -MCA, Ac-Lys (Ac)-
Gly-Leu-Gly-Lys (Ac) -MCA, A
c-Leu-Lys-Ser-Lys-Lys (Ac)
-MCA, Ac-Ser-Arg-His-Lys-L
ys (Ac) -MCA or Ac-Met-Pro-S
er-Asp-Lys (Ac) -MCA, The compound according to claim 1, or a salt thereof (claim 6).
Regarding The present invention also provides a substrate for measuring histone deacetylase comprising the compound according to any one of claims 1 to 6 or a salt thereof (claim 7), a substrate for measuring histone deacetylase according to claim 7, or Boc-. Lys (Ac) -M
A sample containing histone deacetylase is allowed to act on CA,
Next, a method for measuring the activity of histone deacetylase, which comprises applying a protease to separate a fluorophore or a chromophore (claim 8), the substrate for measuring histone deacetylase according to claim 7, or Boc- Lys (Ac)-
A histone deacetylase activity measured by separating a fluorophore or a chromophore by allowing MCA to act with histone deacetylase in the presence of a test substance and then with a protease. Method for screening histone deacetylase inhibitor (claim 9)
Or a histone deacetylase inhibitor characterized by being obtained by the screening method according to claim 9 (claim 10), the substrate for measuring histone deacetylase according to claim 7, or Boc-Lys (Ac)-. A histone deacetylase-containing sample is allowed to act on each of two or more substrates selected from MCA, and then a protease is allowed to act to separate the fluorophore or chromophore, and the activity of the histone deacetylase is measured. And a method for identifying a histone deacetylase subtype (claim 11).

【0010】[0010]

【発明の実施の形態】本発明の化合物又はその塩として
は、一般式[I](一般式[I]中、R1は水素原子又
はアミノ末端の保護基を示し、R2はヒストンデアセチ
ラーゼにより脱アセチル化される基を示し、R3はリシ
ンのカルボニル末端とアミド結合し、この結合が加水分
解されてアミンがフリーになることで蛍光又は発色特性
の変化する蛍光基又は発色基を示し、Xは0又は1個以
上のアミノ酸残基を示し、Kはリシン残基を示し、X−
Kが、ヒストンH4,ヒストンH2A,ヒストンH2
B,ヒストンH3,p53,チューブリンα1(tubuli
n alpha 1),赤血球クルッペル様ファクター(erythro
id Kruppel-like factor),E2F1,RCH1(IMPO
RTIN ALPHA-7),HNF−4−ALPHA(HEPATOCYTE
NUCLEAR FACTOR4-ALPHA),GATA−1(ERYTHROID
TRANSCRIPTION FACTOR)に由来する配列である。但し、
Boc−Lys(Ac)−MCA、Boc−Val−L
eu−Lys(Ac)−MCAやBoc−Glu−Ly
s−Lys(Ac)−MCAを除く。)で表される化合
物又はその塩であれば特に制限されるものではなく、上
記一般式[I]におけるR1としては、水素原子又はア
ミノ末端の保護基であればどのようなものでもよく、ア
ミン末端の保護基としては、−HCO,−CH3CO,
−CH3CH2CO、Boc(t-butyloxycarbonyl)基、
ベンジル基、プロピオニル基、トシル基等を具体的に例
示することができる。また、上記一般式[I]における
2としては、ヒストンデアセチラーゼにより脱アセチ
ル化される基であればどのようなものでもよく、例え
ば、−COCH3,−COCF3,−COCHF2,−C
OCH2F,−COCl3、−COCBr3等を具体的に
挙げることができる。また、上記一般式[I]における
3としては、リシンのカルボニル末端とアミド結合
し、この結合が加水分解されてアミンがフリーになるこ
とで蛍光又は発色特性の変化する基であればどのような
ものでもよい。上記リシンのカルボニル末端とアミド結
合し、このアミド結合が加水分解されてアミンがフリー
になることで蛍光特性の変化する基としては、MCA
(7-amino-4-methylcoumarin)基,ANS(2-aminonap
htharene-6-sulfonic acid)基,CMCA(7-amino-4-
chloromethylcoumarin)基,FMCA(7-amino-4-trif
luoromethylcoumarin)基,AMP(2-amino-7-mathylp
urine-6-thiol)基,R110(rhodamine 110)基、R
110モノアミド(rhodamine 110 monoamido)基等を
具体的に挙げることができ、ここでMCA基,ANS
基,CMCA基,FMCA基,AMP基,R110基、
R110モノアミド基は、以下の[化3]に示される置
換基を意味する。なお、[化3]に示されるR110モ
ノアミド基におけるペプチド基は特に制限されず、任意
のペプチド基とすることができる。
BEST MODE FOR CARRYING OUT THE INVENTION The compound of the present invention or a salt thereof is represented by the general formula [I] (in the general formula [I], R 1 represents a hydrogen atom or an amino-terminal protecting group, and R 2 represents histone deacetylase. R 3 represents a group that can be deacetylated by an enzyme, R 3 forms an amide bond with the carbonyl terminal of lysine, and this bond is hydrolyzed to free the amine, thereby forming a fluorescent or chromogenic group whose fluorescence or chromogenic properties change. X represents 0 or one or more amino acid residues, K represents a lysine residue, and X-
K is histone H4, histone H2A, histone H2
B, histone H3, p53, tubulin α1 (tubuli
n alpha 1), red blood cell Kruppel-like factor (erythro
id Kruppel-like factor), E2F1, RCH1 (IMPO
RTIN ALPHA-7), HNF-4-ALPHA (HEPATOCYTE
NUCLEAR FACTOR4-ALPHA), GATA-1 (ERYTHROID
TRANSCRIPTION FACTOR). However,
Boc-Lys (Ac) -MCA, Boc-Val-L
eu-Lys (Ac) -MCA and Boc-Glu-Ly
Excludes s-Lys (Ac) -MCA. Is not particularly limited as long as it is a compound represented by the formula) or a salt thereof, and R 1 in the above general formula [I] may be any hydrogen atom or an amino-terminal protecting group, the protecting group of the amine-terminated, -HCO, -CH 3 CO,
-CH 3 CH 2 CO, Boc ( t-butyloxycarbonyl) group,
Specific examples thereof include a benzyl group, a propionyl group and a tosyl group. Further, R 2 in the above general formula [I] may be any group as long as it is a group deacetylated by histone deacetylase, for example, —COCH 3 , —COCF 3 , —COCHF 2 , —. C
Specific examples thereof include OCH 2 F, —COCl 3 , and —COCBr 3 . Further, as R 3 in the above general formula [I], what is a group that changes in fluorescence or coloring property by forming an amide bond with the carbonyl terminal of lysine and hydrolyzing the bond to free the amine? It can be anything. MCA is a group that changes its fluorescence characteristics by forming an amide bond with the carbonyl terminal of lysine and hydrolyzing the amide bond to free the amine.
(7-amino-4-methylcoumarin) group, ANS (2-aminonap
htharene-6-sulfonic acid) group, CMCA (7-amino-4-
chloromethylcoumarin) group, FMCA (7-amino-4-trif
luoromethylcoumarin) group, AMP (2-amino-7-mathylp
urine-6-thiol) group, R110 (rhodamine 110) group, R
Specific examples thereof include a rhodamine 110 monoamido group, in which an MCA group and an ANS are listed.
Group, CMCA group, FMCA group, AMP group, R110 group,
The R110 monoamide group means a substituent represented by the following [Chemical Formula 3]. The peptide group in the R110 monoamide group shown in [Chemical Formula 3] is not particularly limited and can be any peptide group.

【0011】[0011]

【化3】 [Chemical 3]

【0012】また、上記リシンのカルボニル末端とアミ
ド結合し、このアミド結合が加水分解されてアミンがフ
リーになることで発色特性の変化する基としては、pN
A(p-nitroaniline)基,βAN(β-amino naphthare
ne)基等を具体的に挙げることができ、βAN基にはβ
ANとFast Garnet GBC,Fast Blue等との2次反応物等
が便宜上含まれ、ここでpNA基,βAN基,Fast Gar
net GBC,Fast Blueは、以下の[化4]に示される置換
基等を意味する。
[0012] Further, pN is a group which changes the color developing property by forming an amide bond with the carbonyl terminal of lysine and hydrolyzing the amide bond to free the amine.
A (p-nitroaniline) group, βAN (β-amino naphthare
ne) group and the like, and βAN group includes β
A secondary reaction product of AN with Fast Garnet GBC, Fast Blue, etc. is included for convenience, where pNA group, βAN group, Fast Garment
net GBC and Fast Blue mean the substituents and the like shown in [Chemical Formula 4] below.

【0013】[0013]

【化4】 [Chemical 4]

【0014】一般式[I]におけるXは0又は1個以上
のアミノ酸残基、好ましくは1〜30個のアミノ酸残基
を示し、Kはリシン残基を示すが、このリシン残基はカ
ルボニル末端がアセチル基及びアセチル基に準ずる構造
を側鎖に有している。そして、一般式[I]におけるX
−Kは、上記のように、ヒストンH4,ヒストンH2
A,ヒストンH2B,ヒストンH3,p53,チューブ
リンα1(tubulin alpha 1),赤血球クルッペル様フ
ァクター(erythroid Kruppel-like factor),E2F
1,RCH1(IMPORTIN ALPHA-7),HNF−4−AL
PHA(HEPATOCYTENUCLEAR FACTOR 4-ALPHA),GAT
A−1(ERYTHROID TRANSCRIPTION FACTOR)等に由来す
るペプチド基である。かかるペプチド基の具体例を、由
来するタンパク質のアミノ酸配列と共に[表1]〜[表
3]に示す。[表1]〜[表3]には、5、10、15
アミノ酸からなるペプチドの配列が例示され、強調文字
のKがアセチル化を受けるリシンを示している。また、
ヒストンH4については配列番号1〜8に、ヒストンH
2Aについては配列番号9〜10に、ヒストンH2Bに
ついては配列番号11〜20に、ヒストンH3について
は配列番号21〜36に、p53については配列番号3
7〜46に、チューブリンα1については配列番号47
〜50に、赤血球クルッペル様ファクターについては配
列番号51〜53に、E2F1については配列番号54
〜62に、RCH1については配列番号63〜64に、
HNF−4−ALPHAについては配列番号65〜69
に、GATA−1については配列番号70〜72にそれ
ぞれ示した。
X in the general formula [I] represents 0 or 1 or more amino acid residues, preferably 1 to 30 amino acid residues, and K represents a lysine residue. Has an acetyl group and a structure similar to the acetyl group in the side chain. Then, X in the general formula [I]
-K is, as described above, histone H4, histone H2
A, histone H2B, histone H3, p53, tubulin alpha 1, erythroid Kruppel-like factor, E2F
1, RCH1 (IMPORTIN ALPHA-7), HNF-4-AL
PHA (HEPATOCYTENUCLEAR FACTOR 4-ALPHA), GAT
A peptide group derived from A-1 (ERYTHROID TRANSCRIPTION FACTOR) and the like. Specific examples of such peptide groups are shown in [Table 1] to [Table 3] together with the amino acid sequences of the derived proteins. [Table 1] to [Table 3] show 5, 10, 15
The sequence of a peptide consisting of amino acids is illustrated, and the highlighted letter K indicates lysine undergoing acetylation. Also,
For histone H4, see SEQ ID NOS: 1-8
SEQ ID NOs: 9-10 for 2A, SEQ ID NOS: 11-20 for histone H2B, SEQ ID NOS: 21-36 for histone H3, SEQ ID NO: 3 for p53.
7-46, SEQ ID NO: 47 for tubulin α1
˜50, SEQ ID NOs: 51-53 for red blood cell Kruppell-like factor and SEQ ID NO: 54 for E2F1.
~ 62, SEQ ID NOS: 63-64 for RCH1;
SEQ ID NOs: 65-69 for HNF-4-ALPHA
Further, GATA-1 is shown in SEQ ID NOs: 70 to 72, respectively.

【0015】[0015]

【表1】 [Table 1]

【0016】[0016]

【表2】 [Table 2]

【0017】[0017]

【表3】 [Table 3]

【0018】本発明の化合物の塩としては、本発明の化
合物をHDAC測定用基質としてHDAC活性を測定し
た測定値と同等な測定値を与える化合物の塩であればど
のようなものでもよく、無機塩基との塩(例えばナトリ
ウム塩、カリウム塩等のアルカリ金属塩、カルシウム
塩、マグネシウム塩等のアルカリ土類金属塩、アンモニ
ウム塩等)、有機塩基との塩(例えばトリエチルアミン
塩、ジイソプロピルエチルアミン塩等)、無機酸付加塩
(例えば塩酸塩、臭化水素酸塩、硫酸塩、リン酸塩
等)、有機カルボン酸若しくはスルホン酸付加塩(例え
ばギ酸塩、酢酸塩、トリフルオロ酢酸塩、ベンゼンスル
ホン酸塩、トルエンスルホン酸塩等)のような塩基との
塩又は酸付加塩を具体的に挙げることができる。そし
て、本発明のHDAC測定用基質としては、上述の本発
明の化合物やその塩からなるものであれば特に制限され
るものではなく、例えば、Prp−Lys(Ac)−M
CA、Bz−Lys(Ac)−MCA、Tos−Lys
(Ac)−MCA、Ac−Lys(Ac)−ANS・N
a、Lys(Ac)−MCA・HCl、Boc−Lys
(Tfa)−MCA、Boc−Gly−Lys(Ac)
−MCA、Boc−Gly−Lys(Tfa)−MC
A、Ac−Leu−Gly−Lys(Ac)−MCA、
Ac−Leu−Gly−Lys(Tfa)−MCA、A
c−Lys−Gly−Leu−Gly−Lys(Ac)
−MCA、Ac−Lys(Ac)−Gly−Leu−G
ly−Lys(Ac)−MCA、Ac−Leu−Lys
−Ser−Lys−Lys(Ac)−MCA、Ac−S
er−Arg−His−Lys−Lys(Ac)−MC
A、Ac−Met−Pro−Ser―Asp―Lys
(Ac)−MCA等を具体的に例示することができる。
また、本発明のHDACの活性測定方法としては、上記
本発明のHDAC測定用基質又はBoc−Lys(A
c)−MCAに、HDAC含有試料を作用させ、次いで
プロテアーゼを作用させて、蛍光体又は発色体を分離す
る測定方法であれば特に制限されるものではなく、上記
HDAC含有試料としては特に制限されず、また、上記
プロテアーゼとしては、トリプシン、リシルエンドペプ
チダーゼなどリシン残基とR3で表される蛍光基又は発
色基との間のペプチド結合を加水分解しうるものであれ
ば特に制限されるものではない。
The salt of the compound of the present invention may be any salt of a compound which gives a measured value equivalent to the measured value of HDAC activity using the compound of the present invention as a substrate for measuring HDAC, and may be any inorganic salt. Salts with bases (eg alkali metal salts such as sodium salt, potassium salt etc., alkaline earth metal salts such as calcium salt, magnesium salt etc., ammonium salt etc.), salts with organic bases (eg triethylamine salt, diisopropylethylamine salt etc.) , Inorganic acid addition salts (eg hydrochloride, hydrobromide, sulfate, phosphate, etc.), organic carboxylic acid or sulfonic acid addition salts (eg formate, acetate, trifluoroacetate, benzenesulfonate) , Toluene sulfonate, etc.) and a salt with a base or an acid addition salt. The HDAC measuring substrate of the present invention is not particularly limited as long as it is composed of the compound of the present invention or a salt thereof, and for example, Prp-Lys (Ac) -M.
CA, Bz-Lys (Ac) -MCA, Tos-Lys
(Ac) -MCA, Ac-Lys (Ac) -ANS.N
a, Lys (Ac) -MCA.HCl, Boc-Lys
(Tfa) -MCA, Boc-Gly-Lys (Ac)
-MCA, Boc-Gly-Lys (Tfa) -MC
A, Ac-Leu-Gly-Lys (Ac) -MCA,
Ac-Leu-Gly-Lys (Tfa) -MCA, A
c-Lys-Gly-Leu-Gly-Lys (Ac)
-MCA, Ac-Lys (Ac) -Gly-Leu-G
ly-Lys (Ac) -MCA, Ac-Leu-Lys
-Ser-Lys-Lys (Ac) -MCA, Ac-S
er-Arg-His-Lys-Lys (Ac) -MC
A, Ac-Met-Pro-Ser-Asp-Lys
Specific examples thereof include (Ac) -MCA.
Further, the HDAC activity measuring method of the present invention includes the above-mentioned HDAC measuring substrate of the present invention or Boc-Lys (A
c) -It is not particularly limited as long as it is a measurement method in which a HDAC-containing sample is allowed to act on MCA, and then a protease is allowed to act to separate a fluorescent substance or a chromophore, and the HDAC-containing sample is not particularly limited. In addition, the protease is not particularly limited as long as it can hydrolyze the peptide bond between the lysine residue such as trypsin and lysyl endopeptidase and the fluorescent group or chromophore represented by R 3. is not.

【0019】本発明のHDAC阻害剤のスクリーニング
方法としては、上記HDAC測定用基質又はBoc−L
ys(Ac)−MCAに、被検物質の存在下にHDAC
を作用させ、次いでプロテアーゼを作用させて、蛍光体
又は発色体を分離することにより測定したHDAC活性
を評価する方法であれば特に制限されるものではなく、
通常、被検物質の存在下と非存在下におけるHDAC活
性値とを比較することにより評価が行われる。かかる本
発明のスクリーニング方法により得られるHDAC阻害
剤も本発明の範囲に含まれる。また、本発明のHDAC
サブタイプの同定方法としては、本発明のHDAC測定
用基質又はBoc−Lys(Ac)−MCAから選ばれ
る2種以上の基質に、HDAC含有試料をそれぞれ作用
させ、次いでプロテアーゼを作用させて、蛍光体又は発
色体を分離し、HDACの活性を測定する方法を挙げる
ことができ、上記HDACの活性の測定としては、各種
HDAC測定用基質におけるKcat/KM値の測定を
好適に例示することができ、上記各種基質としては、ヒ
ストンH4,p53,チューブリンα1など、その由来
を異にする基質を2種以上、好ましくは3種以上、より
好ましくは4種以上用いてHDACの活性を測定し、各
基質における比活性の強弱パターンを求め、例えばあら
かじめ調べておいた各HDACサブタイプにおける比活
性の強弱パターンと比較することにより、HDAC含有
試料中のHDACサブタイプを同定することができる。
例えば、HDAC1,4,6のいずれかの存在が予想さ
れる試料の場合、ヒストンH4由来配列をもつAc−L
ys−Gly−Leu−Gly−Lys(Ac)−MC
Aを基質1とし、p53由来配列をもつAc−Ser−
Arg−His−Lys−Lys(Ac)−MCAを基
質2とし、チューブリン由来配列をもつAc−Met−
Pro−Ser―Asp―Lys(Ac)−MCAを基
質3として、これら基質1〜3を用いると、Kcat/
KM値の基質1に対する基質3の比が大きければHDA
C6と同定することができ、Kcat/KM値の基質1
に対する基質3の比が小さく、基質1に対する基質2の
比が基質3の比よりも大きい時はHDAC1と同定する
ことができる。
The HDAC inhibitor screening method of the present invention includes the above HDAC assay substrate or Boc-L.
ys (Ac) -MCA was added to HDAC in the presence of the test substance.
Is applied, and then a protease is allowed to act, which is not particularly limited as long as it is a method for evaluating the HDAC activity measured by separating the fluorophore or the chromophore.
Usually, the evaluation is performed by comparing the HDAC activity value in the presence and absence of the test substance. The HDAC inhibitor obtained by such a screening method of the present invention is also included in the scope of the present invention. Further, the HDAC of the present invention
As a method for identifying subtypes, the HDAC-containing sample is allowed to act on each of the HDAC-measuring substrates of the present invention or two or more substrates selected from Boc-Lys (Ac) -MCA, and then a protease is allowed to act thereon to cause fluorescence. Examples of the method for measuring the activity of HDAC include the measurement of Kcat / KM values in various substrates for measuring HDAC. As the various substrates, histone H4, p53, tubulin α1 and other substrates having different origins are used in two or more types, preferably three or more types, more preferably four or more types, and the HDAC activity is measured. The strength pattern of the specific activity of each substrate is determined, and for example, the strength pattern of the specific activity of each HDAC subtype that has been investigated in advance. By comparison, it is possible to identify the HDAC subtype of HDAC-containing sample.
For example, in the case of a sample in which the presence of any one of HDAC1, 4, 6 is expected, Ac-L having a histone H4-derived sequence
ys-Gly-Leu-Gly-Lys (Ac) -MC
Ac-Ser- having A53 as a substrate 1 and a p53-derived sequence
Ac-Met- having Arg-His-Lys-Lys (Ac) -MCA as a substrate 2 and a tubulin-derived sequence.
When Pro-Ser-Asp-Lys (Ac) -MCA is used as the substrate 3 and these substrates 1 to 3 are used, Kcat /
If the ratio of substrate 3 to substrate 1 of KM value is large, HDA
Substrate 1 that can be identified as C6 and has a Kcat / KM value
When the ratio of substrate 3 to substrate is small and the ratio of substrate 2 to substrate 1 is larger than the ratio of substrate 3, it can be identified as HDAC1.

【0020】[0020]

【実施例】以下、実施例により本発明をより具体的に説
明するが、本発明の技術的範囲はこれらの例示に限定さ
れるものではない。 実施例1(ペプチジル−MCAの合成) [Boc−Lys(Ac)−MCAの合成]Boc−L
ys(Ac)−OH(3.6mmol,1.04g)と
アミノメチルクマリン(3mmol,525mg)のD
MF(6ml)溶液にHATU(3.6mmol,1.
37g)、次いでDIEA(3.6mmol,0.63
ml)を加えて12時間反応させた。溶媒を留去後、残
渣を酢酸エチルに溶解し、10%クエン酸、4%NaH
CO3、水で洗浄した。MgSO4で乾燥後、酢酸エチル
を留去した。残渣をシリカゲルカラムで精製しエーテル
により953mg(86%)のBoc−Lys(Ac)
−MCAを白色結晶で得た。
The present invention will be described in more detail with reference to the following examples, but the technical scope of the present invention is not limited to these examples. Example 1 (Synthesis of peptidyl-MCA) [Synthesis of Boc-Lys (Ac) -MCA] Boc-L
D of is (Ac) -OH (3.6 mmol, 1.04 g) and aminomethylcoumarin (3 mmol, 525 mg)
HATU (3.6 mmol, 1.
37 g), then DIEA (3.6 mmol, 0.63)
(ml) was added and reacted for 12 hours. After distilling off the solvent, the residue was dissolved in ethyl acetate, 10% citric acid, 4% NaH
Washed with CO 3 , water. After drying over MgSO 4 , ethyl acetate was distilled off. The residue was purified by silica gel column and 953 mg (86%) of Boc-Lys (Ac) with ether.
-MCA was obtained as white crystals.

【0021】[Ac−Lys(Ac)−ANS・Naの
合成]Boc−Lys(Ac)−OH(1mmol,2
88mg)とHOBt・H2O(1.2mmol,18
4mg)のDMF(1ml)溶液にDCC(1.2mm
ol,247mg)を加えて氷冷下で6時間攪拌後、6
−アミノ−2−ナフチルスルフォン酸(2mmol,4
46mg)、トリエチルアミン(3.0mmol,0.
41ml)、DMF(1ml)の溶液を加えて氷冷下で
12時間反応させた。溶媒を留去後、蒸留水を加えてろ
過後に、ろ液をHPLC(カラム:ODSYMC Pack,10
×250mm,18% isocratic CH3CN/0.1%
TFA over 15分,flow rate 3.0ml/分)によっ
て分取を行ったところ、濃縮中にBoc−基が切断され
た結果、112mgのLys(Ac)−ANSを得た。
これをNaHCO3と共にピリジンに溶解し、無水酢酸
を加えて標記化合物のNa塩120mgを得た。
[Synthesis of Ac-Lys (Ac) -ANS.Na] Boc-Lys (Ac) -OH (1 mmol, 2
88 mg) and HOBt.H 2 O (1.2 mmol, 18
4 mg) in DMF (1 ml) solution into DCC (1.2 mm
ol, 247 mg) was added and the mixture was stirred under ice cooling for 6 hours, and then 6
-Amino-2-naphthyl sulfonic acid (2 mmol, 4
46 mg), triethylamine (3.0 mmol, 0.
41 ml) and a solution of DMF (1 ml) were added, and the mixture was reacted under ice cooling for 12 hours. After the solvent was distilled off, distilled water was added and filtered, and the filtrate was subjected to HPLC (column: ODSYMC Pack, 10
× 250mm, 18% isocratic CH 3 CN / 0.1%
When the fractionation was performed by TFA over 15 minutes, flow rate 3.0 ml / min), the Boc-group was cleaved during the concentration, and 112 mg of Lys (Ac) -ANS was obtained.
This was dissolved in pyridine together with NaHCO 3 and acetic anhydride was added to obtain 120 mg of Na salt of the title compound.

【0022】[Lys(Ac)−MCA・HClの合
成]Boc−Lys(Ac)−MCA(671mg,
1.5mmol)をTFA(2ml)で処理した後
(0.45ml,1.2等量,1.8mmol)の4N
HCl/ジオキサンを加えて塩酸塩とした。エーテルで
結晶化して、553mg(97%)のLys(Ac)−
MCA・HClを得た。
[Synthesis of Lys (Ac) -MCA.HCl] Boc-Lys (Ac) -MCA (671 mg,
1.5 mmol) after treatment with TFA (2 ml) (0.45 ml, 1.2 eq, 1.8 mmol) of 4N
HCl / dioxane was added to make the hydrochloride salt. Crystallized from ether, 553 mg (97%) of Lys (Ac)-
MCA.HCl was obtained.

【0023】[Prp−Lys(Ac)−MCAの合
成]Lys(Ac)−MCA・HCl(0.5mmo
l,188mg)をDMF(1ml)溶解しトリエチル
アミン(1.0mmol,0.14ml)、プロピオン
酸無水物(1.5mmol,0.75ml)を加えて氷
冷下3時間反応させ溶媒の留去を行った。残渣を酢酸エ
チル:水=1:1で結晶化させろ過を行い、酢酸で再沈
殿を行うことで120mg(56%)のPrp−Lys
(Ac)−MCAを得た。HPLC,Rt5.79分
(カラム:chromolith,4.6×100mm,10−1
00% linear gradient CH3CN/0.1% TFA ove
r 15分,flow rate 2.0ml/分)FAB−MS,
(M+H),401.20(Calcd.for C2127
35
[Synthesis of Prp-Lys (Ac) -MCA] Lys (Ac) -MCA.HCl (0.5 mmo
1, 188 mg) was dissolved in DMF (1 ml), triethylamine (1.0 mmol, 0.14 ml) and propionic anhydride (1.5 mmol, 0.75 ml) were added, and the mixture was reacted for 3 hours under ice cooling to distill off the solvent. went. The residue was crystallized with ethyl acetate: water = 1: 1, filtered, and reprecipitated with acetic acid to give 120 mg (56%) of Prp-Lys.
(Ac) -MCA was obtained. HPLC, Rt 5.79 min (column: chromolith, 4.6 x 100 mm, 10-1
00% linear gradient CH 3 CN / 0.1% TFA ove
r 15 minutes, flow rate 2.0 ml / min) FAB-MS,
(M + H), 401.20 (Calcd. For C 21 H 27 N
3 O 5 )

【0024】[Bz−Lys(Ac)−MCAの合成]
Lys(Ac)−MCA・HCl(0.5mmol,1
88mg)と安息香酸(0.6mmol,74mg)、
HOBt・H2O(0.6mmol,92mg)をDM
F(1ml)に溶解しトリエチルアミン(0.5mmo
l,0.07ml)、DCC(0.6mmol,124
mg)を加えて氷冷下12時間反応させ溶媒の留去を行
った。残渣をDMFに溶かしろ過後、ろ液を濃縮、水で
結晶化させた。酢酸で再沈殿を行い140mg(58
%)のBz−Lys(Ac)−MCAを得た。HPL
C,Rt4.48分(カラム:chromolith,4.6×1
00mm,10−100% linear gradient CH3CN
/0.1% TFA over 15分,flow rate2.0ml/
分)FAB−MS,(M+H),449.20(Calcd.
for C252735
[Synthesis of Bz-Lys (Ac) -MCA]
Lys (Ac) -MCA.HCl (0.5 mmol, 1
88 mg) and benzoic acid (0.6 mmol, 74 mg),
HOBt · H 2 O (0.6 mmol, 92 mg) was DM
Dissolve in F (1 ml) and add triethylamine (0.5 mmo
1, 0.07 ml), DCC (0.6 mmol, 124
(mg) was added and the mixture was reacted for 12 hours under ice cooling, and the solvent was distilled off. The residue was dissolved in DMF, filtered, and the filtrate was concentrated and crystallized with water. Reprecipitate with acetic acid to obtain 140 mg (58
%) Bz-Lys (Ac) -MCA was obtained. HPL
C, Rt 4.48 minutes (column: chromolith, 4.6 × 1
00mm, 10-100% linear gradient CH 3 CN
/0.1% TFA over 15 minutes, flow rate 2.0ml /
Min) FAB-MS, (M + H), 449.20 (Calcd.
for C 25 H 27 N 3 O 5)

【0025】[Tos−Lys(Ac)−MCAの合
成]Lys(Ac)−MCA・HCl(0.3mmo
l,112mg)をDMF(1ml)に溶解しトリエチ
ルアミン(0.9mmol,0.13ml)、トシルク
ロライド(0.6mmol,114mg)を加えて氷冷
下2時間反応させ溶媒の留去を行った。残渣を酢酸エチ
ルに溶解し10%クエン酸、4%NaHCO3、水で洗
浄した。MgSO4で乾燥後酢酸エチルを留去しエーテ
ルにより白色結晶を得た。その後メタノールで再沈殿を
行い105mg(70%)のTos−Lys(Ac)−
MCAを白色結晶で得た。HPLC,Rt7.08分
(カラム:chromolith,4.6×100mm,10−1
00% linear gradient CH3CN/0.1% TFA ove
r 15分,flow rate 2.0ml/分)FAB−MS,
(M+H),516.15(Calcd.for C253037
S)
[Synthesis of Tos-Lys (Ac) -MCA] Lys (Ac) -MCA.HCl (0.3 mmo
1, 112 mg) was dissolved in DMF (1 ml), triethylamine (0.9 mmol, 0.13 ml) and tosyl chloride (0.6 mmol, 114 mg) were added, and the mixture was reacted for 2 hours under ice cooling to distill off the solvent. The residue was dissolved in ethyl acetate and washed with 10% citric acid, 4% NaHCO 3 , and water. After drying over MgSO 4 , ethyl acetate was distilled off and ether gave white crystals. After that, reprecipitation was performed with methanol to obtain 105 mg (70%) of Tos-Lys (Ac)-.
MCA was obtained as white crystals. HPLC, Rt 7.08 min (column: chromolith, 4.6 x 100 mm, 10-1
00% linear gradient CH 3 CN / 0.1% TFA ove
r 15 minutes, flow rate 2.0 ml / min) FAB-MS,
(M + H), 516.15 (Calcd. For C 25 H 30 N 3 O 7
S)

【0026】[Boc−Lys(Tfa)−MCAの合
成]Lys(Boc)・1/2Cu(40mmol,1
1.2g)をエーテル(20ml),1N水酸化ナトリ
ウム水溶液(44mmol,44ml)に溶解し30分
おきに1N水酸化ナトリウム(8mmol,8ml),
Z−Cl(8mmol,1.28ml)を氷冷下6回に
分けて加えた。その後、2時間反応を行った。反応溶液
にエーテルを加え分液操作を行った後、水相をクエン酸
で酸性にし酢酸エチル逆抽出した。MgSO4で乾燥後
酢酸エチルを留去しエーテルにより12.6g(83
%)のZ−Lys(Boc)−OHを白色結晶で得た。
Z−Lys(Boc)−OH(33mmol,12.6
g)をDMF(50ml)に溶解しトリエチルアミン
(49.5mmol,6.93ml)、ベンジルブロマ
イド(49.5mmol,5.89ml)を加えて氷冷
下4時間反応させ溶媒の留去を行った。残渣を酢酸エチ
ルに溶解し10%クエン酸、4%NaHCO3、水で洗
浄した。MgSO4で乾燥後酢酸エチルを留去しZ−L
ys(Boc)−OBzl 13.7g(85%)を得
た。このZ−Lys(Boc)−OBzl(28.8m
mol,13.7g)をTFA(50ml)で氷冷下3
0分処理しTFAを留去した後DXN(50ml)、D
XN/4N HCl(6ml)を加え溶媒を留去しZ−
Lys−OBzl・HCl 7.95g(68%)を得
た。このZ−Lys−OBzl・HCl(19.7mm
ol,7.95g)をDCM(50ml)に溶解し氷冷
下で無水TFA(36mmol,5ml)を加えて12
時間反応させた。溶媒を留去後、残渣を酢酸エチルに溶
解し、4%NaHCO3、水で洗浄した。MgSO4で乾
燥後酢酸エチルを留去しエーテルにより7.13g(7
6%)のZ−Lys(Tfa)−OBzlを白色結晶で
得た。
[Synthesis of Boc-Lys (Tfa) -MCA] Lys (Boc) .1 / 2Cu (40 mmol, 1)
1.2 g) was dissolved in ether (20 ml) and a 1N sodium hydroxide aqueous solution (44 mmol, 44 ml) and 1N sodium hydroxide (8 mmol, 8 ml) was added every 30 minutes.
Z-Cl (8 mmol, 1.28 ml) was added in 6 portions under ice cooling. Then, the reaction was performed for 2 hours. After ether was added to the reaction solution to carry out a liquid separation operation, the aqueous phase was acidified with citric acid and back-extracted with ethyl acetate. After drying over MgSO 4 , ethyl acetate was distilled off, and 12.6 g (83
%) Z-Lys (Boc) -OH was obtained as white crystals.
Z-Lys (Boc) -OH (33 mmol, 12.6
g) was dissolved in DMF (50 ml), triethylamine (49.5 mmol, 6.93 ml) and benzyl bromide (49.5 mmol, 5.89 ml) were added, and the mixture was reacted for 4 hours under ice cooling to distill off the solvent. The residue was dissolved in ethyl acetate and washed with 10% citric acid, 4% NaHCO 3 , and water. After drying over MgSO 4 , ethyl acetate was distilled off and Z-L
13.7 g (85%) of ys (Boc) -OBzl was obtained. This Z-Lys (Boc) -OBzl (28.8m
mol, 13.7 g) with TFA (50 ml) under ice cooling 3
After treating for 0 minutes and distilling off TFA, DXN (50 ml), D
XN / 4N HCl (6 ml) was added and the solvent was evaporated to remove Z-
7.95 g (68%) of Lys-OBzl.HCl was obtained. This Z-Lys-OBzl · HCl (19.7 mm
Ol, 7.95 g) was dissolved in DCM (50 ml), and anhydrous TFA (36 mmol, 5 ml) was added under ice cooling to give 12
Reacted for hours. After evaporating the solvent, the residue was dissolved in ethyl acetate and washed with 4% NaHCO 3 and water. After drying over MgSO 4 , ethyl acetate was distilled off and 7.13 g (7
6%) of Z-Lys (Tfa) -OBzl was obtained as white crystals.

【0027】白色結晶として得られたZ−Lys(Tf
a)−OBzl(10mmol,4.65g)を酢酸:
水=1:3(40ml)に溶解しPd/Cを加え水素雰
囲気下で8時間攪拌した。Pd/Cをろ過後、溶媒を留
去し、エーテルにより3.04g(99%)のLys
(Tfa)−OH・AcOHを得た。ナスフラスコ中で
Lys(Tfa)−OH・AcOH 3.04g(10
mmol)を水:ジオキサン=1:1溶液(30ml)
に溶かし氷冷下で攪拌を行った。そこにトリエチルアミ
ン(30mmol,4.2ml)と(Boc)2O(1
5mmol,3.3g)を加え12時間攪拌を行った。
ジオキサンを留去後エーテルで洗った後に水相をクエン
酸で酸性にし酢酸エチルで逆抽出した。MgSO4で乾
燥後酢酸エチルを留去しエーテルにより3.26g(9
5%)のBoc−Lys(Tfa)−OHを白色結晶で
得た。このBoc−Lys(Tfa)−OH(3.8m
mol,1.31g)とアミノメチルクマリン(3.7
mmol,648mg)のDMF(12ml)溶液にH
ATU(4.4mmol,1.67g)、次いでDIE
A(8.8mmol,1.53ml)を加えて12時間
反応させた。溶媒を留去後、残渣を酢酸エチルに溶解し
10%クエン酸、4%NaHCO3、水で洗浄した。M
gSO4で乾燥後酢酸エチルを留去した。残渣をシリカ
ゲルカラムで精製しエーテルにより986mg(53
%)のBoc−Lys(Tfa)−MCAを白色結晶で
得た。HPLC,Rt23.55分(カラム:YMC Pack
ODS A,4.6×150mm,10−100%linear g
radient CH3CN/0.1% TFAover 30分, flow
rate 1.0ml/分)TOF−MS,(M+Na),
523(Calcd.for C2329663
Z-Lys (Tf was obtained as white crystals.
a) -OBzl (10 mmol, 4.65 g) in acetic acid:
It was dissolved in water = 1: 3 (40 ml), Pd / C was added, and the mixture was stirred under a hydrogen atmosphere for 8 hours. After filtering Pd / C, the solvent was distilled off and ether was used to remove 3.04 g (99%) of Lys.
(Tfa) -OH.AcOH was obtained. Lys (Tfa) -OH.AcOH 3.04 g (10
mmol) water: dioxane = 1: 1 solution (30 ml)
It was dissolved in and stirred under ice cooling. There, triethylamine (30 mmol, 4.2 ml) and (Boc) 2 O (1
5 mmol, 3.3 g) was added and the mixture was stirred for 12 hours.
After dioxane was distilled off and washed with ether, the aqueous phase was acidified with citric acid and back-extracted with ethyl acetate. After drying over MgSO 4 , ethyl acetate was distilled off and ether was used to 3.26 g (9
5%) of Boc-Lys (Tfa) -OH was obtained as white crystals. This Boc-Lys (Tfa) -OH (3.8 m
mol, 1.31 g) and aminomethylcoumarin (3.7
mmol, 648 mg) in DMF (12 ml) solution with H
ATU (4.4 mmol, 1.67 g), then DIE
A (8.8 mmol, 1.53 ml) was added and reacted for 12 hours. After evaporating the solvent, the residue was dissolved in ethyl acetate and washed with 10% citric acid, 4% NaHCO 3 , and water. M
After drying with gSO 4 , ethyl acetate was distilled off. The residue was purified by a silica gel column, and 986 mg (53
%) Boc-Lys (Tfa) -MCA was obtained as white crystals. HPLC, Rt23.55 min (column: YMC Pack
ODS A, 4.6 x 150 mm, 10-100% linear g
radient CH 3 CN / 0.1% TFAover 30 minutes, flow
rate 1.0 ml / min) TOF-MS, (M + Na),
523 (Calcd.for C 23 H 29 N 6 O 6 F 3)

【0028】[Boc−Gly−Lys(Ac)−MC
A]Boc−Lys(Ac)−MCA(0.5mmo
l,223mg)を氷冷下中、TFA(1ml)で30
分処理した。溶媒を留去した後、エーテルで結晶化し
た。Lys(Ac)−MCA・TFA(0.6mmo
l,262mg)とBoc−Gly−OH(0.6mm
ol,105mg)、HOBt・H2O(0.6mmo
l,92mg)のDMF(2ml)溶液にHBTU
(0.6mmol,223mg)、次いでDIEA
(1.8mmol,0.31ml)を加えて氷冷下2時
間反応させた。溶媒を留去後、Sephadex LH
−20ゲルろ過クロマトグラフィー(2×85cm,D
MF)によって精製し、エーテルで結晶化を行いBoc
−Gly−Lys(Ac)−MCA 128mg(62
%)を得た。HPLC,Rt 18.48分(カラム:Y
MC Pack ODS A,4.6×150mm,10−100%
linear gradient CH3CN/0.1% TFA over 3
0分,flow rate 1.0ml/分)FAB−MS,(M
+H),502(Calcd.for C253447
[Boc-Gly-Lys (Ac) -MC
A] Boc-Lys (Ac) -MCA (0.5 mmo
1, 223 mg) under ice-cooling with TFA (1 ml) to 30
Processed for minutes. After the solvent was distilled off, the residue was crystallized with ether. Lys (Ac) -MCA / TFA (0.6mmo
1, 262 mg) and Boc-Gly-OH (0.6 mm
ol, 105 mg), HOBt · H 2 O (0.6 mmo
HBTU in a DMF (2 ml) solution (1, 92 mg)
(0.6 mmol, 223 mg), then DIEA
(1.8 mmol, 0.31 ml) was added and the mixture was reacted under ice cooling for 2 hours. After distilling off the solvent, Sephadex LH
-20 gel filtration chromatography (2 x 85 cm, D
Purified by MF) and crystallized with ether Boc
-Gly-Lys (Ac) -MCA 128 mg (62
%) Was obtained. HPLC, Rt 18.48 min (column: Y
MC Pack ODS A, 4.6 x 150 mm, 10-100%
liner gradient CH 3 CN / 0.1% TFA over 3
0 min, flow rate 1.0 ml / min) FAB-MS, (M
+ H), 502 (Calcd.for C 25 H 34 N 4 O 7)

【0029】[Boc−Gly−Lys(Tfa)−M
CA]Boc−Lys(Tfa)−MCA(0.5mm
ol,277mg)を氷冷下中、TFA(1ml)で3
0分処理した。溶媒を留去した後、エーテルで結晶化し
た。Lys(Tfa)−MCA・TFA(0.5mmo
l,250mg)とBoc−Gly−OH(0.6mm
ol,105mg)、HOBt・H2O(0.6mmo
l,92mg)のDMF(2ml)溶液にHBTU
(0.6mmol,223mg)、次いでDIEA
(1.8mmol,0.31ml)を加えて氷冷下2時
間反応させた。溶媒を留去後、残渣を酢酸エチルに溶解
し10%クエン酸、4%NaHCO3、水で洗浄した。
MgSO4で乾燥後酢酸エチルを留去した。残渣をシリ
カゲルカラムで精製し、エーテルで結晶化を行いBoc
−Gly−Lys(Tfa)−MCA300mg(88
%)を得た。HPLC,Rt20.84分(カラム:YM
C Pack ODS A,4.6×150mm,10−100% l
ineargradient CH3CN/0.1% TFA over 30
分,flow rate 1.0ml/分)FAB−MS,(M+
H),556(Calcd.for C2531473
[Boc-Gly-Lys (Tfa) -M]
CA] Boc-Lys (Tfa) -MCA (0.5 mm
ol, 277 mg) under ice-cooling with TFA (1 ml).
It was processed for 0 minutes. After the solvent was distilled off, the residue was crystallized with ether. Lys (Tfa) -MCA ・ TFA (0.5mmo
1, 250 mg) and Boc-Gly-OH (0.6 mm
ol, 105 mg), HOBt · H 2 O (0.6 mmo
HBTU in a DMF (2 ml) solution (1, 92 mg)
(0.6 mmol, 223 mg), then DIEA
(1.8 mmol, 0.31 ml) was added and the mixture was reacted under ice cooling for 2 hours. After evaporating the solvent, the residue was dissolved in ethyl acetate and washed with 10% citric acid, 4% NaHCO 3 , and water.
After drying over MgSO 4 , ethyl acetate was distilled off. The residue is purified on a silica gel column, crystallized with ether and Boc
-Gly-Lys (Tfa) -MCA 300 mg (88
%) Was obtained. HPLC, Rt20.84 min (column: YM
C Pack ODS A, 4.6 x 150 mm, 10-100% l
ineargradient CH 3 CN / 0.1% TFA over 30
Min, flow rate 1.0 ml / min) FAB-MS, (M +
H), 556 (Calcd.for C 25 H 31 N 4 O 7 F 3)

【0030】[Ac−Leu−Gly−Lys(Ac)
−MCA]Boc−Leu−OH・H2O(10mmo
l,2.49g)とH−Gly−OBzl・TosOH
(10mmol,3.37g)、HOBt・H2O(1
1mmol,1.69g)のDMF(20ml)溶液に
トリエチルアミン(11mmol,1.54ml)、次
いでDCC(12mmol,2.48g)を加えて氷冷
下12時間反応させた。溶媒を留去後、残渣を酢酸エチ
ルに溶解し10%クエン酸、4%NaHCO3、水で洗
浄した。MgSO4で乾燥後酢酸エチルを留去し、Bo
c−Leu−Gly−OBzl 2.88g(76%)
を得た。このBoc−Leu−Gly−OBzl 2.
88g(7.6mmol)を氷冷下中、TFA(10m
l)で30分処理し、溶媒を留去した。これをDCM
(5ml)に溶解しEt3N(25mmol,3.5m
l)、次いで無水酢酸(15mmol,1.41ml)
を加えて氷冷下4時間反応させた。溶媒を留去後、残渣
を酢酸エチルに溶解し10%クエン酸、4%NaHCO
3、水で洗浄した。MgSO4で乾燥後酢酸エチルを留去
し、エーテルで結晶化を行いAc−Leu−Gly−O
Bzl 2.28g(94%)を得た。このAc−Le
u−Gly−OBzl(6.3mmol,2.28g)
をメタノール(5ml)に溶解しPd/Cを加え水素雰
囲気下で3時間攪拌した。Pd/Cをろ過後、溶媒を留
去しエーテルにより1.42g(98%)のAc−Le
u−Gly−OHを得た。
[Ac-Leu-Gly-Lys (Ac)
-MCA] Boc-Leu-OH · H 2 O (10mmo
1, 2.49 g) and H-Gly-OBzl.TosOH
(10 mmol, 3.37 g), HOBt.H 2 O (1
Triethylamine (11 mmol, 1.54 ml) and then DCC (12 mmol, 2.48 g) were added to a DMF (20 ml) solution of 1 mmol, 1.69 g) and reacted for 12 hours under ice cooling. After evaporating the solvent, the residue was dissolved in ethyl acetate and washed with 10% citric acid, 4% NaHCO 3 , and water. After drying over MgSO 4 , ethyl acetate was distilled off and Bo
2.88 g (76%) of c-Leu-Gly-OBzl
Got This Boc-Leu-Gly-OBzl 2.
88 g (7.6 mmol) was cooled with ice while TFA (10 m
It was treated with 1) for 30 minutes and the solvent was distilled off. This is DCM
Dissolve in (5 ml) and Et 3 N (25 mmol, 3.5 m
l), then acetic anhydride (15 mmol, 1.41 ml)
Was added and reacted for 4 hours under ice cooling. After distilling off the solvent, the residue was dissolved in ethyl acetate and dissolved in 10% citric acid, 4% NaHCO 3.
3 , washed with water. After drying with MgSO 4 , ethyl acetate was distilled off and crystallization was carried out with ether to perform Ac-Leu-Gly-O.
2.28 g (94%) of Bzl were obtained. This Ac-Le
u-Gly-OBzl (6.3 mmol, 2.28 g)
Was dissolved in methanol (5 ml), Pd / C was added, and the mixture was stirred under a hydrogen atmosphere for 3 hours. After filtering Pd / C, the solvent was distilled off and ether was used to obtain 1.42 g (98%) of Ac-Le.
u-Gly-OH was obtained.

【0031】Boc−Lys(Ac)−MCA(0.5
mmol,223mg)を氷冷下中、TFA(3ml)
で30分処理した。溶媒を留去した後、エーテルで結晶
化した。Lys(Ac)−MCA・TFA(0.5mm
ol,225mg)とAc−Leu−Gly−OH
(0.6mmol,138mg)、HOBt・H2
(0.6mmol,92mg)のDMF(2ml)溶液
にHBTU(0.6mmol,223mg)、次いでD
IEA(1.8mmol,0.31ml)を加えて氷冷
下2時間反応させた。溶媒を留去後、Sephadex
LH−20ゲルろ過クロマトグラフィー(2×85c
m,DMF)によって精製し、エーテルで結晶化を行い
Boc−Leu−Gly−Lys(Ac)−MCA 1
76mg(63%)を得た。HPLC,Rt16.94
分(カラム:YMC Pack ODS A,4.6×150mm,1
0−100% linear gradient CH3CN/0.1% T
FA over30分,flow rate 1.0ml/分)FAB−
MS,(M+H),557(Calcd.for C2839
57
Boc-Lys (Ac) -MCA (0.5
mmol, 223 mg) under ice-cooling, TFA (3 ml)
For 30 minutes. After the solvent was distilled off, the residue was crystallized with ether. Lys (Ac) -MCA / TFA (0.5mm
ol, 225 mg) and Ac-Leu-Gly-OH.
(0.6 mmol, 138 mg), HOBt · H 2 O
(0.6 mmol, 92 mg) in DMF (2 ml) in HBTU (0.6 mmol, 223 mg), then D
IEA (1.8 mmol, 0.31 ml) was added and the mixture was reacted under ice cooling for 2 hours. After distilling off the solvent, Sephadex
LH-20 gel filtration chromatography (2 x 85c
m, DMF) and crystallized with ether to Boc-Leu-Gly-Lys (Ac) -MCA 1.
Obtained 76 mg (63%). HPLC, Rt 16.94
Minute (column: YMC Pack ODS A, 4.6 x 150 mm, 1
0-100% linear gradient CH 3 CN / 0.1% T
FA over 30 minutes, flow rate 1.0 ml / min) FAB-
MS, (M + H), 557 (Calcd. For C 28 H 39 N
5 O 7 )

【0032】[Ac−Leu−Gly−Lys(Tf
a)−MCA]Boc−Lys(Tfa)−MCA
(0.5mmol,277mg)を氷冷下中、TFA
(1ml)で30分処理した。溶媒を留去した後、エー
テルで結晶化した。Lys(Tfa)−MCA・TFA
(0.5mmol,250mg)とBoc−Leu−G
ly−OH(0.6mmol,138mg)、HOBt
・H2O(0.6mmol,92mg)のDMF(2m
l)溶液にHBTU(0.6mmol,223mg)、
次いでDIEA(1.8mmol,0.31ml)を加
えて氷冷下2時間反応させた。溶媒を留去後、残渣を酢
酸エチルに溶解し10%クエン酸、4%NaHCO3
水で洗浄した。MgSO4で乾燥後酢酸エチルを留去し
た。残渣をシリカゲルカラムで精製し、エーテルで結晶
化を行いBoc−Leu−Gly−Lys(Tfa)−
MCA 200mg(64%)を得た。HPLC,Rt
16.30分(カラム:YMC Pack ODS A,4.6×15
0mm,10−100% linear gradient CH3CN/
0.1% TFA over 30分,flow rate 1.0ml/
分)FAB−MS,(M+H),611(Calcd.for C
2836 573
[Ac-Leu-Gly-Lys (Tf
a) -MCA] Boc-Lys (Tfa) -MCA
(0.5 mmol, 277 mg) under ice-cooling, TFA
(1 ml) for 30 minutes. After evaporating the solvent,
Crystallized with tell. Lys (Tfa) -MCA / TFA
(0.5 mmol, 250 mg) and Boc-Leu-G
ly-OH (0.6 mmol, 138 mg), HOBt
・ H2O (0.6 mmol, 92 mg) DMF (2 m
l) HBTU (0.6 mmol, 223 mg) in the solution,
Then DIEA (1.8 mmol, 0.31 ml) was added.
The reaction was allowed to proceed for 2 hours under ice cooling. After distilling off the solvent, the residue is vinegared.
Dissolved in ethyl acetate 10% citric acid, 4% NaHCO3,
It was washed with water. MgSOFourAfter drying with ethyl acetate
It was The residue is purified by silica gel column and crystallized with ether.
Boc-Leu-Gly-Lys (Tfa)-
200 mg (64%) of MCA was obtained. HPLC, Rt
16.30 minutes (column: YMC Pack ODS A, 4.6 x 15
0mm, 10-100% linear gradient CH3CN /
0.1% TFA over 30 minutes, flow rate 1.0 ml /
Min) FAB-MS, (M + H), 611 (Calcd. For C
28H36N FiveO7F3)

【0033】[Ac−KGLGK(Ac)−MCAの合
成]ベッセル中にWang resin(1.1mmo
l/g,2g)を入れDCMで樹脂を膨潤させた後、D
CMに溶解させたFmoc−Gly−OH(8.8mm
ol,2.61g)、DMAP(2.2mmol,26
8mg)、DCC(8.8mmol,1.81g)を加
えて室温で4時間振とうした。溶液をろ過した後DCM
で1回洗浄、DCM/エタノール(1:1)混合溶液で
2回、エタノールで2回、DCMで1回、エーテルで1
回洗浄した後乾燥を行いFmoc−Gly−O−Wan
g resin 1.51g(102%,0.80mmo
l/g)を得た。Fmoc−Gly−O−Wang r
esin(0.8mmol/g,0.5mmol,62
5mg)を原料としてModel 433Aペプチド合
成機により、K(Boc)GLG−O−Wang re
sin 695mg(96%)の合成を行った。また、
同様の方法によってK(Boc)GLG−O−Wang
resin 708mg(98%)を得た。ベッセル中
に上記K(Boc)GLG−O−Wang resin
1.40gを入れDCMで樹脂を膨潤させた後、DCM
(15ml)、無水酢酸(10mmol,0.94m
l)、DIEA(10mmol,1.74ml)を加え
て30分振とうした。溶液をろ過した後DCMで2回洗
浄後乾燥を行うことによりAc−K(Boc)GLG−
O−Wang resin 1.52g(105%)を得
た。このAc−K(Boc)GLG−O−Wang r
esin 1.52gをTFA:水=19:1の混合溶
液(10ml)で処理して脱樹脂を行い、水に抽出して
エーテルで洗った。水相を濃縮し、凍結乾燥によりAc
−KGLG−OH 362mg(87%)を得た。
[Synthesis of Ac-KGLGK (Ac) -MCA] Wang resin (1.1 mmo) in a vessel.
1 / g, 2g) and swelling the resin with DCM, then D
Fmoc-Gly-OH (8.8 mm) dissolved in CM
ol, 2.61 g), DMAP (2.2 mmol, 26
8 mg) and DCC (8.8 mmol, 1.81 g) were added, and the mixture was shaken at room temperature for 4 hours. DCM after filtering the solution
Washed once with, twice with DCM / ethanol (1: 1) mixed solution, twice with ethanol, once with DCM, once with ether
After washing twice, it is dried and Fmoc-Gly-O-Wan
g resin 1.51g (102%, 0.80mmo
1 / g) was obtained. Fmoc-Gly-O-Wang r
esin (0.8 mmol / g, 0.5 mmol, 62
5 mg) as a raw material, and using a Model 433A peptide synthesizer, K (Boc) GLG-O-Wang re
The synthesis of sin 695 mg (96%) was performed. Also,
By the same method, K (Boc) GLG-O-Wang
708 mg (98%) of resin was obtained. The above K (Boc) GLG-O-Wang resin was added to the vessel.
After adding 1.40 g and swelling the resin with DCM, DCM
(15 ml), acetic anhydride (10 mmol, 0.94 m
l) and DIEA (10 mmol, 1.74 ml) were added and shaken for 30 minutes. The solution was filtered, washed twice with DCM, and dried to obtain Ac-K (Boc) GLG-.
O-Wang resin 1.52 g (105%) was obtained. This Ac-K (Boc) GLG-O-Wang r
1.52 g of esin was treated with a mixed solution (10 ml) of TFA: water = 19: 1 for resin removal, extracted with water and washed with ether. Concentrate the aqueous phase and freeze-dry Ac
362 mg (87%) of -KGLG-OH was obtained.

【0034】ナスフラスコ中でAc−KGLG−OH
167mg(0.4mmol)を水:ジオキサン=1:
1溶液(2ml)に溶かし氷冷下で攪拌を行った。そこ
にトリエチルアミン(0.6mmol,84μl)と
(Boc)2O(0.6mmol,131mg)を加え
8時間攪拌を行った。ジオキサンを留去後エーテルで洗
い水相を凍結乾燥行うことによりAc−K(Boc)G
LG−OH 245mg(118%)を得た。これにL
ys(Ac)−MCA・HCl(0.6mmol,26
8mg)とをDMF(1ml)溶解しHATU(0.4
8mmol,183mg)、次いでDIEA(1.0m
mol,0.18ml)を加えて2時間反応させて溶媒
の留去を行い、TAF(2ml)で処理することでAc
−KGLGK(Ac)−MCAを得た。このAc−KG
LGK(Ac)−MCAをHPLC(カラム:YMC Pack
ODS A,10×250mm,20−22% linear grad
ientCH3CN/0.1% TFA over 15分,flow rate
3.0ml/分)によって分取を行い87mgの目的
物を得た。HPLC,Rt4.52分(カラム:chromo
lith,4.6×100mm,10−100% linear gr
adient CH3CN/0.1% TFA over 15分,flow r
ate 2.0ml/分)FAB−MS,743(M+
H),742(Calcd.for C345188
Ac-KGLG-OH in an eggplant flask.
167 mg (0.4 mmol) of water: dioxane = 1:
It was dissolved in 1 solution (2 ml) and stirred under ice cooling. Triethylamine (0.6 mmol, 84 μl) and (Boc) 2 O (0.6 mmol, 131 mg) were added thereto, and the mixture was stirred for 8 hours. The dioxane was distilled off, washed with ether, and the aqueous phase was freeze-dried to obtain Ac-K (Boc) G.
245 mg (118%) of LG-OH was obtained. L to this
ys (Ac) -MCA.HCl (0.6 mmol, 26
8 mg) and DMF (1 ml) were dissolved and HATU (0.4
8 mmol, 183 mg), then DIEA (1.0 m
mol, 0.18 ml) and reacted for 2 hours to distill off the solvent, and treat with TAF (2 ml).
-KGLGK (Ac) -MCA was obtained. This Ac-KG
HPLC of LGK (Ac) -MCA (column: YMC Pack
ODS A, 10 × 250 mm, 20-22% linear grad
ientCH 3 CN / 0.1% TFA over 15 minutes, flow rate
(3.0 ml / min) to obtain 87 mg of the desired product. HPLC, Rt 4.52 min (column: chromo
lith, 4.6 × 100 mm, 10-100% linear gr
adient CH 3 CN / 0.1% TFA over 15 minutes, flow r
ate 2.0 ml / min) FAB-MS, 743 (M +
H), 742 (Calcd.for C 34 H 51 N 8 O 8)

【0035】[Ac−K(Ac)GLGK(Ac)−M
CAの合成]ナスフラスコ中でAc−KGLG−OH
164mg(0.4mmol)をピリジン(1ml)に
溶かし氷冷下で攪拌を行った。そこに無水酢酸(0.8
mmol,75μl)を加え1時間攪拌後濃縮、凍結乾
燥を行いAc−K(Ac)GLG−OH 180mg
(98%)を得た。これにLys(Ac)−MCA・H
Cl(0.6mmol,268mg)とをDMF(1m
l)溶解しHATU(0.48mmol,183m
g)、次いでDIEA(1.0mmol,0.18m
l)を加えて2時間反応させ溶媒の留去を行うことによ
りAc−K(Ac)GLGK(Ac)−MCAを得た。
このAc−K(Ac)GLGK(Ac)−MCAをHP
LC(カラム:ODS YMC Pack,10×250mm,22
% isocratic CH3CN/0.1% TFA over 17分,
flow rate 3.0ml/分)によって分取を行い87m
gの目的物を得た。HPLC,Rt4.90分(カラ
ム:chromolith,4.6×100mm,10−100%
linear gradient CH3CN/0.1%TFA over 15
分,flow rate 2.0ml/分)FAB−MS,807
(M+Na),784(Calcd.for C365489
[Ac-K (Ac) GLGK (Ac) -M
Synthesis of CA] Ac-KGLG-OH in an eggplant flask
164 mg (0.4 mmol) was dissolved in pyridine (1 ml), and the mixture was stirred under ice cooling. Acetic anhydride (0.8
mmol, 75 μl), and the mixture is stirred for 1 hour, concentrated, and lyophilized to perform Ac-K (Ac) GLG-OH 180 mg.
(98%) was obtained. Lys (Ac) -MCA ・ H
Cl (0.6 mmol, 268 mg) and DMF (1 m
l) Dissolved HATU (0.48 mmol, 183 m)
g), then DIEA (1.0 mmol, 0.18 m
l) was added and the reaction was carried out for 2 hours to distill off the solvent to obtain Ac-K (Ac) GLGK (Ac) -MCA.
This Ac-K (Ac) GLGK (Ac) -MCA is HP
LC (Column: ODS YMC Pack, 10 x 250 mm, 22
% Isocratic CH 3 CN / 0.1% TFA over 17 minutes,
Flow rate 3.0 ml / min) 87m
g of the desired product was obtained. HPLC, Rt 4.90 min (column: chromolith, 4.6 x 100 mm, 10-100%)
linear gradient CH 3 CN / 0.1% TFA over 15
Min, flow rate 2.0 ml / min) FAB-MS, 807
(M + Na), 784 ( Calcd.for C 36 H 54 N 8 O 9)

【0036】[Ac−LKSKK(Ac)−MCAの合
成]ベッセル中にOxime resin 2gを入れD
CMで樹脂を膨潤させた後、DCMに溶解させたBoc
−Lys(Z)−OH(2mmol,761mg)、D
CC(2mmol,413mg)を加えて室温で15時
間振とうした。溶液をろ過した後DCMで2回洗浄、D
CM/エタノール(1:1)混合溶液で4回、DCMで
2回洗浄した後乾燥を行いBoc−Lys(Z)−Ox
ime resin 2.56g(96%,0.43mm
ol/g)を得た。このBoc−Lys(Z)−Oxi
me resin(0.43mmol/g,1mmo
l,2.33g)をDCMで膨潤させた後25%TFA
−DCM(V/V)で1回洗浄し、25%TFA−DC
M(V/V)を加え室温で30分振とうさせた。DCM
2回、2−プロパノール1回、DCM3回、DMF3回
で樹脂を洗浄した後、Boc−Ser(Bzl)−O
H、Boc−Lys(Z)−OH、Boc−Leu−O
H・H2Oの順番に従って、Boc−アミノ酸(3mm
ol)、HBTU(3mmol,1.14g)、HOB
t・H2O(3mmol,459mg)、DMF(32
ml)、DIEA(5mmol,0.87ml)を加え
室温で30分振とうさせた。各カップリング終了後DM
F3回、DCM2回、の洗浄を行いkaisesrテス
トが陰性であることを確認し、Boc−LK(Z)S
(Bzl)L(Z)−Oxime resinの合成を
行った。また、25%TFA/DCM(V/V)での処
理後、DCM(32ml)、無水酢酸(3mmol,
0.28ml)、DIEA(4mmol,0.70m
l)を加えて30分振とうした。溶液をろ過した後DC
Mで2回洗浄後乾燥を行うことによりAc−LK(Z)
S(Bzl)L(Z)−Oxime resinを得
た。
[Synthesis of Ac-LKSKK (Ac) -MCA] Oxime resin 2 g was put in a vessel and D
Boc dissolved in DCM after swelling resin with CM
-Lys (Z) -OH (2 mmol, 761 mg), D
CC (2 mmol, 413 mg) was added and shaken at room temperature for 15 hours. Filter the solution and wash twice with DCM, D
After washing with a CM / ethanol (1: 1) mixed solution four times and DCM twice, and drying, Boc-Lys (Z) -Ox was performed.
image resin 2.56g (96%, 0.43mm
ol / g) was obtained. This Boc-Lys (Z) -Oxi
me resin (0.43 mmol / g, 1 mmo
25% TFA after swelling (1, 2.33 g) with DCM
Washed once with DCM (V / V), 25% TFA-DC
M (V / V) was added and shaken at room temperature for 30 minutes. DCM
After washing the resin with 2 times, 1 time with 2-propanol, 3 times with DCM and 3 times with DMF, Boc-Ser (Bzl) -O.
H, Boc-Lys (Z) -OH, Boc-Leu-O
According to the order of H · H 2 O, Boc-amino acid (3 mm
ol), HBTU (3 mmol, 1.14 g), HOB
t.H 2 O (3 mmol, 459 mg), DMF (32
ml) and DIEA (5 mmol, 0.87 ml) were added and shaken at room temperature for 30 minutes. DM after each coupling
After washing three times with F3 and twice with DCM, it was confirmed that the kaisesr test was negative, and Boc-LK (Z) S
(Bzl) L (Z) -Oxime resin was synthesized. Also, after treatment with 25% TFA / DCM (V / V), DCM (32 ml), acetic anhydride (3 mmol,
0.28 ml), DIEA (4 mmol, 0.70 m
l) was added and shaken for 30 minutes. DC after filtering the solution
Ac-LK (Z) by washing twice with M and then drying.
S (Bzl) L (Z) -Oxime resin was obtained.

【0037】ベッセル中のAc−LK(Z)S(Bz
l)L(Z)−Oxime resinをDMFで洗浄
し、HO−Pip(5mmol,506mg)とDMF
(32ml)を加え18時間振とうした。反応液を減圧
濃縮し、残渣を酢酸(8ml)に溶解しNa22
4(871mg)/H2O(2ml)を加え1時間30分
攪拌攪拌した。溶液を濃縮後、水を加えAc−LK
(Z)S(Bzl)L(Z)−OH 1.05g(12
0%)を得た。このAc−LK(Z)S(Bzl)L
(Z)−OH(1.2mmol,1.05g)を酢酸
(5ml)に溶解しPd/Cを加え水素雰囲気下で3時
間攪拌した。Pd/Cをろ過後、溶媒を留去し1.15
g(186%)のAc−LKSLK−OHを得た。ナス
フラスコ中でAc−LKSLK−OH 1.15g
(1.2mmol)をDMF(2ml)に溶かし氷冷下
で攪拌を行った。そこにトリエチルアミン(3.6mm
ol,0.42ml)と(Boc)2O(2.6mmo
l,480mg)を加え12時間攪拌を行った。溶媒を
留去後、エーテルで結晶化を行いAc−LK(Boc)
SLK(Boc)−OHを463mg(54%)得た。
得られたBoc−Lys(Ac)−MCA(0.5mm
ol,223mg)を氷冷下中、TFA(1ml)で3
0分処理した。溶媒を留去した後、エーテルで結晶化し
た。これにAc−LK(Boc)SLK(Boc)−O
H(0.43mmol,308mg)、HOSu(0.
65mmol,55mg)のDMF(2ml)溶液にト
リエチルアミン(0.65mmol,0.07ml)、
WSC(0.65mmol,93mg)を加えて氷冷下
12時間反応させた。溶媒を留去後、Sephadex
LH−20ゲルろ過クロマトグラフィー(2×85c
m,DMF)によって精製し、エーテルで結晶化を行い
Ac−LK(Boc)SLK(Boc)K(Ac)−M
CA343mg(74%)を得た。これをTFA(2m
l)で処理しHPLC(cカラム:ODS YMC Pack,10
×250mm,12% isocratic CH3CN/0.1%
TFA over 20分,flow rate 3.0ml/分)によっ
て分取を行い80mgの目的物を得た。HPLC,Rt
13.60分(カラム:YMC Pack ODS A,4.6×15
0mm,10−100% linear gradient CH3CN/
0.1% TFA over 30分,flow rate 1.0ml/
分)FAB−MS,(M+H),843(Calcd.for C
4165910
Ac-LK (Z) S (Bz in the vessel
l) L (Z) -Oxime resin was washed with DMF to obtain HO-Pip (5 mmol, 506 mg) and DMF.
(32 ml) was added and shaken for 18 hours. The reaction mixture was concentrated under reduced pressure, the residue was dissolved in acetic acid (8 ml) and Na 2 S 2 O was added.
4 (871 mg) / H 2 O (2 ml) was added, and the mixture was stirred and stirred for 1 hour and 30 minutes. After concentrating the solution, add water and add Ac-LK.
(Z) S (Bzl) L (Z) -OH 1.05 g (12
0%). This Ac-LK (Z) S (Bzl) L
(Z) -OH (1.2 mmol, 1.05 g) was dissolved in acetic acid (5 ml), Pd / C was added, and the mixture was stirred under a hydrogen atmosphere for 3 hours. After filtering Pd / C, the solvent was distilled off to give 1.15.
g (186%) of Ac-LKSLK-OH was obtained. 1.15 g of Ac-LKSLK-OH in an eggplant flask
(1.2 mmol) was dissolved in DMF (2 ml) and stirred under ice cooling. Triethylamine (3.6 mm)
ol, 0.42 ml) and (Boc) 2 O (2.6 mmo
1, 480 mg) was added and the mixture was stirred for 12 hours. After distilling off the solvent, crystallization with Ac-LK (Boc) was performed.
463 mg (54%) of SLK (Boc) -OH was obtained.
Obtained Boc-Lys (Ac) -MCA (0.5 mm
ol, 223 mg) under ice-cooling to 3 with TFA (1 ml).
It was processed for 0 minutes. After the solvent was distilled off, the residue was crystallized with ether. Ac-LK (Boc) SLK (Boc) -O
H (0.43 mmol, 308 mg), HOSu (0.
65 mmol, 55 mg) in DMF (2 ml) solution, triethylamine (0.65 mmol, 0.07 ml),
WSC (0.65 mmol, 93 mg) was added, and the mixture was reacted for 12 hours under ice cooling. After distilling off the solvent, Sephadex
LH-20 gel filtration chromatography (2 x 85c
m-DMF), crystallized with ether and Ac-LK (Boc) SLK (Boc) K (Ac) -M.
CA343mg (74%) was obtained. This is TFA (2m
l) treated with HPLC (c column: ODS YMC Pack, 10
× 250mm, 12% isocratic CH 3 CN / 0.1%
TFA over 20 minutes, flow rate 3.0 ml / min) was fractionated to obtain 80 mg of the desired product. HPLC, Rt
13.60 minutes (column: YMC Pack ODS A, 4.6 x 15
0mm, 10-100% linear gradient CH 3 CN /
0.1% TFA over 30 minutes, flow rate 1.0 ml /
Min) FAB-MS, (M + H), 843 (Calcd. For C
41 H 65 N 9 O 10 )

【0038】[Ac−MPSDK(Ac)−MCAの合
成]ベッセル中にBarlos resin(1.37
mmol/g,1g)を入れDCMで樹脂を膨潤させた
後、DCMに溶解させたFmoc−Asp(OtBu)
−OH(0.8mmol,451mg),DIEA
(2.7mmol,0.47ml)を加えて室温で1時
間振とうした。溶液をろ過した後、DCMで3回、DM
Fで2回、イソプロパノールで2回、メタノールで2
回、エーテルで1回それぞれ洗浄した後乾燥を行い、F
moc−Asp(OtBu)−Barlosresin
1.26g(102%,0.53mmol/g)を得
た。このFmoc−Asp(OtBu)−Barlos
resin(0.53mmol/g,0.5mmol,
950mg)を原料として、Model 433Aペプ
チド合成機により、MPS(tBu)D(OtBu)−B
arlos resin 1.26g(110%)の合成
を行った。ベッセル中にMPS(tBu)D(OtBu)
−Barlos resin 1.26gを入れDCMで
樹脂を膨潤させた後、DMF(15ml)、無水酢酸
(2.5mmol,0.24ml)、DIEA(5mm
ol,0.87ml)を加えて30分振とうした。溶液
をろ過した後DCMで2回洗浄後乾燥を行うことにより
Ac−MPS(tBu)D(OtBu)−Barlosr
esin1.24g(106%)を得た。このAc−M
PS(tBu)D(OtBu)−Barlos resi
n 1.24gを酢酸:TFE:DCM=1:1:8の
混合溶液(15ml)で処理して脱樹脂を行い、ろ過後
ろ液を濃縮し、凍結乾燥によりAc−MPS(tBu)
D(OtBu)−OH378mg(125%)を得た。
これにLys(Ac)−MCA・HCl(0.75mm
ol,335mg)とをDMF(2ml)溶解しHAT
U(0.75mmol,285mg)、次いでDIEA
(1.5mmol,0.26ml)を加えて2時間反応
させ溶媒の留去を行いTFA(4ml)で2時間処理す
ることでAc−MPSDK(Ac)−MCAを得た。こ
のAc−MPSDK(Ac)−MCAをHPLC(カラ
ム:ODS YMC Pack,10×250mm,16−18% l
inear gradient CH3CN/0.1% TFA over 12
分,flow rate 3.0ml/分)によって分取を行い
38mgの目的物を得た。HPLC,Rt4.00分
(カラム:chromolith,4.6×100mm,10−1
00% linear gradient CH3CN/0.1% TFA ove
r 15分,flow rate 2.0ml/分)FAB−MS,
(M+Na),817(Calcd.for C37517
12S)
[Synthesis of Ac-MPSDK (Ac) -MCA] Barlos resin (1.37) was added to the vessel.
(mmol / g, 1 g) and swollen the resin with DCM, and then Fmoc-Asp (O t Bu) dissolved in DCM.
-OH (0.8 mmol, 451 mg), DIEA
(2.7 mmol, 0.47 ml) was added, and the mixture was shaken at room temperature for 1 hr. After filtering the solution, DCM 3 times, DM
2 times with F, 2 times with isopropanol, 2 times with methanol
And once with ether and then dried,
moc-Asp (O t Bu) -Barlosresin
1.26 g (102%, 0.53 mmol / g) was obtained. This Fmoc-Asp (O t Bu) -Barlos
resin (0.53 mmol / g, 0.5 mmol,
The 950 mg) as a starting material, the Model 433A peptide synthesizer, MPS (t Bu) D ( O t Bu) -B
1.26 g (110%) of arlos resin was synthesized. MPS ( t Bu) D (O t Bu) in the vessel
After adding 1.26 g of Barlos resin and swelling the resin with DCM, DMF (15 ml), acetic anhydride (2.5 mmol, 0.24 ml), DIEA (5 mm
(0.87 ml) and shaken for 30 minutes. Solution by performing washed twice dried DCM was filtered Ac-MPS (t Bu) D (O t Bu) -Barlosr
1.24 g (106%) of esin was obtained. This Ac-M
PS ( t Bu) D (O t Bu) -Barlos resi
n 1.24 g was treated with a mixed solution (15 ml) of acetic acid: TFE: DCM = 1: 1: 8 to remove the resin, and the solution after filtration was concentrated and freeze-dried to Ac-MPS ( t Bu).
378 mg (125%) of D (O t Bu) -OH was obtained.
Lys (Ac) -MCA · HCl (0.75mm
ol, 335 mg) and DMF (2 ml) dissolved in HAT
U (0.75 mmol, 285 mg), then DIEA
Ac-MPSDK (Ac) -MCA was obtained by adding (1.5 mmol, 0.26 ml) and reacting for 2 hours, distilling off the solvent, and treating with TFA (4 ml) for 2 hours. This Ac-MPSDK (Ac) -MCA was analyzed by HPLC (column: ODS YMC Pack, 10 × 250 mm, 16-18% l).
inear gradient CH 3 CN / 0.1% TFA over 12
Min, flow rate 3.0 ml / min) to obtain 38 mg of the desired product. HPLC, Rt 4.00 min (column: chromolith, 4.6 × 100 mm, 10-1)
00% linear gradient CH 3 CN / 0.1% TFA ove
r 15 minutes, flow rate 2.0 ml / min) FAB-MS,
(M + Na), 817 (Calcd. For C 37 H 51 N 7 O
12 S)

【0039】実施例2(HDAC溶液の調製) 100mmディッシュに1×107個の293T細胞を
まき、24時間後に1μgのベクターをトランスフェク
ションした。但し、トランスフェクションはLipofectAm
ine 2000 reagent(Life Technologies, Inc. Gaithers
burg,MD)を使用し、ヒトHDAC1はpcDNA3−
HD1(J. Biol. Chem. 272, 28001-28007, 1997),
ヒトHDAC4はpcDNA3.1(+)−HD4(J.
Biol. Chem. 274, 11713-11720, 1999),マウスHD
AC6はpcDNA−mHDA2/HDAC6(J. Bio
l. Chem. 274, 2440-2445, 1999)の各ベクターを使用
した。OPTI−MEM中で5時間ベクターを取り込ま
せた後Dulbecco's modifiedEagle's medium(DME
M)に培地を交換して19時間インキュベートした。細
胞をPBSで洗った後、lysis buffer(50mM Tr
is−HCl(pH7.5),120mM NaCl,
5mM EDTA,0.5% Nonidet P−4
0)に懸濁し、sonicationした。上清を遠心により集
め、ProteinA/G plus agarose beads(Santa Cruz Biot
echnologies,Inc.)によって非特異的タンパクを除い
た。この上清にHDAC1とHDAC4はanti−F
LAG M2抗体(Sigma-Aldrich Inc.)、HDAC6
はanti−HA抗体(clone 3F10,Roche Molecular
Biochemicals)を加えて4°Cで1時間反応させた。こ
れにアガロースビーズを加えて4°Cで1時間反応させ
た後、lysis bufferでアガロースビーズを3回、HD b
uffer(20mM Tris−HCl(pH8.0),1
50mM NaCl,10%グリセロール,a complete
protease inhibitor cocktail(Boehringer Mannheim,
Germany))で一回洗った。HD buffer(200μl)
中FLAGペプチド(40μg)(Sigma-Aldrich In
c.)またはHAペプチド(100μg)で4°C、1時
間インキュベートしてアガロースビーズから結合したタ
ンパクを回収した。遠心後上清をCentricon(Millipore
Corporation)で限外濾過により濃縮し、HDAC反応
溶液とした。
Example 2 (Preparation of HDAC solution) 100 mm dishes were seeded with 1 × 10 7 293T cells, and 24 hours later, 1 μg of vector was transfected. However, the transfection is LipofectAm
ine 2000 reagent (Life Technologies, Inc. Gaithers
burg, MD) and human HDAC1 is pcDNA3-
HD1 (J. Biol. Chem. 272, 28001-28007, 1997),
Human HDAC4 is pcDNA3.1 (+)-HD4 (J.
Biol. Chem. 274, 11713-11720, 1999), mouse HD
AC6 is pcDNA-mHDA2 / HDAC6 (J. Bio
l. Chem. 274, 2440-2445, 1999). After incorporating the vector for 5 hours in OPTI-MEM, Dulbecco's modified Eagle's medium (DME
The medium was replaced with M) and incubated for 19 hours. After washing the cells with PBS, lysis buffer (50 mM Tr
is-HCl (pH 7.5), 120 mM NaCl,
5 mM EDTA, 0.5% Nonidet P-4
It suspended in 0) and sonicated. The supernatant was collected by centrifugation, and Protein A / G plus agarose beads (Santa Cruz Biot
non-specific proteins were removed by echnologies, Inc.). HDAC1 and HDAC4 are anti-F in this supernatant
LAG M2 antibody (Sigma-Aldrich Inc.), HDAC6
Is anti-HA antibody (clone 3F10, Roche Molecular
Biochemicals) was added and reacted at 4 ° C for 1 hour. Add agarose beads to this and incubate at 4 ° C for 1 hour. Then, agarose beads 3 times with lysis buffer, HD b
uffer (20 mM Tris-HCl (pH 8.0), 1
50 mM NaCl, 10% glycerol, a complete
protease inhibitor cocktail (Boehringer Mannheim,
Germany)) washed once. HD buffer (200 μl)
Medium FLAG peptide (40 μg) (Sigma-Aldrich In
c.) or HA peptide (100 μg) was incubated at 4 ° C. for 1 hour to recover the bound protein from the agarose beads. After centrifugation, the supernatant was added to Centricon (Millipore
Corporation) and concentrated by ultrafiltration to obtain an HDAC reaction solution.

【0040】実施例3(トリプシン溶液の調製) トリプシン溶液はトリプシン(250DIFCO LABORATORI
ES)をHD bufferに20mg/mlとなるように溶解
して調製した。
Example 3 (Preparation of trypsin solution) The trypsin solution was trypsin (250 DIFCO LABORATORI).
ES) was dissolved in HD buffer to a concentration of 20 mg / ml for preparation.

【0041】実施例4(反応のHPLCによる確認) Boc−Lys(Ac)−MCAを基質として用いた場
合の反応のHPLCによる確認、及び、蛍光反応のプロ
トコールを図1に示す。アセチル化リシンはトリプシン
により加水分解されないので、生成するAMCはHDA
C生産物由来のものに限られており、反応2は15分間
で完全に進行するので、HDAC反応が律速反応とな
り、AMCを測定することでHDAC活性を測定できる
ことがわかった。また、Boc−Lys(Ac)−βA
Nを基質として用いた場合の発色反応のスキームを図2
に示す。
Example 4 (Confirmation of reaction by HPLC) FIG. 1 shows a protocol of HPLC reaction for confirmation of the reaction when Boc-Lys (Ac) -MCA was used as a substrate, and a fluorescence reaction protocol. Since acetylated lysine is not hydrolyzed by trypsin, the AMC produced is HDA.
It was found that the reaction 2 was limited to that derived from the C product, and the reaction 2 completely proceeded in 15 minutes. Therefore, the HDAC reaction became a rate-determining reaction, and it was found that the HDAC activity can be measured by measuring AMC. In addition, Boc-Lys (Ac) -βA
FIG. 2 shows the scheme of the color reaction when N is used as a substrate.
Shown in.

【0042】実施例5(酵素の基質親和性の検討) [酵素濃度の検討]HDAC1,HDAC6の酵素濃度
について検討した。基質にはBoc−Lys(Ac)−
MCA(200μM)を使用した。HDAC1,HDA
C6は、実施例2で調製されたものを用いた(このアッ
セイ系ではHDAC濃度が低いと十分な活性が得られな
いため、限外濾過により濃縮した酵素を使用。)。ま
た、HDACに対する基質親和性の指標としてKcat
/KM値を算出した。まず、Boc−Lys(Ac)−
MCA基質を予めジメチルスルホキシド(DMSO)に
溶解し、濃度100mMの原溶液を調製した。上記のH
DAC溶液を96ウェルに9.5μl入れ、基質の原溶
液をDMSOに希釈した4mMの蛍光基質溶液0.5μ
lを添加し、37℃で15分間インキュベートすること
で脱アセチル化反応(反応容積10μl)を行った。次
いで、実施例3記載のトリプシン溶液(20mg/m
l)を15μl入れて、更に37℃で15分間加水分解
反応させた。反応生成物に起因する蛍光強度を、マイク
ロプレートリーダーfmax(Molecular Devices)を
使い、Ex=390nm、Em=460nmで測定し
た。なお、HDACの添加量を零とした別のウェルに対
して同じ操作を行い、このウェルにおいて測定される蛍
光強度をバックグランドの水準とした。実際に測定され
る値から、前記のバックグランドの水準を差し引いた値
をHDAC反応により生成している分子の分子量を反映
する真の測定値とした。基質の添加量を変え、基質濃度
と反応により生成した分子の量をLineweaber-Burkプロ
ットに基づいてプロットし、Kcat/KM値を算出し
た。結果を図3に示す。図3より、1アッセイに必要な
酵素量を、HDAC1では1.84ng、HDAC6で
は7.51ngと決定した。HDAC1はヒストンを基
質とした場合に使用する酵素量と同程度であり、HDA
C6は約3倍量に相当する。
Example 5 (Study of Enzyme Substrate Affinity) [Study of Enzyme Concentration] The enzyme concentrations of HDAC1 and HDAC6 were examined. Boc-Lys (Ac)-for the substrate
MCA (200 μM) was used. HDAC1, HDA
As C6, the one prepared in Example 2 was used (enzyme concentrated by ultrafiltration is used because sufficient activity cannot be obtained at low HDAC concentration in this assay system). In addition, Kcat is used as an index of substrate affinity for HDAC.
/ KM value was calculated. First, Boc-Lys (Ac)-
The MCA substrate was previously dissolved in dimethyl sulfoxide (DMSO) to prepare a stock solution with a concentration of 100 mM. H above
The DAC solution was added to 96 wells in an amount of 9.5 μl, and the stock solution of the substrate was diluted with DMSO to prepare a 4 mM fluorescent substrate solution 0.5 μl.
The deacetylation reaction (reaction volume: 10 μl) was performed by adding 1 and incubating at 37 ° C. for 15 minutes. Then, the trypsin solution described in Example 3 (20 mg / m 2
15 μl of 1) was added, and the mixture was further hydrolyzed at 37 ° C. for 15 minutes. The fluorescence intensity due to the reaction product was measured at Ex = 390 nm and Em = 460 nm using a microplate reader fmax (Molecular Devices). The same operation was performed on another well in which the added amount of HDAC was zero, and the fluorescence intensity measured in this well was set as the background level. The value obtained by subtracting the background level from the value actually measured was taken as the true measurement value that reflects the molecular weight of the molecule produced by the HDAC reaction. The Kcat / KM value was calculated by changing the substrate addition amount and plotting the substrate concentration and the amount of molecules produced by the reaction based on the Lineweaber-Burk plot. The results are shown in Fig. 3. From FIG. 3, the amount of enzyme required for one assay was determined to be 1.84 ng for HDAC1 and 7.51 ng for HDAC6. HDAC1 is equivalent to the amount of enzyme used when histone is used as a substrate,
C6 corresponds to about 3 times the amount.

【0043】[基質濃度の検討]上記[酵素濃度の検
討]で求めた量の酵素に対して、基質濃度を種々変更し
て酵素親和性について検討した。基質としては、ペプチ
ド基部分の配列が異なる4種類の基質、すなわちアセチ
ル化リシン(Boc−Lys(Ac)−MCA),ヒス
トンH4配列由来ジペプチド型(Boc−Gly−Ly
s(Ac)−MCA),ヒストンH4配列由来トリペプ
チド型(Ac−Leu−Gly−Lys(Ac)−MC
A)及びp53配列由来ペンタペプチド型(Ac−LK
SKK(Ac)−MCA)を用い、酵素親和性を調べ
た。結果を図4(左:HDAC1, 右:HDAC6)に
示す。この結果からMichaelis-Menten反応の式に基づい
て、Kcat/KM値(酵素活性の指標となる値)を決
定した。結果を[表4]に示す。表4から、アセチル化
リシンではHDAC1とHDAC6のKcat/KM値
はほとんど同じなのに対して、ヒストンH4配列を持つ
もの(GK(Ac),LGK(Ac))は約10倍、p
53配列のものは約100倍、HDAC1の方が大きな
Kcat/KM値を示し、オリゴペプチド鎖の配列を任
意に変えると、HDACサブタイプによる基質との親和
性の違いが示されたことから、本発明のHDAC測定用
基質を用いると、HDACサブタイプの基質特異性の検
討ができることがわかった。
[Study of Substrate Concentration] With respect to the amount of enzyme obtained in the above [Study of Enzyme Concentration], the substrate concentration was variously changed and the enzyme affinity was examined. As substrates, four kinds of substrates having different peptide group sequences, that is, acetylated lysine (Boc-Lys (Ac) -MCA) and histone H4 sequence-derived dipeptide type (Boc-Gly-Ly) were used.
s (Ac) -MCA), a histone H4 sequence-derived tripeptide type (Ac-Leu-Gly-Lys (Ac) -MC)
A) and p53 sequence-derived pentapeptide type (Ac-LK
The enzyme affinity was investigated using SKK (Ac) -MCA). The results are shown in FIG. 4 (left: HDAC1, right: HDAC6). From this result, the Kcat / KM value (value serving as an index of enzyme activity) was determined based on the Michaelis-Menten reaction formula. The results are shown in [Table 4]. From Table 4, acetylated lysine has almost the same Kcat / KM value in HDAC1 and HDAC6, whereas those having a histone H4 sequence (GK (Ac), LGK (Ac)) are about 10 times, p
HDAC1 showed a larger Kcat / KM value than that of the 53 sequence, which was about 100-fold, and when the sequence of the oligopeptide chain was arbitrarily changed, a difference in affinity with the substrate depending on the HDAC subtype was shown. It was found that the substrate specificity of the HDAC subtype can be examined by using the HDAC measurement substrate of the present invention.

【0044】[0044]

【表4】 [Table 4]

【0045】実施例6(各種HDAC測定用基質におけ
るKcat/KM値の測定) 実施例5記載の方法により、ヒストンH4由来配列をも
つAc−KGLGK(Ac)−MCAを基質としてHD
AC1,4,6に対するKcat/KM値を算出した。
結果を[表5]に示す。
Example 6 (Measurement of Kcat / KM value in various substrates for measuring HDAC) By the method described in Example 5, Ac-KGLGK (Ac) -MCA having a histone H4-derived sequence was used as a substrate for HD.
The Kcat / KM values for AC1, 4, 6 were calculated.
The results are shown in [Table 5].

【0046】[0046]

【表5】 [Table 5]

【0047】実施例5記載の方法により、ヒストンH4
由来配列を持つAc−LGK(Ac)−MCAを基質と
してHDAC1,4,6に対するKcat/KM値を算
出した。結果を[表6]に示す。
According to the method described in Example 5, histone H4
Kcat / KM values for HDAC1, 4, 6 were calculated using Ac-LGK (Ac) -MCA having the derived sequence as a substrate. The results are shown in [Table 6].

【0048】[0048]

【表6】 [Table 6]

【0049】実施例5記載の方法により、ヒストンH4
由来配列を持つBoc−GK(Ac)−MCAを基質と
してHDAC1,4,6に対するKcat/KM値を算
出した。結果を[表7]に示す。
According to the method described in Example 5, histone H4
The Kcat / KM value for HDAC1, 4, 6 was calculated using Boc-GK (Ac) -MCA having the derived sequence as a substrate. The results are shown in [Table 7].

【0050】[0050]

【表7】 [Table 7]

【0051】実施例5記載の方法により、Boc−K
(Ac)−MCAを基質としてHDAC1,4,6に対
するKcat/KM値を算出した。結果を[表8]に示
す。
By the method described in Example 5, Boc-K
Kcat / KM values were calculated for HDACs 1, 4, and 6 using (Ac) -MCA as a substrate. The results are shown in [Table 8].

【0052】[0052]

【表8】 [Table 8]

【0053】実施例5記載の方法により、p53由来配
列を持つAc−SRHKK(Ac)−MCAを基質とし
てHDAC1,4,6に対するKcat/KM値を算出
した。結果を[表9]に示す。
By the method described in Example 5, Kcat / KM values for HDAC1, 4, 6 were calculated using Ac-SRHKK (Ac) -MCA having a p53-derived sequence as a substrate. The results are shown in [Table 9].

【0054】[0054]

【表9】 [Table 9]

【0055】実施例5記載の方法により、チューブリン
由来配列を持つAc−MPSDK(Ac)−MCAを基
質としてHDAC1,4,6に対するKcat/KM値
を算出した。結果を[表10]に示す。
By the method described in Example 5, Kcat / KM values for HDACs 1, 4, and 6 were calculated using Ac-MPSDK (Ac) -MCA having a tubulin-derived sequence as a substrate. The results are shown in [Table 10].

【0056】[0056]

【表10】 [Table 10]

【0057】特定の基質に対する各HDACサブタイプ
の比活性が異なることが確認できた。そのため、各々の
HDACサブタイプにおいて基質の反応性を比較するた
め、実施例5記載の方法により、ヒストンH4由来配列
をもつAc−KGLGK(Ac)−MCA(H4)を基
質としたHDAC1,4,6に対するKcat/KM値
(表5参照)から、上記p53由来配列を持つAc−S
RHKK(Ac)−MCA(p53)、チューブリン由
来配列を持つAc−MPSDK(Ac)−MCA(tu
b)、Boc−K(Ac)−MCA(K)を基質とした
Kcat/KM値(表8,9,10参照)の比(rati
o)を算出した。結果を[表11]に示す。
It was confirmed that the specific activity of each HDAC subtype for a specific substrate was different. Therefore, in order to compare the reactivity of the substrates in each HDAC subtype, the HDACs 1, 4, using Ac-KGLGK (Ac) -MCA (H4) having a histone H4-derived sequence as a substrate, were prepared by the method described in Example 5. From the Kcat / KM value for 6 (see Table 5), Ac-S having the above p53-derived sequence
RHKK (Ac) -MCA (p53), Ac-MPSDK (Ac) -MCA (tu with tubulin-derived sequence
b), the ratio (rati) of Kcat / KM values (see Tables 8, 9, and 10) using Boc-K (Ac) -MCA (K) as a substrate.
o) was calculated. The results are shown in [Table 11].

【0058】[0058]

【表11】 [Table 11]

【0059】HDAC1及びHDAC4はヒストンH4
由来配列をもつ基質を最も親和性の高い基質としたが、
HDAC6は、その生理的な基質の一つであるチューブ
リン由来配列を持つ基質を最も親和性の高い基質とし
た。 実施例7(HDAC酵素阻害活性の測定) HDAC測定用基質が、インビトロ系のHDAC酵素阻
害活性の測定に使用可能であるかどうかを以下のように
評価した。各種HDAC測定用基質を予めジメチルスル
ホキシド(DMSO)に溶解し、濃度4mMの基質溶液
を調製した。他方、HDAC酵素阻害剤として知られて
いるトリコスタチンA(TSA)、トラポキシンB(T
PXB)等をDMSOに溶解して、濃度10mMの原溶
液を調製し、これを阻害剤の原溶液とした。実施例2記
載のHDAC溶液を96ウェルに9.0μl入れ、阻害
剤溶液0.5μl、基質溶液0.5μlを添加し、37
℃で15分間インキュベートすることで反応させた(反
応容積10μl)。その後、実施例3記載のトリプシン
溶液を15μl入れて、更に37℃で15分間反応させ
た。反応生成物に起因する蛍光強度を前述のようにマイ
クロプレートリーダーで測定した。なお、HDACの添
加量を零とした別のウェルに対して同じ操作を行い、こ
のウェルにおいて測定される蛍光強度をバックグランド
の水準とした。実際に測定される値から、前記のバック
グランドの水準を差し引いた値をHDAC反応により生
成した分子の量を反映する真の測定値とした。なお参考
群として、阻害剤を反応系に添加せず、同じ操作を行っ
た。阻害活性は、参考群におけるHDAC活性を50%
阻害する濃度(50%阻害濃度)で表した。結果を[表
12]に示す。表12から、ヒストンを基質としたとき
と同様なIC50値が示された。このことより、本発明
のHDAC測定用基質は、HDAC阻害活性測定に十分
使用可能であることがわかった。
HDAC1 and HDAC4 are histone H4
The substrate with the derived sequence was the substrate with the highest affinity,
In HDAC6, a substrate having a tubulin-derived sequence, which is one of its physiological substrates, was used as a substrate having the highest affinity. Example 7 (Measurement of HDAC enzyme inhibitory activity) Whether or not the substrate for HDAC measurement can be used for measuring the in vitro HDAC enzyme inhibitory activity was evaluated as follows. Various HDAC measurement substrates were previously dissolved in dimethyl sulfoxide (DMSO) to prepare a substrate solution having a concentration of 4 mM. On the other hand, trichostatin A (TSA) and trapoxin B (T
PXB) was dissolved in DMSO to prepare a stock solution with a concentration of 10 mM, which was used as a stock solution of the inhibitor. The HDAC solution described in Example 2 was added to 96 wells in an amount of 9.0 μl, and an inhibitor solution (0.5 μl) and a substrate solution (0.5 μl) were added.
The reaction was carried out by incubating at 15 ° C. for 15 minutes (reaction volume 10 μl). Then, 15 μl of the trypsin solution described in Example 3 was added, and the mixture was further reacted at 37 ° C. for 15 minutes. The fluorescence intensity due to the reaction product was measured with a microplate reader as described above. The same operation was performed on another well in which the added amount of HDAC was zero, and the fluorescence intensity measured in this well was set as the background level. The value obtained by subtracting the background level from the value actually measured was taken as the true measurement value that reflects the amount of molecules produced by the HDAC reaction. As a reference group, the same operation was performed without adding the inhibitor to the reaction system. The inhibitory activity is 50% of the HDAC activity in the reference group.
It was expressed as the concentration that inhibits (50% inhibitory concentration). The results are shown in [Table 12]. From Table 12, the same IC50 values as when using histone as a substrate were shown. From this, it was found that the substrate for measuring HDAC of the present invention can be sufficiently used for measuring HDAC inhibitory activity.

【0060】[0060]

【表12】 [Table 12]

【0061】[従来法との比較]従来法によるアッセイ
は前記のHDAC溶液と[3H]で標識した上記アセチ
ル化ヒストン基質溶液、阻害剤であるトリコスタチンA
(TSA)又はトラポキシンB(TPXB)存在下37
℃で15分間インキュベートすることで行った(反応容
積100μl)。反応を10μlのHClを添加して止
め、酵素反応で切り出された[3H]酢酸を酢酸エチル
で抽出して放射活性を測定した。なお参考群として、阻
害剤を反応系に添加せず、同じ操作を行った。阻害活性
は、参考群におけるHDAC活性の50%阻害濃度で表
した。
[Comparison with the conventional method] The assay according to the conventional method comprises the above HDAC solution, the above-mentioned acetylated histone substrate solution labeled with [ 3 H], and the inhibitor trichostatin A.
(TSA) or trapoxin B (TPXB) 37
It was performed by incubating at 15 ° C. for 15 minutes (reaction volume 100 μl). The reaction was stopped by adding 10 μl of HCl, and [ 3 H] acetic acid cleaved by the enzymatic reaction was extracted with ethyl acetate to measure the radioactivity. As a reference group, the same operation was performed without adding the inhibitor to the reaction system. The inhibitory activity was expressed as a 50% inhibitory concentration of HDAC activity in the reference group.

【0062】[0062]

【発明の効果】本発明によると、単に非放射能によるH
DAC測定を可能にしただけでなく、ペプチド部分の配
列を様々に改変することにより、HDACのサブタイプ
酵素に特異的な基質を作製することができ、HDACの
サブタイプを同定することができるばかりか、これまで
不可能であったHDACのサブタイプ酵素に特異的な酵
素阻害剤の探索が可能となる。
According to the present invention, H due to only non-radioactivity
Not only is it possible to measure DAC, but by modifying the sequence of the peptide part in various ways, a substrate specific to the HDAC subtype enzyme can be prepared, and the HDAC subtype can only be identified. Or, it becomes possible to search for an enzyme inhibitor specific to a subtype enzyme of HDAC, which has been impossible so far.

【0063】[0063]

【配列表】 SEQUENCE LISTING <110> JAPAN SCIENCE AND TECNOLOGY CORPORATION <120> Measuring method of histon deacetylase activity using fluorescent or chromogenic substrates <130> A131P24 <140> <141> <150> JP P2001-358583 <151> 2001-11-22 <160> 72 <170> PatentIn Ver. 2.1 <210> 1 <211> 102 <212> PRT <213> Homo sapiens <400> 1 Ser Gly Arg Gly Lys Gly Gly Lys Gly Leu Gly Lys Gly Gly Ala Lys 1 5 10 15 Arg His Arg Lys Val Leu Arg Asp Asn Ile Gln Gly Ile Thr Lys Pro 20 25 30 Ala Ile Arg Arg Leu Ala Arg Arg Gly Gly Val Lys Arg Ile Ser Gly 35 40 45 Leu Ile Tyr Glu Glu Thr Arg Gly Val Leu Lys Val Phe Leu Glu Asn 50 55 60 Val Ile Arg Asp Ala Val Thr Tyr Thr Glu His Ala Lys Arg Lys Thr 65 70 75 80 Val Thr Ala Met Asp Val Val Tyr Ala Leu Lys Arg Gln Gly Arg Thr 85 90 95 Leu Tyr Gly Phe Gly Gly 100 <210> 2 <211> 5 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence:P1 <400> 2 Ser Gly Arg Gly Lys 1 5 <210> 3 <211> 5 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence:P2 <400> 3 Gly Lys Gly Gly Lys 1 5 <210> 4 <211> 5 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence:P3 <400> 4 Lys Gly Leu Gly Lys 1 5 <210> 5 <211> 10 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence:P4 <400> 5 Arg Gly Lys Gly Gly Lys Gly Leu Gly Lys 1 5 10 <210> 6 <211> 5 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence:P5 <400> 6 Lys Gly Gly Ala Lys 1 5 <210> 7 <211> 10 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence:P6 <400> 7 Gly Lys Gly Leu Gly Lys Gly Gly Ala Lys 1 5 10 <210> 8 <211> 15 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence:P7 <400> 8 Gly Arg Gly Lys Gly Gly Lys Gly Leu Gly Lys Gly Gly Ala Lys 1 5 10 15 <210> 9 <211> 130 <212> PRT <213> Homo sapiens <400> 9 Met Ser Gly Arg Gly Lys Gln Gly Gly Lys Ala Arg Ala Lys Ala Lys 1 5 10 15 Thr Arg Ser Ser Arg Ala Gly Leu Gln Phe Pro Val Gly Arg Val His 20 25 30 Arg Leu Leu Arg Lys Gly Asn Tyr Ala Glu Arg Val Gly Ala Gly Ala 35 40 45 Pro Val Tyr Leu Ala Ala Val Leu Glu Tyr Leu Thr Ala Glu Ile Leu 50 55 60 Glu Leu Ala Gly Asn Ala Ala Arg Asp Asn Lys Lys Thr Arg Ile Ile 65 70 75 80 Pro Arg His Leu Gln Leu Ala Ile Arg Asn Asp Glu Glu Leu Asn Lys 85 90 95 Leu Leu Gly Lys Val Thr Ile Ala Gln Gly Gly Val Leu Pro Asn Ile 100 105 110 Gln Ala Val Leu Leu Pro Lys Lys Thr Glu Ser His His Lys Ala Lys 115 120 125 Gly Lys 130 <210> 10 <211> 6 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence:P8 <400> 10 Met Ser Gly Arg Gly Lys 1 5 <210> 11 <211> 126 <212> PRT <213> Homo sapiens <400> 11 Met Pro Glu Pro Ser Lys Ser Ala Pro Ala Pro Lys Lys Gly Ser Lys 1 5 10 15 Lys Ala Val Thr Lys Ala Gln Lys Lys Asp Gly Lys Lys Arg Lys Arg 20 25 30 Ser Arg Lys Glu Ser Tyr Ser Val Tyr Val Tyr Lys Val Leu Lys Gln 35 40 45 Val His Pro Asp Thr Gly Ile Ser Ser Lys Ala Met Gly Ile Met Asn 50 55 60 Ser Phe Val Asn Asp Ile Phe Glu Arg Ile Ala Gly Glu Ala Ser Arg 65 70 75 80 Leu Ala His Tyr Asn Lys Arg Ser Thr Ile Thr Ser Arg Glu Ile Gln 85 90 95 Thr Ala Val Arg Leu Leu Leu Pro Gly Glu Leu Ala Lys His Ala Val 100 105 110 Ser Glu Gly Thr Lys Ala Val Thr Lys Tyr Thr Ser Ser Lys 115 120 125 <210> 12 <211> 5 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence:P9 <400> 12 Pro Glu Pro Ser Lys 1 5 <210> 13 <211> 5 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence:P10 <400> 13 Pro Ala Pro Lys Lys 1 5 <210> 14 <211> 10 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence:P11 <400> 14 Pro Ser Lys Ser Ala Pro Ala Pro Lys Lys 1 5 10 <210> 15 <211> 5 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence:P12 <400> 15 Lys Lys Gly Ser Lys 1 5 <210> 16 <211> 10 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence:P13 <400> 16 Ser Ala Pro Ala Pro Lys Lys Gly Ser Lys 1 5 10 <210> 17 <211> 15 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence:P14 <400> 17 Pro Glu Pro Ser Lys Ser Ala Pro Ala Pro Lys Lys Gly Ser Lys 1 5 10 15 <210> 18 <211> 5 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence:P15 <400> 18 Lys Ala Val Thr Lys 1 5 <210> 19 <211> 10 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence:P16 <400> 19 Lys Lys Gly Ser Lys Lys Ala Val Thr Lys 1 5 10 <210> 20 <211> 15 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence:P17 <400> 20 Ser Ala Pro Ala Pro Lys Lys Gly Ser Lys Lys Ala Val Thr Lys 1 5 10 15 <210> 21 <211> 135 <212> PRT <213> Homo sapiens <400> 21 Met Ala Arg Thr Lys Gln Thr Ala Arg Lys Ser Thr Gly Gly Lys Ala 1 5 10 15 Pro Arg Lys Gln Leu Ala Thr Lys Ala Ala Arg Lys Ser Thr Pro Ser 20 25 30 Thr Cys Gly Val Lys Pro His Arg Tyr Arg Pro Gly Thr Val Ala Leu 35 40 45 Arg Glu Ile Arg Arg Tyr Gln Lys Ser Thr Glu Leu Leu Ile Arg Lys 50 55 60 Leu Pro Phe Gln Arg Leu Val Arg Glu Ile Ala Gln Asp Phe Asn Thr 65 70 75 80 Asp Leu Arg Phe Gln Ser Ala Ala Val Gly Ala Leu Gln Glu Ala Ser 85 90 95 Glu Ala Tyr Leu Val Gly Leu Leu Glu Asp Thr Asn Leu Cys Ala Ile 100 105 110 His Ala Lys Arg Val Thr Ile Met Pro Lys Asp Ile Gln Leu Ala Arg 115 120 125 Arg Ile Arg Gly Glu Arg Ala 130 135 <210> 22 <211> 5 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence:P18 <400> 22 Met Ala Arg Thr Lys 1 5 <210> 23 <211> 5 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence:P19 <400> 23 Gln Thr Ala Arg Lys 1 5 <210> 24 <211> 10 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence:P20 <400> 24 Met Ala Arg Thr Lys Gln Thr Ala Arg Lys 1 5 10 <210> 25 <211> 5 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence:P21 <400> 25 Ser Thr Gly Gly Lys 1 5 <210> 26 <211> 10 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence:P22 <400> 26 Gln Thr Ala Arg Lys Ser Thr Gly Gly Lys 1 5 10 <210> 27 <211> 15 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence:P23 <400> 27 Met Ala Arg Thr Lys Gln Thr Ala Arg Lys Ser Thr Gly Gly Lys 1 5 10 15 <210> 28 <211> 5 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence:P24 <400> 28 Lys Ala Pro Arg Lys 1 5 <210> 29 <211> 10 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence:P25 <400> 29 Lys Ser Thr Gly Gly Lys Ala Pro Arg Lys 1 5 10 <210> 30 <211> 15 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence:P26 <400> 30 Lys Gln Thr Ala Arg Lys Ser Thr Gly Gly Lys Ala Pro Arg Lys 1 5 10 15 <210> 31 <211> 5 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence:P27 <400> 31 Gln Leu Ala Thr Lys 1 5 <210> 32 <211> 10 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence:P28 <400> 32 Lys Ala Pro Arg Lys Gln Leu Ala Thr Lys 1 5 10 <210> 33 <211> 15 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence:P29 <400> 33 Lys Ser Thr Gly Gly Lys Ala Pro Arg Lys Gln Leu Ala Thr Lys 1 5 10 15 <210> 34 <211> 5 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence:P30 <400> 34 Lys Ala Ala Arg Lys 1 5 <210> 35 <211> 10 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence:P31 <400> 35 Lys Gln Leu Ala Thr Lys Ala Ala Arg Lys 1 5 10 <210> 36 <211> 15 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence:P32 <400> 36 Gly Lys Ala Pro Arg Lys Gln Leu Ala Thr Lys Ala Ala Arg Lys 1 5 10 15 <210> 37 <211> 393 <212> PRT <213> Homo sapiens <400> 37 Met Glu Glu Pro Gln Ser Asp Pro Ser Val Glu Pro Pro Leu Ser Gln 1 5 10 15 Glu Thr Phe Ser Asp Leu Trp Lys Leu Leu Pro Glu Asn Asn Val Leu 20 25 30 Ser Pro Leu Pro Ser Gln Ala Met Asp Asp Leu Met Leu Ser Pro Asp 35 40 45 Asp Ile Glu Gln Trp Phe Thr Glu Asp Pro Gly Pro Asp Glu Ala Pro 50 55 60 Arg Met Pro Glu Ala Ala Pro Arg Val Ala Pro Ala Pro Ala Ala Pro 65 70 75 80 Thr Pro Ala Ala Pro Ala Pro Ala Pro Ser Trp Pro Leu Ser Ser Ser 85 90 95 Val Pro Ser Gln Lys Thr Tyr Gln Gly Ser Tyr Gly Phe Arg Leu Gly 100 105 110 Phe Leu His Ser Gly Thr Ala Lys Ser Val Thr Cys Thr Tyr Ser Pro 115 120 125 Ala Leu Asn Lys Met Phe Cys Gln Leu Ala Lys Thr Cys Pro Val Gln 130 135 140 Leu Trp Val Asp Ser Thr Pro Pro Pro Gly Thr Arg Val Arg Ala Met 145 150 155 160 Ala Ile Tyr Lys Gln Ser Gln His Met Thr Glu Val Val Arg Arg Cys 165 170 175 Pro His His Glu Arg Cys Ser Asp Ser Asp Gly Leu Ala Pro Pro Gln 180 185 190 His Leu Ile Arg Val Glu Gly Asn Leu Arg Val Glu Tyr Leu Asp Asp 195 200 205 Arg Asn Thr Phe Arg His Ser Val Val Val Pro Tyr Glu Pro Pro Glu 210 215 220 Val Gly Ser Asp Cys Thr Thr Ile His Tyr Asn Tyr Met Cys Asn Ser 225 230 235 240 Ser Cys Met Gly Gly Met Asn Arg Arg Pro Ile Leu Thr Ile Ile Thr 245 250 255 Leu Glu Asp Ser Ser Gly Asn Leu Leu Gly Arg Asn Ser Phe Glu Val 260 265 270 Arg Val Cys Ala Cys Ala Gly Arg Asp Arg Arg Thr Glu Glu Glu Asn 275 280 285 Leu Arg Lys Lys Gly Glu Pro His His Glu Leu Pro Pro Gly Ser Thr 290 295 300 Lys Arg Ala Leu Pro Asn Asn Thr Ser Ser Ser Pro Gln Pro Lys Lys 305 310 315 320 Lys Pro Leu Asp Gly Glu Tyr Phe Thr Leu Gln Ile Arg Gly Arg Glu 325 330 335 Arg Phe Glu Met Phe Arg Glu Leu Asn Glu Ala Leu Glu Leu Lys Asp 340 345 350 Ala Gln Ala Gly Lys Glu Pro Gly Gly Ser Arg Ala His Ser Ser His 355 360 365 Leu Lys Ser Lys Lys Gly Gln Ser Thr Ser Arg His Lys Lys Leu Met 370 375 380 Phe Lys Thr Glu Gly Pro Asp Ser Asp 385 390 <210> 38 <211> 5 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence:P33 <400> 38 Pro Gln Pro Lys Lys 1 5 <210> 39 <211> 10 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence:P34 <400> 39 Asn Thr Ser Ser Ser Pro Gln Pro Lys Lys 1 5 10 <210> 40 <211> 15 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence:P35 <400> 40 Arg Ala Leu Pro Asn Asn Thr Ser Ser Ser Pro Gln Pro Lys Lys 1 5 10 15 <210> 41 <211> 5 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence:P36 <400> 41 Leu Lys Ser Lys Lys 1 5 <210> 42 <211> 10 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence:P37 <400> 42 Ala His Ser Ser His Leu Lys Ser Lys Lys 1 5 10 <210> 43 <211> 15 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence:P38 <400> 43 Pro Gly Gly Ser Arg Ala His Ser Ser His Leu Lys Ser Lys Lys 1 5 10 15 <210> 44 <211> 5 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence:P39 <400> 44 Ser Arg His Lys Lys 1 5 <210> 45 <211> 10 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence:P40 <400> 45 Lys Gly Gln Ser Thr Ser Arg His Lys Lys 1 5 10 <210> 46 <211> 15 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence:P41 <400> 46 His Leu Lys Ser Lys Lys Gly Gln Ser Thr Ser Arg His Lys Lys 1 5 10 15 <210> 47 <211> 451 <212> PRT <213> Homo sapiens <400> 47 Met Arg Glu Cys Ile Ser Ile His Val Gly Gln Ala Gly Val Gln Ile 1 5 10 15 Gly Asn Ala Cys Trp Glu Leu Tyr Cys Leu Glu His Gly Ile Gln Pro 20 25 30 Asp Gly Gln Met Pro Ser Asp Lys Thr Ile Gly Gly Gly Asp Asp Ser 35 40 45 Phe Asn Thr Phe Phe Ser Glu Thr Gly Ala Gly Lys His Val Pro Arg 50 55 60 Ala Val Phe Val Asp Leu Glu Pro Thr Val Ile Asp Glu Val Arg Thr 65 70 75 80 Gly Thr Tyr Arg Gln Leu Phe His Pro Glu Gln Leu Ile Thr Gly Lys 85 90 95 Glu Asp Ala Ala Asn Asn Tyr Ala Arg Gly His Tyr Thr Ile Gly Lys 100 105 110 Glu Ile Ile Asp Leu Val Leu Asp Arg Ile Arg Lys Leu Ala Asp Gln 115 120 125 Cys Thr Gly Leu Gln Gly Phe Leu Val Phe His Ser Phe Gly Gly Gly 130 135 140 Thr Gly Ser Gly Phe Thr Ser Leu Leu Met Glu Arg Leu Ser Val Asp 145 150 155 160 Tyr Gly Lys Lys Ser Lys Leu Glu Phe Ser Ile Tyr Pro Ala Pro Gln 165 170 175 Val Ser Thr Ala Val Val Glu Pro Tyr Asn Ser Ile Leu Thr Thr His 180 185 190 Thr Thr Leu Glu His Ser Asp Cys Ala Phe Met Val Asp Asn Glu Ala 195 200 205 Ile Tyr Asp Ile Cys Arg Arg Asn Leu Asp Ile Glu Arg Pro Thr Tyr 210 215 220 Thr Asn Leu Asn Arg Leu Ile Ser Gln Ile Val Ser Ser Ile Thr Ala 225 230 235 240 Ser Leu Arg Phe Asp Gly Ala Leu Asn Val Asp Leu Thr Glu Phe Gln 245 250 255 Thr Asn Leu Val Pro Tyr Pro Arg Ile His Phe Pro Leu Ala Thr Tyr 260 265 270 Ala Pro Val Ile Ser Ala Glu Lys Ala Tyr His Glu Gln Leu Ser Val 275 280 285 Ala Glu Ile Thr Asn Ala Cys Phe Glu Pro Ala Asn Gln Met Val Lys 290 295 300 Cys Asp Pro Arg His Gly Lys Tyr Met Ala Cys Cys Leu Leu Tyr Arg 305 310 315 320 Gly Asp Val Val Pro Lys Asp Val Asn Ala Ala Ile Ala Thr Ile Lys 325 330 335 Thr Lys Arg Ser Ile Gln Phe Val Asp Trp Cys Pro Thr Gly Phe Lys 340 345 350 Val Gly Ile Asn Tyr Gln Pro Pro Thr Val Val Pro Gly Gly Asp Leu 355 360 365 Ala Lys Val Gln Arg Ala Val Cys Met Leu Ser Asn Thr Thr Ala Ile 370 375 380 Ala Glu Ala Trp Ala Arg Leu Asp His Lys Phe Asp Leu Met Tyr Ala 385 390 395 400 Lys Arg Ala Phe Val His Trp Tyr Val Gly Glu Gly Met Glu Glu Gly 405 410 415 Glu Phe Ser Glu Ala Arg Glu Asp Met Ala Ala Leu Glu Lys Asp Tyr 420 425 430 Glu Glu Val Gly Val Asp Ser Val Glu Gly Glu Gly Glu Glu Glu Gly 435 440 445 Glu Glu Tyr 450 <210> 48 <211> 5 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence:P42 <400> 48 Met Pro Ser Asp Lys 1 5 <210> 49 <211> 10 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence:P43 <400> 49 Gln Pro Asp Gly Gln Met Pro Ser Asp Lys 1 5 10 <210> 50 <211> 15 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence:P44 <400> 50 Leu Glu His Gly Ile Gln Pro Asp Gly Gln Met Pro Ser Asp Lys 1 5 10 15 <210> 51 <211> 362 <212> PRT <213> Homo sapiens <400> 51 Met Ala Thr Ala Glu Thr Ala Leu Pro Ser Ile Ser Thr Leu Thr Ala 1 5 10 15 Leu Gly Pro Phe Pro Asp Thr Gln Asp Asp Phe Leu Lys Trp Trp Arg 20 25 30 Ser Glu Glu Ala Gln Asp Met Gly Pro Gly Pro Pro Asp Pro Thr Glu 35 40 45 Pro Pro Leu His Val Lys Ser Glu Asp Gln Pro Gly Glu Glu Glu Asp 50 55 60 Asp Glu Arg Gly Ala Asp Ala Thr Trp Asp Leu Asp Leu Leu Leu Thr 65 70 75 80 Asn Phe Ser Gly Pro Glu Pro Gly Gly Ala Pro Gln Thr Cys Ala Leu 85 90 95 Ala Pro Ser Glu Ala Ser Gly Ala Gln Tyr Pro Pro Pro Pro Glu Thr 100 105 110 Leu Gly Ala Tyr Ala Gly Gly Pro Gly Leu Val Ala Gly Leu Leu Gly 115 120 125 Ser Glu Asp His Ser Gly Trp Val Arg Pro Ala Leu Arg Ala Arg Ala 130 135 140 Pro Asp Ala Phe Val Gly Pro Ala Leu Ala Pro Ala Pro Ala Pro Glu 145 150 155 160 Pro Lys Ala Leu Ala Leu Gln Pro Val Tyr Pro Gly Pro Gly Ala Gly 165 170 175 Ser Ser Gly Gly Tyr Phe Pro Arg Thr Gly Leu Ser Val Pro Ala Ala 180 185 190 Ser Gly Ala Pro Tyr Gly Leu Leu Ser Gly Tyr Pro Ala Met Tyr Pro 195 200 205 Ala Pro Gln Tyr Gln Gly His Phe Gln Leu Phe Arg Gly Leu Gln Gly 210 215 220 Pro Ala Pro Gly Pro Ala Thr Ser Pro Ser Phe Leu Ser Cys Leu Gly 225 230 235 240 Pro Gly Thr Val Gly Thr Gly Leu Gly Gly Thr Ala Glu Asp Pro Gly 245 250 255 Val Ile Ala Glu Thr Ala Pro Ser Lys Arg Gly Arg Arg Ser Trp Ala 260 265 270 Arg Lys Arg Gln Ala Ala His Thr Cys Ala His Pro Gly Cys Gly Lys 275 280 285 Ser Tyr Thr Lys Ser Ser His Leu Lys Ala His Leu Arg Thr His Thr 290 295 300 Gly Glu Lys Pro Tyr Ala Cys Thr Trp Glu Gly Cys Gly Trp Arg Phe 305 310 315 320 Ala Arg Ser Asp Glu Leu Thr Arg His Tyr Arg Lys His Thr Gly Gln 325 330 335 Arg Pro Phe Arg Cys Gln Leu Cys Pro Arg Ala Phe Ser Arg Ser Asp 340 345 350 His Leu Ala Leu His Met Lys Arg His Leu 355 360 <210> 52 <211> 15 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence:P45 <400> 52 Thr Ala Glu Asp Pro Gly Val Ile Ala Glu Thr Ala Pro Ser Lys 1 5 10 15 <210> 53 <211> 15 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence:P46 <400> 53 Glu Thr Ala Pro Ser Lys Arg Gly Arg Arg Ser Trp Ala Arg Lys 1 5 10 15 <210> 54 <211> 437 <212> PRT <213> Homo sapiens <400> 54 Met Ala Leu Ala Gly Ala Pro Ala Gly Gly Pro Cys Ala Pro Ala Leu 1 5 10 15 Glu Ala Leu Leu Gly Ala Gly Ala Leu Arg Leu Leu Asp Ser Ser Gln 20 25 30 Ile Val Ile Ile Ser Ala Ala Gln Asp Ala Ser Ala Pro Pro Ala Pro 35 40 45 Thr Gly Pro Ala Ala Pro Ala Ala Gly Pro Cys Asp Pro Asp Leu Leu 50 55 60 Leu Phe Ala Thr Pro Gln Ala Pro Arg Pro Thr Pro Ser Ala Pro Arg 65 70 75 80 Pro Ala Leu Gly Arg Pro Pro Val Lys Arg Arg Leu Asp Leu Glu Thr 85 90 95 Asp His Gln Tyr Leu Ala Glu Ser Ser Gly Pro Ala Arg Gly Arg Gly 100 105 110 Arg His Pro Gly Lys Gly Val Lys Ser Pro Gly Glu Lys Ser Arg Tyr 115 120 125 Glu Thr Ser Leu Asn Leu Thr Thr Lys Arg Phe Leu Glu Leu Leu Ser 130 135 140 His Ser Ala Asp Gly Val Val Asp Leu Asn Trp Ala Ala Glu Val Leu 145 150 155 160 Lys Val Gln Lys Arg Arg Ile Tyr Asp Ile Thr Asn Val Leu Glu Gly 165 170 175 Ile Gln Leu Ile Ala Lys Lys Ser Lys Asn His Ile Gln Trp Leu Gly 180 185 190 Ser His Thr Thr Val Gly Val Gly Gly Arg Leu Glu Gly Leu Thr Gln 195 200 205 Asp Leu Arg Gln Leu Gln Glu Ser Glu Gln Gln Leu Asp His Leu Met 210 215 220 Asn Ile Cys Thr Thr Gln Leu Arg Leu Leu Ser Glu Asp Thr Asp Ser 225 230 235 240 Gln Arg Leu Ala Tyr Val Thr Cys Gln Asp Leu Arg Ser Ile Ala Asp 245 250 255 Pro Ala Glu Gln Met Val Met Val Ile Lys Ala Pro Pro Glu Thr Gln 260 265 270 Leu Gln Ala Val Asp Ser Ser Glu Asn Phe Gln Ile Ser Leu Lys Ser 275 280 285 Lys Gln Gly Pro Ile Asp Val Phe Leu Cys Pro Glu Glu Thr Val Gly 290 295 300 Gly Ile Ser Pro Gly Lys Thr Pro Ser Gln Glu Val Thr Ser Glu Glu 305 310 315 320 Glu Asn Arg Ala Thr Asp Ser Ala Thr Ile Val Ser Pro Pro Pro Ser 325 330 335 Ser Pro Pro Ser Ser Leu Thr Thr Asp Pro Ser Gln Ser Leu Leu Ser 340 345 350 Leu Glu Gln Glu Pro Leu Leu Ser Arg Met Gly Ser Leu Arg Ala Pro 355 360 365 Val Asp Glu Asp Arg Leu Ser Pro Leu Val Ala Ala Asp Ser Leu Leu 370 375 380 Glu His Val Arg Glu Asp Phe Ser Gly Leu Leu Pro Glu Glu Phe Ile 385 390 395 400 Ser Leu Ser Pro Pro His Glu Ala Leu Asp Tyr His Phe Gly Leu Glu 405 410 415 Glu Gly Glu Gly Ile Arg Asp Leu Phe Asp Cys Asp Phe Gly Asp Leu 420 425 430 Thr Pro Leu Asp Phe 435 <210> 55 <211> 15 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence:P47 <400> 55 Glu Ser Ser Gly Pro Ala Arg Gly Arg Gly Arg His Pro Gly Lys 1 5 10 15 <210> 56 <211> 15 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence:P48 <400> 56 Gly Pro Ala Arg Gly Arg Gly Arg His Pro Gly Lys Gly Val Lys 1 5 10 15 <210> 57 <211> 15 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence:P49 <400> 57 Arg Gly Arg His Pro Gly Lys Gly Val Lys Ser Pro Gly Glu Lys 1 5 10 15 <210> 58 <211> 15 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence:P50 <400> 58 Ala Asp Gly Val Val Asp Leu Asn Trp Ala Ala Glu Val Leu Lys 1 5 10 15 <210> 59 <211> 15 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence:P51 <400> 59 Val Val Asp Leu Asn Trp Ala Ala Glu Val Leu Lys Val Gln Lys 1 5 10 15 <210> 60 <211> 15 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence:P52 <400> 60 Tyr Asp Ile Thr Asn Val Leu Glu Gly Ile Gln Leu Ile Ala Lys 1 5 10 15 <210> 61 <211> 15 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence:P53 <400> 61 Asp Ile Thr Asn Val Leu Glu Gly Ile Gln Leu Ile Ala Lys Lys 1 5 10 15 <210> 62 <211> 15 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence:P54 <400> 62 Thr Asn Val Leu Glu Gly Ile Gln Leu Ile Ala Lys Lys Ser Lys 1 5 10 15 <210> 63 <211> 528 <212> PRT <213> Homo sapiens <400> 63 Met Ser Thr Asn Glu Asn Ala Asn Thr Pro Ala Ala Arg Leu His Arg 1 5 10 15 Phe Lys Asn Lys Gly Lys Asp Ser Thr Glu Met Arg Arg Arg Arg Ile 20 25 30 Glu Val Asn Val Glu Leu Arg Lys Ala Lys Lys Asp Asp Gln Met Leu 35 40 45 Arg Arg Asn Val Ser Ser Phe Pro Asp Asp Ala Thr Ser Pro Leu Gln 50 55 60 Glu Asn Arg Asn Asn Gln Gly Thr Val Asn Trp Ser Val Asp Asp Ile 65 70 75 80 Val Lys Gly Ile Asn Ser Ser Asn Val Glu Asn Gln Leu Gln Ala Thr 85 90 95 Gln Ala Ala Arg Lys Leu Leu Ser Arg Glu Lys Gln Pro Pro Ile Asp 100 105 110 Asn Ile Ile Arg Ala Gly Leu Ile Pro Lys Phe Val Ser Phe Leu Gly 115 120 125 Arg Thr Asp Cys Ser Pro Ile Gln Phe Glu Ser Ala Trp Ala Leu Thr 130 135 140 Asn Ile Ala Ser Gly Thr Ser Glu Gln Thr Lys Ala Val Val Asp Gly 145 150 155 160 Gly Ala Ile Pro Ala Phe Ile Ser Leu Leu Ala Ser Pro His Ala His 165 170 175 Ile Ser Glu Gln Ala Val Trp Ala Leu Gly Asn Ile Ala Gly Asp Gly 180 185 190 Ser Val Phe Arg Asp Leu Val Ile Lys Tyr Gly Ala Val Asp Pro Leu 195 200 205 Leu Ala Leu Leu Ala Val Pro Asp Met Ser Ser Leu Ala Cys Gly Tyr 210 215 220 Leu Arg Asn Leu Thr Trp Thr Leu Ser Asn Leu Cys Arg Asn Lys Asn 225 230 235 240 Pro Ala Pro Pro Ile Asp Ala Val Glu Gln Ile Leu Pro Thr Leu Val 245 250 255 Arg Leu Leu His His Asp Asp Pro Glu Val Leu Ala Asp Thr Cys Trp 260 265 270 Ala Ile Ser Tyr Leu Thr Asp Gly Pro Asn Glu Arg Ile Gly Met Val 275 280 285 Val Lys Thr Gly Val Val Pro Gln Leu Val Lys Leu Leu Gly Ala Ser 290 295 300 Glu Leu Pro Ile Val Thr Pro Ala Leu Arg Ala Ile Gly Asn Ile Val 305 310 315 320 Thr Gly Thr Asp Glu Gln Thr Gln Val Val Ile Asp Ala Gly Ala Leu 325 330 335 Ala Val Phe Pro Ser Leu Leu Thr Asn Pro Lys Thr Asn Ile Gln Lys 340 345 350 Glu Ala Thr Trp Thr Met Ser Asn Ile Thr Ala Gly Arg Gln Asp Gln 355 360 365 Ile Gln Gln Val Val Asn His Gly Leu Val Pro Phe Leu Val Ser Val 370 375 380 Leu Ser Lys Ala Asp Phe Lys Thr Gln Lys Glu Ala Val Trp Ala Val 385 390 395 400 Thr Asn Tyr Thr Ser Gly Gly Thr Val Glu Gln Ile Val Tyr Leu Val 405 410 415 His Cys Gly Ile Ile Glu Pro Leu Met Asn Leu Leu Thr Ala Lys Asp 420 425 430 Thr Lys Ile Ile Leu Val Ile Leu Asp Ala Ile Ser Asn Ile Phe Gln 435 440 445 Ala Ala Glu Lys Leu Gly Glu Thr Glu Lys Leu Ser Ile Met Ile Glu 450 455 460 Glu Cys Gly Gly Leu Asp Lys Ile Glu Ala Leu Gln Asn His Glu Asn 465 470 475 480 Glu Ser Val Tyr Lys Ala Ser Leu Ser Leu Ile Glu Lys Tyr Phe Ser 485 490 495 Val Glu Glu Glu Glu Asp Gln Asn Val Val Pro Glu Thr Thr Ser Glu 500 505 510 Gly Tyr Thr Phe Gln Val Gln Asp Gly Ala Pro Gly Thr Phe Asn Phe 515 520 525 <210> 64 <211> 15 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence:P55 <400> 64 Asn Thr Pro Ala Ala Arg Leu His Arg Phe Lys Asn Lys Gly Lys 1 5 10 15 <210> 65 <211> 465 <212> PRT <213> Homo sapiens <400> 65 Met Asp Met Ala Asp Tyr Ser Ala Ala Leu Asp Pro Ala Tyr Thr Thr 1 5 10 15 Leu Glu Phe Glu Asn Val Gln Val Leu Thr Met Gly Asn Asp Thr Ser 20 25 30 Pro Ser Glu Gly Thr Asn Leu Asn Ala Pro Asn Ser Leu Gly Val Ser 35 40 45 Ala Leu Cys Ala Ile Cys Gly Asp Arg Ala Thr Gly Lys His Tyr Gly 50 55 60 Ala Ser Ser Cys Asp Gly Cys Lys Gly Phe Phe Arg Arg Ser Val Arg 65 70 75 80 Lys Asn His Met Tyr Ser Cys Arg Phe Ser Arg Gln Cys Val Val Asp 85 90 95 Lys Asp Lys Arg Asn Gln Cys Arg Tyr Cys Arg Leu Lys Lys Cys Phe 100 105 110 Arg Ala Gly Met Lys Lys Glu Ala Val Gln Asn Glu Arg Asp Arg Ile 115 120 125 Ser Thr Arg Arg Ser Ser Tyr Glu Asp Ser Ser Leu Pro Ser Ile Asn 130 135 140 Ala Leu Leu Gln Ala Glu Val Leu Ser Arg Gln Ile Thr Ser Pro Val 145 150 155 160 Ser Gly Ile Asn Gly Asp Ile Arg Ala Lys Lys Ile Ala Ser Ile Ala 165 170 175 Asp Val Cys Glu Ser Met Lys Glu Gln Leu Leu Val Leu Val Glu Trp 180 185 190 Ala Lys Tyr Ile Pro Ala Phe Cys Glu Leu Pro Leu Asp Asp Gln Val 195 200 205 Ala Leu Leu Arg Ala His Ala Gly Glu His Leu Leu Leu Gly Ala Thr 210 215 220 Lys Arg Ser Met Val Phe Lys Asp Val Leu Leu Leu Gly Asn Asp Tyr 225 230 235 240 Ile Val Pro Arg His Cys Pro Glu Leu Ala Glu Met Ser Arg Val Ser 245 250 255 Ile Arg Ile Leu Asp Glu Leu Val Leu Pro Phe Gln Glu Leu Gln Ile 260 265 270 Asp Asp Asn Glu Tyr Ala Tyr Leu Lys Ala Ile Ile Phe Phe Asp Pro 275 280 285 Asp Ala Lys Gly Leu Ser Asp Pro Gly Lys Ile Lys Arg Leu Arg Ser 290 295 300 Gln Val Gln Val Ser Leu Glu Asp Tyr Ile Asn Asp Arg Gln Tyr Asp 305 310 315 320 Ser Arg Gly Arg Phe Gly Glu Leu Leu Leu Leu Leu Pro Thr Leu Gln 325 330 335 Ser Ile Thr Trp Gln Met Ile Glu Gln Ile Gln Phe Ile Lys Leu Phe 340 345 350 Gly Met Ala Lys Ile Asp Asn Leu Leu Gln Glu Met Leu Leu Gly Gly 355 360 365 Ser Pro Ser Asp Ala Pro His Ala His His Pro Leu His Pro His Leu 370 375 380 Met Gln Glu His Met Gly Thr Asn Val Ile Val Ala Asn Thr Met Pro 385 390 395 400 Thr His Leu Ser Asn Gly Gln Met Cys Glu Trp Pro Arg Pro Arg Gly 405 410 415 Gln Ala Ala Thr Pro Glu Thr Pro Gln Pro Ser Pro Pro Gly Gly Ser 420 425 430 Gly Ser Glu Pro Tyr Lys Leu Leu Pro Gly Ala Val Ala Thr Ile Val 435 440 445 Lys Pro Leu Ser Ala Ile Pro Gln Pro Thr Ile Thr Lys Gln Glu Val 450 455 460 Ile 465 <210> 66 <211> 15 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence:P56 <400> 66 His Met Tyr Ser Cys Arg Phe Ser Arg Gln Cys Val Val Asp Lys 1 5 10 15 <210> 67 <211> 15 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence:P57 <400> 67 Tyr Ser Cys Arg Phe Ser Arg Gln Cys Val Val Asp Lys Asp Lys 1 5 10 15 <210> 68 <211> 15 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence:P58 <400> 68 Cys Arg Tyr Cys Arg Leu Lys Lys Cys Phe Arg Ala Gly Met Lys 1 5 10 15 <210> 69 <211> 15 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence:P59 <400> 69 Arg Tyr Cys Arg Leu Lys Lys Cys Phe Arg Ala Gly Met Lys Lys 1 5 10 15 <210> 70 <211> 304 <212> PRT <213> Homo sapiens <400> 70 Met Glu Phe Val Ala Leu Gly Gly Pro Asp Ala Gly Ser Pro Thr Pro 1 5 10 15 Phe Pro Asp Glu Ala Gly Ala Phe Leu Gly Leu Gly Gly Gly Glu Arg 20 25 30 Thr Glu Ala Gly Gly Leu Leu Ala Ser Tyr Pro Pro Ser Gly Arg Val 35 40 45 Ser Leu Val Pro Trp Ala Asp Thr Gly Thr Leu Gly Thr Pro Gln Trp 50 55 60 Val Pro Pro Ala Thr Gln Met Glu Pro Pro His Tyr Leu Glu Leu Leu 65 70 75 80 Gln Pro Pro Arg Gly Ser Pro Pro His Pro Ser Ser Gly Pro Leu Leu 85 90 95 Pro Leu Ser Ser Gly Pro Pro Pro Cys Glu Ala Arg Glu Cys Val Asn 100 105 110 Cys Gly Ala Thr Ala Thr Pro Leu Trp Arg Arg Asp Gly Thr Gly His 115 120 125 Tyr Leu Cys Asn Ala Cys Gly Leu Tyr His Arg Leu Asn Gly Gln Asn 130 135 140 Arg Pro Leu Ile Arg Pro Lys Lys Arg Leu Leu Val Ser Lys Arg Ala 145 150 155 160 Gly Thr Val Cys Ser Asn Cys Gln Thr Ser Thr Thr Thr Leu Trp Arg 165 170 175 Arg Ser Pro Met Gly Asp Pro Val Cys Asn Ala Cys Gly Leu Tyr Tyr 180 185 190 Lys Leu His Gln Val Asn Arg Pro Leu Thr Met Arg Lys Asp Gly Ile 195 200 205 Gln Thr Arg Asn Arg Lys Val Ser Ser Lys Gly Lys Lys Arg Arg Pro 210 215 220 Pro Gly Gly Gly Asn Pro Ser Ala Thr Ala Gly Gly Gly Ala Pro Met 225 230 235 240 Gly Gly Gly Gly Asp Pro Ser Met Pro Pro Pro Pro Pro Pro Pro Ala 245 250 255 Ala Ala Pro Pro Gln Ser Asp Ala Leu Tyr Ala Leu Gly Pro Val Val 260 265 270 Leu Ser Gly His Phe Leu Pro Phe Gly Asn Ser Gly Gly Phe Phe Gly 275 280 285 Gly Gly Ala Gly Gly Tyr Thr Ala Pro Pro Gly Leu Ser Pro Gln Ile 290 295 300 <210> 71 <211> 15 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence:P60 <400> 71 Arg Lys Asp Gly Ile Gln Thr Arg Asn Arg Lys Val Ser Ser Lys 1 5 10 15 <210> 72 <211> 15 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence:P61 <400> 72 Asp Gly Ile Gln Thr Arg Asn Arg Lys Val Ser Ser Lys Gly Lys 1 5 10 15[Sequence list]                                SEQUENCE LISTING <110> JAPAN SCIENCE AND TECNOLOGY CORPORATION <120> Measuring method of histon deacetylase activity using       fluorescent or chromogenic substrates <130> A131P24 <140> <141> <150> JP P2001-358583 <151> 2001-11-22 <160> 72 <170> PatentIn Ver. 2.1 <210> 1 <211> 102 <212> PRT <213> Homo sapiens <400> 1 Ser Gly Arg Gly Lys Gly Gly Lys Gly Leu Gly Lys Gly Gly Ala Lys   1 5 10 15 Arg His Arg Lys Val Leu Arg Asp Asn Ile Gln Gly Ile Thr Lys Pro              20 25 30 Ala Ile Arg Arg Leu Ala Arg Arg Gly Gly Val Lys Arg Ile Ser Gly          35 40 45 Leu Ile Tyr Glu Glu Thr Arg Gly Val Leu Lys Val Phe Leu Glu Asn      50 55 60 Val Ile Arg Asp Ala Val Thr Tyr Thr Glu His Ala Lys Arg Lys Thr  65 70 75 80 Val Thr Ala Met Asp Val Val Tyr Ala Leu Lys Arg Gln Gly Arg Thr                  85 90 95 Leu Tyr Gly Phe Gly Gly             100 <210> 2 <211> 5 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: P1 <400> 2 Ser Gly Arg Gly Lys   1 5 <210> 3 <211> 5 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: P2 <400> 3 Gly Lys Gly Gly Lys   1 5 <210> 4 <211> 5 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: P3 <400> 4 Lys Gly Leu Gly Lys   1 5 <210> 5 <211> 10 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: P4 <400> 5 Arg Gly Lys Gly Gly Lys Gly Leu Gly Lys   1 5 10 <210> 6 <211> 5 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: P5 <400> 6 Lys Gly Gly Ala Lys   1 5 <210> 7 <211> 10 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: P6 <400> 7 Gly Lys Gly Leu Gly Lys Gly Gly Ala Lys   1 5 10 <210> 8 <211> 15 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: P7 <400> 8 Gly Arg Gly Lys Gly Gly Lys Gly Leu Gly Lys Gly Gly Ala Lys   1 5 10 15 <210> 9 <211> 130 <212> PRT <213> Homo sapiens <400> 9 Met Ser Gly Arg Gly Lys Gln Gly Gly Lys Ala Arg Ala Lys Ala Lys   1 5 10 15 Thr Arg Ser Ser Arg Ala Gly Leu Gln Phe Pro Val Gly Arg Val His              20 25 30 Arg Leu Leu Arg Lys Gly Asn Tyr Ala Glu Arg Val Gly Ala Gly Ala          35 40 45 Pro Val Tyr Leu Ala Ala Val Leu Glu Tyr Leu Thr Ala Glu Ile Leu      50 55 60 Glu Leu Ala Gly Asn Ala Ala Arg Asp Asn Lys Lys Thr Arg Ile Ile  65 70 75 80 Pro Arg His Leu Gln Leu Ala Ile Arg Asn Asp Glu Glu Leu Asn Lys                  85 90 95 Leu Leu Gly Lys Val Thr Ile Ala Gln Gly Gly Val Leu Pro Asn Ile             100 105 110 Gln Ala Val Leu Leu Pro Lys Lys Thr Glu Ser His His Lys Ala Lys         115 120 125 Gly Lys     130 <210> 10 <211> 6 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: P8 <400> 10 Met Ser Gly Arg Gly Lys   1 5 <210> 11 <211> 126 <212> PRT <213> Homo sapiens <400> 11 Met Pro Glu Pro Ser Lys Ser Ala Pro Ala Pro Lys Lys Gly Ser Lys   1 5 10 15 Lys Ala Val Thr Lys Ala Gln Lys Lys Asp Gly Lys Lys Arg Lys Arg              20 25 30 Ser Arg Lys Glu Ser Tyr Ser Val Tyr Val Tyr Lys Val Leu Lys Gln          35 40 45 Val His Pro Asp Thr Gly Ile Ser Ser Lys Ala Met Gly Ile Met Asn      50 55 60 Ser Phe Val Asn Asp Ile Phe Glu Arg Ile Ala Gly Glu Ala Ser Arg  65 70 75 80 Leu Ala His Tyr Asn Lys Arg Ser Thr Ile Thr Ser Arg Glu Ile Gln                  85 90 95 Thr Ala Val Arg Leu Leu Leu Pro Gly Glu Leu Ala Lys His Ala Val             100 105 110 Ser Glu Gly Thr Lys Ala Val Thr Lys Tyr Thr Ser Ser Lys         115 120 125 <210> 12 <211> 5 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: P9 <400> 12 Pro Glu Pro Ser Lys   1 5 <210> 13 <211> 5 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: P10 <400> 13 Pro Ala Pro Lys Lys   1 5 <210> 14 <211> 10 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: P11 <400> 14 Pro Ser Lys Ser Ala Pro Ala Pro Lys Lys   1 5 10 <210> 15 <211> 5 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: P12 <400> 15 Lys Lys Gly Ser Lys   1 5 <210> 16 <211> 10 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: P13 <400> 16 Ser Ala Pro Ala Pro Lys Lys Gly Ser Lys   1 5 10 <210> 17 <211> 15 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: P14 <400> 17 Pro Glu Pro Ser Lys Ser Ala Pro Ala Pro Lys Lys Gly Ser Lys   1 5 10 15 <210> 18 <211> 5 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: P15 <400> 18 Lys Ala Val Thr Lys   1 5 <210> 19 <211> 10 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: P16 <400> 19 Lys Lys Gly Ser Lys Lys Ala Val Thr Lys   1 5 10 <210> 20 <211> 15 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: P17 <400> 20 Ser Ala Pro Ala Pro Lys Lys Gly Ser Lys Lys Ala Val Thr Lys   1 5 10 15 <210> 21 <211> 135 <212> PRT <213> Homo sapiens <400> 21 Met Ala Arg Thr Lys Gln Thr Ala Arg Lys Ser Thr Gly Gly Lys Ala   1 5 10 15 Pro Arg Lys Gln Leu Ala Thr Lys Ala Ala Arg Lys Ser Thr Pro Ser              20 25 30 Thr Cys Gly Val Lys Pro His Arg Tyr Arg Pro Gly Thr Val Ala Leu          35 40 45 Arg Glu Ile Arg Arg Tyr Gln Lys Ser Thr Glu Leu Leu Ile Arg Lys      50 55 60 Leu Pro Phe Gln Arg Leu Val Arg Glu Ile Ala Gln Asp Phe Asn Thr  65 70 75 80 Asp Leu Arg Phe Gln Ser Ala Ala Val Gly Ala Leu Gln Glu Ala Ser                  85 90 95 Glu Ala Tyr Leu Val Gly Leu Leu Glu Asp Thr Asn Leu Cys Ala Ile             100 105 110 His Ala Lys Arg Val Thr Ile Met Pro Lys Asp Ile Gln Leu Ala Arg         115 120 125 Arg Ile Arg Gly Glu Arg Ala     130 135 <210> 22 <211> 5 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: P18 <400> 22 Met Ala Arg Thr Lys   1 5 <210> 23 <211> 5 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: P19 <400> 23 Gln Thr Ala Arg Lys   1 5 <210> 24 <211> 10 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: P20 <400> 24 Met Ala Arg Thr Lys Gln Thr Ala Arg Lys   1 5 10 <210> 25 <211> 5 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: P21 <400> 25 Ser Thr Gly Gly Lys   1 5 <210> 26 <211> 10 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: P22 <400> 26 Gln Thr Ala Arg Lys Ser Thr Gly Gly Lys   1 5 10 <210> 27 <211> 15 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: P23 <400> 27 Met Ala Arg Thr Lys Gln Thr Ala Arg Lys Ser Thr Gly Gly Lys   1 5 10 15 <210> 28 <211> 5 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: P24 <400> 28 Lys Ala Pro Arg Lys   1 5 <210> 29 <211> 10 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: P25 <400> 29 Lys Ser Thr Gly Gly Lys Ala Pro Arg Lys   1 5 10 <210> 30 <211> 15 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: P26 <400> 30 Lys Gln Thr Ala Arg Lys Ser Thr Gly Gly Lys Ala Pro Arg Lys   1 5 10 15 <210> 31 <211> 5 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: P27 <400> 31 Gln Leu Ala Thr Lys   1 5 <210> 32 <211> 10 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: P28 <400> 32 Lys Ala Pro Arg Lys Gln Leu Ala Thr Lys   1 5 10 <210> 33 <211> 15 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: P29 <400> 33 Lys Ser Thr Gly Gly Lys Ala Pro Arg Lys Gln Leu Ala Thr Lys   1 5 10 15 <210> 34 <211> 5 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: P30 <400> 34 Lys Ala Ala Arg Lys   1 5 <210> 35 <211> 10 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: P31 <400> 35 Lys Gln Leu Ala Thr Lys Ala Ala Arg Lys   1 5 10 <210> 36 <211> 15 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: P32 <400> 36 Gly Lys Ala Pro Arg Lys Gln Leu Ala Thr Lys Ala Ala Arg Lys   1 5 10 15 <210> 37 <211> 393 <212> PRT <213> Homo sapiens <400> 37 Met Glu Glu Pro Gln Ser Asp Pro Ser Val Glu Pro Pro Leu Ser Gln   1 5 10 15 Glu Thr Phe Ser Asp Leu Trp Lys Leu Leu Pro Glu Asn Asn Val Leu              20 25 30 Ser Pro Leu Pro Ser Gln Ala Met Asp Asp Leu Met Leu Ser Pro Asp          35 40 45 Asp Ile Glu Gln Trp Phe Thr Glu Asp Pro Gly Pro Asp Glu Ala Pro      50 55 60 Arg Met Pro Glu Ala Ala Pro Arg Val Ala Pro Ala Pro Ala Ala Pro  65 70 75 80 Thr Pro Ala Ala Pro Ala Pro Ala Pro Ser Trp Pro Leu Ser Ser Ser                  85 90 95 Val Pro Ser Gln Lys Thr Tyr Gln Gly Ser Tyr Gly Phe Arg Leu Gly             100 105 110 Phe Leu His Ser Gly Thr Ala Lys Ser Val Thr Cys Thr Tyr Ser Pro         115 120 125 Ala Leu Asn Lys Met Phe Cys Gln Leu Ala Lys Thr Cys Pro Val Gln     130 135 140 Leu Trp Val Asp Ser Thr Pro Pro Gly Thr Arg Val Arg Ala Met 145 150 155 160 Ala Ile Tyr Lys Gln Ser Gln His Met Thr Glu Val Val Arg Arg Cys                 165 170 175 Pro His His Glu Arg Cys Ser Asp Ser Asp Gly Leu Ala Pro Pro Gln             180 185 190 His Leu Ile Arg Val Glu Gly Asn Leu Arg Val Glu Tyr Leu Asp Asp         195 200 205 Arg Asn Thr Phe Arg His Ser Val Val Val Pro Tyr Glu Pro Pro Glu     210 215 220 Val Gly Ser Asp Cys Thr Thr Ile His Tyr Asn Tyr Met Cys Asn Ser 225 230 235 240 Ser Cys Met Gly Gly Met Asn Arg Arg Pro Ile Leu Thr Ile Ile Thr                 245 250 255 Leu Glu Asp Ser Ser Gly Asn Leu Leu Gly Arg Asn Ser Phe Glu Val             260 265 270 Arg Val Cys Ala Cys Ala Gly Arg Asp Arg Arg Thr Glu Glu Glu Asn         275 280 285 Leu Arg Lys Lys Gly Glu Pro His His Glu Leu Pro Pro Gly Ser Thr     290 295 300 Lys Arg Ala Leu Pro Asn Asn Thr Ser Ser Ser Pro Gln Pro Lys Lys 305 310 315 320 Lys Pro Leu Asp Gly Glu Tyr Phe Thr Leu Gln Ile Arg Gly Arg Glu                 325 330 335 Arg Phe Glu Met Phe Arg Glu Leu Asn Glu Ala Leu Glu Leu Lys Asp             340 345 350 Ala Gln Ala Gly Lys Glu Pro Gly Gly Ser Arg Ala His Ser Ser His         355 360 365 Leu Lys Ser Lys Lys Gly Gln Ser Thr Ser Arg His Lys Lys Leu Met     370 375 380 Phe Lys Thr Glu Gly Pro Asp Ser Asp 385 390 <210> 38 <211> 5 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: P33 <400> 38 Pro Gln Pro Lys Lys   1 5 <210> 39 <211> 10 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: P34 <400> 39 Asn Thr Ser Ser Ser Pro Gln Pro Lys Lys   1 5 10 <210> 40 <211> 15 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: P35 <400> 40 Arg Ala Leu Pro Asn Asn Thr Ser Ser Ser Pro Gln Pro Lys Lys   1 5 10 15 <210> 41 <211> 5 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: P36 <400> 41 Leu Lys Ser Lys Lys   1 5 <210> 42 <211> 10 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: P37 <400> 42 Ala His Ser Ser His Leu Lys Ser Lys Lys   1 5 10 <210> 43 <211> 15 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: P38 <400> 43 Pro Gly Gly Ser Arg Ala His Ser Ser His Leu Lys Ser Lys Lys   1 5 10 15 <210> 44 <211> 5 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: P39 <400> 44 Ser Arg His Lys Lys   1 5 <210> 45 <211> 10 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: P40 <400> 45 Lys Gly Gln Ser Thr Ser Arg His Lys Lys   1 5 10 <210> 46 <211> 15 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: P41 <400> 46 His Leu Lys Ser Lys Lys Gly Gln Ser Thr Ser Arg His Lys Lys   1 5 10 15 <210> 47 <211> 451 <212> PRT <213> Homo sapiens <400> 47 Met Arg Glu Cys Ile Ser Ile His Val Gly Gln Ala Gly Val Gln Ile   1 5 10 15 Gly Asn Ala Cys Trp Glu Leu Tyr Cys Leu Glu His Gly Ile Gln Pro              20 25 30 Asp Gly Gln Met Pro Ser Asp Lys Thr Ile Gly Gly Gly Asp Asp Ser          35 40 45 Phe Asn Thr Phe Phe Ser Glu Thr Gly Ala Gly Lys His Val Pro Arg      50 55 60 Ala Val Phe Val Asp Leu Glu Pro Thr Val Ile Asp Glu Val Arg Thr  65 70 75 80 Gly Thr Tyr Arg Gln Leu Phe His Pro Glu Gln Leu Ile Thr Gly Lys                  85 90 95 Glu Asp Ala Ala Asn Asn Tyr Ala Arg Gly His Tyr Thr Ile Gly Lys             100 105 110 Glu Ile Ile Asp Leu Val Leu Asp Arg Ile Arg Lys Leu Ala Asp Gln         115 120 125 Cys Thr Gly Leu Gln Gly Phe Leu Val Phe His Ser Phe Gly Gly Gly     130 135 140 Thr Gly Ser Gly Phe Thr Ser Leu Leu Met Glu Arg Leu Ser Val Asp 145 150 155 160 Tyr Gly Lys Lys Ser Lys Leu Glu Phe Ser Ile Tyr Pro Ala Pro Gln                 165 170 175 Val Ser Thr Ala Val Val Glu Pro Tyr Asn Ser Ile Leu Thr Thr His             180 185 190 Thr Thr Leu Glu His Ser Asp Cys Ala Phe Met Val Asp Asn Glu Ala         195 200 205 Ile Tyr Asp Ile Cys Arg Arg Asn Leu Asp Ile Glu Arg Pro Thr Tyr     210 215 220 Thr Asn Leu Asn Arg Leu Ile Ser Gln Ile Val Ser Ser Ile Thr Ala 225 230 235 240 Ser Leu Arg Phe Asp Gly Ala Leu Asn Val Asp Leu Thr Glu Phe Gln                 245 250 255 Thr Asn Leu Val Pro Tyr Pro Arg Ile His Phe Pro Leu Ala Thr Tyr             260 265 270 Ala Pro Val Ile Ser Ala Glu Lys Ala Tyr His Glu Gln Leu Ser Val         275 280 285 Ala Glu Ile Thr Asn Ala Cys Phe Glu Pro Ala Asn Gln Met Val Lys     290 295 300 Cys Asp Pro Arg His Gly Lys Tyr Met Ala Cys Cys Leu Leu Tyr Arg 305 310 315 320 Gly Asp Val Val Pro Lys Asp Val Asn Ala Ala Ile Ala Thr Ile Lys                 325 330 335 Thr Lys Arg Ser Ile Gln Phe Val Asp Trp Cys Pro Thr Gly Phe Lys             340 345 350 Val Gly Ile Asn Tyr Gln Pro Pro Thr Val Val Pro Gly Gly Asp Leu         355 360 365 Ala Lys Val Gln Arg Ala Val Cys Met Leu Ser Asn Thr Thr Ala Ile     370 375 380 Ala Glu Ala Trp Ala Arg Leu Asp His Lys Phe Asp Leu Met Tyr Ala 385 390 395 400 Lys Arg Ala Phe Val His Trp Tyr Val Gly Glu Gly Met Glu Glu Gly                 405 410 415 Glu Phe Ser Glu Ala Arg Glu Asp Met Ala Ala Leu Glu Lys Asp Tyr             420 425 430 Glu Glu Val Gly Val Asp Ser Val Glu Gly Glu Gly Glu Glu Glu Gly         435 440 445 Glu Glu Tyr     450 <210> 48 <211> 5 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: P42 <400> 48 Met Pro Ser Asp Lys   1 5 <210> 49 <211> 10 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: P43 <400> 49 Gln Pro Asp Gly Gln Met Pro Ser Asp Lys   1 5 10 <210> 50 <211> 15 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: P44 <400> 50 Leu Glu His Gly Ile Gln Pro Asp Gly Gln Met Pro Ser Asp Lys   1 5 10 15 <210> 51 <211> 362 <212> PRT <213> Homo sapiens <400> 51 Met Ala Thr Ala Glu Thr Ala Leu Pro Ser Ile Ser Thr Leu Thr Ala   1 5 10 15 Leu Gly Pro Phe Pro Asp Thr Gln Asp Asp Phe Leu Lys Trp Trp Arg              20 25 30 Ser Glu Glu Ala Gln Asp Met Gly Pro Gly Pro Pro Asp Pro Thr Glu          35 40 45 Pro Pro Leu His Val Lys Ser Glu Asp Gln Pro Gly Glu Glu Glu Asp      50 55 60 Asp Glu Arg Gly Ala Asp Ala Thr Trp Asp Leu Asp Leu Leu Leu Thr  65 70 75 80 Asn Phe Ser Gly Pro Glu Pro Gly Gly Ala Pro Gln Thr Cys Ala Leu                  85 90 95 Ala Pro Ser Glu Ala Ser Gly Ala Gln Tyr Pro Pro Pro Pro Glu Thr             100 105 110 Leu Gly Ala Tyr Ala Gly Gly Pro Gly Leu Val Ala Gly Leu Leu Gly         115 120 125 Ser Glu Asp His Ser Gly Trp Val Arg Pro Ala Leu Arg Ala Arg Ala     130 135 140 Pro Asp Ala Phe Val Gly Pro Ala Leu Ala Pro Ala Pro Ala Pro Glu 145 150 155 160 Pro Lys Ala Leu Ala Leu Gln Pro Val Tyr Pro Gly Pro Gly Ala Gly                 165 170 175 Ser Ser Gly Gly Tyr Phe Pro Arg Thr Gly Leu Ser Val Pro Ala Ala             180 185 190 Ser Gly Ala Pro Tyr Gly Leu Leu Ser Gly Tyr Pro Ala Met Tyr Pro         195 200 205 Ala Pro Gln Tyr Gln Gly His Phe Gln Leu Phe Arg Gly Leu Gln Gly     210 215 220 Pro Ala Pro Gly Pro Ala Thr Ser Pro Ser Phe Leu Ser Cys Leu Gly 225 230 235 240 Pro Gly Thr Val Gly Thr Gly Leu Gly Gly Thr Ala Glu Asp Pro Gly                 245 250 255 Val Ile Ala Glu Thr Ala Pro Ser Lys Arg Gly Arg Arg Ser Trp Ala             260 265 270 Arg Lys Arg Gln Ala Ala His Thr Cys Ala His Pro Gly Cys Gly Lys         275 280 285 Ser Tyr Thr Lys Ser Ser His Leu Lys Ala His Leu Arg Thr His Thr     290 295 300 Gly Glu Lys Pro Tyr Ala Cys Thr Trp Glu Gly Cys Gly Trp Arg Phe 305 310 315 320 Ala Arg Ser Asp Glu Leu Thr Arg His Tyr Arg Lys His Thr Gly Gln                 325 330 335 Arg Pro Phe Arg Cys Gln Leu Cys Pro Arg Ala Phe Ser Arg Ser Asp             340 345 350 His Leu Ala Leu His Met Lys Arg His Leu         355 360 <210> 52 <211> 15 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: P45 <400> 52 Thr Ala Glu Asp Pro Gly Val Ile Ala Glu Thr Ala Pro Ser Lys   1 5 10 15 <210> 53 <211> 15 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: P46 <400> 53 Glu Thr Ala Pro Ser Lys Arg Gly Arg Arg Ser Trp Ala Arg Lys   1 5 10 15 <210> 54 <211> 437 <212> PRT <213> Homo sapiens <400> 54 Met Ala Leu Ala Gly Ala Pro Ala Gly Gly Pro Cys Ala Pro Ala Leu   1 5 10 15 Glu Ala Leu Leu Gly Ala Gly Ala Leu Arg Leu Leu Asp Ser Ser Gln              20 25 30 Ile Val Ile Ile Ser Ala Ala Gln Asp Ala Ser Ala Pro Pro Ala Pro          35 40 45 Thr Gly Pro Ala Ala Pro Ala Ala Gly Pro Cys Asp Pro Asp Leu Leu      50 55 60 Leu Phe Ala Thr Pro Gln Ala Pro Arg Pro Thr Pro Ser Ala Pro Arg  65 70 75 80 Pro Ala Leu Gly Arg Pro Pro Val Lys Arg Arg Leu Asp Leu Glu Thr                  85 90 95 Asp His Gln Tyr Leu Ala Glu Ser Ser Gly Pro Ala Arg Gly Arg Gly             100 105 110 Arg His Pro Gly Lys Gly Val Lys Ser Pro Gly Glu Lys Ser Arg Tyr         115 120 125 Glu Thr Ser Leu Asn Leu Thr Thr Lys Arg Phe Leu Glu Leu Leu Ser     130 135 140 His Ser Ala Asp Gly Val Val Asp Leu Asn Trp Ala Ala Glu Val Leu 145 150 155 160 Lys Val Gln Lys Arg Arg Ile Tyr Asp Ile Thr Asn Val Leu Glu Gly                 165 170 175 Ile Gln Leu Ile Ala Lys Lys Ser Lys Asn His Ile Gln Trp Leu Gly             180 185 190 Ser His Thr Thr Val Gly Val Gly Gly Arg Leu Glu Gly Leu Thr Gln         195 200 205 Asp Leu Arg Gln Leu Gln Glu Ser Glu Gln Gln Leu Asp His Leu Met     210 215 220 Asn Ile Cys Thr Thr Gln Leu Arg Leu Leu Ser Glu Asp Thr Asp Ser 225 230 235 240 Gln Arg Leu Ala Tyr Val Thr Cys Gln Asp Leu Arg Ser Ile Ala Asp                 245 250 255 Pro Ala Glu Gln Met Val Met Val Ile Lys Ala Pro Pro Glu Thr Gln             260 265 270 Leu Gln Ala Val Asp Ser Ser Glu Asn Phe Gln Ile Ser Leu Lys Ser         275 280 285 Lys Gln Gly Pro Ile Asp Val Phe Leu Cys Pro Glu Glu Thr Val Gly     290 295 300 Gly Ile Ser Pro Gly Lys Thr Pro Ser Gln Glu Val Thr Ser Glu Glu 305 310 315 320 Glu Asn Arg Ala Thr Asp Ser Ala Thr Ile Val Ser Pro Pro Pro Ser                 325 330 335 Ser Pro Pro Ser Ser Leu Thr Thr Asp Pro Ser Gln Ser Leu Leu Ser             340 345 350 Leu Glu Gln Glu Pro Leu Leu Ser Arg Met Gly Ser Leu Arg Ala Pro         355 360 365 Val Asp Glu Asp Arg Leu Ser Pro Leu Val Ala Ala Asp Ser Leu Leu     370 375 380 Glu His Val Arg Glu Asp Phe Ser Gly Leu Leu Pro Glu Glu Phe Ile 385 390 395 400 Ser Leu Ser Pro Pro His Glu Ala Leu Asp Tyr His Phe Gly Leu Glu                 405 410 415 Glu Gly Glu Gly Ile Arg Asp Leu Phe Asp Cys Asp Phe Gly Asp Leu             420 425 430 Thr Pro Leu Asp Phe         435 <210> 55 <211> 15 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: P47 <400> 55 Glu Ser Ser Gly Pro Ala Arg Gly Arg Gly Arg His Pro Gly Lys   1 5 10 15 <210> 56 <211> 15 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: P48 <400> 56 Gly Pro Ala Arg Gly Arg Gly Arg His Pro Gly Lys Gly Val Lys   1 5 10 15 <210> 57 <211> 15 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: P49 <400> 57 Arg Gly Arg His Pro Gly Lys Gly Val Lys Ser Pro Gly Glu Lys   1 5 10 15 <210> 58 <211> 15 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: P50 <400> 58 Ala Asp Gly Val Val Asp Leu Asn Trp Ala Ala Glu Val Leu Lys   1 5 10 15 <210> 59 <211> 15 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: P51 <400> 59 Val Val Asp Leu Asn Trp Ala Ala Glu Val Leu Lys Val Gln Lys   1 5 10 15 <210> 60 <211> 15 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: P52 <400> 60 Tyr Asp Ile Thr Asn Val Leu Glu Gly Ile Gln Leu Ile Ala Lys   1 5 10 15 <210> 61 <211> 15 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: P53 <400> 61 Asp Ile Thr Asn Val Leu Glu Gly Ile Gln Leu Ile Ala Lys Lys   1 5 10 15 <210> 62 <211> 15 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: P54 <400> 62 Thr Asn Val Leu Glu Gly Ile Gln Leu Ile Ala Lys Lys Ser Lys   1 5 10 15 <210> 63 <211> 528 <212> PRT <213> Homo sapiens <400> 63 Met Ser Thr Asn Glu Asn Ala Asn Thr Pro Ala Ala Arg Leu His Arg   1 5 10 15 Phe Lys Asn Lys Gly Lys Asp Ser Thr Glu Met Arg Arg Arg Arg Ile              20 25 30 Glu Val Asn Val Glu Leu Arg Lys Ala Lys Lys Asp Asp Gln Met Leu          35 40 45 Arg Arg Asn Val Ser Ser Phe Pro Asp Asp Ala Thr Ser Pro Leu Gln      50 55 60 Glu Asn Arg Asn Asn Gln Gly Thr Val Asn Trp Ser Val Asp Asp Ile  65 70 75 80 Val Lys Gly Ile Asn Ser Ser Asn Val Glu Asn Gln Leu Gln Ala Thr                  85 90 95 Gln Ala Ala Arg Lys Leu Leu Ser Arg Glu Lys Gln Pro Pro Ile Asp             100 105 110 Asn Ile Ile Arg Ala Gly Leu Ile Pro Lys Phe Val Ser Phe Leu Gly         115 120 125 Arg Thr Asp Cys Ser Pro Ile Gln Phe Glu Ser Ala Trp Ala Leu Thr     130 135 140 Asn Ile Ala Ser Gly Thr Ser Glu Gln Thr Lys Ala Val Val Asp Gly 145 150 155 160 Gly Ala Ile Pro Ala Phe Ile Ser Leu Leu Ala Ser Pro His Ala His                 165 170 175 Ile Ser Glu Gln Ala Val Trp Ala Leu Gly Asn Ile Ala Gly Asp Gly             180 185 190 Ser Val Phe Arg Asp Leu Val Ile Lys Tyr Gly Ala Val Asp Pro Leu         195 200 205 Leu Ala Leu Leu Ala Val Pro Asp Met Ser Ser Leu Ala Cys Gly Tyr     210 215 220 Leu Arg Asn Leu Thr Trp Thr Leu Ser Asn Leu Cys Arg Asn Lys Asn 225 230 235 240 Pro Ala Pro Pro Ile Asp Ala Val Glu Gln Ile Leu Pro Thr Leu Val                 245 250 255 Arg Leu Leu His His Asp Asp Pro Glu Val Leu Ala Asp Thr Cys Trp             260 265 270 Ala Ile Ser Tyr Leu Thr Asp Gly Pro Asn Glu Arg Ile Gly Met Val         275 280 285 Val Lys Thr Gly Val Val Pro Gln Leu Val Lys Leu Leu Gly Ala Ser     290 295 300 Glu Leu Pro Ile Val Thr Pro Ala Leu Arg Ala Ile Gly Asn Ile Val 305 310 315 320 Thr Gly Thr Asp Glu Gln Thr Gln Val Val Ile Asp Ala Gly Ala Leu                 325 330 335 Ala Val Phe Pro Ser Leu Leu Thr Asn Pro Lys Thr Asn Ile Gln Lys             340 345 350 Glu Ala Thr Trp Thr Met Ser Asn Ile Thr Ala Gly Arg Gln Asp Gln         355 360 365 Ile Gln Gln Val Val Asn His Gly Leu Val Pro Phe Leu Val Ser Val     370 375 380 Leu Ser Lys Ala Asp Phe Lys Thr Gln Lys Glu Ala Val Trp Ala Val 385 390 395 400 Thr Asn Tyr Thr Ser Gly Gly Thr Val Glu Gln Ile Val Tyr Leu Val                 405 410 415 His Cys Gly Ile Ile Glu Pro Leu Met Asn Leu Leu Thr Ala Lys Asp             420 425 430 Thr Lys Ile Ile Leu Val Ile Leu Asp Ala Ile Ser Asn Ile Phe Gln         435 440 445 Ala Ala Glu Lys Leu Gly Glu Thr Glu Lys Leu Ser Ile Met Ile Glu     450 455 460 Glu Cys Gly Gly Leu Asp Lys Ile Glu Ala Leu Gln Asn His Glu Asn 465 470 475 480 Glu Ser Val Tyr Lys Ala Ser Leu Ser Leu Ile Glu Lys Tyr Phe Ser                 485 490 495 Val Glu Glu Glu Glu Asp Gln Asn Val Val Pro Glu Thr Thr Ser Glu             500 505 510 Gly Tyr Thr Phe Gln Val Gln Asp Gly Ala Pro Gly Thr Phe Asn Phe         515 520 525 <210> 64 <211> 15 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: P55 <400> 64 Asn Thr Pro Ala Ala Arg Leu His Arg Phe Lys Asn Lys Gly Lys   1 5 10 15 <210> 65 <211> 465 <212> PRT <213> Homo sapiens <400> 65 Met Asp Met Ala Asp Tyr Ser Ala Ala Leu Asp Pro Ala Tyr Thr Thr   1 5 10 15 Leu Glu Phe Glu Asn Val Gln Val Leu Thr Met Gly Asn Asp Thr Ser              20 25 30 Pro Ser Glu Gly Thr Asn Leu Asn Ala Pro Asn Ser Leu Gly Val Ser          35 40 45 Ala Leu Cys Ala Ile Cys Gly Asp Arg Ala Thr Gly Lys His Tyr Gly      50 55 60 Ala Ser Ser Cys Asp Gly Cys Lys Gly Phe Phe Arg Arg Ser Val Arg  65 70 75 80 Lys Asn His Met Tyr Ser Cys Arg Phe Ser Arg Gln Cys Val Val Asp                  85 90 95 Lys Asp Lys Arg Asn Gln Cys Arg Tyr Cys Arg Leu Lys Lys Cys Phe             100 105 110 Arg Ala Gly Met Lys Lys Glu Ala Val Gln Asn Glu Arg Asp Arg Ile         115 120 125 Ser Thr Arg Arg Ser Ser Tyr Glu Asp Ser Ser Leu Pro Ser Ile Asn     130 135 140 Ala Leu Leu Gln Ala Glu Val Leu Ser Arg Gln Ile Thr Ser Pro Val 145 150 155 160 Ser Gly Ile Asn Gly Asp Ile Arg Ala Lys Lys Ile Ala Ser Ile Ala                 165 170 175 Asp Val Cys Glu Ser Met Lys Glu Gln Leu Leu Val Leu Val Glu Trp             180 185 190 Ala Lys Tyr Ile Pro Ala Phe Cys Glu Leu Pro Leu Asp Asp Gln Val         195 200 205 Ala Leu Leu Arg Ala His Ala Gly Glu His Leu Leu Leu Gly Ala Thr     210 215 220 Lys Arg Ser Met Val Phe Lys Asp Val Leu Leu Leu Gly Asn Asp Tyr 225 230 235 240 Ile Val Pro Arg His Cys Pro Glu Leu Ala Glu Met Ser Arg Val Ser                 245 250 255 Ile Arg Ile Leu Asp Glu Leu Val Leu Pro Phe Gln Glu Leu Gln Ile             260 265 270 Asp Asp Asn Glu Tyr Ala Tyr Leu Lys Ala Ile Ile Phe Phe Asp Pro         275 280 285 Asp Ala Lys Gly Leu Ser Asp Pro Gly Lys Ile Lys Arg Leu Arg Ser     290 295 300 Gln Val Gln Val Ser Leu Glu Asp Tyr Ile Asn Asp Arg Gln Tyr Asp 305 310 315 320 Ser Arg Gly Arg Phe Gly Glu Leu Leu Leu Leu Leu Pro Thr Leu Gln                 325 330 335 Ser Ile Thr Trp Gln Met Ile Glu Gln Ile Gln Phe Ile Lys Leu Phe             340 345 350 Gly Met Ala Lys Ile Asp Asn Leu Leu Gln Glu Met Leu Leu Gly Gly         355 360 365 Ser Pro Ser Asp Ala Pro His Ala His His Pro Leu His Pro His Leu     370 375 380 Met Gln Glu His Met Gly Thr Asn Val Ile Val Ala Asn Thr Met Pro 385 390 395 400 Thr His Leu Ser Asn Gly Gln Met Cys Glu Trp Pro Arg Pro Arg Gly                 405 410 415 Gln Ala Ala Thr Pro Glu Thr Pro Gln Pro Ser Pro Pro Gly Gly Ser             420 425 430 Gly Ser Glu Pro Tyr Lys Leu Leu Pro Gly Ala Val Ala Thr Ile Val         435 440 445 Lys Pro Leu Ser Ala Ile Pro Gln Pro Thr Ile Thr Lys Gln Glu Val     450 455 460 Ile 465 <210> 66 <211> 15 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: P56 <400> 66 His Met Tyr Ser Cys Arg Phe Ser Arg Gln Cys Val Val Asp Lys   1 5 10 15 <210> 67 <211> 15 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: P57 <400> 67 Tyr Ser Cys Arg Phe Ser Arg Gln Cys Val Val Asp Lys Asp Lys   1 5 10 15 <210> 68 <211> 15 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: P58 <400> 68 Cys Arg Tyr Cys Arg Leu Lys Lys Cys Phe Arg Ala Gly Met Lys   1 5 10 15 <210> 69 <211> 15 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: P59 <400> 69 Arg Tyr Cys Arg Leu Lys Lys Cys Phe Arg Ala Gly Met Lys Lys   1 5 10 15 <210> 70 <211> 304 <212> PRT <213> Homo sapiens <400> 70 Met Glu Phe Val Ala Leu Gly Gly Pro Asp Ala Gly Ser Pro Thr Pro   1 5 10 15 Phe Pro Asp Glu Ala Gly Ala Phe Leu Gly Leu Gly Gly Gly Glu Arg              20 25 30 Thr Glu Ala Gly Gly Leu Leu Ala Ser Tyr Pro Pro Ser Gly Arg Val          35 40 45 Ser Leu Val Pro Trp Ala Asp Thr Gly Thr Leu Gly Thr Pro Gln Trp      50 55 60 Val Pro Pro Ala Thr Gln Met Glu Pro Pro His Tyr Leu Glu Leu Leu  65 70 75 80 Gln Pro Pro Arg Gly Ser Pro Pro His Pro Ser Ser Gly Pro Leu Leu                  85 90 95 Pro Leu Ser Ser Gly Pro Pro Pro Cys Glu Ala Arg Glu Cys Val Asn             100 105 110 Cys Gly Ala Thr Ala Thr Pro Leu Trp Arg Arg Asp Gly Thr Gly His         115 120 125 Tyr Leu Cys Asn Ala Cys Gly Leu Tyr His Arg Leu Asn Gly Gln Asn     130 135 140 Arg Pro Leu Ile Arg Pro Lys Lys Arg Leu Leu Val Ser Lys Arg Ala 145 150 155 160 Gly Thr Val Cys Ser Asn Cys Gln Thr Ser Thr Thr Thr Leu Trp Arg                 165 170 175 Arg Ser Pro Met Gly Asp Pro Val Cys Asn Ala Cys Gly Leu Tyr Tyr             180 185 190 Lys Leu His Gln Val Asn Arg Pro Leu Thr Met Arg Lys Asp Gly Ile         195 200 205 Gln Thr Arg Asn Arg Lys Val Ser Ser Lys Gly Lys Lys Arg Arg Pro     210 215 220 Pro Gly Gly Gly Asn Pro Ser Ala Thr Ala Gly Gly Gly Ala Pro Met 225 230 235 240 Gly Gly Gly Gly Asp Pro Ser Met Pro Pro Pro Pro Pro Pro Pro Ala                 245 250 255 Ala Ala Pro Pro Gln Ser Asp Ala Leu Tyr Ala Leu Gly Pro Val Val             260 265 270 Leu Ser Gly His Phe Leu Pro Phe Gly Asn Ser Gly Gly Phe Phe Gly         275 280 285 Gly Gly Ala Gly Gly Tyr Thr Ala Pro Pro Gly Leu Ser Pro Gln Ile     290 295 300 <210> 71 <211> 15 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: P60 <400> 71 Arg Lys Asp Gly Ile Gln Thr Arg Asn Arg Lys Val Ser Ser Lys   1 5 10 15 <210> 72 <211> 15 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: P61 <400> 72 Asp Gly Ile Gln Thr Arg Asn Arg Lys Val Ser Ser Lys Gly Lys   1 5 10 15

【図面の簡単な説明】[Brief description of drawings]

【図1】蛍光基質によるHDAC反応のプロトコールを
示す図である。
FIG. 1 shows a protocol of HDAC reaction with a fluorescent substrate.

【図2】発色基質によるHDAC反応のプロトコールを
示す図である。
FIG. 2 is a diagram showing a protocol of HDAC reaction with a chromogenic substrate.

【図3】本発明のHDAC測定用基質のHDACに対す
る反応の直線性を示す図である。
FIG. 3 is a diagram showing the linearity of the reaction of the substrate for measuring HDAC of the present invention with HDAC.

【図4】本発明のHDAC測定用基質のHDACに対す
る酵素親和性(Kcat/KM値)を示す図である。
FIG. 4 is a view showing the enzyme affinity (Kcat / KM value) of HDAC measurement substrate of the present invention for HDAC.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C12Q 1/25 C12Q 1/25 Fターム(参考) 4B063 QA01 QA18 QQ21 QR58 QS26 QS36 QX02 4C084 AA17 NA14 ZB261 ZC201 4H045 AA10 AA20 AA30 BA11 BA12 BA13 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C12Q 1/25 C12Q 1/25 F term (reference) 4B063 QA01 QA18 QQ21 QR58 QS26 QS36 QX02 4C084 AA17 NA14 ZB261 ZC201 4H045 AA10 AA20 AA30 BA11 BA12 BA13

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 一般式[I]で表される化合物又はその
塩。 【化1】 (一般式[I]中、R1は水素原子又はアミノ末端の保
護基を示し、R2はヒストンデアセチラーゼにより脱ア
セチル化される基を示し、R3はリシンのカルボニル末
端とアミド結合し、この結合が加水分解されてアミンが
フリーになることで蛍光又は発色特性の変化する蛍光基
又は発色基を示し、Xは0又は1個以上のアミノ酸残基
を示し、Kはリシン残基を示し、X−Kが、ヒストンH
4,ヒストンH2A,ヒストンH2B,ヒストンH3,
p53,チューブリンα1(tubulinalpha 1),赤血球
クルッペル様ファクター(erythroid Kruppel-like fac
tor),E2F1,RCH1(IMPORTIN ALPHA-7),H
NF−4−ALPHA(HEPATOCYTE NUCLEAR FACTOR 4-
ALPHA),GATA−1(ERYTHROID TRANSCRIPTION FAC
TOR)に由来する配列である。但し、Boc−Lys
(Ac)−MCA、Boc−Val−Leu−Lys
(Ac)−MCAやBoc−Glu−Lys−Lys
(Ac)−MCAを除く。)
1. A compound represented by the general formula [I] or a salt thereof. [Chemical 1] (In the general formula [I], R 1 represents a hydrogen atom or a protecting group at the amino terminal, R 2 represents a group deacetylated by histone deacetylase, and R 3 represents an amide bond with the carbonyl terminal of lysine. , This bond is hydrolyzed and the amine becomes free to show a fluorescent or chromogenic group whose fluorescence or chromogenic properties change, X is 0 or 1 or more amino acid residues, and K is a lysine residue. Shows, X-K is histone H
4, histone H2A, histone H2B, histone H3
p53, tubulin alpha 1, erythroid Kruppel-like fac
tor), E2F1, RCH1 (IMPORTIN ALPHA-7), H
NF-4-ALPHA (HEPATOCYTE NUCLEAR FACTOR 4-
ALPHA), GATA-1 (ERYTHROID TRANSCRIPTION FAC
TOR). However, Boc-Lys
(Ac) -MCA, Boc-Val-Leu-Lys
(Ac) -MCA and Boc-Glu-Lys-Lys
(Ac) -Excluding MCA. )
【請求項2】 ペプチドのアミン末端の保護基を示すR
1が、−HCO,−CH3CO,−CH3CH2CO又はB
oc基であることを特徴とする請求項1記載の化合物又
はその塩。
2. R representing an amine-terminal protecting group of a peptide
1, -HCO, -CH 3 CO, -CH 3 CH 2 CO or B
The compound or salt thereof according to claim 1, which is an oc group.
【請求項3】 ヒストンデアセチラーゼにより脱アセチ
ル化される基を示すR2が、−COCH3,−COC
3,−COCHF2,−COCH2F,−COCl3又は
COCBr3であることを特徴とする請求項1又は2記
載の化合物又はその塩。
3. R 2 representing a group that is deacetylated by histone deacetylase is —COCH 3 , —COC.
F 3, -COCHF 2, -COCH 2 F, or a salt thereof according to claim 1 or 2, wherein the a -COCl 3 or COCBr 3.
【請求項4】 蛍光基を示すR3が、MCA(7-amino-4
-methylcoumarin)基,ANS(2-aminonaphtharene-6-
sulfonic acid)基,CMCA(7-amino-4-chloromethy
lcoumarin)基,FMCA(7-amino-4-trifluoromethyl
coumarin)基,AMP(2-amino-7-mathylpurine-6-thi
ol)基,R110(rhodamine 110)基又はR110モ
ノアミド(rhodamine 110 monoamido)基であることを
特徴とする請求項1〜3のいずれか記載の化合物又はそ
の塩。
4. R 3 representing a fluorescent group is MCA (7-amino-4
-methylcoumarin) group, ANS (2-aminonaphtharene-6-
sulfonic acid group, CMCA (7-amino-4-chloromethy)
lcoumarin) group, FMCA (7-amino-4-trifluoromethyl
coumarin) group, AMP (2-amino-7-mathylpurine-6-thi
ol) group, R110 (rhodamine 110) group or R110 monoamide (rhodamine 110 monoamido) group, The compound according to any one of claims 1 to 3, or a salt thereof.
【請求項5】 発色基を示すR3が、pNA(p-nitroan
iline)基又はβAN(β-amino naphtharene)基であ
ることを特徴とする請求項1〜3のいずれか記載の化合
物又はその塩。
It is 5. shows a chromogenic group R 3, pNA (p-nitroan
iline) group or (beta) AN ((beta) -aminonaphtharene) group, The compound or its salt in any one of Claims 1-3 characterized by the above-mentioned.
【請求項6】 Prp−Lys(Ac)−MCA、Bz
−Lys(Ac)−MCA、Tos−Lys(Ac)−
MCA、Ac−Lys(Ac)−ANS・Na、Lys
(Ac)−MCA・HCl、Boc−Lys(Tfa)
−MCA、Boc−Gly−Lys(Ac)−MCA、
Boc−Gly−Lys(Tfa)−MCA、Ac−L
eu−Gly−Lys(Ac)−MCA、Ac−Leu
−Gly−Lys(Tfa)−MCA、Ac−Lys−
Gly−Leu−Gly−Lys(Ac)−MCA、A
c−Lys(Ac)−Gly−Leu−Gly−Lys
(Ac)−MCA、Ac−Leu−Lys−Ser−L
ys−Lys(Ac)−MCA、Ac−Ser−Arg
−His−Lys−Lys(Ac)−MCA、又はAc
−Met−Pro−Ser―Asp―Lys(Ac)−
MCAであることを特徴とする請求項1記載の化合物又
はその塩。
6. Prp-Lys (Ac) -MCA, Bz
-Lys (Ac) -MCA, Tos-Lys (Ac)-
MCA, Ac-Lys (Ac) -ANS / Na, Lys
(Ac) -MCA · HCl, Boc-Lys (Tfa)
-MCA, Boc-Gly-Lys (Ac) -MCA,
Boc-Gly-Lys (Tfa) -MCA, Ac-L
eu-Gly-Lys (Ac) -MCA, Ac-Leu
-Gly-Lys (Tfa) -MCA, Ac-Lys-
Gly-Leu-Gly-Lys (Ac) -MCA, A
c-Lys (Ac) -Gly-Leu-Gly-Lys
(Ac) -MCA, Ac-Leu-Lys-Ser-L
ys-Lys (Ac) -MCA, Ac-Ser-Arg
-His-Lys-Lys (Ac) -MCA, or Ac
-Met-Pro-Ser-Asp-Lys (Ac)-
It is MCA, The compound or its salt of Claim 1 characterized by the above-mentioned.
【請求項7】 請求項1〜6のいずれか記載の化合物又
はその塩からなるヒストンデアセチラーゼ測定用基質。
7. A substrate for measuring histone deacetylase, which comprises the compound according to any one of claims 1 to 6 or a salt thereof.
【請求項8】 請求項7記載のヒストンデアセチラーゼ
測定用基質又はBoc−Lys(Ac)−MCAに、ヒ
ストンデアセチラーゼ含有試料を作用させ、次いでプロ
テアーゼを作用させて、蛍光体又は発色体を分離するこ
とを特徴とするヒストンデアセチラーゼの活性測定方
法。
8. A histone deacetylase-measuring substrate or Boc-Lys (Ac) -MCA according to claim 7, is reacted with a histone deacetylase-containing sample, and then a protease is allowed to act thereon to produce a fluorescent substance or a chromophore. A method for measuring the activity of a histone deacetylase, which comprises separating
【請求項9】 請求項7記載のヒストンデアセチラーゼ
測定用基質又はBoc−Lys(Ac)−MCAに、被
検物質の存在下にヒストンデアセチラーゼを作用させ、
次いでプロテアーゼを作用させて、蛍光体又は発色体を
分離することにより測定したヒストンデアセチラーゼ活
性を評価することを特徴とするヒストンデアセチラーゼ
阻害剤のスクリーニング方法。
9. The histone deacetylase-measuring substrate or Boc-Lys (Ac) -MCA according to claim 7 is allowed to react with histone deacetylase in the presence of a test substance,
Then, a method for screening a histone deacetylase inhibitor, which comprises evaluating a histone deacetylase activity measured by separating the fluorophore or the chromophore by allowing a protease to act.
【請求項10】 請求項9記載のスクリーニング方法に
より得られることを特徴とするヒストンデアセチラーゼ
阻害剤。
10. A histone deacetylase inhibitor, which is obtained by the screening method according to claim 9.
【請求項11】 請求項7記載のヒストンデアセチラー
ゼ測定用基質又はBoc−Lys(Ac)−MCAから
選ばれる2種以上の基質に、ヒストンデアセチラーゼ含
有試料をそれぞれ作用させ、次いでプロテアーゼを作用
させて、蛍光体又は発色体を分離し、ヒストンデアセチ
ラーゼの活性を測定することを特徴とするヒストンデア
セチラーゼサブタイプの同定方法。
11. A histone deacetylase-containing sample is allowed to act on each of the histone deacetylase assay substrate according to claim 7 or two or more substrates selected from Boc-Lys (Ac) -MCA, and then a protease is added. A method for identifying a histone deacetylase subtype, which comprises allowing a fluorophore or a chromophore to separate and allowing the activity of the histone deacetylase to be measured.
JP2002335840A 2001-11-22 2002-11-19 Histone deacetylase activity assay using fluorescent or chromogenic substrate Withdrawn JP2003221398A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002335840A JP2003221398A (en) 2001-11-22 2002-11-19 Histone deacetylase activity assay using fluorescent or chromogenic substrate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-358583 2001-11-22
JP2001358583 2001-11-22
JP2002335840A JP2003221398A (en) 2001-11-22 2002-11-19 Histone deacetylase activity assay using fluorescent or chromogenic substrate

Publications (1)

Publication Number Publication Date
JP2003221398A true JP2003221398A (en) 2003-08-05

Family

ID=27759252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002335840A Withdrawn JP2003221398A (en) 2001-11-22 2002-11-19 Histone deacetylase activity assay using fluorescent or chromogenic substrate

Country Status (1)

Country Link
JP (1) JP2003221398A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007029037A3 (en) * 2005-09-07 2007-05-18 Angeletti P Ist Richerche Bio Class iia histone deacetylase (hdac) substrate
WO2011132392A1 (en) * 2010-04-19 2011-10-27 国立大学法人九州工業大学 Method for assaying histone methylation enzyme activity
US20110312007A1 (en) * 2006-04-21 2011-12-22 Ronen Sabrina M Detection of Histone Deacetylase Inhibition
WO2012033993A3 (en) * 2010-09-10 2012-05-31 Promega Corporation Methods for assaying enzyme activities
US20120208889A1 (en) * 2009-08-11 2012-08-16 Dana-Farber Cancer Institue, Inc. Class- and isoform-specific hdac inhibitors and uses thereof
US8895284B2 (en) 2000-03-03 2014-11-25 President And Fellows Of Harvard College Class II human histone deacetylases, and uses related thereto
US8999289B2 (en) 2005-03-22 2015-04-07 President And Fellows Of Harvard College Treatment of protein degradation disorders
US9434686B2 (en) 2008-07-23 2016-09-06 President And Fellows Of Harvard College Deacetylase inhibitors and uses thereof
CN113520895A (en) * 2021-07-30 2021-10-22 中国科学院大学 Environment-friendly washing-free disinfection hand sanitizer and preparation method thereof
CN113880922A (en) * 2021-08-26 2022-01-04 深圳大学 A Fluorescent Peptide Substrate for Detecting SIRT7 Enzyme Activity

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8895284B2 (en) 2000-03-03 2014-11-25 President And Fellows Of Harvard College Class II human histone deacetylases, and uses related thereto
US10172905B1 (en) 2005-03-22 2019-01-08 President And Fellows Of Harvard College Treatment of protein degradation disorders
US9572854B2 (en) 2005-03-22 2017-02-21 President And Fellows Of Harvard College Treatment of protein degradation disorders
US8999289B2 (en) 2005-03-22 2015-04-07 President And Fellows Of Harvard College Treatment of protein degradation disorders
WO2007029037A3 (en) * 2005-09-07 2007-05-18 Angeletti P Ist Richerche Bio Class iia histone deacetylase (hdac) substrate
US20110312007A1 (en) * 2006-04-21 2011-12-22 Ronen Sabrina M Detection of Histone Deacetylase Inhibition
US9434686B2 (en) 2008-07-23 2016-09-06 President And Fellows Of Harvard College Deacetylase inhibitors and uses thereof
US20120208889A1 (en) * 2009-08-11 2012-08-16 Dana-Farber Cancer Institue, Inc. Class- and isoform-specific hdac inhibitors and uses thereof
US9540317B2 (en) 2009-08-11 2017-01-10 President And Fellows Of Harvard College Class- and isoform-specific HDAC inhibitors and uses thereof
US8716344B2 (en) * 2009-08-11 2014-05-06 President And Fellows Of Harvard College Class- and isoform-specific HDAC inhibitors and uses thereof
US10059657B2 (en) 2009-08-11 2018-08-28 President And Fellows Of Harvard College Class-and isoform-specific HDAC inhibitors and uses thereof
WO2011132392A1 (en) * 2010-04-19 2011-10-27 国立大学法人九州工業大学 Method for assaying histone methylation enzyme activity
US9012166B2 (en) 2010-04-19 2015-04-21 Kyushu Institute Of Technology Method for assaying histone methylation enzyme activity
JP2011239775A (en) * 2010-04-19 2011-12-01 Kyushu Institute Of Technology Method of assaying activity of histone methylation enzyme
WO2012033993A3 (en) * 2010-09-10 2012-05-31 Promega Corporation Methods for assaying enzyme activities
JP2013542184A (en) * 2010-09-10 2013-11-21 プロメガ コーポレイション Method for assaying enzyme activity
US8962266B2 (en) 2010-09-10 2015-02-24 Promega Corporation Methods for assaying enzyme activities
US8632992B2 (en) 2010-09-10 2014-01-21 Promega Corporation Methods for assaying enzyme activities
CN113520895A (en) * 2021-07-30 2021-10-22 中国科学院大学 Environment-friendly washing-free disinfection hand sanitizer and preparation method thereof
CN113520895B (en) * 2021-07-30 2023-05-02 中国科学院大学 Environment-friendly no-clean disinfection hand sanitizer and preparation method thereof
CN113880922A (en) * 2021-08-26 2022-01-04 深圳大学 A Fluorescent Peptide Substrate for Detecting SIRT7 Enzyme Activity

Similar Documents

Publication Publication Date Title
EP2873677B1 (en) Method of producing self-assembling peptide derivative
Kotler et al. Synthetic peptides as substrates and inhibitors of a retroviral protease.
EP0128602B1 (en) Retro-inverso analogues of the bradykinin potentiating peptide bpp5a and method for their preparation
Jackson et al. Enzymic cyclization of linear peptide esters using subtiligase
Roesner et al. Macrocyclisation of small peptides enabled by oxetane incorporation
EP1174438A1 (en) Novel cyclic tetrapeptide derivatives and use thereof as drugs
JPS63173600A (en) Method for quantifying protease and reagents used therein
Janiszewski et al. Noninvasive optical detection of granzyme B from natural killer cells with enzyme-activated fluorogenic probes
JPH10512300A (en) Method for inhibiting cathepsin K
KR100237126B1 (en) Rapid Synthesis and Search of Peptide Analogs
JP2003221398A (en) Histone deacetylase activity assay using fluorescent or chromogenic substrate
Sohma et al. O-Acyl isopeptide method’for the efficient synthesis of difficult sequence-containing peptides: use of ‘O-acyl isodipeptide unit
WO1996021740A1 (en) Methods of determining endogenous thrombin potential (etp) and thrombin substrates for use in said methods
US4448715A (en) Tagged pyroglu-L-Phe-L-Arg derivatives, substrates and assays for kallikrein
JPH0565230A (en) Retrovirus protease inhibitor
JPS6126558B2 (en)
Robertson et al. Racemisation studies of a novel coupling reagent for solid phase peptide synthesis
EP1511765B1 (en) Par-2-activating peptide derivative and pharmaceutical composition using the same
JP2003221399A (en) Histone deacetylase activity assay using fluorescent or chromogenic substrate
Hiebl et al. Large‐scale synthesis of hematoregulatory nonapeptide SK&F 107647 by fragment coupling
US20020099019A1 (en) Peptides, methods for assaying human pepsinogen I or human pepsin I and assay kits
EP0472670B1 (en) Symmetrical bipeptides including a polyalkylene-gylcol group, method of preparation and use in protease determination
Tanimura et al. Facile synthesis of (2R, 3R)-phenylalanine-2, 3-d2 and NMR study on deuterated gramicidin S.
EP2812345B1 (en) Method of synthesizing peptides, proteins and bioconjugates
JP2896605B2 (en) New peptide substrates, preparation methods and uses in protein C determination

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20040223

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040316