JP2003214236A - Air/fuel ratio control device of internal combustion engine - Google Patents
Air/fuel ratio control device of internal combustion engineInfo
- Publication number
- JP2003214236A JP2003214236A JP2002012975A JP2002012975A JP2003214236A JP 2003214236 A JP2003214236 A JP 2003214236A JP 2002012975 A JP2002012975 A JP 2002012975A JP 2002012975 A JP2002012975 A JP 2002012975A JP 2003214236 A JP2003214236 A JP 2003214236A
- Authority
- JP
- Japan
- Prior art keywords
- air
- fuel ratio
- injection
- internal combustion
- combustion engine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 121
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 58
- 238000002347 injection Methods 0.000 claims abstract description 212
- 239000007924 injection Substances 0.000 claims abstract description 212
- 239000003054 catalyst Substances 0.000 claims abstract description 55
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 33
- 239000001301 oxygen Substances 0.000 claims abstract description 33
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 33
- 230000003247 decreasing effect Effects 0.000 claims abstract description 12
- 239000007789 gas Substances 0.000 claims description 22
- 238000000034 method Methods 0.000 claims description 5
- 230000002596 correlated effect Effects 0.000 claims description 4
- 239000000243 solution Substances 0.000 abstract 1
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 144
- TXKMVPPZCYKFAC-UHFFFAOYSA-N disulfur monoxide Inorganic materials O=S=S TXKMVPPZCYKFAC-UHFFFAOYSA-N 0.000 description 17
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical compound S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 description 17
- 230000007423 decrease Effects 0.000 description 9
- 238000001514 detection method Methods 0.000 description 5
- 230000036284 oxygen consumption Effects 0.000 description 5
- 102100027703 Heterogeneous nuclear ribonucleoprotein H2 Human genes 0.000 description 4
- 101001081143 Homo sapiens Heterogeneous nuclear ribonucleoprotein H2 Proteins 0.000 description 4
- 230000000875 corresponding effect Effects 0.000 description 4
- 238000003795 desorption Methods 0.000 description 4
- 238000011144 upstream manufacturing Methods 0.000 description 4
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- 239000011575 calcium Substances 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 238000011946 reduction process Methods 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 102100022626 Glutamate receptor ionotropic, NMDA 2D Human genes 0.000 description 1
- 101000972840 Homo sapiens Glutamate receptor ionotropic, NMDA 2D Proteins 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 101100219325 Phaseolus vulgaris BA13 gene Proteins 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 101001062854 Rattus norvegicus Fatty acid-binding protein 5 Proteins 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical group 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Exhaust Gas After Treatment (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、内燃機関の空燃比
制御技術に関する。TECHNICAL FIELD The present invention relates to an air-fuel ratio control technique for an internal combustion engine.
【0002】[0002]
【従来の技術】従来、流入する排気の空燃比がリーンの
時にNOx(窒素酸化物)をトラップし、該空燃比がリ
ッチの時にトラップしたNOxを脱離、浄化するNOx
トラップ触媒を備えた内燃機関において、リーン空燃比
で運転した後、空燃比をリッチ化してNOxを還元して
いる。2. Description of the Related Art Conventionally, NOx traps NOx (nitrogen oxide) when the air-fuel ratio of the inflowing exhaust gas is lean and desorbs and purifies the trapped NOx when the air-fuel ratio is rich.
In an internal combustion engine equipped with a trap catalyst, after operating at a lean air-fuel ratio, the air-fuel ratio is made rich to reduce NOx.
【0003】特開2001−59440号には、前記触
媒浄化のための空燃比リッチ化を、燃料の吸気行程での
主噴射量を徐々に増量しつつ、該主噴射量の増量開始と
同時に膨張行程での副噴射をステップ的に開始すること
が開示されている。In Japanese Patent Laid-Open No. 2001-59440, air-fuel ratio enrichment for purifying the catalyst is performed by gradually increasing the main injection amount of the fuel during the intake stroke and expanding the fuel at the same time when the main injection amount starts to increase. It is disclosed that the secondary injection in the stroke is started stepwise.
【0004】[0004]
【発明が解決しようとする課題】しかし、空燃比リッチ
化の要求と同時に膨張行程での副噴射をステップ的に開
始する方式では、排気通路内に残留した酸素と副噴射さ
れた燃料によりアフタバーンが発生しやすく、また、主
噴射と副噴射とを合わせた全量での空燃比は矩形状であ
り、かつ、主噴射に比較して効率の劣る副噴射量を考慮
していないため、NOxの脱離効率が悪く、燃費が悪化
する。However, in the system in which the sub-injection in the expansion stroke is started stepwise at the same time as the demand for the enrichment of the air-fuel ratio, the afterburn is caused by the oxygen remaining in the exhaust passage and the fuel injected by the sub-injection. Since the air-fuel ratio of the total amount of main injection and sub-injection is rectangular, and the sub-injection amount, which is inefficient compared to the main injection, is not taken into consideration, NOx desorption is likely to occur. The separation efficiency is poor and the fuel efficiency is poor.
【0005】なお、SOx(硫黄酸化物)をトラップす
る触媒を備えたものでも、前記NOxと同様のことがい
える。本発明は、このような従来の課題に着目してなさ
れたもので、空燃比リッチ化の要求が生じた場合に、主
噴射と副噴射とを適切量かつ適切なタイミングで行うこ
とにより、アフターバーンの発生を防止できるようにし
た内燃機関の空燃比制御装置を提供することを目的とす
る。It should be noted that the same thing as the above NOx can be said even in the case where a catalyst for trapping SOx (sulfur oxide) is provided. The present invention has been made by paying attention to such a conventional problem, when a request for air-fuel ratio enrichment occurs, by performing the main injection and the sub-injection at an appropriate amount and at an appropriate timing, after-sales An object of the present invention is to provide an air-fuel ratio control device for an internal combustion engine that can prevent the occurrence of burn.
【0006】[0006]
【課題を解決するための手段】このため、請求項1に係
る発明は、空燃比リッチ化の要求が発生してから所定期
間は燃料の点火前に供給される主噴射のみでリッチ化を
行い、前記所定期間経過後前記主噴射と点火後に供給さ
れる副噴射とに分割してリッチ化を行うことを特徴とす
る。Therefore, in the invention according to claim 1, the enrichment is performed only by the main injection supplied before the ignition of the fuel for a predetermined period after the request for the enrichment of the air-fuel ratio is generated. After the lapse of the predetermined period of time, the main injection and the sub-injection supplied after ignition are divided and enriched.
【0007】請求項1に係る発明によると、空燃比リッ
チ化要求発生後、点火前の主噴射によるリッチ化で排気
中の余剰酸素を消費してアフターバーン発生を防止した
上で、所定期間経過後、主噴射によるリッチ化ではトル
ク変動限界により制限される不足分を、トルクへの影響
が少ない点火後の副噴射を併用することによって補うこ
とができる。なお、空燃比リッチ化要求は、排気通路に
触媒を備える場合であれば、例えば、この触媒にトラッ
プされたNOxやSOxを放出すべきときに発生する。According to the first aspect of the present invention, after the air-fuel ratio enrichment request is generated, the excess oxygen in the exhaust gas is consumed by the enrichment by the main injection before ignition to prevent the afterburn, and then the predetermined period elapses. After that, the shortage that is limited by the torque fluctuation limit in the enrichment by the main injection can be supplemented by using the sub-injection after ignition, which has less influence on the torque. It should be noted that the air-fuel ratio enrichment request is issued when a catalyst is provided in the exhaust passage, for example, when NOx or SOx trapped in the catalyst should be released.
【0008】また、請求項2に係る発明は、前記主噴射
によるリッチ度合いをステップ的に大きくすることを特
徴とする。請求項2に係る発明によると、空燃比のリッ
チ化が要求されて、リッチ度合いをステップ的に大きく
することが望ましい場合、排気中の余剰酸素を一度に消
費するのでアフターバーンを生じやすいが、主噴射によ
るリッチ化ではトルク変動限界により制限される不足分
を、所定期間が経過した後、点火後の副噴射により補う
ので、必要十分の還元剤をアフターバーンを防止しつ
つ、ステップ的に確保することができる。The invention according to claim 2 is characterized in that the rich degree by the main injection is increased stepwise. According to the second aspect of the present invention, when the air-fuel ratio is required to be rich and it is desirable to increase the degree of richness in a stepwise manner, the excess oxygen in the exhaust gas is consumed at once, so afterburn is likely to occur. In enrichment by the main injection, the shortage that is limited by the torque fluctuation limit is supplemented by the secondary injection after ignition after the predetermined period has elapsed, so a necessary and sufficient reducing agent is secured in steps while preventing afterburn. can do.
【0009】また、請求項3に係る発明は、前記主噴射
によるリッチ度合いを、上限値以下に制限することを特
徴とする。請求項3に係る発明によると、主噴射による
リッチ度合いを上限値以下に制限することにより、リッ
チ化によるトルク変動が過大となることを防止でき、運
転性を良好に維持することができる。The invention according to claim 3 is characterized in that the rich degree by the main injection is limited to an upper limit value or less. According to the third aspect of the present invention, by limiting the rich degree due to the main injection to the upper limit value or less, it is possible to prevent the torque fluctuation due to the richening from becoming excessive, and it is possible to maintain good drivability.
【0010】また、請求項4に係る発明は、排気通路を
備え、前記主噴射によるリッチ度合いを、ステップ的に
大きくした後、徐々に小さくすることを特徴とする。請
求項4に係る発明によると、触媒でトラップされたNO
xやSOxの放出特性は、放出開始時の放出量が大き
く、その後は放出量が徐々に減少するので、この特性に
合わせて主噴射によるリッチ度合いを、ステップ的に大
きくした後、徐々に小さくすることにより、リッチ燃料
によるNOxやSOxの放出処理効率を十分に高めるこ
とができる。The invention according to claim 4 is characterized in that the exhaust passage is provided, and the rich degree by the main injection is increased stepwise and then gradually decreased. According to the invention of claim 4, NO trapped by the catalyst
Regarding the emission characteristics of x and SOx, since the emission amount at the start of emission is large and the emission amount is gradually decreased thereafter, the rich degree by the main injection is increased stepwise in accordance with this characteristic and then gradually decreased. By doing so, it is possible to sufficiently enhance the efficiency of the NOx and SOx release processing by the rich fuel.
【0011】また、請求項5に係る発明は、前記主噴射
によるリッチ度合いを、ステップ的に大きくした後、一
定度合いに保持し、その後徐々に小さくすることを特徴
とする。請求項5に係る発明によると、リッチ化制御の
初期に、主噴射によるリッチ度合いを、ステップ的に大
きい値で保持してNOxやSOxの放出処理効率を高く
維持し、かつ、トルクの増大も抑制しつつ後期ではNO
xやSOxの放出量減少に見合うようにリッチ度合いを
徐々に小さくすることにより、無駄な燃料噴射を抑制で
きる。Further, the invention according to claim 5 is characterized in that the rich degree by the main injection is increased stepwise, maintained at a constant degree, and then gradually decreased. According to the fifth aspect of the present invention, at the initial stage of the enrichment control, the rich degree due to the main injection is held at a stepwise large value to maintain high NOx and SOx release processing efficiency, and also increase the torque. NO in the second half while suppressing
Wasteful fuel injection can be suppressed by gradually reducing the rich degree so as to correspond to the decrease in the release amount of x and SOx.
【0012】また、請求項6に係る発明は、前記副噴射
によるリッチ度合いをステップ的に大きくすることを特
徴とする。また、請求項7に係る発明は、前記副噴射に
よるリッチ度合いを、ステップ的に大きくした後、徐々
に小さくすることを特徴とする。The invention according to claim 6 is characterized in that the degree of richness due to the sub injection is increased stepwise. Further, the invention according to claim 7 is characterized in that the rich degree by the auxiliary injection is increased stepwise and then gradually decreased.
【0013】また、請求項8に係る発明は、前記主噴射
及び副噴射を合わせた全体のリッチ度合いを、ステップ
的に大きくした後、徐々に小さくする略三角波状態とす
ることを特徴とする。請求項6〜請求項8に係る発明に
よると、副噴射についても主噴射と同様NOxやSOx
の放出特性に見合うように、設定することで、効率よく
NOxやSOxを放出させて還元処理することができ、
さらには、主噴射及び副噴射を合わせた全体のリッチ度
合いを、略三角波状態とすることで、最も効率よく処理
することができる。The invention according to claim 8 is characterized in that the overall rich degree of the main injection and the sub-injection is increased stepwise and then gradually reduced to a substantially triangular wave state. According to the inventions of claims 6 to 8, NOx and SOx are also applied to the sub-injection as in the main injection.
By setting so as to match the emission characteristics of NOx, NOx and SOx can be efficiently released and reduction treatment can be performed.
Furthermore, by setting the overall rich degree of the main injection and the sub-injection in a substantially triangular wave state, the most efficient processing can be performed.
【0014】また、請求項9に係る発明は、排気通路内
の酸素濃度を推定し、所定値を下回ったとき前記所定期
間を経過したとして副噴射を開始することを特徴とす
る。請求項9に係る発明によると、推定した酸素濃度が
所定値を下回ったときにアフターバーンを発生しないと
判断して副噴射を開始させることにより、副噴射を速や
かに開始ができる。Further, the invention according to claim 9 is characterized in that the oxygen concentration in the exhaust passage is estimated, and when the oxygen concentration falls below a predetermined value, the auxiliary injection is started assuming that the predetermined period has elapsed. According to the ninth aspect of the invention, when the estimated oxygen concentration falls below the predetermined value, it is determined that the afterburn will not occur, and the auxiliary injection is started, whereby the auxiliary injection can be started quickly.
【0015】また、請求項10に係る発明は、前記主噴
射の量と機関回転速度とに基づいて排気通路内の酸素濃
度を推定することを特徴とする。請求項10に係る発明
によると、主噴射の量と機関回転速度とにより、排気通
路内の酸素を還元消費できる還元剤(CO)供給量を求
められるため、リッチ化前の酸素量から酸素消費量を減
算して酸素濃度を推定することができる。The invention according to claim 10 is characterized in that the oxygen concentration in the exhaust passage is estimated based on the amount of main injection and the engine speed. According to the tenth aspect of the present invention, the supply amount of the reducing agent (CO) capable of reducing and consuming oxygen in the exhaust passage can be obtained from the amount of main injection and the engine rotation speed. The oxygen concentration can be estimated by subtracting the amount.
【0016】また、請求項11に係る発明は、排気通路
に備えられた触媒下流の空燃比を検出し、該空燃比がリ
ッチになったことを検出したときに、前記所定期間を経
過したとして副噴射を開始することを特徴とする。請求
項11に係る発明によると、空燃比フィードバック制御
に使用されるセンサを利用して空燃比のリッチを検出す
ることにより、排気中酸素濃度の減少を検出して副噴射
を開始させることができる。According to the eleventh aspect of the present invention, when the air-fuel ratio downstream of the catalyst provided in the exhaust passage is detected and it is detected that the air-fuel ratio becomes rich, it is determined that the predetermined period has elapsed. It is characterized by starting the sub-injection. According to the invention of claim 11, the sensor used for the air-fuel ratio feedback control is used to detect the rich air-fuel ratio, so that the decrease in the oxygen concentration in the exhaust gas can be detected and the secondary injection can be started. .
【0017】また、請求項12に係る発明は、排気温度
に相関するパラメータに基づいて前記所定期間を設定す
ることを特徴とする。また、請求項13に係る発明は、
排気温度に相関するパラメータが低温を示すほど前記所
定期間を短く設定することを特徴とする。The invention according to claim 12 is characterized in that the predetermined period is set on the basis of a parameter correlated with the exhaust temperature. The invention according to claim 13 is
The predetermined period is set to be shorter as the parameter correlated to the exhaust gas temperature is lower.
【0018】請求項12及び請求項13に係る発明によ
ると、排気温度が高くなるほどアフターバーンを発生し
やすくなるので、排気温度に相関するパラメータに基づ
き設定し、具体的には該パラメータが低温を示すほど前
記所定期間を短く設定設定することにより、副噴射を開
始させる所定期間を適切に設定することができる。According to the twelfth and thirteenth aspects of the present invention, since the afterburn is more likely to occur as the exhaust gas temperature becomes higher, it is set based on a parameter correlated with the exhaust gas temperature. By setting the predetermined period to be shorter as shown, the predetermined period for starting the secondary injection can be appropriately set.
【0019】また、請求項14に係る発明は、前記空燃
比のリッチ化が要求されるのは、排気通路に備えられた
触媒にトラップされたNOxを放出するときであること
を特徴とする。また、請求項15に係る発明は、前記空
燃比のリッチ化が要求されるのは、排気通路に備えられ
た触媒にトラップされたSOxを放出するときであるこ
とを特徴とする。The invention according to claim 14 is characterized in that the enrichment of the air-fuel ratio is required when the NOx trapped in the catalyst provided in the exhaust passage is released. The invention according to claim 15 is characterized in that the enrichment of the air-fuel ratio is required when the SOx trapped in the catalyst provided in the exhaust passage is released.
【0020】請求項14及び請求項15に係る発明によ
ると、NOxやSOxを触媒から放出させて還元処理す
るときに、空燃比をリッチ化することにより、これらを
処理できる。また、請求項16に係る発明は、前記主噴
射は、吸気行程で行われることを特徴とする。According to the fourteenth and fifteenth aspects of the present invention, when NOx and SOx are released from the catalyst for reduction treatment, they can be treated by enriching the air-fuel ratio. Further, the invention according to claim 16 is characterized in that the main injection is performed in an intake stroke.
【0021】請求項16に係る発明によると、点火前の
吸気行程で主噴射を行って均質燃焼によるリッチ化が行
われる。また、請求項17に係る発明は、前記副噴射
は、膨張行程で行われることを特徴とする。点火後の膨
張行程で副噴射が行われる。According to the sixteenth aspect of the present invention, the main injection is performed in the intake stroke before ignition to enrich the fuel by homogeneous combustion. The invention according to claim 17 is characterized in that the sub-injection is performed in an expansion stroke. Secondary injection is performed in the expansion stroke after ignition.
【0022】また、請求項18に係る発明は、前記主噴
射によるリッチ度合いを所定度合いに制限し、一部の気
筒以外におけるリッチ化の不足分を、該一部の気筒の副
噴射で賄うことを特徴とする。請求項18に係る発明に
よると、一部の気筒のみで主噴射での不足分の全量を賄
うように副噴射を行うことにより、該一部の気筒での副
噴射量を大きくすることができ、燃料噴射弁の開弁期間
−噴射量特性のリニアリティが確保された領域で噴射で
きるため、良好な噴射量精度を得られNOxやSOxの
放出要求量に見合った過不足の無い噴射量を供給するこ
とができる。In the eighteenth aspect of the present invention, the rich degree due to the main injection is limited to a predetermined degree, and the insufficient enrichment in other than some cylinders is covered by the sub-injection of the some cylinders. Is characterized by. According to the eighteenth aspect of the present invention, the sub-injection amount is increased in only some of the cylinders by performing the sub-injection so as to cover the shortage amount in the main injection. Since the injection can be performed in the region where the linearity of the fuel injection valve opening period-injection amount characteristic is ensured, good injection amount accuracy can be obtained and the injection amount that is sufficient to meet the required NOx and SOx emission amount can be supplied. can do.
【0023】また、請求項19に係る発明は、複数の気
筒群を有し、気筒群毎に触媒を備え、各気筒群にそれぞ
れ前記一部の気筒を設けることを特徴とする。請求項1
9に係る発明によると、気筒群毎の触媒に対してそれぞ
れ本発明にかかるリッチ化制御を行うことにより、各触
媒からのNOxやSOxの放出、還元処理を十分に遂行
することができる。The invention according to claim 19 is characterized in that it has a plurality of cylinder groups, each cylinder group is provided with a catalyst, and each of the cylinder groups is provided with a part of the cylinders. Claim 1
According to the invention of No. 9, by performing the enrichment control according to the present invention on the catalysts for each cylinder group, it is possible to sufficiently perform the release and reduction processing of NOx and SOx from each catalyst.
【0024】また、請求項20に係る発明は、前記所定
期間経過後、最初に副噴射のタイミングを迎える気筒を
前記一部の気筒とすることを特徴とする。請求項20に
係る発明によると、副噴射が可能となってから、最初の
膨張行程となる気筒を、副噴射を行う一部の気筒とする
ことにより、可能な限り速やかにNOxやSOxの放
出、還元処理を遂行できる。The invention according to claim 20 is characterized in that, after the lapse of the predetermined period, the cylinders that first reach the timing of the sub-injection are the partial cylinders. According to the twentieth aspect of the present invention, the cylinders that are in the first expansion stroke after the sub-injection is enabled are some of the cylinders that perform the sub-injection, so that NOx and SOx are released as quickly as possible. The reduction process can be performed.
【0025】また、請求項21に係る発明は、排気通路
に備えられた触媒への距離が最も近い気筒を、前記一部
の気筒とすることを特徴とする。請求項21に係る発明
によると、触媒に最も近い気筒を、副噴射を行う一部の
気筒とすることで、副噴射された燃料を速やかに、か
つ、排気通路壁への付着による損失を少なく触媒に到達
させてNOxやSOxの放出、還元処理を遂行できる。Further, the invention according to claim 21 is characterized in that the cylinders having the shortest distance to the catalyst provided in the exhaust passage are the partial cylinders. According to the twenty-first aspect of the present invention, the cylinder closest to the catalyst is a part of the cylinders that perform the sub-injection, so that the sub-injected fuel can be promptly discharged and the loss due to the adhesion to the exhaust passage wall can be reduced. NOx and SOx can be released and reduced by reaching the catalyst.
【0026】[0026]
【発明の実施の形態】以下、本発明の実施形態を、図面
に基づいて説明する。図1は、本発明にかかる空燃比制
御装置の一実施形態のシステム構成を示す。内燃機関1
は、運転モードを切り換えることで吸気行程噴射または
圧縮行程噴射(主噴射)を実施可能な筒内噴射型火花点
火ガソリン内燃機関を適用する。この内燃機関1は、理
論空燃比(ストイキ)での運転やリッチ空燃比運転、リ
ーン空燃比での運転が可能である。BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a system configuration of an embodiment of an air-fuel ratio control device according to the present invention. Internal combustion engine 1
Is a cylinder injection type spark ignition gasoline internal combustion engine capable of performing intake stroke injection or compression stroke injection (main injection) by switching operation modes. The internal combustion engine 1 can be operated at a stoichiometric air-fuel ratio (stoichiometric ratio), a rich air-fuel ratio operation, and a lean air-fuel ratio operation.
【0027】内燃機関1のシリンダヘッド2には、気筒
毎に点火栓3、燃料噴射弁4が取り付けられる。前記燃
料噴射弁4の上流には燃料ポンプ5が接続され、該燃料
ポンプ5から吐出された燃料が燃料噴射弁4から燃焼室
内に向けて任意の燃圧で直接噴射可能となっている。燃
料噴射量は前記燃料ポンプ5の燃料吐出圧と燃料噴射弁
4の開弁時間とで決定される。An ignition plug 3 and a fuel injection valve 4 are attached to the cylinder head 2 of the internal combustion engine 1 for each cylinder. A fuel pump 5 is connected upstream of the fuel injection valve 4, and fuel discharged from the fuel pump 5 can be directly injected from the fuel injection valve 4 into the combustion chamber at an arbitrary fuel pressure. The fuel injection amount is determined by the fuel discharge pressure of the fuel pump 5 and the valve opening time of the fuel injection valve 4.
【0028】前記シリンダヘッド2には、気筒毎に吸気
ポート6が形成され、該吸気ポート6と連通して吸気マ
ニホールド7が接続される。該吸気マニホールド7の上
流に接続される吸気管20には、上流側からエアクリー
ナ21、吸入空気量を検出するエアフローメータ22、
吸入空気量を制御する電子制御式のスロットル弁23が
配設され、前記スロットル弁23には該スロットル弁の
開度を検出するスロットルセンサ24が装着されてい
る。また、前記シリンダヘッド2の反対側には、気筒毎
に排気ポート8が形成され、該排気ポート8と連通して
排気マニホールド9が接続される。シリンダブロック2
5には、機関冷却水温度を検出する水温センサ26、機
関回転速度Ne等を検出するためのクランク角センサ2
7が配設されている。An intake port 6 is formed in the cylinder head 2 for each cylinder, and an intake manifold 7 is connected in communication with the intake port 6. An intake pipe 20 connected upstream of the intake manifold 7 includes an air cleaner 21 from an upstream side, an air flow meter 22 for detecting an intake air amount,
An electronically controlled throttle valve 23 for controlling the intake air amount is provided, and a throttle sensor 24 for detecting the opening of the throttle valve is attached to the throttle valve 23. An exhaust port 8 is formed for each cylinder on the opposite side of the cylinder head 2, and an exhaust manifold 9 is connected in communication with the exhaust port 8. Cylinder block 2
5, a water temperature sensor 26 for detecting the engine cooling water temperature, a crank angle sensor 2 for detecting the engine rotation speed Ne, etc.
7 are provided.
【0029】前記吸気マニホールド7と排気マニホール
ド9の間に、EGR通路10が接続され、該EGR通路
10に介装されたEGR弁11の開度を運転条件に応じ
て制御することにより、EGR(排気還流)量が制御さ
れる。排気マニホールド9には、排気中の酸素量に基づ
いて燃焼室内の空燃比を検出する空燃比センサ12が設
けられ、その下流側に三元触媒13が介装され、その下
流側に接続された排気管14にNOxトラップ触媒15
が介装される。前記三元触媒13は流入する排気の空燃
比がストイキのときにHC,COを酸化すると共にNO
xを還元して浄化する機能を有する。前記NOxトラッ
プ触媒15は、流入する排気の空燃比がリーンのときに
排気中のNOxをトラップするとともに、流入する排気
の空燃比がストイキまたはリッチのときに、NOxを放
出、還元するもので、典型的には、白金(Pt)等の貴
金属とNOxトラップ剤とを担持した基材のコート層を
ハニカム担体上に形成したものである。上記NOxトラ
ップ剤は、セシウム(Cs)、ナトリウム(Na)、カ
リウム(K)、リチウム(Li)等のアルカリ金属、バ
リウム(Ba)、カルシウム(Ca)等のアルカリ土
類、ランタン(La)、イットリウム(Y)等の希土類
から選ばれた少なくとも1つを含んでいる。An EGR passage 10 is connected between the intake manifold 7 and the exhaust manifold 9, and the opening degree of the EGR valve 11 interposed in the EGR passage 10 is controlled in accordance with the operating condition, so that the EGR ( The amount of exhaust gas recirculation) is controlled. The exhaust manifold 9 is provided with an air-fuel ratio sensor 12 that detects the air-fuel ratio in the combustion chamber based on the amount of oxygen in the exhaust, and a three-way catalyst 13 is provided downstream of the air-fuel ratio sensor 12 and is connected downstream thereof. The NOx trap catalyst 15 is attached to the exhaust pipe 14.
Is installed. The three-way catalyst 13 oxidizes HC and CO when the air-fuel ratio of the inflowing exhaust gas is stoichiometric, and NO
It has a function of reducing and purifying x. The NOx trap catalyst 15 traps NOx in the exhaust gas when the air-fuel ratio of the inflowing exhaust gas is lean, and releases and reduces the NOx when the air-fuel ratio of the inflowing exhaust gas is stoichiometric or rich. Typically, a coat layer of a base material carrying a noble metal such as platinum (Pt) and a NOx trapping agent is formed on a honeycomb carrier. The NOx trap agent is an alkali metal such as cesium (Cs), sodium (Na), potassium (K), lithium (Li), an alkaline earth such as barium (Ba), calcium (Ca), lanthanum (La), It contains at least one selected from rare earth elements such as yttrium (Y).
【0030】さらに、入出力装置、記憶装置(ROM、
RAM)、中央処理装置(CPU)、タイマカウンタ等
を備えたC/U(コントロールユニット)16が設置さ
れている。このC/U16により、内燃機関を含めた本
発明に関わる排気浄化装置の総合的な制御が行われる。
C/U6の入力側には、前記各種センサからの検出情報
が入力され、出力側には、燃料噴射弁4や点火栓5等が
接続されており、各種センサからの検出情報に基づき演
算された燃料噴射量や点火時期等の値が出力される。Further, an input / output device, a storage device (ROM,
A C / U (control unit) 16 including a RAM), a central processing unit (CPU), a timer counter, etc. is installed. By this C / U 16, comprehensive control of the exhaust emission control device including the internal combustion engine according to the present invention is performed.
The detection information from the various sensors is input to the input side of the C / U 6, and the fuel injection valve 4, the spark plug 5 and the like are connected to the output side of the C / U 6, which are calculated based on the detection information from the various sensors. Values such as the fuel injection amount and ignition timing are output.
【0031】次に、本発明に関わる排気浄化装置の作用
について説明する。なお、ここでは、内燃機関の圧縮行
程で主噴射を行い、かつ、リーン空燃比運転している場
合を例に説明を行う。リーン空燃比で運転を行うときの
酸化雰囲気の場合、NOxトラップ触媒15は、NOx
をトラップするが飽和量に近づくとNOxトラップ量が
低下するため、トラップしたNOxを放出、還元して除
去する必要がある。そこで、NOxトラップ触媒を有し
た排気浄化装置では、例えば、予め設定された所定周期
で目標空燃比を小さくして所定期間リッチ空燃比運転を
行い(以下リッチスパイクという)、これにより、NO
xトラップ触媒内に還元雰囲気を強制的に作り、トラッ
プしたNOxを脱離、還元するようにしている。Next, the operation of the exhaust gas purification device according to the present invention will be described. In addition, here, the case where the main injection is performed in the compression stroke of the internal combustion engine and the lean air-fuel ratio operation is performed will be described as an example. In the case of an oxidizing atmosphere when operating at a lean air-fuel ratio, the NOx trap catalyst 15 is
However, the trapped NOx amount decreases when it approaches the saturation amount, so it is necessary to release and reduce the trapped NOx. Therefore, in the exhaust gas purification device having the NOx trap catalyst, for example, the target air-fuel ratio is reduced at a preset predetermined cycle to perform the rich air-fuel ratio operation for a predetermined period (hereinafter referred to as rich spike).
A reducing atmosphere is forcibly created in the x-trap catalyst to desorb and reduce trapped NOx.
【0032】本発明では上記の制御を前提として空燃比
のリッチ化を下記方法で行う。第1の実施形態では、N
Ox処理のための燃料増量分を算出し、トルク変動の無
いレベルあるいは運転上許容できるレベルまで主噴射で
ある吸気行程での燃料噴射量を増量する。主噴射増量を
開始してから、排気管の酸素濃度が所定値以下に低下す
るまで一定時間この状態を保持する。In the present invention, the air-fuel ratio is made rich by the following method on the premise of the above control. In the first embodiment, N
The amount of fuel increase for the Ox process is calculated, and the amount of fuel injection in the intake stroke, which is the main injection, is increased to a level where there is no torque fluctuation or an operationally permissible level. After starting the main injection amount increase, this state is maintained for a certain period of time until the oxygen concentration in the exhaust pipe falls below a predetermined value.
【0033】前記一定時間経過後、トルク変動を回避す
るために増量できなかった燃料を副噴射である膨張行程
での燃料噴射で補う。該第1の実施形態のリッチスパイ
ク制御を、図2のフローチャートに従って図3のタイム
チャートを参照しつつ説明する。ステップ1では、機関
の回転速度、負荷(アクセル開度等)などの運転状態検
出値を読み込む。After the lapse of the predetermined time, the fuel which could not be increased in order to avoid the torque fluctuation is compensated by the fuel injection in the expansion stroke which is the secondary injection. The rich spike control of the first embodiment will be described according to the flowchart of FIG. 2 and with reference to the time chart of FIG. In step 1, the operating state detection values such as the engine speed, load (accelerator opening, etc.) are read.
【0034】ステップ2では、前記運転状態検出値に基
づいて目標空燃比を算出する。ここでの目標空燃比に
は、後述するリッチスパイク時であっても燃料増量分を
含めない燃料噴射量に対応して設定される。ステップ3
では、前記目標空燃比に応じた燃料噴射量を算出する。
この燃料噴射量は、点火前の吸気行程(または圧縮行
程)で噴射される主噴射量TP1である。At step 2, the target air-fuel ratio is calculated based on the detected operating state value. The target air-fuel ratio here is set corresponding to the fuel injection amount that does not include the fuel increase amount even during the rich spike described later. Step 3
Then, the fuel injection amount according to the target air-fuel ratio is calculated.
This fuel injection amount is the main injection amount TP1 injected in the intake stroke (or compression stroke) before ignition.
【0035】ステップ4では、燃焼切換フラグの値に基
づいて、成層燃焼(リーン燃焼)からストイキ燃焼(ま
たはリッチ燃焼、以下ストイキ燃焼で代表する)へ切り
換わったかを判定する。ストイキ燃焼へ切り換わったと
判定されたとき(図3のa参照)は、所定期間リッチス
パイク制御を行うため、ステップ5で、NOxの脱離・
還元に必要な主噴射の増量分要求値TP20を算出す
る。ここで、NOxトラップ触媒内にトラップされたN
Oxの還元効率は、始めほど大きく次第に減少していく
ので、この特性に合わせて増量分要求値TP20も初期
値をステップ的に増大させ、時間と共に減少するように
三角形状に設定する(図3のb参照)。In step 4, it is determined based on the value of the combustion switching flag whether the stratified combustion (lean combustion) is switched to the stoichiometric combustion (or rich combustion, which will be hereinafter referred to as stoichiometric combustion). When it is determined that the combustion has been changed to stoichiometric combustion (see a in FIG. 3), rich spike control is performed for a predetermined period, so in step 5, NOx desorption /
A required value TP20 for increasing the main injection amount required for the reduction is calculated. Here, the N trapped in the NOx trap catalyst
Since the reduction efficiency of Ox gradually decreases at the beginning, the increase request value TP20 also increases the initial value stepwise according to this characteristic, and is set in a triangular shape so as to decrease with time (FIG. 3). B)).
【0036】ステップ6では、点火前に噴射される主噴
射による増量は、燃焼に供せられるためトルクアップ
(変動)を生じるので、許容できるトルク変動限界に相
当する主噴射増量分であるトルク変動許容増量限界TP
21(図3のc参照)を算出する。ステップ7では、ス
テップ5で算出した主噴射の増量分要求値TP20が、
ステップ6で算出したトルク変動限界TP21以下であ
るかを判定する。In step 6, the increase in the main injection that is injected before ignition causes a torque increase (fluctuation) because it is used for combustion. Therefore, the torque fluctuation that is the main injection increment corresponding to the allowable torque fluctuation limit. Allowable increase limit TP
21 (see c in FIG. 3) is calculated. In step 7, the main injection increase demand value TP20 calculated in step 5 is
It is determined whether the torque fluctuation limit is TP21 or less calculated in step 6.
【0037】ステップ7で、TP20≦TP21と判定
されたときは、要求値TP20どおりの主噴射増量を行
ってもトルク変動を限界内に収められるので、ステップ
8で、前記主噴射量TP1に増量要求値TP20を増量
した燃料噴射量で主噴射を行う。この場合、点火後の副
噴射は行わない。一方、ステップ7で増量分要求値TP
20が、トルク変動限界TP21を超えていると判定さ
れたときは、ステップ9で主噴射の増量分をトルク変動
限界TP21に設定した後、ステップ10で該トルク変
動限界TP21に増量分を抑えたことによる増量不足分
TP22をTP20からTP21を減算して算出する。When it is determined in step 7 that TP20≤TP21, the torque fluctuation can be kept within the limit even if the main injection amount is increased according to the required value TP20. Therefore, in step 8, the main injection amount TP1 is increased. The main injection is performed with the fuel injection amount obtained by increasing the required value TP20. In this case, the secondary injection after ignition is not performed. On the other hand, in step 7, the increase amount demand value TP
When it is determined that 20 exceeds the torque fluctuation limit TP21, the increased amount of the main injection is set to the torque fluctuation limit TP21 in step 9, and then the increased amount is suppressed to the torque fluctuation limit TP21 in step 10. The increase shortage TP22 due to this is calculated by subtracting TP21 from TP20.
【0038】ステップ11では、前記主噴射での増量不
足分TP22を、膨張行程での副噴射で賄うための副噴
射量TP3を算出する。主噴射の場合は主として燃焼に
より生成されたCOによりNOxを還元するのに対し、
点火後の膨張行程での副噴射の場合は燃焼に寄与できな
かったHC(未燃燃料)の割合が増え、このHCでNO
xを還元するため、主噴射に比較して還元効率が劣る。In step 11, the auxiliary injection amount TP3 for covering the insufficient increase amount TP22 in the main injection by the auxiliary injection in the expansion stroke is calculated. In the case of main injection, NOx is reduced mainly by CO produced by combustion,
In the case of secondary injection in the expansion stroke after ignition, the proportion of HC (unburned fuel) that could not contribute to combustion increases, and at this HC, NO
Since x is reduced, the reduction efficiency is inferior to the main injection.
【0039】そこで次式のように、前記主噴射の増量不
足分TP22に、前記NOx還元効率の低下に見合った
係数K(>1、例えば、K=COによるNOx還元効率
/HCによるNOx還元効率)を乗じることにより、副
噴射量TP3を算出する。なお、増量不足分TP22が
時間と共に減少する三角形状になるので、副噴射量TP
3も三角形状となる(図3のd参照)。Therefore, as shown in the following equation, the amount TP22 of insufficient increase in the main injection has a coefficient K (> 1, for example, NOx reduction efficiency by K = CO / NOx reduction efficiency by HC) corresponding to the decrease of the NOx reduction efficiency. ) Is calculated to calculate the sub injection amount TP3. In addition, since the insufficient increase amount TP22 becomes a triangular shape that decreases with time, the auxiliary injection amount TP
3 also has a triangular shape (see d in FIG. 3).
【0040】TP3=TP22×K
ステップ12で前記副噴射開始のディレイ時間tdが経
過したかを判定し、経過前は、このルーチンを終了し主
噴射のみを行うが、経過後はステップ13で前記吸気行
程での主噴射の後、膨張行程で前記算出したTP3の燃
料を副噴射する。TP3 = TP22 × K In step 12, it is determined whether the delay time td for starting the sub injection has elapsed. Before the lapse of time, this routine is ended and only the main injection is performed. After the main injection in the intake stroke, the fuel of TP3 calculated above is sub-injected in the expansion stroke.
【0041】前記副噴射の開始を遅らせるのは、副噴射
されたHC(未燃燃料)がNOx還元に使用される前
に、燃焼切換前のリーン燃焼時に排気管内に溜まった過
剰な酸素と反応してアフターバーンを発生するのを防止
するためであり、主噴射増量分TP21により生じるC
Oで前記排気管内の過剰酸素分が消費される(図3のe
参照)のを待って副噴射を開始させるのである。The reason why the start of the sub-injection is delayed is that the sub-injected HC (unburned fuel) reacts with the excess oxygen accumulated in the exhaust pipe during lean combustion before combustion switching before it is used for NOx reduction. To prevent the afterburn from occurring, and C generated by the main injection amount increase TP21
Excess oxygen content in the exhaust pipe is consumed by O (e in FIG. 3).
(See reference), and the secondary injection is started.
【0042】このようにすれば、NOx還元効率の高い
主噴射による増量でトルク変動を許容値内に抑え、か
つ、アフターバーンの発生も回避しつつ、要求値に対す
る不足分を副噴射で賄うことにより、NOxトラップ触
媒でトラップされたNOxを十分に脱離・還元処理する
ことができ、この間のNOx排出を効果的に抑制できる
(図3のf参照)。In this way, the torque fluctuation is suppressed within the allowable value by the increase in the main injection with high NOx reduction efficiency, and the occurrence of afterburn is avoided while the shortage of the required value is covered by the secondary injection. As a result, the NOx trapped by the NOx trap catalyst can be sufficiently desorbed and reduced, and NOx emission during this period can be effectively suppressed (see f in FIG. 3).
【0043】本実施形態では、前記アフターバーン防止
のためのディレイ時間tdを固定値に設定し、その場
合、排気管内に残存する酸素量が多い場合でも確実にア
フターバーンを回避できるように大きめの値に設定する
必要がある。そこで、第2の実施形態では、排気管内の
残存酸素量を推定しつつ、該酸素量が所定値以下に減少
したときに副噴射を開始するようにする。In this embodiment, the delay time td for preventing the afterburn is set to a fixed value, and in this case, a large afterburn is surely avoided even when the amount of oxygen remaining in the exhaust pipe is large. Must be set to a value. Therefore, in the second embodiment, while estimating the residual oxygen amount in the exhaust pipe, the sub-injection is started when the oxygen amount decreases below a predetermined value.
【0044】図4は、第2の実施形態におけるリッチス
パイク制御のフローチャートを示す。第1の実施形態を
示す図2のステップ11でのディレイ時間経過判定に代
えて、ステップ11’で副噴射許可判定を行う。該副噴
射許可判定は、副噴射許可フラグの値で判別し、1のと
きはステップ12で副噴射を行い、0のときは副噴射を
停止する。FIG. 4 shows a flow chart of the rich spike control in the second embodiment. Instead of the delay time elapse determination in step 11 of FIG. 2 showing the first embodiment, a sub injection permission determination is performed in step 11 ′. The sub-injection permission determination is made based on the value of the sub-injection permission flag. When it is 1, the sub-injection is performed in step 12, and when it is 0, the sub-injection is stopped.
【0045】図5は、上記副噴射許可フラグの値を設定
するサブルーチンのフローチャートである。ステップ2
1では、機関回転速度Neを読み込む。ステップ22で
は、前記主噴射増量分TP21による排気管内酸素消費
量O2dを次式により算出する。FIG. 5 is a flow chart of a subroutine for setting the value of the sub injection permission flag. Step two
At 1, the engine speed Ne is read. In step 22, the oxygen consumption amount O2d in the exhaust pipe due to the main injection increase amount TP21 is calculated by the following equation.
【0046】O2d=TP21×Ne×A
ここで、係数Aは酸素の消費効率に応じた値であり、単
位時間あたりに増量される燃料量(TP21×Ne)に
比例した値として、単位時間あたり酸素消費量O2dが
算出される。ステップ23では、リッチスパイク制御つ
まり主噴射増量開始後に消費される排気管内酸素量の総
量O2dtを、前記単位時間あたり酸素消費量O2dを
積算することにより、次式のように算出する。O2d = TP21 × Ne × A Here, the coefficient A is a value corresponding to the oxygen consumption efficiency, and is a value proportional to the fuel amount (TP21 × Ne) increased per unit time, per unit time. The oxygen consumption amount O2d is calculated. In step 23, the total amount O2dt of the oxygen amount in the exhaust pipe that is consumed after the start of the rich spike control, that is, the main injection amount increase, is calculated by the following equation by integrating the oxygen consumption amount O2d per unit time.
【0047】O2dt=O2dt(前回値)+O2d
ステップ24では、リッチスパイク制御開始時にそれま
でのリーン燃焼によって排気管内に残存していた酸素量
の初期値O2sを読み込む。直前のリーン燃焼における
リーン空燃比は、一定である場合が多いので、そのとき
は予め算出された初期値O2sを読み込めばよいが、リ
ーン空燃比が可変となる場合は該リーン空燃比に応じて
可変に算出(マップ参照等)すればよい。O2dt = O2dt (previous value) + O2d At step 24, at the start of the rich spike control, the initial value O2s of the oxygen amount remaining in the exhaust pipe due to the lean combustion until then is read. Since the lean air-fuel ratio in the immediately preceding lean combustion is often constant, it is sufficient to read the pre-calculated initial value O2s at that time. However, when the lean air-fuel ratio becomes variable, it depends on the lean air-fuel ratio. It may be variably calculated (see map, etc.).
【0048】ステップ25では、前記酸素量の初期値O
2sから前記消費酸素量の総量O2dtを減算すること
により、現在の排気管内酸素量O2rを算出する(次式
参照)。
O2r=O2s−O2dt
ステップ26では、前記排気管内酸素量O2rが副噴射
を開始してもアフターバーンを発生しない許容値B以下
に減少したかを判定する。In step 25, the initial value O of the oxygen amount is
The current exhaust pipe oxygen amount O2r is calculated by subtracting the total oxygen consumption amount O2dt from 2s (see the following equation). O2r = O2s-O2dt In step 26, it is determined whether or not the oxygen amount O2r in the exhaust pipe has decreased to the allowable value B or less at which afterburn does not occur even if the secondary injection is started.
【0049】ステップ26で排気管内酸素量O2rが許
容値B以下に減少したと判定されたときは、ステップ2
7で副噴射許可フラグFTP3を1にセットし、まだ許
容値Bを超えていると判定されたときは、ステップ28
で副噴射許可フラグFTP3を0に維持する。このよう
にすれば、排気管内に残存する酸素量を推定しつつ副噴
射を開始させるため、ディレイ時間を一定の大きめに設
定する場合に比較して副噴射の開始を早めることがで
き、燃費、排気エミッションをより改善できる。When it is determined in step 26 that the exhaust pipe oxygen amount O2r has decreased to the allowable value B or less, step 2
If the sub injection permission flag FTP3 is set to 1 in step 7 and it is determined that the allowable value B is still exceeded, step 28
The sub-injection permission flag FTP3 is maintained at 0. By doing this, since the sub-injection is started while estimating the amount of oxygen remaining in the exhaust pipe, the start of the sub-injection can be accelerated compared to the case where the delay time is set to a certain large value, and the fuel consumption, The exhaust emission can be improved.
【0050】上記第2の実施形態では、排気管内酸素量
のみで副噴射の開始時期を決定したが、アフターバーン
は排気温度が高いほど発生しやすくなる。したがって、
排気温度が最も高温となる場合を想定して許容値Bを設
定する必要があり、排気温度が低温であるときには副噴
射開始が必要以上に遅れる。そこで、第3の実施形態で
は、排気温度も考慮して副噴射の開始時期を決定する。In the second embodiment, the start timing of the sub-injection is determined only by the amount of oxygen in the exhaust pipe, but afterburn is more likely to occur as the exhaust temperature is higher. Therefore,
It is necessary to set the allowable value B on the assumption that the exhaust gas temperature is the highest, and when the exhaust gas temperature is low, the start of the secondary injection is delayed more than necessary. Therefore, in the third embodiment, the start timing of the sub-injection is determined in consideration of the exhaust gas temperature as well.
【0051】第3の実施形態におけるリッチスパイク制
御のフローチャート(メインルーチン)は、第2の実施
形態の図4と同一であり、前記副噴射許可フラグの値を
設定するサブルーチンのフローチャートを図6に示す。
図6は、図5と一部異なる。すなわち、ステップ21〜
ステップ25は同一であり、ステップ31で、センサに
より検出されまたは機関運転状態に基づいて推定された
排気温度TEMPを読み込み、ステップ32で該排気温
度TEMPに基づいて図示のように、設定された特性マ
ップから残存酸素量の許容値Bを参照する。ここで、排
気温度が高いときほどアフターバーンを発生しやすいの
で、許容値Bが小さい値に設定されている。以下第2の
実施形態と同様に、ステップ26〜28で現在の排気管
内酸素量O2rと前記許容値Bとを比較しつつ副噴射許
可フラグFTP3の値をセットする。The flow chart (main routine) of the rich spike control in the third embodiment is the same as that in FIG. 4 of the second embodiment, and the flow chart of the subroutine for setting the value of the sub injection permission flag is shown in FIG. Show.
FIG. 6 is partially different from FIG. That is, steps 21 to
Steps 25 are the same, and in step 31, the exhaust gas temperature TEMP detected by the sensor or estimated based on the engine operating state is read, and in step 32, the set characteristic as shown based on the exhaust gas temperature TEMP is read. The allowable value B of the residual oxygen amount is referred to from the map. Here, since the afterburn is more likely to occur as the exhaust temperature is higher, the allowable value B is set to a smaller value. Similarly to the second embodiment, the values of the sub-injection permission flag FTP3 are set while comparing the current exhaust pipe oxygen amount O2r with the allowable value B in steps 26 to 28.
【0052】第4の実施形態は、三元触媒上流の空燃比
センサ12の検出値に基づいて上記副噴射許可フラグF
TP3の値をセットするものであり、リッチスパイク制
御のフローチャート(メインルーチン)は、第2の実施
形態の図4と同一である。図7に示す副噴射許可フラグ
の値を設定するサブルーチンのフローチャートにおい
て、ステップ41で空燃比センサの検出値を読み込み、
ステップ42で該検出値がリッチに反転したかを判定
し、リッチに反転したと判定されたときに、ステップ4
3で副噴射許可フラグFTP3の値を1にセットし、そ
れ以外のときは0に維持する。In the fourth embodiment, based on the detection value of the air-fuel ratio sensor 12 upstream of the three-way catalyst, the auxiliary injection permission flag F is set.
The value of TP3 is set, and the flow chart (main routine) of rich spike control is the same as that of FIG. 4 of the second embodiment. In the flowchart of the subroutine for setting the value of the auxiliary injection permission flag shown in FIG. 7, the detection value of the air-fuel ratio sensor is read in step 41,
In step 42, it is determined whether the detected value is inverted to rich, and when it is determined to be inverted to rich, step 4
The value of the sub-injection permission flag FTP3 is set to 1 at 3, and is maintained at 0 otherwise.
【0053】このように、空燃比フィードバック制御に
用いられる空燃比センサを利用して簡易に排気管内酸素
量が低下したことを検出して、副噴射を開始させること
ができる。第5の実施形態は、排気温度のみを用いて副
噴射の開始時期を決定するものであり、リッチスパイク
制御のフローチャート(メインルーチン)は、第1の実
施形態の図2と同一である。As described above, the auxiliary injection can be started by simply detecting the decrease in the amount of oxygen in the exhaust pipe by using the air-fuel ratio sensor used for the air-fuel ratio feedback control. The fifth embodiment uses only the exhaust gas temperature to determine the start timing of the sub-injection, and the flow chart (main routine) of the rich spike control is the same as in FIG. 2 of the first embodiment.
【0054】図8に示す副噴射許可フラグの値を設定す
るサブルーチンのフローチャートにおいて、ステップ5
1で機関回転速度、負荷を読み込み、ステップ52でこ
れら機関回転速度、負荷に基づいて検出される運転状態
に基づいて、排気管内の排気温度TEMPを推定し、ス
テップ53で副噴射開始のディレイ時間tdeを前記排
気温度TEMPに基づいてマップ参照等により算出す
る。上述のように排気温度が高いときほどアフターバー
ンを発生しやすいので、ディレイ時間tdeが大きい値
に算出される。In the flowchart of the subroutine for setting the value of the sub injection permission flag shown in FIG.
In step 1, the engine speed and load are read, in step 52, the exhaust temperature TEMP in the exhaust pipe is estimated based on the operating state detected based on these engine speed and load, and in step 53, the sub injection start delay time tde is calculated based on the exhaust gas temperature TEMP by referring to a map or the like. As described above, as the exhaust temperature is higher, afterburn is more likely to occur, so the delay time tde is calculated to be a large value.
【0055】以上の実施形態では、全気筒で副噴射を行
うものを示したが、主噴射の不足分を賄うだけの副噴射
量は少量であるため、全気筒に分割して副噴射を行うと
気筒あたりの副噴射量はさらに少量となり、図9の燃料
噴射弁の噴射量ばらつきが大きい小噴射量領域が使用さ
れることにより、噴射量誤差が増大する。そこで、以下
の実施形態では、一部の気筒のみで副噴射を行うように
して噴射量誤差を抑制するようにしたものを示す。In the above embodiment, the sub-injection is performed in all cylinders. However, since the sub-injection amount enough to cover the shortage of the main injection is small, the sub-injection is performed by dividing into all the cylinders. Further, the sub injection amount per cylinder becomes even smaller, and the injection amount error increases by using the small injection amount region in which the injection amount variation of the fuel injection valve in FIG. 9 is large. Therefore, in the following embodiment, the injection amount error is suppressed by performing the sub-injection in only some of the cylinders.
【0056】図10は、第6の実施形態におけるリッチ
スパイク制御のフローチャートを示す。ステップ1〜ス
テップ10’までは図2と同様であるが、ステップ1
0’で算出される副噴射量TP3’は、次式のように算
出され、第1〜第5の実施形態のように各気筒で副噴射
を行う場合に設定される気筒毎の副噴射量TP3に気筒
数を乗じた値となる。FIG. 10 shows a flow chart of the rich spike control in the sixth embodiment. Steps 1 to 10 'are the same as those in FIG. 2, but step 1
The sub-injection amount TP3 ′ calculated by 0 ′ is calculated by the following equation, and is set for each cylinder when the sub-injection is performed in each cylinder as in the first to fifth embodiments. It is a value obtained by multiplying TP3 by the number of cylinders.
【0057】TP3’=TP22(主噴射の増量不足
分)×K×気筒数
ステップ11で副噴射開始ディレイ時間が経過したこと
を判定した後(または第2〜第4の実施形態のように副
噴射許可判定された後)、ステップ61で副噴射を行う
気筒を特定し、ステップ62で該特定気筒のみで前記副
噴射量TP3’分の副噴射を行う。TP3 '= TP22 (Insufficient amount of increase in main injection) × K × number of cylinders After it is determined in step 11 that the sub injection start delay time has elapsed (or the sub injection as in the second to fourth embodiments). After the injection permission is determined), the cylinder for which the sub-injection is performed is specified in step 61, and the sub-injection for the sub-injection amount TP3 ′ is performed only in the specific cylinder in step 62.
【0058】図11は、前記ステップ61で副噴射を行
う気筒を特定するサブルーチンのフローチャートを示
す。ステップ71では、前記クランク角センサ27から
の信号を入力する。ステップ72では、前記クランク角
センサ27からの信号に基づいて、前記副噴射開始ディ
レイ時間が経過したことを判定した直後(または第2〜
第4の実施形態のように副噴射許可判定された直後)の
時点において、次に膨張行程となる気筒を、副噴射を行
う気筒として特定する。FIG. 11 is a flow chart of a subroutine for identifying the cylinder to be sub-injected in step 61. In step 71, the signal from the crank angle sensor 27 is input. In step 72, immediately after it is determined that the sub injection start delay time has elapsed based on the signal from the crank angle sensor 27 (or the second to the second).
Immediately after the sub-injection permission determination as in the fourth embodiment), the cylinder having the next expansion stroke is specified as the cylinder that performs the sub-injection.
【0059】図12は、本実施形態を直列4気筒機関に
適用したときの副噴射を行う気筒が特定されて副噴射が
開始されるときの様子を示し、図13は、同じくリッチ
スパイク制御開始から終了までの様子を示す。このよう
に、特定気筒のみで副噴射を行うことにより、該特定気
筒での副噴射量を大きくすることができ、図9に示され
た燃料噴射弁の開弁期間−噴射量特性のリニアリティが
確保された領域で噴射できるため、良好な噴射量精度を
得られNOx脱離要求量に見合った過不足の無い噴射量
を供給することができる。また、副噴射が可能となって
から、最初の膨張行程となる気筒を、副噴射を行う特定
気筒とすることにより、可能な限り速やかにNOxの脱
離還元処理を遂行できる。FIG. 12 shows a state in which the cylinder for which the secondary injection is performed is specified and the secondary injection is started when this embodiment is applied to an in-line four-cylinder engine, and FIG. 13 similarly shows the rich spike control start. The state from to the end is shown. As described above, by performing the secondary injection only in the specific cylinder, the secondary injection amount in the specific cylinder can be increased, and the linearity of the fuel injection valve opening period-injection amount characteristic shown in FIG. Since the injection can be performed in the secured region, it is possible to obtain a good injection amount accuracy and supply an injection amount that is sufficient in proportion to the required NOx desorption amount. In addition, the desorption reduction process of NOx can be performed as quickly as possible by setting the cylinder that is in the first expansion stroke after the secondary injection becomes possible as the specific cylinder that performs the secondary injection.
【0060】次に、一部の気筒のみで副噴射を行う別の
実施形態(第7の実施形態)について説明する。本実施
形態は、気筒群毎に副噴射を行う特定気筒を有し、ま
た、触媒に最も近い気筒を特定気筒とするものであり、
V型内燃機関に適用したものを示す。図14は、本実施
形態のシステムにおける触媒と気筒の位置関係を示す。
図において、V型6気筒内燃機関1’は、左右のバンク
に接続された排気マニホールド31,32のそれぞれの
下流部分に、三元触媒33,34及びその下流側にNO
xトラップ触媒35,36が配設されている。Next, another embodiment (seventh embodiment) in which the sub injection is performed only in some of the cylinders will be described. In this embodiment, each cylinder group has a specific cylinder that performs sub injection, and the cylinder closest to the catalyst is a specific cylinder.
The one applied to a V-type internal combustion engine is shown. FIG. 14 shows the positional relationship between the catalyst and the cylinders in the system of this embodiment.
In the figure, a V-type 6-cylinder internal combustion engine 1 ′ has three-way catalysts 33, 34 and NOs on the downstream sides of the exhaust manifolds 31, 32 connected to the left and right banks, respectively.
The x trap catalysts 35 and 36 are provided.
【0061】左バンクの気筒群(♯1,♯3,♯5)に
おいて、触媒に最も近い気筒は♯5気筒であるので、該
気筒群の特定気筒を♯5気筒とし、右バンクの気筒群
(♯2,♯4,♯6)において、触媒に最も近い気筒は
♯6気筒であるので、該気筒群の特定気筒を♯6気筒と
する。本実施形態におけるリッチスパイク制御のフロー
チャートは、第6の実施形態の図10と同様である。副
噴射を行う特定気筒は上記のように決まっており、これ
らの気筒の膨張行程で副噴射を行う。In the cylinder group (# 1, # 3, # 5) of the left bank, the cylinder closest to the catalyst is the # 5 cylinder. Therefore, the specific cylinder of the cylinder group is the # 5 cylinder, and the cylinder group of the right bank is In (# 2, # 4, # 6), the cylinder closest to the catalyst is the # 6 cylinder, so the specific cylinder of the cylinder group is set to the # 6 cylinder. The flow chart of the rich spike control in this embodiment is the same as that of FIG. 10 of the sixth embodiment. The specific cylinders that perform the secondary injection are determined as described above, and the secondary injection is performed during the expansion stroke of these cylinders.
【0062】このようにすれば、気筒群毎の触媒に対し
てそれぞれ本発明にかかるリッチスパイク制御を実施で
き、また、V型内燃機関では触媒からの距離が気筒間で
大きく異なるので触媒に最も近い気筒を特定気筒とする
ことで、副噴射された燃料を速やかに、かつ、排気通路
壁への付着による損失を少なく触媒に到達させてNOx
の脱離還元処理を遂行できる。By doing so, the rich spike control according to the present invention can be carried out for each catalyst in each cylinder group, and in the V-type internal combustion engine, the distance from the catalyst is greatly different between the cylinders, so that the catalyst is most suitable. By making the near cylinder a specific cylinder, the auxiliary injected fuel can reach the catalyst quickly and with less loss due to adhesion to the exhaust passage wall and NOx.
Can be eliminated and reduced.
【0063】なお、高速時など副噴射が可能となってか
ら最初の膨張行程となる気筒で副噴射を行う方が先に触
媒に到達するような場合は、当該気筒を特定気筒とし、
そうでない場合は触媒に近い気筒を特定気筒とするよう
に、運転状態によって特定気筒を切り換えるようにして
もよい。また、以上示した実施形態ではリッチスパイク
制御中は、特定気筒を固定とするが、可変とすることも
できる。例えば、副噴射の効果が大きい最初に副噴射さ
れる気筒については、前記実施形態同様に特定気筒を設
定するが、2回目以降は気筒数とは異なる数の膨張行程
毎に特定気筒を設定するようにしてもよい。例えば、4
気筒機関で3気筒毎に副噴射を行わせて副噴射のサイク
ルを早めたり、逆に、5気筒毎に副噴射を行わせて最初
の副噴射量をより大きくしたりするようにしてもよい。If the auxiliary injection in the cylinder that is in the first expansion stroke after the secondary injection becomes possible, such as at high speed, reaches the catalyst earlier, the cylinder is set as the specific cylinder,
Otherwise, the specific cylinder may be switched depending on the operating state so that the cylinder close to the catalyst is set as the specific cylinder. Further, in the embodiment described above, the specific cylinder is fixed during the rich spike control, but it may be variable. For example, with respect to the first cylinder to be sub-injected, which has a large effect of the sub-injection, the specific cylinder is set as in the above-described embodiment, but after the second time, the specific cylinder is set for each number of expansion strokes different from the number of cylinders. You may do it. For example, 4
In the cylinder engine, sub-injection may be performed every three cylinders to accelerate the sub-injection cycle, or conversely, sub-injection may be performed every five cylinders to increase the initial sub-injection amount. .
【0064】さらに、以上の実施形態ではNOxトラッ
プ触媒でトラップしたNOxを、空燃比リッチ化により
放出させて還元処理するものを示したが、SOxをトラ
ップする触媒を備え、該触媒でトラップしたSOxを、
空燃比リッチ化により放出させて還元処理するものにも
適用できる。Further, in the above-mentioned embodiment, the NOx trapped by the NOx trap catalyst is released by the enrichment of the air-fuel ratio for reduction treatment. However, a catalyst for trapping SOx is provided and the SOx trapped by the catalyst is provided. To
It can also be applied to the one that is released by the enrichment of the air-fuel ratio and reduced.
【図1】 本発明の実施形態のシステム構成を示す図FIG. 1 is a diagram showing a system configuration of an embodiment of the present invention.
【図2】 第1の実施形態におけるリッチスパイク制御
のフローチャートFIG. 2 is a flowchart of rich spike control in the first embodiment.
【図3】 上記リッチスパイク制御中の様子を示すタイ
ムチャートFIG. 3 is a time chart showing a state during the rich spike control.
【図4】 第2の実施形態におけるリッチスパイク制御
のメインルーチンのフローチャートFIG. 4 is a flowchart of a main routine of rich spike control in the second embodiment.
【図5】 同上リッチスパイク制御における副噴射許可
フラグの設定ルーチンのフローチャートFIG. 5 is a flowchart of a sub-injection permission flag setting routine in the same rich spike control.
【図6】 第3の実施形態における副噴射許可フラグの
設定ルーチンのフローチャートFIG. 6 is a flowchart of a sub-injection permission flag setting routine according to the third embodiment.
【図7】 第4の実施形態における副噴射許可フラグの
設定ルーチンのフローチャートFIG. 7 is a flowchart of a sub-injection permission flag setting routine according to the fourth embodiment.
【図8】 第5の実施形態におけるディレイ時間の設定
ルーチンのフローチャートFIG. 8 is a flowchart of a delay time setting routine in the fifth embodiment.
【図9】 燃料噴射弁の噴射量特性を示す図FIG. 9 is a diagram showing an injection amount characteristic of a fuel injection valve.
【図10】 第6の実施形態におけるリッチスパイク制御
のメインルーチンのフローチャートFIG. 10 is a flowchart of a main routine of rich spike control in the sixth embodiment.
【図11】 同上リッチスパイク制御における副噴射を行
う気筒を特定するルーチンのフローチャートFIG. 11 is a flowchart of a routine for identifying a cylinder that performs secondary injection in the same rich spike control.
【図12】 第6の実施形態のリッチスパイク制御中の副
噴射開始時の様子を示すタイムチャートFIG. 12 is a time chart showing a state at the time of starting sub injection during the rich spike control of the sixth embodiment.
【図13】 第6の実施形態のリッチスパイク制御時の様
子を示すタイムチャートFIG. 13 is a time chart showing a state during rich spike control according to the sixth embodiment.
【図14】 第7の実施形態における触媒と各気筒の位置
関係を示した平面図FIG. 14 is a plan view showing the positional relationship between the catalyst and each cylinder in the seventh embodiment.
1 内燃機関 1’ V型内燃機関 4 燃料噴射弁 9 排気マニホールド 13 三元触媒 15 NOxトラップ触媒 16 コントロールユニット 22 エアフローメータ 26 水温センサ 27 クランク角センサ 33,34 三元触媒 35,36 NOxトラップ触媒 1 Internal combustion engine 1'V type internal combustion engine 4 Fuel injection valve 9 Exhaust manifold 13 three-way catalyst 15 NOx trap catalyst 16 control unit 22 Air flow meter 26 Water temperature sensor 27 Crank angle sensor 33,34 three-way catalyst 35,36 NOx trap catalyst
フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F01N 3/24 F01N 3/24 R 3/28 301 3/28 301C 3/36 3/36 B F02D 41/04 305 F02D 41/04 305A 41/14 310 41/14 310L 45/00 312 45/00 312R 314 314Z 362 362H 364 364N 368 368F (72)発明者 佐藤 健一 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 Fターム(参考) 3G084 AA04 BA09 BA13 BA15 BA20 DA02 DA07 DA10 DA11 DA25 EA07 EB08 EB11 EC01 FA07 FA10 FA20 FA27 FA29 FA33 FA38 FA39 3G091 AA02 AA11 AA12 AA17 AA24 AA28 AA29 AB03 AB06 BA11 BA14 BA15 BA19 BA32 BA33 CB02 CB03 CB05 CB06 CB07 CB08 DA01 DA02 DA04 DA05 DB10 DC01 EA01 EA05 EA07 EA16 EA30 EA31 EA34 FB10 FB11 FB12 GA06 GB02Y GB03Y GB04Y GB06W HA08 HA10 HA36 HB05 3G301 HA04 HA08 HA13 HA16 JA02 JA04 JA25 LB04 MA01 MA11 MA19 MA23 MA26 MA27 NB02 NC02 ND01 NE01 NE08 NE13 NE14 NE16 NE17 NE22 NE23 PA01Z PA11Z PB03Z PD02Z PD11Z PE01Z PE03Z PE05Z PE07Z PE08Z PF03Z Front page continuation (51) Int.Cl. 7 Identification code FI theme code (reference) F01N 3/24 F01N 3/24 R 3/28 301 3/28 301C 3/36 3/36 B F02D 41/04 305 F02D 41/04 305A 41/14 310 41/14 310L 45/00 312 45/00 312R 314 314Z 362 362H 364 364N 368 368F (72) Inventor Kenichi Sato 2 Takaracho, Kanagawa-ku, Kanagawa Prefecture Nissan Motor Co., Ltd. F Term (reference) 3G084 AA04 BA09 BA13 BA15 BA20 DA02 DA07 DA10 DA11 DA25 EA07 EB08 EB11 EC01 FA07 FA10 FA20 FA27 FA29 FA33 FA38 FA39 3G091 AA02 AA11 AA12 AA17 AA24 AA28 ACB29 BA01 CB01 CB01 CB03 CB01 CB03 CB03 BA05 BA03 BA32 BA02 BA32 BA02 BA32 BA32 BA02 BA32 BA32 BA32 DA02 DA04 DA05 DB10 DC01 EA01 EA05 EA07 EA16 EA30 EA31 EA34 FB10 FB11 FB12 GA06 GB02Y GB03Y GB04Y GB06W HA08 HA10 HA36 HB05 3G301 HA04 HA08 HA13 HA16 JA02 JA04 JA25 LB04 MA01 MA11 MA19 MA02 NC02 NE27 NB02 E14 NE16 NE17 NE22 NE23 PA01Z PA11Z PB03Z PD02Z PD11Z PE01Z PE03Z PE05Z PE07Z PE08Z PF03Z
Claims (21)
期間は燃料の点火前に供給される主噴射でリッチ化を行
い、前記所定期間経過後前記主噴射と点火後に供給され
る副噴射とに分割してリッチ化を行うことを特徴とする
内燃機関の空燃比制御装置。1. A main injection that is supplied before ignition of fuel for a predetermined period after an air-fuel ratio enrichment request is made, and after the predetermined period has elapsed, the main injection and a sub injection that is supplied after ignition are performed. An air-fuel ratio control device for an internal combustion engine, characterized in that it is divided into injection and enrichment.
的に大きくすることを特徴とする請求項1に記載の内燃
機関の空燃比制御装置。2. The air-fuel ratio control apparatus for an internal combustion engine according to claim 1, wherein the rich degree due to the main injection is increased stepwise.
以下に制限することを特徴とする請求項1又は請求項2
に記載の内燃機関の空燃比制御装置。3. The rich degree by the main injection is limited to an upper limit value or less.
An air-fuel ratio control device for an internal combustion engine as set forth in.
リッチ度合いを、ステップ的に大きくした後、徐々に小
さくすることを特徴とする請求項1〜請求項3のいずれ
か1つに記載の内燃機関の空燃比制御装置。4. The catalyst according to claim 1, wherein the exhaust passage is provided with a catalyst, and the rich degree by the main injection is increased stepwise and then gradually decreased. Air-fuel ratio controller for internal combustion engine.
プ的に大きくした後、一定度合いに保持し、その後徐々
に小さくすることを特徴とする請求項4に記載の内燃機
関の空燃比制御装置。5. The air-fuel ratio control apparatus for an internal combustion engine according to claim 4, wherein the rich degree by the main injection is increased stepwise, maintained at a constant degree, and then gradually decreased.
的に大きくすることを特徴とする請求項4または請求項
5に記載の内燃機関の空燃比制御装置。6. The air-fuel ratio control device for an internal combustion engine according to claim 4, wherein the rich degree due to the auxiliary injection is increased stepwise.
プ的に大きくした後、徐々に小さくすることを特徴とす
る請求項4〜請求項6のいずれか1つに記載の内燃機関
の空燃比制御装置。7. The air-fuel ratio control of an internal combustion engine according to claim 4, wherein the rich degree due to the auxiliary injection is increased stepwise and then gradually decreased. apparatus.
ッチ度合いを、ステップ的に大きくした後、徐々に小さ
くする略三角波状態とすることを特徴とする請求項4〜
請求項7のいずれか1つに記載の内燃機関の空燃比制御
装置。8. A substantially triangular wave state in which the overall rich degree of the main injection and the sub-injection is increased stepwise and then gradually decreased.
An air-fuel ratio control device for an internal combustion engine according to claim 7.
下回ったとき前記所定期間を経過したとして副噴射を開
始することを特徴とする請求項1〜請求項8のいずれか
1つに記載の内燃機関の空燃比制御装置。9. The method according to claim 1, wherein the oxygen concentration in the exhaust passage is estimated, and when the oxygen concentration falls below a predetermined value, the sub injection is started assuming that the predetermined period has elapsed. An air-fuel ratio control device for an internal combustion engine as set forth in.
いて排気通路内の酸素濃度を推定することを特徴とする
請求項9に記載の内燃機関の空燃比制御装置。10. The air-fuel ratio control device for an internal combustion engine according to claim 9, wherein the oxygen concentration in the exhaust passage is estimated based on the amount of the main injection and the engine rotation speed.
を検出し、該空燃比がリッチになったことを検出したと
きに、前記所定期間を経過したとして副噴射を開始する
ことを特徴とする請求項1〜請求項8のいずれか1つに
記載の内燃機関の空燃比制御装置。11. A sub-injection is started assuming that the predetermined period has elapsed when an air-fuel ratio downstream of a catalyst provided in an exhaust passage is detected and when the air-fuel ratio becomes rich. The air-fuel ratio control device for an internal combustion engine according to any one of claims 1 to 8.
て前記所定期間を設定することを特徴とする請求項1〜
請求項11のいずれか1つに記載の内燃機関の空燃比制
御装置。12. The predetermined period is set based on a parameter that correlates with exhaust temperature.
An air-fuel ratio control device for an internal combustion engine according to claim 11.
示すほど前記所定期間を短く設定することを特徴とする
請求項11に記載の内燃機関の空燃比制御装置。13. The air-fuel ratio control apparatus for an internal combustion engine according to claim 11, wherein the predetermined period is set shorter as the parameter correlated to the exhaust gas temperature becomes lower.
は、排気通路に備えられた触媒にトラップされたNOx
を放出するときであることを特徴とする請求項1〜請求
項13のいずれか1つに記載の内燃機関の空燃比制御装
置。14. The enrichment of the air-fuel ratio is required because NOx trapped in a catalyst provided in an exhaust passage.
The air-fuel ratio control device for an internal combustion engine according to any one of claims 1 to 13, characterized in that it is the time to release.
は、排気通路に備えられた触媒にトラップされたSOx
を放出するときであることを特徴とする請求項1〜請求
項13のいずれか1つに記載の内燃機関の空燃比制御装
置。15. The enrichment of the air-fuel ratio is required for SOx trapped in a catalyst provided in an exhaust passage.
The air-fuel ratio control device for an internal combustion engine according to any one of claims 1 to 13, characterized in that it is the time to release.
を特徴とする請求項1〜請求項15のいずれか1つに記
載の内燃機関の空燃比制御装置。16. The air-fuel ratio control device for an internal combustion engine according to claim 1, wherein the main injection is performed in an intake stroke.
を特徴とする請求項1〜請求項16のいずれか1つに記
載の内燃機関の空燃比制御装置。17. The air-fuel ratio control device for an internal combustion engine according to claim 1, wherein the sub-injection is performed in an expansion stroke.
合いに制限し、一部の気筒以外におけるリッチ化の不足
分を、該一部の気筒の副噴射で賄うことを特徴とする請
求項1〜請求項17のいずれか1つに記載の内燃機関の
空燃比制御装置。18. The method according to claim 1, wherein the rich degree of the main injection is limited to a predetermined degree, and the shortage of the enrichment in some cylinders is covered by the sub-injection of the some cylinders. An air-fuel ratio control device for an internal combustion engine according to claim 17.
備え、各気筒群にそれぞれ前記一部の気筒を設けること
を特徴とする請求項18に記載の内燃機関の空燃比制御
装置。19. The air-fuel ratio control for an internal combustion engine according to claim 18, wherein the cylinder-by-cylinder group has a plurality of cylinder groups, a catalyst is provided for each cylinder group, and each of the cylinder groups is provided with a part of the cylinders. apparatus.
イミングを迎える気筒を前記一部の気筒とすることを特
徴とする請求項18または請求項19に記載の内燃機関
の空燃比制御装置。20. The air-fuel ratio control apparatus for an internal combustion engine according to claim 18 or 19, wherein the cylinders that first reach the timing of the sub-injection after the lapse of the predetermined period are the partial cylinders. .
も近い気筒を、前記一部の気筒とすることを特徴とする
請求項18〜請求項20のいずれか1つに記載の内燃機
関の空燃比制御装置。21. The internal combustion engine according to any one of claims 18 to 20, characterized in that the cylinders closest to the catalyst provided in the exhaust passage are the partial cylinders. Air-fuel ratio controller.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002012975A JP3843847B2 (en) | 2002-01-22 | 2002-01-22 | Air-fuel ratio control device for internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002012975A JP3843847B2 (en) | 2002-01-22 | 2002-01-22 | Air-fuel ratio control device for internal combustion engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003214236A true JP2003214236A (en) | 2003-07-30 |
JP3843847B2 JP3843847B2 (en) | 2006-11-08 |
Family
ID=27650046
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002012975A Expired - Fee Related JP3843847B2 (en) | 2002-01-22 | 2002-01-22 | Air-fuel ratio control device for internal combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3843847B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004097200A1 (en) * | 2003-04-30 | 2004-11-11 | Hitachi, Ltd. | Internal combustin engine control device |
JP2005061268A (en) * | 2003-08-08 | 2005-03-10 | Hitachi Ltd | In-cylinder engine combustion control apparatus and method |
JP2010209784A (en) * | 2009-03-10 | 2010-09-24 | Honda Motor Co Ltd | Exhaust emission control device for internal combustion engine |
JP2021188541A (en) * | 2020-05-27 | 2021-12-13 | 株式会社Subaru | Nox elimination device |
-
2002
- 2002-01-22 JP JP2002012975A patent/JP3843847B2/en not_active Expired - Fee Related
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004097200A1 (en) * | 2003-04-30 | 2004-11-11 | Hitachi, Ltd. | Internal combustin engine control device |
US7246486B2 (en) | 2003-04-30 | 2007-07-24 | Hitachi, Ltd. | Combination of selected opioids with other active substances for use in the therapy of urinary incontinence |
JP2005061268A (en) * | 2003-08-08 | 2005-03-10 | Hitachi Ltd | In-cylinder engine combustion control apparatus and method |
JP2010209784A (en) * | 2009-03-10 | 2010-09-24 | Honda Motor Co Ltd | Exhaust emission control device for internal combustion engine |
JP2021188541A (en) * | 2020-05-27 | 2021-12-13 | 株式会社Subaru | Nox elimination device |
JP7445516B2 (en) | 2020-05-27 | 2024-03-07 | 株式会社Subaru | NOx purification device |
Also Published As
Publication number | Publication date |
---|---|
JP3843847B2 (en) | 2006-11-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2000220444A (en) | Exhaust emission control device of internal combustion engine | |
JP5664884B2 (en) | Air-fuel ratio control device for internal combustion engine | |
US20080236144A1 (en) | Control system of internal combustion engine and method for controlling the same | |
JP2009036117A (en) | Air-fuel ratio control device for internal combustion engine | |
JP2004324538A (en) | Engine control device | |
JP4208012B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP4453060B2 (en) | Exhaust gas purification control device for internal combustion engine | |
JP3726705B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP3843847B2 (en) | Air-fuel ratio control device for internal combustion engine | |
JPH06257488A (en) | Exhaust emission control device for multiple cylinder internal combustion engine | |
JP2003254142A (en) | Exhaust purification system for multi-cylinder internal combustion engine | |
JP2000337130A (en) | Exhaust emission control system for internal combustion engine | |
JP4666542B2 (en) | Exhaust gas purification control device for internal combustion engine | |
JP2001065338A (en) | Exhaust gas purification device for internal combustion engine | |
JP2002155784A (en) | Exhaust emission control device of internal combustion engine | |
JP3520731B2 (en) | Engine exhaust purification device | |
JP3829422B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP2000080914A (en) | Internal combustion engine | |
JP2003020982A (en) | Method of purifying emission of internal combustion engine | |
JP2002013414A (en) | Exhaust gas purification device for internal combustion engine | |
JP2006183636A (en) | Air-fuel ratio control device for engine | |
JP2004232477A (en) | Control device of internal combustion engine | |
EP1183090B1 (en) | Method of operating an internal combustion engine | |
JP2002129944A (en) | Exhaust emission purifying device for internal combustion engine | |
JP2022117700A (en) | Control device of internal combustion engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040224 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051025 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051215 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060725 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060807 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090825 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100825 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110825 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120825 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120825 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130825 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |