JP2003213302A - Niobium powder, niobium sintered compact, and capacitor using niobium sintered compact - Google Patents
Niobium powder, niobium sintered compact, and capacitor using niobium sintered compactInfo
- Publication number
- JP2003213302A JP2003213302A JP2002138915A JP2002138915A JP2003213302A JP 2003213302 A JP2003213302 A JP 2003213302A JP 2002138915 A JP2002138915 A JP 2002138915A JP 2002138915 A JP2002138915 A JP 2002138915A JP 2003213302 A JP2003213302 A JP 2003213302A
- Authority
- JP
- Japan
- Prior art keywords
- niobium
- sintered body
- niobium powder
- group
- capacitor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 title claims abstract description 360
- 239000003990 capacitor Substances 0.000 title claims abstract description 170
- 229910052758 niobium Inorganic materials 0.000 title claims abstract description 146
- 239000010955 niobium Substances 0.000 title claims abstract description 146
- 239000011148 porous material Substances 0.000 claims abstract description 123
- 238000004519 manufacturing process Methods 0.000 claims abstract description 91
- 238000000034 method Methods 0.000 claims abstract description 75
- 239000002245 particle Substances 0.000 claims abstract description 61
- 238000009826 distribution Methods 0.000 claims abstract description 36
- 238000010079 rubber tapping Methods 0.000 claims abstract description 27
- 239000012190 activator Substances 0.000 claims description 85
- 239000000843 powder Substances 0.000 claims description 53
- -1 CF 3 group Chemical group 0.000 claims description 52
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 44
- 239000000126 substance Substances 0.000 claims description 42
- 238000005245 sintering Methods 0.000 claims description 41
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 35
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 34
- 229910001868 water Inorganic materials 0.000 claims description 34
- 239000002904 solvent Substances 0.000 claims description 31
- 229920001940 conductive polymer Polymers 0.000 claims description 28
- 239000000203 mixture Substances 0.000 claims description 28
- 229910052757 nitrogen Inorganic materials 0.000 claims description 27
- 239000000243 solution Substances 0.000 claims description 26
- 239000007789 gas Substances 0.000 claims description 25
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 25
- 229910052799 carbon Inorganic materials 0.000 claims description 24
- 239000004065 semiconductor Substances 0.000 claims description 24
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 23
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 22
- 150000002822 niobium compounds Chemical class 0.000 claims description 20
- 238000005121 nitriding Methods 0.000 claims description 20
- 150000001875 compounds Chemical class 0.000 claims description 19
- 229910052715 tantalum Inorganic materials 0.000 claims description 19
- 239000002253 acid Substances 0.000 claims description 18
- 239000000463 material Substances 0.000 claims description 18
- 229910001257 Nb alloy Inorganic materials 0.000 claims description 17
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 17
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 17
- 229910052760 oxygen Inorganic materials 0.000 claims description 17
- 239000001301 oxygen Substances 0.000 claims description 17
- 229910052709 silver Inorganic materials 0.000 claims description 17
- 239000004332 silver Substances 0.000 claims description 17
- 238000011282 treatment Methods 0.000 claims description 17
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 16
- 239000002019 doping agent Substances 0.000 claims description 15
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 14
- 229910052796 boron Inorganic materials 0.000 claims description 13
- 229920006395 saturated elastomer Polymers 0.000 claims description 13
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 12
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 12
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 12
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 12
- 229910052751 metal Inorganic materials 0.000 claims description 12
- 239000002184 metal Substances 0.000 claims description 12
- 229910052717 sulfur Inorganic materials 0.000 claims description 12
- 239000011593 sulfur Substances 0.000 claims description 12
- 125000004432 carbon atom Chemical group C* 0.000 claims description 10
- 239000003960 organic solvent Substances 0.000 claims description 10
- 125000004417 unsaturated alkyl group Chemical group 0.000 claims description 10
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 9
- 229910045601 alloy Inorganic materials 0.000 claims description 9
- 239000000956 alloy Substances 0.000 claims description 9
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 9
- 125000004122 cyclic group Chemical group 0.000 claims description 9
- 239000001257 hydrogen Substances 0.000 claims description 9
- 229910052739 hydrogen Inorganic materials 0.000 claims description 9
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 9
- 229910017604 nitric acid Inorganic materials 0.000 claims description 9
- 239000007790 solid phase Substances 0.000 claims description 9
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 8
- 230000004913 activation Effects 0.000 claims description 8
- 229910052782 aluminium Inorganic materials 0.000 claims description 8
- 238000003763 carbonization Methods 0.000 claims description 8
- 150000002148 esters Chemical class 0.000 claims description 8
- 239000007788 liquid Substances 0.000 claims description 8
- 229910052759 nickel Inorganic materials 0.000 claims description 8
- 150000002821 niobium Chemical class 0.000 claims description 8
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 7
- 229920002845 Poly(methacrylic acid) Polymers 0.000 claims description 7
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 7
- 229920002125 Sokalan® Polymers 0.000 claims description 7
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 claims description 7
- 239000000460 chlorine Substances 0.000 claims description 7
- 239000008151 electrolyte solution Substances 0.000 claims description 7
- 238000010438 heat treatment Methods 0.000 claims description 7
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 claims description 7
- 238000007254 oxidation reaction Methods 0.000 claims description 7
- 239000004584 polyacrylic acid Substances 0.000 claims description 7
- 229910052700 potassium Inorganic materials 0.000 claims description 7
- 239000011591 potassium Substances 0.000 claims description 7
- 239000011734 sodium Substances 0.000 claims description 7
- AZQWKYJCGOJGHM-UHFFFAOYSA-N 1,4-benzoquinone Chemical compound O=C1C=CC(=O)C=C1 AZQWKYJCGOJGHM-UHFFFAOYSA-N 0.000 claims description 6
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 6
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 claims description 6
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 claims description 6
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 claims description 6
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 6
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 6
- 229910021529 ammonia Inorganic materials 0.000 claims description 6
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 claims description 6
- 229910052786 argon Inorganic materials 0.000 claims description 6
- 229910052788 barium Inorganic materials 0.000 claims description 6
- 238000005885 boration reaction Methods 0.000 claims description 6
- 125000004433 nitrogen atom Chemical group N* 0.000 claims description 6
- 230000003647 oxidation Effects 0.000 claims description 6
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 6
- 229920000128 polypyrrole Polymers 0.000 claims description 6
- 229930195734 saturated hydrocarbon Natural products 0.000 claims description 6
- 229910052708 sodium Inorganic materials 0.000 claims description 6
- 239000012670 alkaline solution Substances 0.000 claims description 5
- 125000000217 alkyl group Chemical group 0.000 claims description 5
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 claims description 5
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 claims description 5
- 239000004327 boric acid Substances 0.000 claims description 5
- 229910052736 halogen Inorganic materials 0.000 claims description 5
- 150000002500 ions Chemical class 0.000 claims description 5
- 239000003446 ligand Substances 0.000 claims description 5
- 229910052749 magnesium Inorganic materials 0.000 claims description 5
- 239000011777 magnesium Substances 0.000 claims description 5
- 229910000484 niobium oxide Inorganic materials 0.000 claims description 5
- 229920000642 polymer Polymers 0.000 claims description 5
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 claims description 4
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 4
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical group CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 claims description 4
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 claims description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 4
- 239000003929 acidic solution Substances 0.000 claims description 4
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 claims description 4
- 229910052794 bromium Inorganic materials 0.000 claims description 4
- 229910052791 calcium Inorganic materials 0.000 claims description 4
- 239000011575 calcium Substances 0.000 claims description 4
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 claims description 4
- 150000002367 halogens Chemical class 0.000 claims description 4
- 229910044991 metal oxide Inorganic materials 0.000 claims description 4
- 150000004706 metal oxides Chemical class 0.000 claims description 4
- UFWIBTONFRDIAS-UHFFFAOYSA-N naphthalene-acid Natural products C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 claims description 4
- 229920000123 polythiophene Polymers 0.000 claims description 4
- UGNWTBMOAKPKBL-UHFFFAOYSA-N tetrachloro-1,4-benzoquinone Chemical compound ClC1=C(Cl)C(=O)C(Cl)=C(Cl)C1=O UGNWTBMOAKPKBL-UHFFFAOYSA-N 0.000 claims description 4
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims description 4
- DSSYKIVIOFKYAU-XCBNKYQSSA-N (R)-camphor Chemical compound C1C[C@@]2(C)C(=O)C[C@@H]1C2(C)C DSSYKIVIOFKYAU-XCBNKYQSSA-N 0.000 claims description 3
- 229910052684 Cerium Inorganic materials 0.000 claims description 3
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims description 3
- 241000723346 Cinnamomum camphora Species 0.000 claims description 3
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 3
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 claims description 3
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 3
- 239000004471 Glycine Substances 0.000 claims description 3
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical compound C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 claims description 3
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical group [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 3
- 229910052779 Neodymium Inorganic materials 0.000 claims description 3
- IOVCWXUNBOPUCH-UHFFFAOYSA-N Nitrous acid Chemical compound ON=O IOVCWXUNBOPUCH-UHFFFAOYSA-N 0.000 claims description 3
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 claims description 3
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 3
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims description 3
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 claims description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 3
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 claims description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 3
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 3
- 150000001298 alcohols Chemical class 0.000 claims description 3
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 claims description 3
- 150000008044 alkali metal hydroxides Chemical class 0.000 claims description 3
- 125000003545 alkoxy group Chemical group 0.000 claims description 3
- 125000005907 alkyl ester group Chemical group 0.000 claims description 3
- 150000001408 amides Chemical class 0.000 claims description 3
- 229910052787 antimony Inorganic materials 0.000 claims description 3
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 claims description 3
- 150000004945 aromatic hydrocarbons Chemical class 0.000 claims description 3
- 229910052785 arsenic Inorganic materials 0.000 claims description 3
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 claims description 3
- 229910052790 beryllium Inorganic materials 0.000 claims description 3
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 claims description 3
- 229910052797 bismuth Inorganic materials 0.000 claims description 3
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 3
- 229910052793 cadmium Inorganic materials 0.000 claims description 3
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 claims description 3
- 229910052792 caesium Inorganic materials 0.000 claims description 3
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 claims description 3
- 229930008380 camphor Natural products 0.000 claims description 3
- 229960000846 camphor Drugs 0.000 claims description 3
- 150000001721 carbon Chemical group 0.000 claims description 3
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 claims description 3
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 claims description 3
- 229910052801 chlorine Inorganic materials 0.000 claims description 3
- 229910017052 cobalt Inorganic materials 0.000 claims description 3
- 239000010941 cobalt Substances 0.000 claims description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 3
- 125000004093 cyano group Chemical group *C#N 0.000 claims description 3
- 150000002170 ethers Chemical class 0.000 claims description 3
- 239000011737 fluorine Substances 0.000 claims description 3
- 229910052731 fluorine Inorganic materials 0.000 claims description 3
- 229910052730 francium Inorganic materials 0.000 claims description 3
- KLMCZVJOEAUDNE-UHFFFAOYSA-N francium atom Chemical compound [Fr] KLMCZVJOEAUDNE-UHFFFAOYSA-N 0.000 claims description 3
- 229910052733 gallium Inorganic materials 0.000 claims description 3
- 229910052732 germanium Inorganic materials 0.000 claims description 3
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 3
- 229910052737 gold Inorganic materials 0.000 claims description 3
- 239000010931 gold Substances 0.000 claims description 3
- 229910052735 hafnium Inorganic materials 0.000 claims description 3
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 claims description 3
- 150000008282 halocarbons Chemical class 0.000 claims description 3
- 125000005843 halogen group Chemical group 0.000 claims description 3
- 239000001307 helium Substances 0.000 claims description 3
- 229910052734 helium Inorganic materials 0.000 claims description 3
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 3
- 150000002430 hydrocarbons Chemical group 0.000 claims description 3
- 125000001841 imino group Chemical group [H]N=* 0.000 claims description 3
- 229910052738 indium Inorganic materials 0.000 claims description 3
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 3
- 229910052741 iridium Inorganic materials 0.000 claims description 3
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 claims description 3
- 150000002576 ketones Chemical class 0.000 claims description 3
- 229910052743 krypton Inorganic materials 0.000 claims description 3
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 claims description 3
- 229910052744 lithium Inorganic materials 0.000 claims description 3
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims description 3
- 229910000000 metal hydroxide Inorganic materials 0.000 claims description 3
- 150000004692 metal hydroxides Chemical class 0.000 claims description 3
- 229910052750 molybdenum Inorganic materials 0.000 claims description 3
- 239000011733 molybdenum Substances 0.000 claims description 3
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 claims description 3
- 229910052754 neon Inorganic materials 0.000 claims description 3
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 claims description 3
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 claims description 3
- 229910052762 osmium Inorganic materials 0.000 claims description 3
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 claims description 3
- 229910052763 palladium Inorganic materials 0.000 claims description 3
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 claims description 3
- 229910052697 platinum Inorganic materials 0.000 claims description 3
- 229910052699 polonium Inorganic materials 0.000 claims description 3
- HZEBHPIOVYHPMT-UHFFFAOYSA-N polonium atom Chemical compound [Po] HZEBHPIOVYHPMT-UHFFFAOYSA-N 0.000 claims description 3
- 229920002401 polyacrylamide Polymers 0.000 claims description 3
- 229920000767 polyaniline Polymers 0.000 claims description 3
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 3
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 3
- 229910052705 radium Inorganic materials 0.000 claims description 3
- HCWPIIXVSYCSAN-UHFFFAOYSA-N radium atom Chemical compound [Ra] HCWPIIXVSYCSAN-UHFFFAOYSA-N 0.000 claims description 3
- 229910052704 radon Inorganic materials 0.000 claims description 3
- SYUHGPGVQRZVTB-UHFFFAOYSA-N radon atom Chemical compound [Rn] SYUHGPGVQRZVTB-UHFFFAOYSA-N 0.000 claims description 3
- 229910052702 rhenium Inorganic materials 0.000 claims description 3
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 claims description 3
- 229910052703 rhodium Inorganic materials 0.000 claims description 3
- 239000010948 rhodium Substances 0.000 claims description 3
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 claims description 3
- 229910052701 rubidium Inorganic materials 0.000 claims description 3
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 claims description 3
- 229910052707 ruthenium Inorganic materials 0.000 claims description 3
- 229910052706 scandium Inorganic materials 0.000 claims description 3
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 claims description 3
- 125000000467 secondary amino group Chemical group [H]N([*:1])[*:2] 0.000 claims description 3
- 229910052711 selenium Inorganic materials 0.000 claims description 3
- 239000011669 selenium Substances 0.000 claims description 3
- 229910052710 silicon Inorganic materials 0.000 claims description 3
- 239000010703 silicon Substances 0.000 claims description 3
- 229910052712 strontium Inorganic materials 0.000 claims description 3
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 claims description 3
- 125000001424 substituent group Chemical group 0.000 claims description 3
- 125000000475 sulfinyl group Chemical group [*:2]S([*:1])=O 0.000 claims description 3
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 claims description 3
- 229910052714 tellurium Inorganic materials 0.000 claims description 3
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 claims description 3
- 125000001302 tertiary amino group Chemical group 0.000 claims description 3
- PCCVSPMFGIFTHU-UHFFFAOYSA-N tetracyanoquinodimethane Chemical compound N#CC(C#N)=C1C=CC(=C(C#N)C#N)C=C1 PCCVSPMFGIFTHU-UHFFFAOYSA-N 0.000 claims description 3
- 229910052716 thallium Inorganic materials 0.000 claims description 3
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 claims description 3
- 229910052718 tin Inorganic materials 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- 239000010936 titanium Substances 0.000 claims description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 3
- 229910052721 tungsten Inorganic materials 0.000 claims description 3
- 239000010937 tungsten Substances 0.000 claims description 3
- 229910052720 vanadium Inorganic materials 0.000 claims description 3
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 claims description 3
- 229910052724 xenon Inorganic materials 0.000 claims description 3
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 claims description 3
- 229910052727 yttrium Inorganic materials 0.000 claims description 3
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 claims description 3
- 229910052725 zinc Inorganic materials 0.000 claims description 3
- 239000011701 zinc Substances 0.000 claims description 3
- 229910052726 zirconium Inorganic materials 0.000 claims description 3
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 claims description 2
- 230000002378 acidificating effect Effects 0.000 claims description 2
- 229910052740 iodine Inorganic materials 0.000 claims description 2
- 239000011630 iodine Substances 0.000 claims description 2
- 125000001624 naphthyl group Chemical group 0.000 claims description 2
- 239000002994 raw material Substances 0.000 abstract description 24
- 239000007772 electrode material Substances 0.000 abstract description 7
- 238000005056 compaction Methods 0.000 abstract 2
- 239000010410 layer Substances 0.000 description 31
- 238000000465 moulding Methods 0.000 description 29
- 239000007864 aqueous solution Substances 0.000 description 27
- 239000000047 product Substances 0.000 description 27
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 24
- 230000000704 physical effect Effects 0.000 description 18
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 16
- 150000001450 anions Chemical class 0.000 description 14
- 239000007800 oxidant agent Substances 0.000 description 14
- 239000003795 chemical substances by application Substances 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 10
- 239000003822 epoxy resin Substances 0.000 description 10
- 229920000647 polyepoxide Polymers 0.000 description 10
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 9
- 239000012298 atmosphere Substances 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 9
- 238000005259 measurement Methods 0.000 description 9
- 239000002002 slurry Substances 0.000 description 9
- 230000001590 oxidative effect Effects 0.000 description 8
- 238000002156 mixing Methods 0.000 description 7
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 6
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 6
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 238000005470 impregnation Methods 0.000 description 6
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 6
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 6
- 238000007747 plating Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- VAZSKTXWXKYQJF-UHFFFAOYSA-N ammonium persulfate Chemical class [NH4+].[NH4+].[O-]S(=O)OOS([O-])=O VAZSKTXWXKYQJF-UHFFFAOYSA-N 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- HZNVUJQVZSTENZ-UHFFFAOYSA-N 2,3-dichloro-5,6-dicyano-1,4-benzoquinone Chemical compound ClC1=C(Cl)C(=O)C(C#N)=C(C#N)C1=O HZNVUJQVZSTENZ-UHFFFAOYSA-N 0.000 description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 4
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 4
- YADSGOSSYOOKMP-UHFFFAOYSA-N dioxolead Chemical compound O=[Pb]=O YADSGOSSYOOKMP-UHFFFAOYSA-N 0.000 description 4
- 238000005868 electrolysis reaction Methods 0.000 description 4
- 150000002431 hydrogen Chemical class 0.000 description 4
- 239000000178 monomer Substances 0.000 description 4
- 239000008188 pellet Substances 0.000 description 4
- 238000006116 polymerization reaction Methods 0.000 description 4
- 229920000137 polyphosphoric acid Polymers 0.000 description 4
- 239000011164 primary particle Substances 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000010298 pulverizing process Methods 0.000 description 4
- DCKVNWZUADLDEH-UHFFFAOYSA-N sec-butyl acetate Chemical compound CCC(C)OC(C)=O DCKVNWZUADLDEH-UHFFFAOYSA-N 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 238000005987 sulfurization reaction Methods 0.000 description 4
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 4
- 229920002554 vinyl polymer Polymers 0.000 description 4
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 3
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 235000011054 acetic acid Nutrition 0.000 description 3
- 239000003513 alkali Substances 0.000 description 3
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium peroxydisulfate Substances [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 description 3
- 229910001870 ammonium persulfate Inorganic materials 0.000 description 3
- 239000011247 coating layer Substances 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 150000004678 hydrides Chemical class 0.000 description 3
- MIVBAHRSNUNMPP-UHFFFAOYSA-N manganese(2+);dinitrate Chemical compound [Mn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MIVBAHRSNUNMPP-UHFFFAOYSA-N 0.000 description 3
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 3
- 229910052753 mercury Inorganic materials 0.000 description 3
- 229940043265 methyl isobutyl ketone Drugs 0.000 description 3
- 239000011812 mixed powder Substances 0.000 description 3
- 239000011259 mixed solution Substances 0.000 description 3
- PSZYNBSKGUBXEH-UHFFFAOYSA-N naphthalene-1-sulfonic acid Chemical compound C1=CC=C2C(S(=O)(=O)O)=CC=CC2=C1 PSZYNBSKGUBXEH-UHFFFAOYSA-N 0.000 description 3
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 3
- 239000004810 polytetrafluoroethylene Substances 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- FRASJONUBLZVQX-UHFFFAOYSA-N 1,4-naphthoquinone Chemical compound C1=CC=C2C(=O)C=CC(=O)C2=C1 FRASJONUBLZVQX-UHFFFAOYSA-N 0.000 description 2
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 description 2
- JAJIPIAHCFBEPI-UHFFFAOYSA-N 9,10-dioxoanthracene-1-sulfonic acid Chemical compound O=C1C2=CC=CC=C2C(=O)C2=C1C=CC=C2S(=O)(=O)O JAJIPIAHCFBEPI-UHFFFAOYSA-N 0.000 description 2
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- 229910021591 Copper(I) chloride Inorganic materials 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N Furan Chemical compound C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 2
- AFPRJLBZLPBTPZ-UHFFFAOYSA-N acenaphthoquinone Chemical compound C1=CC(C(C2=O)=O)=C3C2=CC=CC3=C1 AFPRJLBZLPBTPZ-UHFFFAOYSA-N 0.000 description 2
- 239000001361 adipic acid Substances 0.000 description 2
- 235000011037 adipic acid Nutrition 0.000 description 2
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- 235000019270 ammonium chloride Nutrition 0.000 description 2
- 150000003863 ammonium salts Chemical class 0.000 description 2
- 239000012300 argon atmosphere Substances 0.000 description 2
- CFJRGWXELQQLSA-UHFFFAOYSA-N azanylidyneniobium Chemical compound [Nb]#N CFJRGWXELQQLSA-UHFFFAOYSA-N 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- 229930006711 bornane-2,3-dione Natural products 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 238000010000 carbonizing Methods 0.000 description 2
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- OXBLHERUFWYNTN-UHFFFAOYSA-M copper(I) chloride Chemical compound [Cu]Cl OXBLHERUFWYNTN-UHFFFAOYSA-M 0.000 description 2
- 229940045803 cuprous chloride Drugs 0.000 description 2
- 238000006356 dehydrogenation reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000003989 dielectric material Substances 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 2
- 239000003456 ion exchange resin Substances 0.000 description 2
- 229920003303 ion-exchange polymer Polymers 0.000 description 2
- 229910000473 manganese(VI) oxide Inorganic materials 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- ZKATWMILCYLAPD-UHFFFAOYSA-N niobium pentoxide Inorganic materials O=[Nb](=O)O[Nb](=O)=O ZKATWMILCYLAPD-UHFFFAOYSA-N 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 229920000620 organic polymer Polymers 0.000 description 2
- 235000006408 oxalic acid Nutrition 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 150000002978 peroxides Chemical class 0.000 description 2
- 229920000172 poly(styrenesulfonic acid) Polymers 0.000 description 2
- 229920000867 polyelectrolyte Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229940005642 polystyrene sulfonic acid Drugs 0.000 description 2
- 238000002459 porosimetry Methods 0.000 description 2
- 150000004053 quinones Chemical class 0.000 description 2
- 125000004151 quinonyl group Chemical group 0.000 description 2
- 238000006722 reduction reaction Methods 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 150000003460 sulfonic acids Chemical class 0.000 description 2
- AKEJUJNQAAGONA-UHFFFAOYSA-N sulfur trioxide Chemical compound O=S(=O)=O AKEJUJNQAAGONA-UHFFFAOYSA-N 0.000 description 2
- XTHPWXDJESJLNJ-UHFFFAOYSA-N sulfurochloridic acid Chemical compound OS(Cl)(=O)=O XTHPWXDJESJLNJ-UHFFFAOYSA-N 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- VNQXSTWCDUXYEZ-LDWIPMOCSA-N (+/-)-Camphorquinone Chemical compound C1C[C@@]2(C)C(=O)C(=O)[C@@H]1C2(C)C VNQXSTWCDUXYEZ-LDWIPMOCSA-N 0.000 description 1
- WOAHJDHKFWSLKE-UHFFFAOYSA-N 1,2-benzoquinone Chemical compound O=C1C=CC=CC1=O WOAHJDHKFWSLKE-UHFFFAOYSA-N 0.000 description 1
- KETQAJRQOHHATG-UHFFFAOYSA-N 1,2-naphthoquinone Chemical compound C1=CC=C2C(=O)C(=O)C=CC2=C1 KETQAJRQOHHATG-UHFFFAOYSA-N 0.000 description 1
- 229940105324 1,2-naphthoquinone Drugs 0.000 description 1
- VNQXSTWCDUXYEZ-UHFFFAOYSA-N 1,7,7-trimethylbicyclo[2.2.1]heptane-2,3-dione Chemical compound C1CC2(C)C(=O)C(=O)C1C2(C)C VNQXSTWCDUXYEZ-UHFFFAOYSA-N 0.000 description 1
- OXHNLMTVIGZXSG-UHFFFAOYSA-N 1-Methylpyrrole Chemical compound CN1C=CC=C1 OXHNLMTVIGZXSG-UHFFFAOYSA-N 0.000 description 1
- YMMGRPLNZPTZBS-UHFFFAOYSA-N 2,3-dihydrothieno[2,3-b][1,4]dioxine Chemical compound O1CCOC2=C1C=CS2 YMMGRPLNZPTZBS-UHFFFAOYSA-N 0.000 description 1
- GKWLILHTTGWKLQ-UHFFFAOYSA-N 2,3-dihydrothieno[3,4-b][1,4]dioxine Chemical compound O1CCOC2=CSC=C21 GKWLILHTTGWKLQ-UHFFFAOYSA-N 0.000 description 1
- YMUICPQENGUHJM-UHFFFAOYSA-N 2-methylpropyl(tripropyl)azanium Chemical compound CCC[N+](CCC)(CCC)CC(C)C YMUICPQENGUHJM-UHFFFAOYSA-N 0.000 description 1
- JNGDCMHTNXRQQD-UHFFFAOYSA-N 3,6-dioxocyclohexa-1,4-diene-1,2,4,5-tetracarbonitrile Chemical compound O=C1C(C#N)=C(C#N)C(=O)C(C#N)=C1C#N JNGDCMHTNXRQQD-UHFFFAOYSA-N 0.000 description 1
- BMYNFMYTOJXKLE-UHFFFAOYSA-N 3-azaniumyl-2-hydroxypropanoate Chemical compound NCC(O)C(O)=O BMYNFMYTOJXKLE-UHFFFAOYSA-N 0.000 description 1
- OQVYMXCRDHDTTH-UHFFFAOYSA-N 4-(diethoxyphosphorylmethyl)-2-[4-(diethoxyphosphorylmethyl)pyridin-2-yl]pyridine Chemical compound CCOP(=O)(OCC)CC1=CC=NC(C=2N=CC=C(CP(=O)(OCC)OCC)C=2)=C1 OQVYMXCRDHDTTH-UHFFFAOYSA-N 0.000 description 1
- RZVHIXYEVGDQDX-UHFFFAOYSA-N 9,10-anthraquinone Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3C(=O)C2=C1 RZVHIXYEVGDQDX-UHFFFAOYSA-N 0.000 description 1
- 229940076442 9,10-anthraquinone Drugs 0.000 description 1
- YYVYAPXYZVYDHN-UHFFFAOYSA-N 9,10-phenanthroquinone Chemical compound C1=CC=C2C(=O)C(=O)C3=CC=CC=C3C2=C1 YYVYAPXYZVYDHN-UHFFFAOYSA-N 0.000 description 1
- 229910016467 AlCl 4 Inorganic materials 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical group [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 229910000967 As alloy Inorganic materials 0.000 description 1
- 229910017008 AsF 6 Inorganic materials 0.000 description 1
- 229910000521 B alloy Inorganic materials 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- 102100033029 Carbonic anhydrase-related protein 11 Human genes 0.000 description 1
- 229910020366 ClO 4 Inorganic materials 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- VTLYFUHAOXGGBS-UHFFFAOYSA-N Fe3+ Chemical compound [Fe+3] VTLYFUHAOXGGBS-UHFFFAOYSA-N 0.000 description 1
- 101000867841 Homo sapiens Carbonic anhydrase-related protein 11 Proteins 0.000 description 1
- 101001075218 Homo sapiens Gastrokine-1 Proteins 0.000 description 1
- 239000002841 Lewis acid Substances 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 229910000583 Nd alloy Inorganic materials 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 229910000691 Re alloy Inorganic materials 0.000 description 1
- 229910018286 SbF 6 Inorganic materials 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 229910001362 Ta alloys Inorganic materials 0.000 description 1
- 229910001080 W alloy Inorganic materials 0.000 description 1
- FOVILLXJVKHFFI-UHFFFAOYSA-N [Nb].[Nd] Chemical compound [Nb].[Nd] FOVILLXJVKHFFI-UHFFFAOYSA-N 0.000 description 1
- GAYPVYLCOOFYAP-UHFFFAOYSA-N [Nb].[W] Chemical compound [Nb].[W] GAYPVYLCOOFYAP-UHFFFAOYSA-N 0.000 description 1
- ROSDCCJGGBNDNL-UHFFFAOYSA-N [Ta].[Pb] Chemical compound [Ta].[Pb] ROSDCCJGGBNDNL-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 229910001413 alkali metal ion Inorganic materials 0.000 description 1
- 229910001860 alkaline earth metal hydroxide Inorganic materials 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- DVARTQFDIMZBAA-UHFFFAOYSA-O ammonium nitrate Chemical compound [NH4+].[O-][N+]([O-])=O DVARTQFDIMZBAA-UHFFFAOYSA-O 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 239000003957 anion exchange resin Substances 0.000 description 1
- RGHILYZRVFRRNK-UHFFFAOYSA-N anthracene-1,2-dione Chemical compound C1=CC=C2C=C(C(C(=O)C=C3)=O)C3=CC2=C1 RGHILYZRVFRRNK-UHFFFAOYSA-N 0.000 description 1
- LSOTZYUVGZKSHR-UHFFFAOYSA-N anthracene-1,4-dione Chemical compound C1=CC=C2C=C3C(=O)C=CC(=O)C3=CC2=C1 LSOTZYUVGZKSHR-UHFFFAOYSA-N 0.000 description 1
- PYKYMHQGRFAEBM-UHFFFAOYSA-N anthraquinone Natural products CCC(=O)c1c(O)c2C(=O)C3C(C=CC=C3O)C(=O)c2cc1CC(=O)OC PYKYMHQGRFAEBM-UHFFFAOYSA-N 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- 150000001552 barium Chemical class 0.000 description 1
- 150000007514 bases Chemical class 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-N benzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-N 0.000 description 1
- 229940092714 benzenesulfonic acid Drugs 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- VDZMENNHPJNJPP-UHFFFAOYSA-N boranylidyneniobium Chemical compound [Nb]#B VDZMENNHPJNJPP-UHFFFAOYSA-N 0.000 description 1
- WTEOIRVLGSZEPR-UHFFFAOYSA-N boron trifluoride Chemical compound FB(F)F WTEOIRVLGSZEPR-UHFFFAOYSA-N 0.000 description 1
- QAVFANVPBSEGTQ-UHFFFAOYSA-N boron;yttrium Chemical compound [Y]#B QAVFANVPBSEGTQ-UHFFFAOYSA-N 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- QXDMQSPYEZFLGF-UHFFFAOYSA-L calcium oxalate Chemical compound [Ca+2].[O-]C(=O)C([O-])=O QXDMQSPYEZFLGF-UHFFFAOYSA-L 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000003729 cation exchange resin Substances 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- UORKIKBNUWJNJF-UHFFFAOYSA-N chrysene-1,4-dione Chemical compound C1=CC2=CC=CC=C2C(C=C2)=C1C1=C2C(=O)C=CC1=O UORKIKBNUWJNJF-UHFFFAOYSA-N 0.000 description 1
- HZGMNNQOPOLCIG-UHFFFAOYSA-N chrysene-5,6-dione Chemical compound C12=CC=CC=C2C(=O)C(=O)C2=C1C=CC1=CC=CC=C21 HZGMNNQOPOLCIG-UHFFFAOYSA-N 0.000 description 1
- XVQUFOXACWQJMY-UHFFFAOYSA-N chrysene-6,12-dione Chemical compound C1=CC=C2C(=O)C=C3C4=CC=CC=C4C(=O)C=C3C2=C1 XVQUFOXACWQJMY-UHFFFAOYSA-N 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 150000003983 crown ethers Chemical class 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000001739 density measurement Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- GVGUFUZHNYFZLC-UHFFFAOYSA-N dodecyl benzenesulfonate;sodium Chemical compound [Na].CCCCCCCCCCCCOS(=O)(=O)C1=CC=CC=C1 GVGUFUZHNYFZLC-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 description 1
- CCIVGXIOQKPBKL-UHFFFAOYSA-M ethanesulfonate Chemical compound CCS([O-])(=O)=O CCIVGXIOQKPBKL-UHFFFAOYSA-M 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- UQSQSQZYBQSBJZ-UHFFFAOYSA-N fluorosulfonic acid Chemical compound OS(F)(=O)=O UQSQSQZYBQSBJZ-UHFFFAOYSA-N 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000012685 gas phase polymerization Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 229910000449 hafnium oxide Inorganic materials 0.000 description 1
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- QOSATHPSBFQAML-UHFFFAOYSA-N hydrogen peroxide;hydrate Chemical compound O.OO QOSATHPSBFQAML-UHFFFAOYSA-N 0.000 description 1
- 229940071870 hydroiodic acid Drugs 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 229910012375 magnesium hydride Inorganic materials 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 229940098779 methanesulfonic acid Drugs 0.000 description 1
- UNASZPQZIFZUSI-UHFFFAOYSA-N methylidyneniobium Chemical compound [Nb]#C UNASZPQZIFZUSI-UHFFFAOYSA-N 0.000 description 1
- YZMHQCWXYHARLS-UHFFFAOYSA-N naphthalene-1,2-disulfonic acid Chemical compound C1=CC=CC2=C(S(O)(=O)=O)C(S(=O)(=O)O)=CC=C21 YZMHQCWXYHARLS-UHFFFAOYSA-N 0.000 description 1
- SLBHRPOLVUEFSG-UHFFFAOYSA-N naphthalene-2,6-dione Chemical compound O=C1C=CC2=CC(=O)C=CC2=C1 SLBHRPOLVUEFSG-UHFFFAOYSA-N 0.000 description 1
- KVBGVZZKJNLNJU-UHFFFAOYSA-N naphthalene-2-sulfonic acid Chemical compound C1=CC=CC2=CC(S(=O)(=O)O)=CC=C21 KVBGVZZKJNLNJU-UHFFFAOYSA-N 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- RHDUVDHGVHBHCL-UHFFFAOYSA-N niobium tantalum Chemical compound [Nb].[Ta] RHDUVDHGVHBHCL-UHFFFAOYSA-N 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- YHBDIEWMOMLKOO-UHFFFAOYSA-I pentachloroniobium Chemical compound Cl[Nb](Cl)(Cl)(Cl)Cl YHBDIEWMOMLKOO-UHFFFAOYSA-I 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 150000004965 peroxy acids Chemical class 0.000 description 1
- JRKICGRDRMAZLK-UHFFFAOYSA-L peroxydisulfate Chemical class [O-]S(=O)(=O)OOS([O-])(=O)=O JRKICGRDRMAZLK-UHFFFAOYSA-L 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229920000414 polyfuran Polymers 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- RLCOXABDZNIZRQ-UHFFFAOYSA-N pyrene-2,7-dione Chemical compound C1=CC2=CC(=O)C=C(C=C3)C2=C2C3=CC(=O)C=C21 RLCOXABDZNIZRQ-UHFFFAOYSA-N 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 238000000790 scattering method Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 229940080264 sodium dodecylbenzenesulfonate Drugs 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- AKHNMLFCWUSKQB-UHFFFAOYSA-L sodium thiosulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=S AKHNMLFCWUSKQB-UHFFFAOYSA-L 0.000 description 1
- 235000019345 sodium thiosulphate Nutrition 0.000 description 1
- 235000019832 sodium triphosphate Nutrition 0.000 description 1
- HIEHAIZHJZLEPQ-UHFFFAOYSA-M sodium;naphthalene-1-sulfonate Chemical compound [Na+].C1=CC=C2C(S(=O)(=O)[O-])=CC=CC2=C1 HIEHAIZHJZLEPQ-UHFFFAOYSA-M 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- IIACRCGMVDHOTQ-UHFFFAOYSA-N sulfamic acid Chemical compound NS(O)(=O)=O IIACRCGMVDHOTQ-UHFFFAOYSA-N 0.000 description 1
- NYPFJVOIAWPAAV-UHFFFAOYSA-N sulfanylideneniobium Chemical compound [Nb]=S NYPFJVOIAWPAAV-UHFFFAOYSA-N 0.000 description 1
- 125000000020 sulfo group Chemical group O=S(=O)([*])O[H] 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-N sulfonic acid Chemical compound OS(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-N 0.000 description 1
- HIFJUMGIHIZEPX-UHFFFAOYSA-N sulfuric acid;sulfur trioxide Chemical compound O=S(=O)=O.OS(O)(=O)=O HIFJUMGIHIZEPX-UHFFFAOYSA-N 0.000 description 1
- CBXCPBUEXACCNR-UHFFFAOYSA-N tetraethylammonium Chemical compound CC[N+](CC)(CC)CC CBXCPBUEXACCNR-UHFFFAOYSA-N 0.000 description 1
- 125000003698 tetramethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- 150000004764 thiosulfuric acid derivatives Chemical class 0.000 description 1
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 1
- DZKDPOPGYFUOGI-UHFFFAOYSA-N tungsten dioxide Inorganic materials O=[W]=O DZKDPOPGYFUOGI-UHFFFAOYSA-N 0.000 description 1
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/48—Conductive polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/54—Electrolytes
- H01G11/56—Solid electrolytes, e.g. gels; Additives therein
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Materials Engineering (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、単位質量当たりの
容量が大きく、漏れ電流特性、耐湿性の良好なコンデン
サを安定に製造することができるニオブ粉及び焼結体、
これらを用いたコンデンサ、及びそれらの製造方法に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a niobium powder and a sintered body capable of stably producing a capacitor having a large capacity per unit mass and excellent leakage current characteristics and moisture resistance.
The present invention relates to a capacitor using these and a manufacturing method thereof.
【0002】[0002]
【従来の技術】携帯電話やパーソナルコンピュータ等の
電子機器に使用されるコンデンサは、小型で大容量のも
のが望まれている。このようなコンデンサの中でもタン
タルコンデンサは大きさの割には容量が大きく、しかも
性能が良好なため、好んで使用されている。さらに、最
近の電子デバイスは、低電圧での作動、高周波での作
動、低ノイズ化が求められており、個体電解コンデンサ
においても、より低ESR(等価直列抵抗)が求められ
ている。2. Description of the Related Art Capacitors used in electronic equipment such as mobile phones and personal computers are desired to be small in size and large in capacity. Among these capacitors, tantalum capacitors are preferred because they have a large capacity for their size and good performance. Further, recent electronic devices are required to operate at low voltage, operate at high frequency, and have low noise, and even for solid electrolytic capacitors, lower ESR (equivalent series resistance) is required.
【0003】タンタルコンデンサの陽極体として、一般
的にタンタル粉の焼結体が使用されている。この粉体を
成形後焼結することにより一体化され焼結体と言われる
電極になる。この焼結体内部は、前記粉体が電気的・機
械的に連結した三次元の複雑な形状をとる。この焼結体
の内部空隙の表面も含めた表面に誘電体皮膜層を形成し
た後、対電極となる材料を含浸してコンデンサが構成さ
れる。作製されたコンデンサの容量は、誘電体皮膜層が
焼結体内外部の表面に均一に付着している限り、ミクロ
的には、対電極材料と誘電体皮膜層との接触状況に大き
く依存する。A sintered body of tantalum powder is generally used as an anode body of a tantalum capacitor. The powder is molded and then sintered to be integrated into an electrode called a sintered body. The inside of the sintered body has a three-dimensional complex shape in which the powder is electrically and mechanically connected. After forming a dielectric film layer on the surface of the sintered body including the surfaces of the internal voids, a material to be the counter electrode is impregnated to form a capacitor. The capacity of the manufactured capacitor is largely dependent on the contact state between the counter electrode material and the dielectric coating layer, as long as the dielectric coating layer is uniformly attached to the surface inside the sintered body.
【0004】これらタンタルコンデンサの容量を上げる
ためには、焼結体質量を増大させるか、または、タンタ
ル粉を微粉化して表面積を増加させた焼結体を用いる必
要がある。焼結体質量を増加させる方法では、コンデン
サの形状が必然的に増大して小型化の要求を満たさな
い。一方、タンタル粉を微粉化して比表面積を増加させ
る方法では、タンタル焼結体の細孔直径が小さくなり、
また焼結段階で閉鎖孔が多くなり、後工程における陰極
剤の含浸が困難になる。例えば、対電極材料として、燐
酸水溶液を用いたとき、誘電体皮膜層層との接触状況が
完全として、その時の容量出現率(陰極剤含浸率とも言
う)を100%とすると、粘性の大きな電極材料、とく
に固体の電極材料を使用した場合、該容量出現率を10
0%とすることは、困難であった。とりわけ、タンタル
粉の平均粒径が小さい場合や、タンタル粉から作製した
焼結体の形状が大きな場合、困難さが増加し、極端な場
合には、容量出現率は、50%にも満たないこともあっ
た。また、このような低容量出現率の場合、作製したコ
ンデンサの耐湿性を十分得ることが出来なかった。ま
た、タンタル焼結体を作成するためのタンタル粉が持つ
細孔径が小さい場合、焼結体の持つ細孔径も必然的に小
さくなり容量出現率が低くなる。その結果、ESRを低
くできないという問題が生じる。In order to increase the capacity of these tantalum capacitors, it is necessary to increase the mass of the sintered body or use a sintered body in which tantalum powder is pulverized to increase the surface area. The method of increasing the mass of the sintered body inevitably increases the shape of the capacitor and does not satisfy the demand for miniaturization. On the other hand, in the method of pulverizing tantalum powder to increase the specific surface area, the pore diameter of the tantalum sintered body becomes small,
In addition, the number of closed holes increases at the sintering stage, which makes it difficult to impregnate the catholyte in the subsequent process. For example, when a phosphoric acid aqueous solution is used as the counter electrode material, assuming that the contact state with the dielectric coating layer layer is perfect and the capacity appearance rate (also referred to as the cathodic agent impregnation rate) at that time is 100%, an electrode with a large viscosity When a material, especially a solid electrode material is used, the capacity appearance rate is 10
It was difficult to set it to 0%. Especially, when the average particle size of the tantalum powder is small, or when the shape of the sintered body made from the tantalum powder is large, the difficulty increases, and in an extreme case, the capacity appearance rate is less than 50%. There were things. Further, in the case of such a low capacity appearance rate, it was not possible to obtain sufficient moisture resistance of the manufactured capacitor. In addition, when the tantalum powder for producing the tantalum sintered body has a small pore size, the sintered body inevitably has a small pore size and the capacity appearance rate decreases. As a result, there arises a problem that the ESR cannot be lowered.
【0005】これらの欠点を解決する手段の一つとし
て、タンタルより大きい誘電率の誘電体の得られる電極
材料を用い、高い容量出現率の得られる焼結体を作製
し、これを電極としたコンデンサが考えられる。As one of means for solving these drawbacks, an electrode material having a dielectric constant larger than that of tantalum is used, and a sintered body having a high capacity appearance rate is produced, and this is used as an electrode. A capacitor is possible.
【0006】工業的に供給可能なこのような電極材料と
しては、タンタルより誘電率が大きく埋蔵量も多いニオ
ブが知られている。As such an electrode material that can be industrially supplied, niobium, which has a larger dielectric constant and a larger buried amount than tantalum, is known.
【0007】特開昭55−157226号公報には、凝
集粉から粒径2.0μm、あるいはそれ以下のニオブ微
粉末を加圧成形して焼結し、その成形焼結体を細かく裁
断して、これにリード部を接合した後再び焼結するコン
デンサ用焼結素子の製造方法が開示されている。しかし
ながら、該公報にはコンデンサの特性についての詳細は
示されてない。In JP-A-55-157226, niobium fine powder having a particle size of 2.0 μm or less is pressure-molded from agglomerated powder and sintered, and the molded sintered body is finely cut. , A method of manufacturing a sintered element for a capacitor in which a lead portion is joined to the lead portion and then sintered again. However, the publication does not provide details on the characteristics of the capacitor.
【0008】米国特許4,084,965号公報には、
ニオブインゴットを水素化して粉砕し、平均粒子径5.
1μmのニオブ粉末を得、これを焼結して用いたコンデ
ンサが開示されている。しかしながら、開示されている
コンデンサは、漏れ電流(以下LCと略記することがあ
る)値が大きく実用性に乏しい。US Pat. No. 4,084,965 discloses that
4. Niobium ingot was hydrogenated and crushed to have an average particle size of 5.
A capacitor obtained by obtaining 1 μm niobium powder and sintering this is disclosed. However, the disclosed capacitor has a large leakage current (hereinafter sometimes abbreviated as LC) value and is not practical.
【0009】特開平10−242004号公報には、ニ
オブ粉の一部を窒化すること等により、LC値を改善す
ることが開示されている。Japanese Unexamined Patent Publication No. 10-242004 discloses that the LC value is improved by, for example, nitriding a part of niobium powder.
【0010】コンデンサ用ニオブ粉のタッピング密度
は、ニオブ粉を成形作業する上で重要な因子であり、こ
れまでのものについては、タッピング密度が2.5g/
mlより大きく、4g/ml程度であり、成形するため
には十分ではなかった。The tapping density of the niobium powder for capacitors is an important factor in the molding operation of the niobium powder. For the conventional ones, the tapping density is 2.5 g /
It was larger than ml and about 4 g / ml, which was not sufficient for molding.
【0011】すなわち、このようなニオブ粉を成形、焼
結して焼結体を作成する場合、ニオブ粉の成形機ホッパ
ーから金型への流れが悪く、常に一定量のニオブ粉を計
量し金型に入れることが困難であった。このため、成形
体の形状が常に十分に安定化せず、成形体、焼結体の強
度が不足し、結果としてLCが悪いコンデンサが高頻度
で生産されてしまう欠点があった。また、流れ性の悪い
粉体も扱える特別な成形装置を用いたのでは、成形コス
トが高くなりすぎ、実用的でない。That is, when such a niobium powder is molded and sintered to form a sintered body, the flow of the niobium powder from the molding machine hopper to the mold is poor, and a fixed amount of niobium powder is constantly weighed to obtain the metal. It was difficult to put in a mold. For this reason, the shape of the molded body is not always sufficiently stabilized, the strength of the molded body and the sintered body is insufficient, and as a result, capacitors having poor LC are produced frequently. In addition, if a special molding apparatus that can handle powder having poor flowability is used, the molding cost becomes too high, which is not practical.
【0012】このようなことから、従来既知のコンデン
サ用ニオブ粉は、連続成形に十分適応できるものではな
く、コンデンサの生産性が低いという問題があった。For this reason, the conventionally known niobium powder for capacitors is not sufficiently adaptable to continuous molding, and there is a problem that the productivity of capacitors is low.
【0013】[0013]
【発明が解決しようとする課題】本発明の目的は、単位
質量当たりの容量が大きく、漏れ電流値が小さいコンデ
ンサ及び耐湿性の高いコンデンサ、この電極材料となり
高い容量出現率の得られる焼結体、この焼結体材料とし
て好ましく、成形時の作業上流れ性が良好で、連続成形
が容易であり、コンデンサの安定した生産が可能なニオ
ブ粉、及びそれらの製造方法を提供することにある。DISCLOSURE OF THE INVENTION An object of the present invention is to provide a capacitor having a large capacity per unit mass and a small leakage current value and a capacitor having high moisture resistance, and a sintered body which can be used as an electrode material and has a high capacity appearance rate. Another object of the present invention is to provide a niobium powder which is preferable as this sintered body material, has good flowability during molding, is easy to continuously mold, and allows stable production of capacitors, and a manufacturing method thereof.
【0014】[0014]
【課題を解決するための手段】本発明者らは、前述の課
題を鋭意検討した。その結果、特定の細孔分布を持つニ
オブ焼結体、好ましくは、複数の細孔直径ピークトップ
を有する細孔分布を持つニオブ焼結体をコンデンサ電極
に用いると、高い容量出現率が得られ、漏れ電流が低
く、耐湿性の良好なコンデンサが生産できることを見出
した。さらに、好ましくはタッピング密度が0.5〜
2.5g/ml、さらに好ましくは平均粒子径が10〜
1000μmのニオブ粉は、流れ性が良好で、連続成形
が可能であり、前記焼結体材料として好ましく、このニ
オブ粉を用いると漏れ電流値が低いコンデンサを安定に
生産できることを見出した。これらを見出し本発明を完
成した。更に好ましくは、空孔分布が広く、細孔直径の
ピークトップが複数あり、その細孔直径ピークトップの
すべてが0.5μm以上のニオブ粉を用いて作成したニ
オブ焼結体をコンデンサ電極に用いると高い容量出現率
とともに低ESRが達成できることを見いだした。[Means for Solving the Problems] The present inventors diligently studied the aforementioned problems. As a result, when a niobium sinter having a specific pore distribution, preferably a niobium sinter having a plurality of pore diameter peak tops is used for a capacitor electrode, a high capacity appearance rate can be obtained. It was found that a capacitor with low leakage current and good moisture resistance can be produced. Furthermore, the tapping density is preferably 0.5 to
2.5 g / ml, more preferably 10 to 10
It has been found that 1000 μm niobium powder has good flowability, can be continuously molded, and is preferable as the material for the sintered body, and that when this niobium powder is used, a capacitor having a low leakage current value can be stably produced. These have been found and the present invention has been completed. More preferably, a niobium sintered body prepared by using niobium powder having a wide pore distribution, a plurality of pore diameter peak tops, and all of the pore diameter peak tops being 0.5 μm or more is used for a capacitor electrode. It was found that a low ESR can be achieved with a high capacity appearance rate.
【0015】すなわち、本発明は、以下のニオブ粉、ニ
オブ焼結体、それを用いたコンデンサ、及びそれらの製
造方法に関する。
(1)タッピング密度が0.5〜2.5g/mlである
コンデンサ用ニオブ粉。
(2)平均粒子径が10〜1000μmである前項1に
記載のニオブ粉。
(3)安息角が10〜60度である前項1または2に記
載のニオブ粉。
(4)BET比表面積が0.5〜40m2/gである前
項1乃至3のいずれか1項に記載のニオブ粉。
(5)0.01μm〜500μmの範囲内に細孔直径ピ
ークトップを有する細孔分布を持つ前項1乃至4のいず
れか1項に記載のニオブ粉。
(6)細孔分布が、複数の細孔直径ピークトップを有す
る前項5に記載のニオブ粉。
(7)細孔直径ピークトップのすべてが0.5μm〜1
00μmの範囲にある前項5乃至6のいずれか1項に記
載のニオブ粉。
(8)窒素、炭素、ホウ素及び硫黄の元素からなる群よ
り選ばれる少なくとも1種の元素の含有量が、200,
000質量ppm以下である前項1乃至7のいずれか1
項に記載のニオブ粉。That is, the present invention relates to the following niobium powder, niobium sintered body, capacitors using the same, and their manufacturing methods. (1) Niobium powder for capacitors having a tapping density of 0.5 to 2.5 g / ml. (2) The niobium powder according to item 1, which has an average particle diameter of 10 to 1000 μm. (3) The niobium powder as described in 1 or 2 above, which has an angle of repose of 10 to 60 degrees. (4) The niobium powder according to any one of items 1 to 3 above, which has a BET specific surface area of 0.5 to 40 m 2 / g. (5) The niobium powder according to any one of the above items 1 to 4, which has a pore distribution having a pore diameter peak top in the range of 0.01 μm to 500 μm. (6) The niobium powder according to item 5, wherein the pore distribution has a plurality of pore diameter peak tops. (7) All pore diameter peak tops are 0.5 μm to 1
7. The niobium powder according to any one of items 5 to 6 above, which is in the range of 00 μm. (8) The content of at least one element selected from the group consisting of elements of nitrogen, carbon, boron and sulfur is 200,
Any one of the above 1 to 7, which is 000 mass ppm or less
The niobium powder according to item.
【0016】(9)前項1乃至8のいずれか1項に記載
のニオブ粉を用いた焼結体。
(10)0.01μm〜500μmの範囲内に細孔直径
ピークトップを有する細孔分布を持つ前項9に記載の焼
結体。
(11)コンデンサ電極用ニオブ焼結体において、ニオ
ブ焼結体の細孔分布が、複数の細孔直径ピークトップを
有することを特徴とするニオブ焼結体。
(12)細孔分布が、2つの細孔直径ピークトップより
なる前項11に記載のニオブ焼結体。
(13)複数の細孔直径ピークトップの内、相対強度が
最も大きい2つのピークのピークトップが、それぞれ
0.2〜0.7μm及び0.7〜3μmの範囲にある前
項11または12に記載のニオブ焼結体。
(14)複数の細孔直径ピークトップの内、相対強度が
最も大きいピークのピークトップが、相対強度が次に大
きいピークのピークトップより大径側にある前項11乃
至13のいずれか1項に記載のニオブ焼結体。
(15)焼結体が、細孔空隙容積を含めて10mm3以
上の体積を持つ前項9乃至14に記載のニオブ焼結体。
(16)焼結体が、0.2〜7m2/gの比表面積を持
つ前項9乃至15に記載のニオブ焼結体。
(17)焼結体の一部が、窒化している前項9乃至16
に記載のニオブ焼結体。
(18)焼結体が、1300℃で焼結した場合4000
0〜200000μFV/gのCV値を持つ焼結体を与
えるニオブ成形体より得られた焼結体である前項12乃
至17のいずれか1項に記載のニオブ焼結体。(9) A sintered body using the niobium powder according to any one of items 1 to 8 above. (10) The sintered body according to the above item 9, which has a pore distribution having a pore diameter peak top within a range of 0.01 μm to 500 μm. (11) A niobium sintered body for a capacitor electrode, wherein the pore distribution of the niobium sintered body has a plurality of pore diameter peak tops. (12) The niobium sintered body according to item 11, wherein the pore distribution is composed of two pore diameter peak tops. (13) Among the plurality of pore diameter peak tops, the peak tops of the two peaks having the highest relative intensities are in the ranges of 0.2 to 0.7 μm and 0.7 to 3 μm, respectively, and described in the above item 11 or 12. Niobium sintered body. (14) Among the plurality of pore diameter peak tops, the peak top of the peak having the largest relative intensity is located on the larger diameter side than the peak top of the peak having the next largest relative intensity. The niobium sintered body described. (15) The niobium sintered body according to the above items 9 to 14, wherein the sintered body has a volume of 10 mm3 or more including the pore void volume. (16) The niobium sintered body according to the above items 9 to 15, wherein the sintered body has a specific surface area of 0.2 to 7 m2 / g. (17) A part of the sintered body is nitrided, as described in 9 to 16 above.
The niobium sintered body according to 1. (18) 4000 when the sintered body is sintered at 1300 ° C
18. The niobium sintered body according to any one of items 12 to 17, which is a sintered body obtained from a niobium compact that gives a sintered body having a CV value of 0 to 200,000 μFV / g.
【0017】(19)前項9乃至18のいずれか1項に
記載のニオブ焼結体を一方の電極とし、対電極との間に
介在した誘電体とから構成されたコンデンサ。
(20)誘電体の主成分が酸化ニオブである前項19に
記載のコンデンサ。
(21)対電極が、電解液、有機半導体及び無機半導体
からなる群より選ばれる少なくとも1種の材料である前
項19に記載のコンデンサ。
(22)対電極が、有機半導体であって、該有機半導体
が、ベンゾピロリン4量体とクロラニルからなる有機半
導体、テトラチオテトラセンを主成分とする有機半導
体、テトラシアノキノジメタンを主成分とする有機半導
体及び導電性高分子からなる群より選ばれる少なくとも
1種の材料である前項21に記載のコンデンサ。
(23)導電性高分子が、ポリピロール、ポリチオフェ
ン、ポリアニリン及びこれらの置換誘導体から選ばれる
少なくとも1種である前項22に記載のコンデンサ。
(24)導電性高分子が、下記一般式(1)又は一般式
(2)(19) A capacitor comprising the niobium sintered body according to any one of the above items 9 to 18 as one electrode and a dielectric material interposed between the electrode and the counter electrode. (20) The capacitor as described in 19 above, wherein the main component of the dielectric is niobium oxide. (21) The capacitor according to the above item 19, wherein the counter electrode is at least one material selected from the group consisting of an electrolytic solution, an organic semiconductor and an inorganic semiconductor. (22) The counter electrode is an organic semiconductor, and the organic semiconductor is composed of a benzopyrroline tetramer and chloranil, an organic semiconductor containing tetrathiotetracene as a main component, and a tetracyanoquinodimethane as a main component. 22. The capacitor according to item 21, which is at least one material selected from the group consisting of an organic semiconductor and a conductive polymer. (23) The capacitor according to the above item 22, wherein the conductive polymer is at least one selected from polypyrrole, polythiophene, polyaniline and substituted derivatives thereof. (24) The conductive polymer is the following general formula (1) or general formula (2)
【0018】[0018]
【化3】 [Chemical 3]
【0019】(式中、R1〜R4はそれぞれ独立して水素
原子、炭素数1乃至10の直鎖上もしくは分岐状の飽和
もしくは不飽和のアルキル基、アルコキシ基あるいはア
ルキルエステル基、またはハロゲン原子、ニトロ基、シ
アノ基、1級、2級もしくは3級アミノ基、CF3基、
フェニル基及び置換フェニル基からなる群から選ばれる
一価基を表わす。R1とR2及びR3とR4の炭化水素鎖は
互いに任意の位置で結合して、かかる基により置換を受
けている炭素原子と共に少なくとも1つ以上の3〜7員
環の飽和または不飽和炭化水素の環状構造を形成する二
価鎖を形成してもよい。前記環状結合鎖には、カルボニ
ル、エーテル、エステル、アミド、スルフィド、スルフ
ィニル、スルホニル、イミノの結合を任意の位置に含ん
でもよい。Xは酸素、硫黄又は窒素原子を表し、R5は
Xが窒素原子の時のみ存在して、独立して水素又は炭素
数1乃至10の直鎖上もしくは分岐状の飽和もしくは不
飽和のアルキル基を表す。)で示される繰り返し単位を
含む重合体に、ドーパントをドープした導電性高分子で
ある前項22に記載のコンデンサ。
(25)導電性高分子が、下記一般式(3)(Wherein R 1 to R 4 are each independently a hydrogen atom, a linear or branched saturated or unsaturated alkyl group having 1 to 10 carbon atoms, an alkoxy group or an alkyl ester group, or a halogen atom, Nitro group, cyano group, primary, secondary or tertiary amino group, CF3 group,
It represents a monovalent group selected from the group consisting of a phenyl group and a substituted phenyl group. The hydrocarbon chains of R1 and R2 and R3 and R4 may be attached to each other at any position to form a saturated or unsaturated hydrocarbon of at least one or more 3-7 membered ring with the carbon atom being substituted by such groups. You may form the bivalent chain which forms a cyclic structure. The cyclic bond chain may contain a bond of carbonyl, ether, ester, amide, sulfide, sulfinyl, sulfonyl and imino at any position. X represents an oxygen, sulfur or nitrogen atom, R5 is present only when X is a nitrogen atom, and independently represents hydrogen or a linear or branched saturated or unsaturated alkyl group having 1 to 10 carbon atoms. Represent 23. The capacitor according to item 22 above, which is a conductive polymer obtained by doping a polymer containing a repeating unit represented by) with a dopant. (25) The conductive polymer is represented by the following general formula (3)
【0020】[0020]
【化4】 [Chemical 4]
【0021】(式中、R6及びR7は、各々独立して水素
原子、炭素数1乃至6の直鎖状もしくは分岐状の飽和も
しくは不飽和のアルキル基、または該アルキル基が互い
に任意の位置で結合して、2つの酸素元素を含む少なく
とも1つ以上の5〜7員環の飽和炭化水素の環状構造を
形成する置換基を表わす。また、前記環状構造には置換
されていてもよいビニレン結合を有するもの、置換され
ていてもよいフェニレン構造のものが含まれる。)で示
される繰り返し単位を含む導電性高分子である前項24
に記載のコンデンサ。
(26)導電性高分子が、ポリ(3,4−エチレンジオ
キシチオフェン)にドーパントをドープした導電性高分
子である前項22に記載のコンデンサ。
(27)対電極が、層状構造を少なくとも一部に有する
材料からなる前項19に記載のコンデンサ。
(28)対電極が、有機スルホン酸アニオンをドーパン
トとして含んだ材料である前項19に記載のコンデン
サ。(In the formula, R 6 and R 7 are each independently a hydrogen atom, a linear or branched saturated or unsaturated alkyl group having 1 to 6 carbon atoms, or the alkyl group is at any position relative to each other. It represents a substituent that forms a cyclic structure of a saturated hydrocarbon of at least one or more 5 to 7-membered ring containing two oxygen elements, and a vinylene bond which may be substituted in the cyclic structure. And a phenylene structure which may be substituted) are included in the conductive polymer.
Capacitor described in. (26) The capacitor according to the above item 22, wherein the conductive polymer is a conductive polymer obtained by doping poly (3,4-ethylenedioxythiophene) with a dopant. (27) The capacitor according to the above item 19, wherein the counter electrode is made of a material having a layered structure in at least a part thereof. (28) The capacitor according to the above item 19, wherein the counter electrode is a material containing an organic sulfonate anion as a dopant.
【0022】(29)ニオブ粉の製造方法において、ニ
オブまたはニオブ化合物を賦活処理することを特徴とす
る前項1乃至8のいずれか1項に記載のニオブ粉の製造
方法。
(30)ニオブまたはニオブ化合物の賦活処理が、焼結
工程及び解砕工程からなる群より選ばれる少なくとも1
種の工程で行なわれることを特徴とする前項29に記載
のニオブ粉の製造方法。
(31)ニオブまたはニオブ化合物の賦活処理が、ニオ
ブまたはニオブ化合物と、賦活剤とを含む混合物を用い
て行なわれることを特徴とする前項29または30に記
載のニオブ粉の製造方法。
(32)ニオブまたはニオブ化合物の平均粒子径が、
0.01μm〜10μmである前項29乃至31のいず
れか1項に記載のニオブ粉の製造方法。
(33)ニオブまたはニオブ化合物が、窒素、炭素、ホ
ウ素及び硫黄からなる群より選ばれる少なくとも1種の
元素を200,000ppm以下含有するものである前
項29乃至32のいずれか1項に記載のニオブ粉の製造
方法。
(34)ニオブ化合物が、水素化ニオブ、ニオブ合金及
び水素化ニオブ合金からなる群より選ばれる少なくとも
1種である前項29乃至33のいずれか1項に記載のニ
オブ粉の製造方法。
(35)ニオブ合金及び水素化ニオブ合金の、ニオブ以
外の他の合金成分が、原子番号88以下の元素からなる
群から、水素、窒素、酸素、フッ素、塩素、臭素、沃
素、ニオブ、ヘリウム、ネオン、アルゴン、クリプト
ン、キセノン、及びラドンを除いた群から選ばれる少な
くとも1種の元素である前項34に記載のニオブ粉の製
造方法。(29) The method for producing niobium powder according to any one of the above items 1 to 8, wherein the niobium or niobium compound is activated. (30) The activation treatment of niobium or a niobium compound is at least 1 selected from the group consisting of a sintering step and a crushing step.
30. The method for producing niobium powder as described in 29 above, which is carried out in various steps. (31) The method for producing niobium powder as described in (29) or (30) above, wherein the activation treatment of niobium or a niobium compound is performed using a mixture containing niobium or a niobium compound and an activator. (32) The average particle size of niobium or a niobium compound is
32. The method for producing niobium powder according to any one of the above items 29 to 31, which is 0.01 μm to 10 μm. (33) The niobium according to any one of the above items 29 to 32, wherein the niobium or the niobium compound contains at least one element selected from the group consisting of nitrogen, carbon, boron and sulfur in an amount of 200,000 ppm or less. Powder manufacturing method. (34) The method for producing niobium powder according to any one of the above items 29 to 33, wherein the niobium compound is at least one selected from the group consisting of niobium hydride, niobium alloys and hydrogenated niobium alloys. (35) The alloy components other than niobium of the niobium alloy and the hydrogenated niobium alloy are hydrogen, nitrogen, oxygen, fluorine, chlorine, bromine, iodine, niobium, helium, from the group consisting of elements having an atomic number of 88 or less. 35. The method for producing niobium powder according to the above item 34, which is at least one element selected from the group excluding neon, argon, krypton, xenon, and radon.
【0023】(36)ニオブまたはニオブ化合物と、賦
活剤とを含む混合物が、溶媒を用いて混合されたもので
ある前項31に記載のニオブ粉の製造方法。
(37)溶媒が、水、アルコール類、エーテル類、セル
ソルブ類、ケトン類、脂肪族炭化水素類、芳香族炭化水
素類、ハロゲン化炭化水素類よりなる群から選ばれる少
なくとも1種の溶媒である前項36に記載のニオブ粉の
製造方法。
(38)賦活剤が、ニオブまたはニオブ化合物の総量に
対して1〜40質量%で用いられる前項31に記載のニ
オブ粉の製造方法。
(39)賦活剤の平均粒子径が0.01〜500μmで
ある前項31または38に記載のニオブ粉の製造方法。
(40)賦活剤の粒子径ピークトップが複数である前項
31、38及び39のいずれか1項に記載のニオブ粉の
製造方法。
(41)賦活剤が、2000℃以下で気体として除去さ
れる物質である前項31乃至40のいずれか1項に記載
のニオブ粉の製造方法。
(42)賦活剤が、ナフタレン、アントラセン、キノ
ン、樟脳、ポリアクリル酸、ポリアクリル酸エステル、
ポリアクリルアミド、ポリメタクリル酸、ポリメタクリ
ル酸エステル、ポリメタクリルアミド、ポリビニルアル
コール、NH4Cl、ZnO、WO2、SnO2、MnO3
からなる群から選ばれる少なくとも1種である前項41
に記載のニオブ粉の製造方法。
(43)賦活剤が、水溶性物質、有機溶剤可溶性物質、
酸性溶液可溶性物質、アルカリ性溶液可溶性物質、錯体
を形成しこれらの可溶性物質となる物質、及び2000
℃以下でこれらの可溶性物質となる物質からなる群から
選ばれる少なくとも1種である前項31乃至40のいず
れか1項に記載のニオブ粉の製造方法。
(44)賦活剤が、金属と、炭酸、硫酸、亜硫酸、ハロ
ゲン、過ハロゲン酸、次亜ハロゲン酸、硝酸、亜硝酸、
燐酸、または硼酸との化合物、金属、金属水酸化物、及
び金属酸化物とからなる群から選ばれる少なくとも1種
である前項43に記載のニオブ粉の製造方法。
(45)賦活剤が、リチウム、ナトリウム、カリウム、
ルビジウム、セシウム、フランシウム、ベリリウム、マ
グネシウム、カルシウム、ストロンチウム、バリウム、
ラジウム、スカンジウム、イットリウム、セリウム、ネ
オジム、チタニウム、ジルコニウム、ハフニウム、バナ
ジウム、ニオブ、タンタル、モリブデン、タングステ
ン、マンガン、レニウム、ルテニウム、オスミウム、コ
バルト、ロジウム、イリジウム、ニッケル、パラジウ
ム、プラチナ、銀、金、亜鉛、カドミウム、硼素、アル
ミニウム、ガリウム、インジウム、タリウム、珪素、ゲ
ルマニウム、錫、鉛、砒素、アンチモン、ビスマス、セ
レン、テルル、ポロニウム、及びこれらの化合物からな
る群より選ばれる少なくとも1種である前項43に記載
のニオブ粉の製造方法。(36) The method for producing niobium powder as recited in the aforementioned Item 31, wherein a mixture containing niobium or a niobium compound and an activator is mixed using a solvent. (37) The solvent is at least one solvent selected from the group consisting of water, alcohols, ethers, cellosolves, ketones, aliphatic hydrocarbons, aromatic hydrocarbons, and halogenated hydrocarbons. 37. The method for producing niobium powder as described in 36 above. (38) The method for producing niobium powder as described in the above item 31, wherein the activator is used in an amount of 1 to 40 mass% with respect to the total amount of niobium or the niobium compound. (39) The method for producing niobium powder as described in the above item 31 or 38, wherein the activator has an average particle size of 0.01 to 500 μm. (40) The method for producing niobium powder according to any one of the above items 31, 38, and 39, wherein the activator has a plurality of particle size peak tops. (41) The method for producing niobium powder according to any one of the above items 31 to 40, wherein the activator is a substance that is removed as a gas at 2000 ° C. or lower. (42) The activator is naphthalene, anthracene, quinone, camphor, polyacrylic acid, polyacrylic ester,
Polyacrylamide, polymethacrylic acid, polymethacrylic acid ester, polymethacrylamide, polyvinyl alcohol, NH4Cl, ZnO, WO2, SnO2, MnO3
41. which is at least one selected from the group consisting of
The method for producing the niobium powder according to 1. (43) The activator is a water-soluble substance, an organic solvent-soluble substance,
An acidic solution-soluble substance, an alkaline solution-soluble substance, a substance which forms a complex into these soluble substances, and 2000
41. The method for producing niobium powder according to any one of the above items 31 to 40, which is at least one selected from the group consisting of these substances that become soluble substances at a temperature of not more than 0 ° C. (44) The activator is a metal, carbonic acid, sulfuric acid, sulfurous acid, halogen, perhalogen acid, hypohalogen acid, nitric acid, nitrous acid,
44. The method for producing niobium powder according to the above item 43, which is at least one selected from the group consisting of a compound with phosphoric acid or boric acid, a metal, a metal hydroxide, and a metal oxide. (45) The activator is lithium, sodium, potassium,
Rubidium, cesium, francium, beryllium, magnesium, calcium, strontium, barium,
Radium, scandium, yttrium, cerium, neodymium, titanium, zirconium, hafnium, vanadium, niobium, tantalum, molybdenum, tungsten, manganese, rhenium, ruthenium, osmium, cobalt, rhodium, iridium, nickel, palladium, platinum, silver, gold, Zinc, cadmium, boron, aluminum, gallium, indium, thallium, silicon, germanium, tin, lead, arsenic, antimony, bismuth, selenium, tellurium, polonium, and at least one selected from the group consisting of these compounds. 43. The method for producing niobium powder according to item 43.
【0024】(46)賦活処理が、焼結工程前に、また
は焼結工程時に、加熱及び/または減圧により賦活剤の
除去を行なう処理である前項29乃至42のいずれか1
項に記載のニオブ粉の製造方法。
(47)賦活処理が、焼結工程後、解砕工程中、または
解砕工程後の、焼結物または解砕物に溶媒を接触させ、
賦活剤成分を除去する処理である前項29乃至40、4
3乃至45のいずれか1項に記載のニオブ粉の製造方
法。
(48)溶媒が、水、有機溶剤、酸性溶液、アルカリ性
溶液、及び可溶性錯体を形成する配位子を含む溶液より
なる群から選ばれる少なくとも1種である前項47に記
載のニオブ粉の製造方法。
(49)酸性溶液が、硝酸、硫酸、フッ化水素酸、及び
塩酸からなる群から選ばれる少なくとも1種の溶液であ
る前項48に記載のニオブ粉の製造方法。
(50)アルカリ性の溶液が、アルカリ金属の水酸化物
及びアンモニアからなる群から選ばれる少なくとも1種
を含む前項48に記載のニオブ粉の製造方法。
(51)配位子が、アンモニア、グリシン、及びエチレ
ンジアミン四酢酸からなる群から選ばれる少なくとも1
種である前項48に記載のニオブ粉の製造方法。
(52)有機溶剤が、メチルイソブチルケトンである前
項48に記載のニオブ粉の製造方法。(46) Any one of the above items 29 to 42, wherein the activation treatment is a treatment of removing the activator by heating and / or depressurizing before or during the sintering step.
The method for producing the niobium powder according to the item. (47) The activation treatment is carried out by bringing a solvent into contact with the sintered product or the crushed product after the sintering process, during the crushing process, or after the crushing process,
29 to 40, which is a treatment for removing the activator component
The method for producing the niobium powder according to any one of 3 to 45. (48) The method for producing niobium powder according to item 47, wherein the solvent is at least one selected from the group consisting of water, an organic solvent, an acidic solution, an alkaline solution, and a solution containing a ligand forming a soluble complex. . (49) The method for producing niobium powder according to item 48, wherein the acidic solution is at least one solution selected from the group consisting of nitric acid, sulfuric acid, hydrofluoric acid, and hydrochloric acid. (50) The method for producing niobium powder according to the item 48, wherein the alkaline solution contains at least one selected from the group consisting of alkali metal hydroxides and ammonia. (51) The ligand is at least one selected from the group consisting of ammonia, glycine, and ethylenediaminetetraacetic acid.
49. The method for producing the niobium powder according to item 48, which is a seed. (52) The method for producing niobium powder as described in 48 above, wherein the organic solvent is methyl isobutyl ketone.
【0025】(53)前項1乃至7のいずれか1項に記
載のニオブ粉を、液体窒化、イオン窒化、及びガス窒化
の方法からなる群より選ばれる少なくとも1種の方法に
より処理することを特徴とする窒素を含むニオブ粉の製
造方法。
(54)前項1乃至7のいずれか1項に記載のニオブ粉
を、固相炭化、及び液体炭化の方法からなる群より選ば
れる少なくとも1種の方法により処理することを特徴と
する炭素を含むニオブ粉の製造方法。
(55)前項1乃至7のいずれか1項に記載のニオブ粉
を、ガスホウ化、及び固相ホウ化の方法からなる群より
選ばれる少なくとも1種の方法により処理されることを
特徴とするホウ素を含むニオブ粉の製造方法。
(56)前項1乃至7のいずれか1項に記載のニオブ粉
を、ガス硫化、イオン硫化、及び固相硫化の方法からな
る群より選ばれる少なくとも1種の方法により処理する
ことを特徴とする硫黄を含むニオブ粉の製造方法。
(57)前項29乃至56のいずれか1項に記載の製造
方法で得られたニオブ粉。
(58)前項1乃至8及び前項57のいずれか1項に記
載のニオブ粉を用ることを特徴とするニオブ焼結体の製
造方法。(53) The niobium powder according to any one of items 1 to 7 above is treated by at least one method selected from the group consisting of liquid nitriding, ion nitriding, and gas nitriding. A method for producing niobium powder containing nitrogen. (54) A carbon containing the niobium powder according to any one of the above items 1 to 7 treated by at least one method selected from the group consisting of solid-phase carbonization and liquid carbonization. Manufacturing method of niobium powder. (55) Boron, characterized in that the niobium powder according to any one of items 1 to 7 above is treated by at least one method selected from the group consisting of gas boration and solid phase boration. Of producing niobium powder containing. (56) The niobium powder according to any one of items 1 to 7 above is treated by at least one method selected from the group consisting of gas sulfide, ion sulfide, and solid phase sulfide. A method for producing a niobium powder containing sulfur. (57) A niobium powder obtained by the method according to any one of the above items 29 to 56. (58) A method for producing a niobium sintered body, which comprises using the niobium powder according to any one of the above items 1 to 8 and 57.
【0026】(59)ニオブ焼結体を一方の電極とし、
その焼結体表面上に形成された誘電体と、前記誘電体上
に設けられた対電極を含むコンデンサの製造方法であっ
て、ニオブ焼結体が、前項1乃至8及び前項57のいず
れか1項に記載のニオブ粉を焼結したものであることを
特徴とするコンデンサの製造方法。
(60)誘電体が、電解酸化により形成されたものであ
る請求59に記載のコンデンサの製造方法。
(61)ニオブ焼結体を一方の電極とし、その焼結体表
面上に形成された誘電体と、前記誘電体上に設けられた
対電極を含むコンデンサの製造方法であって、ニオブ焼
結体が、前項9乃至18のいずれか1項に記載のニオブ
焼結体であることを特徴とするコンデンサの製造方法。(59) The niobium sintered body is used as one electrode,
A method for manufacturing a capacitor including a dielectric formed on the surface of the sintered body and a counter electrode provided on the dielectric, wherein the niobium sintered body is any one of the above 1 to 8 and 57. A method for producing a capacitor, which is obtained by sintering the niobium powder according to item 1. (60) The method for manufacturing a capacitor according to claim 59, wherein the dielectric is formed by electrolytic oxidation. (61) A method of manufacturing a capacitor including a niobium sintered body as one electrode, a dielectric formed on the surface of the sintered body, and a counter electrode provided on the dielectric, the method comprising: niobium sintering 19. A method of manufacturing a capacitor, wherein the body is the niobium sintered body according to any one of items 9 to 18 above.
【0027】(62)前項19乃至28のいずれか1項
に記載のコンデンサを使用した電子回路。
(63)前項19乃至28のいずれか1項に記載のコン
デンサを使用した電子機器。(62) An electronic circuit using the capacitor described in any one of the above items 19 to 28. (63) An electronic device using the capacitor according to any one of items 19 to 28 above.
【0028】[0028]
【発明の実施の形態】以下、漏れ電流特性や耐湿性の良
好なコンデンサ、その特性を引き出し高い容量出現率の
得られるニオブ焼結体、この焼結体材料として好ましい
流れ性が良好で連続成形が可能なニオブ粉、及びそれら
の製造方法に関し説明する。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a capacitor having excellent leakage current characteristics and moisture resistance, a niobium sintered body capable of obtaining the characteristics thereof and having a high capacity appearance rate, a preferable flowability as a material of this sintered body, and continuous molding The niobium powder capable of being manufactured and the manufacturing method thereof will be described.
【0029】本発明では、前記コンデンサの特性を満足
し、コンデンサ製造の生産性を向上させるニオブ粉とし
て、タッピング密度が0.5〜2.5g/mlであるよ
うなコンデンサ用ニオブ粉(単にニオブ粉と略記するこ
ともある)を使用する。ここで、コンデンサ用ニオブと
は、ニオブを主成分とし、コンデンサを製造するための
素材となりうるものをいう。これには、例えば、ニオブ
と合金となりうる成分、窒素、及び/または酸素等のニ
オブ以外の成分が含まれてもよい。In the present invention, as the niobium powder satisfying the characteristics of the capacitor and improving the productivity in manufacturing the capacitor, niobium powder for capacitors having a tapping density of 0.5 to 2.5 g / ml (simply niobium). (Sometimes abbreviated as powder) is used. Here, niobium for a capacitor means a material containing niobium as a main component and which can be a material for manufacturing a capacitor. This may include, for example, components capable of alloying with niobium, components other than niobium such as nitrogen and / or oxygen.
【0030】コンデンサ用にオブ粉を次のような方法に
より成形、焼結してコンデンサ用焼結体(単にニオブ焼
結体と略記することもある)を得、これに誘電体層、対
電極を形成し、コンデンサを得ることができる。Oval powder for capacitors is molded and sintered by the following method to obtain a sintered body for capacitors (sometimes abbreviated as niobium sintered body), on which a dielectric layer and a counter electrode are formed. And a capacitor can be obtained.
【0031】バインダー(後述する)をトルエンやメタ
ノールなどの有機溶剤に溶解させた溶液に、コンデンサ
用ニオブ粉を入れ、これを振とう混合機、V型混合機な
どを用いて十分に混合する。その後、コニカルドライヤ
ーなどの乾燥機を用い、減圧下、有機溶媒を留去して、
バインダーを含んだニオブ調合粉を作製する。この調合
粉を自動成形機ホッパーに入れる。ニオブ調合粉を、ホ
ッパーから成形機金型への導入管を流して自動的に金型
に自然落下しながら計量し、リード線と共に成形する。
この成形体を減圧下、バインダーを除去した後、500
℃〜2000℃で焼結してニオブ焼結体を作製する。そ
して、例えばニオブ焼結体を温度30〜90℃、濃度
0.1質量%程度のリン酸、アジピン酸等の電解溶液中
で、20〜60Vまで昇圧して1〜30時間化成処理
し、酸化ニオブを主体とする誘電層を作成する。この誘
電層上に、二酸化マンガン、二酸化鉛、導電性高分子な
どの固体電解質層を形成し、ついでグラファイト層、銀
ペースト層を形成する。ついで、その上に陰極端子をハ
ンダ付けなどで接続した後、樹脂で封止し固体電解コン
デンサを作成する。A niobium powder for capacitors is put into a solution in which a binder (described later) is dissolved in an organic solvent such as toluene or methanol, and this is thoroughly mixed using a shaking mixer, a V-type mixer or the like. Then, using a dryer such as a conical dryer, the organic solvent is distilled off under reduced pressure,
A niobium compound powder containing a binder is prepared. This compounded powder is put into an automatic molding machine hopper. The niobium mixed powder is weighed by flowing the introduction pipe from the hopper into the molding machine die and automatically dropping into the die, and is molded together with the lead wire.
After removing the binder from the molded body under reduced pressure, 500
A niobium sintered body is produced by sintering at a temperature of ℃ to 2000 ℃. Then, for example, the niobium sintered body is subjected to chemical conversion treatment for 1 to 30 hours under pressure of 20 to 60 V in an electrolytic solution of phosphoric acid, adipic acid or the like at a temperature of 30 to 90 ° C. and a concentration of about 0.1% by mass, and oxidation. A dielectric layer based on niobium is created. On this dielectric layer, a solid electrolyte layer of manganese dioxide, lead dioxide, a conductive polymer or the like is formed, and then a graphite layer and a silver paste layer are formed. Then, the cathode terminal is connected thereto by soldering or the like, and then sealed with resin to form a solid electrolytic capacitor.
【0032】このため、適度な流れ性や安息角を持たな
い調合粉では、ホッパーから金型に流れにくく安定に成
形できない。特に振動などの方法を用いてホッパーから
輸送するため、調合粉のタッピング密度や平均粒子径が
大きすぎても小さすぎても、成形体の質量、焼結体強度
や形状のバラツキが大きくなり、欠け、割れが発生する
こともあり、結果として漏れ電流値が悪くなる。この様
に調合粉のタッピング密度、平粒子径、流れ性及び安息
角は、良好な焼結体及びコンデンサを作製する上での重
要な要素となる。For this reason, with the mixed powder having no proper flowability and angle of repose, it is difficult to flow from the hopper to the mold, and stable molding cannot be performed. In particular, since it is transported from the hopper using a method such as vibration, if the tapping density or average particle size of the blended powder is too large or too small, the mass of the molded body, the variation in the strength and shape of the sintered body becomes large, Chips and cracks may occur, resulting in a poor leakage current value. As described above, the tapping density, the average particle size, the flowability and the angle of repose of the mixed powder are important factors for producing good sintered bodies and capacitors.
【0033】調合粉のこのような物性はバインダーとの
調合前後でほとんど変化せず、調合粉の物性は使用した
コンデンサ用ニオブ粉の物性で決定される。そのため使
用するニオブ粉のタッピング密度、平均粒子径、流れ
性、安息角などが重要となる。ニオブ粉の流れ性や安息
角は、タッピング密度、や平均粒子径の影響を大きく受
けるため、タッピング密度、や平均粒子径が重要な要素
となる。Such physical properties of the blended powder hardly change before and after blending with the binder, and the physical properties of the blended powder are determined by the physical properties of the niobium powder for capacitors used. Therefore, the tapping density, average particle size, flowability, angle of repose, etc. of the niobium powder used are important. Since the flowability and the angle of repose of niobium powder are greatly influenced by the tapping density and the average particle size, the tapping density and the average particle size are important factors.
【0034】流れ性や安息角の改善に伴う生産性及び焼
結体強度の向上、及びそれに伴う漏れ電流値の低減の効
果を得るために、本発明においてはタッピング密度は、
0.5〜2.5g/mlが好ましく、0.8〜1.9g
/mlが特に好ましい。また、本発明のニオブ粉の平均
粒子径は、10〜1000μmが好ましく、50〜20
0μmが特に好ましい。In order to obtain the effect of improving the productivity and the strength of the sintered body with the improvement of the flowability and the angle of repose, and the resulting reduction of the leakage current value, the tapping density in the present invention is
0.5-2.5 g / ml is preferable, 0.8-1.9 g
/ Ml is particularly preferred. The average particle size of the niobium powder of the present invention is preferably 10 to 1000 μm, and 50 to 20 μm.
0 μm is particularly preferable.
【0035】成形機ホッパーから金型へニオブ粉を自然
落下させるためには、本発明のニオブ粉の安息角は、1
0〜60度が好ましく、さらには10〜50度が特に好
ましい。In order to allow the niobium powder to drop naturally from the molding machine hopper to the mold, the repose angle of the niobium powder of the present invention is 1.
0 to 60 degrees is preferable, and 10 to 50 degrees is particularly preferable.
【0036】上記の様な物性を持つニオブ粉は、ニオブ
粉またはニオブ化合物粉(以下、これらを「原料ニオブ
粉」と記載する)と、賦活剤(「細孔形成剤」とも言
う。以下、「添加物」と記載することもある)とを含む
混合物(以下、「原料混合物」と記載する)を原料と
し、少なくとも焼結工程、解砕工程を順次経て製造する
ことができる。賦活剤は、原料混合物から本発明のニオ
ブ粉を製造する焼結工程または解砕工程のいずれかの工
程で除去される。賦活剤の除去は、前記焼結工程や解砕
工程とは独立して行なってもよい。The niobium powder having the above-mentioned physical properties includes niobium powder or niobium compound powder (hereinafter referred to as "raw material niobium powder") and activator (also referred to as "pore forming agent". It may be manufactured by using at least a sintering step and a crushing step as a raw material by using a mixture (hereinafter also referred to as an “additive”) (hereinafter referred to as a “raw material mixture”) as a raw material. The activator is removed in either the sintering step or the crushing step of producing the niobium powder of the present invention from the raw material mixture. The removal of the activator may be performed independently of the sintering step and the crushing step.
【0037】賦活剤を除去する方法は、賦活剤の化学的
性質により、任意に種々の方法を採用することができ、
賦活剤を除去しやすい方法をいずれか1つまたは複数を
組み合わせて用いればよい。賦活剤を除去する方法とし
ては、例えば、賦活剤を蒸発、昇華または熱分解し気体
にすることにより除去する方法、溶媒で賦活剤を溶解す
ることにより除去する方法が挙げられる。As a method of removing the activator, various methods can be arbitrarily adopted depending on the chemical properties of the activator,
Any one or a combination of methods that facilitate removal of the activator may be used. Examples of the method of removing the activator include a method of removing the activator by evaporating, subliming or thermally decomposing the activator into a gas, and a method of removing the activator by dissolving it in a solvent.
【0038】賦活剤を気体にして除去する場合、焼結工
程で行なうか、または焼結前に加熱及び/または減圧に
より賦活剤を除去する工程を設けてもよい。賦活剤を溶
媒に溶解し除去する場合、原料混合物を焼結後、または
解砕中、または解砕後に後述する溶媒と焼結物またはそ
の解砕物とを接触させることにより賦活剤を溶解除去す
る。When the activator is removed in the form of gas, it may be carried out in the sintering step, or a step of removing the activator by heating and / or reducing pressure may be provided before the sintering. When the activator is dissolved and removed in a solvent, the activator is dissolved and removed by contacting the solvent described below with the sintered product or the crushed product after sintering the raw material mixture, or during the crushing, or after the crushing. .
【0039】また、原料混合物から本発明のニオブ粉を
製造する工程中のいずれかにおいて、ニオブ粉の一部を
窒化、ホウ化、炭化、または硫化する工程を設けてもよ
い。Further, in any of the steps of producing the niobium powder of the present invention from the raw material mixture, a step of nitriding, borating, carbonizing or sulfiding a part of the niobium powder may be provided.
【0040】以下、本発明のニオブ粉の製造方法につい
て詳しく説明する。原料ニオブ粉としては、ニオブ、水
素化ニオブ、ニオブ合金、及び水素化ニオブ合金より選
ばれる少なくとも1種の粉体を用いることができる。ま
た、これらの一部が、窒化、硫化、炭化、またはホウ化
しているものであってもよい。なお、本発明で用いる合
金とは、他方の合金成分との固溶体を含むものである。
原料ニオブ粉の平均粒子径は0.01〜10μmが好ま
しく、0.02〜5μmが更に好ましく、0.05〜2
μmが特に好ましくい。The method for producing niobium powder according to the present invention will be described in detail below. As the raw material niobium powder, at least one kind of powder selected from niobium, niobium hydride, niobium alloy, and niobium hydride alloy can be used. Further, some of these may be nitrided, sulfurized, carbonized, or borated. The alloy used in the present invention includes a solid solution with the other alloy component.
The average particle diameter of the raw material niobium powder is preferably 0.01 to 10 μm, more preferably 0.02 to 5 μm, and 0.05 to 2
μm is particularly preferable.
【0041】原料ニオブ粉となるニオブを得る方法は、
例えば、ニオブインゴット、ニオブペレット、ニオブ粉
などを水素化し、粉砕し、脱水素する方法、フッ化ニオ
ブ酸カリウムをナトリウムなどで還元物し粉砕する方
法、酸化ニオブを、水素、炭素、マグネシウム、アルミ
ニウム等の少なくとも1種を使用して還元し、該還元物
を粉砕する方法、あるいはハロゲン化ニオブを水素還元
する方法、等が挙げれられる。The method for obtaining niobium as the raw material niobium powder is as follows:
For example, a method of hydrogenating niobium ingot, niobium pellets, niobium powder, etc., crushing, dehydrogenation, a method of reducing potassium fluorinated niobate with sodium etc. and crushing, niobium oxide with hydrogen, carbon, magnesium, aluminum And the like, and a method of pulverizing the reduced product, a method of reducing niobium halide with hydrogen, and the like.
【0042】原料ニオブ粉となる水素化ニオブを得る方
法は、例えば、ニオブインゴット、ニオブペレット、ニ
オブ粉等を水素化し、粉砕する方法が挙げれられる。As a method of obtaining hydrogenated niobium as a raw material niobium powder, for example, a method of hydrogenating niobium ingot, niobium pellets, niobium powder and the like and pulverizing them can be mentioned.
【0043】また、原料ニオブ粉となる水素化ニオブ合
金を得る方法は、例えば、ニオブ合金インゴット、ニオ
ブ合金ペレット、またはニオブ合金粉など、これらの水
素化物を粉砕する方法により得ることができる。原料ニ
オブ粉となるニオブ合金を得る方法は、この水素化ニオ
ブ合金を脱水素する方法がある。The method of obtaining the hydrogenated niobium alloy as the raw material niobium powder can be obtained by, for example, a method of pulverizing a hydride of niobium alloy ingot, niobium alloy pellets, niobium alloy powder, or the like. As a method for obtaining a niobium alloy which is a raw material niobium powder, there is a method for dehydrogenating this hydrogenated niobium alloy.
【0044】前記ニオブ合金、水素化ニオブ合金は、ニ
オブ以外の他の合金成分として、原子番号88以下の元
素からなる群から、水素、窒素、酸素、フッ素、塩素、
臭素、沃素、ニオブ、ヘリウム、ネオン、クリプトン、
アルゴン、キセノン、及びラドンを除いた群から選ばれ
た少なくとも1種の元素を含む。The niobium alloy and the hydrogenated niobium alloy are hydrogen, nitrogen, oxygen, fluorine, chlorine, from the group consisting of elements having an atomic number of 88 or less as alloy components other than niobium.
Bromine, iodine, niobium, helium, neon, krypton,
It contains at least one element selected from the group excluding argon, xenon, and radon.
【0045】賦活剤は、原料混合物から本発明のニオブ
粉を製造するいずれかの工程中で除去可能な物質であ
る。通常、本発明のニオブ粉中で、賦活剤が除去された
部分は細孔を形成する。The activator is a substance that can be removed during any step of producing the niobium powder of the present invention from a raw material mixture. Usually, in the niobium powder of the present invention, the portion where the activator is removed forms pores.
【0046】賦活剤の粒径は、本発明のニオブ粉の細孔
直径に影響し、ニオブ粉の細孔直径はニオブ焼結体の細
孔直径に影響し、焼結体の細孔直径はコンデンサの容量
及びコンデンサ製造工程における陰極剤の含浸性に影響
する。The particle size of the activator affects the pore diameter of the niobium powder of the present invention, the pore diameter of the niobium powder affects the pore diameter of the niobium sintered body, and the pore diameter of the sintered body is It affects the capacity of the capacitor and the impregnation property of the cathodic agent in the capacitor manufacturing process.
【0047】陰極剤の含浸性は、高い容量をもち、かつ
低いESRのコンデンサの作成に大きく影響を与える。
ニオブ焼結体は、ニオブ粉を加圧成形して作成するた
め、焼結体の持つ細孔直径は、必然的にニオブ粉の持つ
細孔直径より小さくなる。小さな細孔直径ピークを持つ
粉体から作成した焼結体に対する陰極剤の含浸性の困難
さから考えると、ニオブ粉の持つ細孔直径は、平均径と
して0.5μm以上、とりわけ1μm以上であることが
望ましい。The impregnation property of the cathodic agent has a great influence on the production of a capacitor having a high capacity and a low ESR.
Since the niobium sintered body is formed by press-molding niobium powder, the pore diameter of the sintered body is necessarily smaller than the pore diameter of the niobium powder. Considering the difficulty of impregnating the catholyte with a sintered body made of powder having a small peak of pore diameter, the pore diameter of niobium powder is 0.5 μm or more, especially 1 μm or more as an average diameter. Is desirable.
【0048】これら細孔直径は、平均径として、0.0
1〜500μmが好ましく、0.03〜300μmがさ
らに好ましく、0.1〜200μmが特に好ましい。そ
のため、賦活剤の平均粒子径は、0.01〜500μm
が好ましく、0.03〜300μmがさらに好ましく、
0.1〜200μmが特に好ましい。The average diameter of these pores is 0.0
1 to 500 μm is preferable, 0.03 to 300 μm is more preferable, and 0.1 to 200 μm is particularly preferable. Therefore, the average particle size of the activator is 0.01 to 500 μm.
Is preferred, 0.03-300 μm is more preferred,
0.1 to 200 μm is particularly preferable.
【0049】最も好ましいニオブ粉の細孔直径は、平均
径として0.5μm〜100μmであり、この細孔直径
を作り出す最も好ましい賦活剤の平均粒子径は、0.5
μm〜100μmである。これらの細孔直径を小さくす
るには、粒径の小さな賦活剤を用いればよく、大きくす
るには、粒径の大きな賦活剤を用いればよい。The most preferable pore diameter of the niobium powder is 0.5 μm to 100 μm as an average diameter, and the most preferable activator for producing this pore diameter has an average particle diameter of 0.5.
μm to 100 μm. To reduce the pore diameter, an activator with a small particle size may be used, and to increase it, an activator with a large particle size may be used.
【0050】また、賦活剤の粒度分布を調整することに
より細孔直径分布を調整できる。陰極剤の含浸性の問題
が無く、十分な容量を持つコンデンサを得るには、ニオ
ブ焼結体中に、所望の容量が得られる程度に小さい細孔
と、陰極剤が十分含浸する程度に大きい細孔とを、陰極
剤の物性に合わせ適度に設けることが好ましい。The pore diameter distribution can be adjusted by adjusting the particle size distribution of the activator. In order to obtain a capacitor having a sufficient capacity without the problem of impregnation with the cathodic agent, pores that are small enough to obtain the desired capacity and large enough that the cathodic agent is sufficiently impregnated are obtained in the niobium sintered body. It is preferable that the pores are appropriately provided in accordance with the physical properties of the cathodic agent.
【0051】ニオブ粉またはニオブ焼結体の細孔直径分
布を調整するには、例えば、ピークトップを2つ以上有
する粒度分布を持つ賦活剤(粉体)を用い、ニオブ粉に
ピークトップが2つ以上ある細孔直径分布を持たせるこ
とができる。このニオブ粉を焼結することにより、同等
な細孔直径のピークトップが2つ以上ある細孔径分布を
持つニオブ焼結体を得ることができる。この場合、細孔
直径ピークトップは、0.01〜500μmの範囲内に
あることが好ましく、0.03〜300μmがより好ま
しく、0.1〜200μmがさらに好ましく、0.1〜
30μmが特に好ましく、0.2〜3μmが最も好まし
い。In order to adjust the pore diameter distribution of the niobium powder or the niobium sintered body, for example, an activator (powder) having a particle size distribution having two or more peak tops is used, and the niobium powder has two peak tops. It is possible to have more than one pore diameter distribution. By sintering this niobium powder, it is possible to obtain a niobium sintered body having a pore size distribution with two or more peak tops having the same pore size. In this case, the pore diameter peak top is preferably in the range of 0.01 to 500 μm, more preferably 0.03 to 300 μm, further preferably 0.1 to 200 μm, and 0.1 to
30 μm is particularly preferable, and 0.2 to 3 μm is most preferable.
【0052】このようなニオブ焼結体を与えるニオブ粉
は、2つ以上の細孔直径ピークトップをもつ。このニオ
ブ粉の2つ以上の細孔直径ピークトップは、いずれも
0.5μm以上であることが望ましい。例えば、0.7
μmと3μmに2つの細孔直径ピークトップを持つニオ
ブ焼結体を作成する場合、ニオブ粉の持つ2つの細孔直
径ピークトップを、例えば、約1.5μmと約25μm
に調整してやればよい。The niobium powder that gives such a niobium sintered body has two or more pore diameter peak tops. It is desirable that two or more pore diameter peak tops of this niobium powder are 0.5 μm or more. For example, 0.7
When making a niobium sintered body having two pore diameter peak tops at μm and 3 μm, the two pore diameter peak tops at which niobium powder has are, for example, about 1.5 μm and about 25 μm.
Adjust it to.
【0053】このような約1.5μmの小さいな細孔直
径を与える賦活剤の平均粒径は約1.5μmであり、約
25μmの大きな細孔直径を与える賦活剤の平均粒径は
約25μmである。通常、小さな細孔直径と大きな細孔
直径がニオブ粉に存在する場合、加圧成形時に大きな細
孔直径はつぶされて小さくなる。したがって、大きな細
孔直径ピークトップは、20μm以上にあることが望ま
しい。細孔直径ピークトップが3つの場合でも大きな細
孔直径ピークトップは、20μm以上であることが望ま
しい。また、全空孔容積の30体積%以上が20μm以
上の細孔直径を有することが望ましく、40体積%以上
であることが特に好ましい。The activator giving a small pore diameter of about 1.5 μm has an average particle size of about 1.5 μm, and the activator giving a large pore diameter of about 25 μm has an average particle size of about 25 μm. Is. Usually, when the niobium powder has a small pore diameter and a large pore diameter, the large pore diameter is crushed and reduced during the pressure molding. Therefore, it is desirable that the peak top of the large pore diameter is 20 μm or more. Even when there are three pore diameter peak tops, the large pore diameter peak tops are preferably 20 μm or more. Further, 30% by volume or more of the total pore volume preferably has a pore diameter of 20 μm or more, and particularly preferably 40% by volume or more.
【0054】さらに上記の例について、図を用いて詳し
く説明する。図1は、本発明のニオブ粉の様子を模式的
に示す断面図である。本発明のニオブ粉は、1次粉が賦
活剤によって形成された特定の細孔を持った造粒粉であ
る。細孔Aは平均粒径が約1.5μmの賦活剤によって
形成された細孔であり、細孔Bは平均粒径が約25μm
の賦活剤によって形成された細孔である。このように、
1次粉同士を効率的に凝集させることが可能である。図
2は、本発明のニオブ粉の細孔分布を水銀圧入法で測定
した場合の概略図である。ピークAは、約1.5μmの
賦活剤が形成した細孔Aのピークであり、ピークBは約
25μmの賦活剤が形成した細孔Bのピークである。ま
た、ピークBの高さはピークAより高く、全空孔容積4
4%が20μm以上の細孔直径である。Further, the above example will be described in detail with reference to the drawings. FIG. 1 is a sectional view schematically showing a state of the niobium powder of the present invention. The niobium powder of the present invention is a granulated powder having primary pores formed by an activator and having specific pores. The pores A are pores formed by an activator having an average particle size of about 1.5 μm, and the pores B have an average particle size of about 25 μm.
It is the pores formed by the activator. in this way,
It is possible to efficiently aggregate the primary powders. FIG. 2 is a schematic diagram when the pore distribution of the niobium powder of the present invention is measured by the mercury porosimetry method. The peak A is the peak of the pore A formed by the activator of about 1.5 μm, and the peak B is the peak of the pore B formed by the activator of about 25 μm. The height of peak B is higher than that of peak A, and the total pore volume is 4
4% have a pore diameter of 20 μm or more.
【0055】粒度分布のピークトップを2つ以上持つ賦
活剤は、例えば、粒度分布のピークトップの異なる賦活
剤を2種類以上混合することにより得ることができる。The activator having two or more peaks in the particle size distribution can be obtained by mixing two or more activators having different peaks in the particle size distribution.
【0056】賦活剤となる物質としては、例えば、焼結
温度以下で気体となる物質、または少なくとも焼結後に
溶媒に可溶である物質が挙げられる。Examples of the substance serving as an activator include a substance which becomes a gas at a sintering temperature or lower, or at least a substance which is soluble in a solvent after sintering.
【0057】焼結温度以下で気体となる物質としては、
例えば、蒸発、昇華または熱分解して気体となる物質等
が挙げられ、低温においても残留物を残さず容易に気体
になる安価な物質が好ましい。このような物質として、
例えば、ナフタレン、アントラセン、キノンなどの芳香
族化合物、樟脳、NH4Cl、ZnO、WO2、Sn
O 2、MnO3、有機物ポリマーが挙げられる。As a substance which becomes a gas at a temperature below the sintering temperature,
For example, a substance that vaporizes, sublimates, or thermally decomposes into a gas, etc.
Gas without leaving a residue even at low temperatures.
An inexpensive substance is preferred. As such a substance,
For example, fragrances such as naphthalene, anthracene, and quinone
Group compounds, camphor, NHFourCl, ZnO, WO2, Sn
O 2, MnO3, Organic polymers.
【0058】有機物ポリマーとしては、例えば、ポリア
クリル酸、ポリアクリル酸エステル、ポリアクリルアミ
ド、ポリメタクリル酸、ポリメタクリル酸エステル、ポ
リメタクリルアミド、ポリビニルアルコールが挙げられ
る。Examples of organic polymers include polyacrylic acid, polyacrylic acid ester, polyacrylamide, polymethacrylic acid, polymethacrylic acid ester, polymethacrylamide, and polyvinyl alcohol.
【0059】少なくとも焼結後に可溶性である物質とし
ては、賦活剤またはその熱分解物の残留物が溶媒に可溶
である物質であり、焼結の後、解砕中、または解砕の後
に、後述する溶媒に容易に溶解する物質が特に好ましい
が、溶媒との組み合わせにより多くの物質から選ぶこと
ができる。The substance which is soluble at least after sintering is a substance in which the residue of the activator or its thermal decomposition product is soluble in the solvent, and after sintering, during crushing, or after crushing, A substance that is easily dissolved in the solvent described below is particularly preferable, but many substances can be selected depending on the combination with the solvent.
【0060】このような物質としては、例えば、金属と
炭酸、硫酸、亜硫酸、ハロゲン、過ハロゲン酸、次亜ハ
ロゲン酸、硝酸、亜硝酸、燐酸、酢酸、蓚酸、または硼
酸との化合物、金属酸化物、金属水酸化物、及び金属が
挙げられる。好ましくは、酸、アルカリ、アンモニウム
塩溶液などの溶媒への溶解度が大きい化合物であり、例
えば、リチウム、ナトリウム、カリウム、ルビジウム、
セシウム、及びフランシウム、ベリリウム、マグネシウ
ム、カルシウム、ストロンチウム、バリウム、ラジウ
ム、スカンジウム、イットリウム、セリウム、ネオジ
ム、エルビウム、チタン、ジルコニウム、ハフニウム、
バナジウム、ニオブ、タンタル、モリブデン、タングス
テン、マンガン、レニウム、ルテニウム、オスミウム、
コバルト、ロジウム、イリジウム、ニッケル、パラジウ
ム、白金、銀、金、亜鉛、カドミウム、アルミニウム、
ガリウム、インジウム、タリウム、ゲルマニウム、錫、
鉛、アンチモン、ビスマス、セレン、テルル、ポロニウ
ム、硼素、珪素、及び砒素よりなる群から選ばれた少な
くとも1種を含む化合物が挙げられる。これらの中で好
ましくは金属塩であり、さらに好ましくは、例えば、酸
化バリウム、硝酸マンガン(II)、炭酸カルシウム等が
挙げられる。これら前記賦活剤は、単独で用いても良い
し、2種類以上を組み合わせて用いても何ら問題はな
い。Examples of such substances include compounds of metals with carbonic acid, sulfuric acid, sulfurous acid, halogens, perhalogenic acids, hypohalous acid, nitric acid, nitrous acid, phosphoric acid, acetic acid, oxalic acid, or boric acid, and metal oxides. Materials, metal hydroxides, and metals. Preferably, acid, alkali, a compound having a large solubility in a solvent such as ammonium salt solution, for example, lithium, sodium, potassium, rubidium,
Cesium and francium, beryllium, magnesium, calcium, strontium, barium, radium, scandium, yttrium, cerium, neodymium, erbium, titanium, zirconium, hafnium,
Vanadium, niobium, tantalum, molybdenum, tungsten, manganese, rhenium, ruthenium, osmium,
Cobalt, rhodium, iridium, nickel, palladium, platinum, silver, gold, zinc, cadmium, aluminum,
Gallium, indium, thallium, germanium, tin,
Examples thereof include compounds containing at least one selected from the group consisting of lead, antimony, bismuth, selenium, tellurium, polonium, boron, silicon, and arsenic. Of these, metal salts are preferable, and more preferable examples include barium oxide, manganese (II) nitrate, and calcium carbonate. These activators may be used alone or in combination of two or more without any problem.
【0061】特定の細孔を効率よく形成することを考え
ると、焼結温度で固体として存在する物質が好ましい。
このことは、焼結温度において、賦活剤が固体で存在す
ることによりニオブ1次粉の必要以上な凝集をブロック
して、ニオブ同士の接点でのみニオブ同士の融着を起こ
させるためである。焼結温度において、液体または気体
で存在する場合は、ブロックする効果が小さく、望む細
孔より小さな細孔を形成する場合がある。したがって、
低融点な物質、例えば、アルミニウム金属、マグネシウ
ム金属、水素化マグネシウム、カルシウム金属などを賦
活剤として用いた場合よりも、高い融点、例えば酸化バ
リウム、炭酸カルシウム、酸化アルミニウム、酸化マグ
ネシウム、などを賦活剤として用いた方が細孔径は安定
する。Considering efficient formation of specific pores, a substance existing as a solid at the sintering temperature is preferable.
This is because the activator is present as a solid at the sintering temperature to block unnecessary agglomeration of the primary niobium powder to cause fusion of niobium only at the contact point between niobium. When present as a liquid or gas at the sintering temperature, it has less of a blocking effect and may form pores smaller than desired. Therefore,
A substance having a low melting point, for example, aluminum metal, magnesium metal, magnesium hydride, calcium metal or the like, when used as an activator, a higher melting point, for example, barium oxide, calcium carbonate, aluminum oxide, magnesium oxide, etc. activator The pore size is more stable when used as.
【0062】賦活剤の添加量は、少なければ、タッピン
グ密度及び安息角が大きくなり、多ければタッピング密
度は小さくなり焼結段階での閉鎖孔が多くなる。焼結段
階での閉鎖孔の問題が無く、安息角60度以下で、タッ
ピング密度0.5〜2.5g/mlを得るには、賦活剤
の平均粒子径によっても変わるが、一般的には、原料ニ
オブに対して1質量%以上40質量%以下(以下、特に
断りの無い限り質量%を単に%と略記する)、好ましく
は5%以上25%以下、さらに好ましくは10%以上2
0%以下である。If the amount of the activator added is small, the tapping density and the angle of repose will be large, and if it is large, the tapping density will be small and the number of closed holes at the sintering stage will be large. In order to obtain a tapping density of 0.5 to 2.5 g / ml at a repose angle of 60 degrees or less without the problem of closed pores at the sintering stage, it depends on the average particle diameter of the activator, but generally, 1% by mass or more and 40% by mass or less with respect to the raw material niobium (hereinafter, simply referred to as% by mass unless otherwise specified), preferably 5% or more and 25% or less, more preferably 10% or more 2
It is 0% or less.
【0063】原料混合物は、前述の賦活剤と前述のニオ
ブ原料とを、粉体同士で無溶媒で混合したものでもよい
し、適当な溶媒を用いて両者を混合し乾燥したものでも
よい。The raw material mixture may be a mixture of the above-mentioned activator and the above-mentioned niobium raw material in the form of powder without solvent, or may be a mixture of the two in a suitable solvent and dried.
【0064】使用できる溶媒としては、水、アルコール
類、エーテル類、セルソルブ類、ケトン類、脂肪族炭化
水素類、芳香族炭化水素類、ハロゲン化炭化水素類など
が挙げられる。混合には混合機を用いることも出来る。
混合機としては、振とう混合機、V型混合機、ナウター
ミキサーなど、通常の装置が問題なく使用できる。混合
における温度は、溶媒の沸点、凝固点により制限される
が、一般的には、−50℃〜120℃、好ましくは−5
0℃〜50℃、さらに好ましくは、−10℃〜30℃で
ある。混合にかかる時間は、10分以上であれば特に制
限はないが、通常1〜6時間であり、窒素、アルゴンな
どの不活性ガスを用いて無酸素雰囲気下で行うことが望
ましい。Examples of the solvent that can be used include water, alcohols, ethers, cellosolves, ketones, aliphatic hydrocarbons, aromatic hydrocarbons, halogenated hydrocarbons and the like. A mixer can be used for mixing.
As the mixer, a usual device such as a shaker mixer, a V-type mixer, and a Nauter mixer can be used without any problem. The temperature for mixing is limited by the boiling point and freezing point of the solvent, but it is generally -50 ° C to 120 ° C, preferably -5 ° C.
It is 0 ° C to 50 ° C, more preferably -10 ° C to 30 ° C. The time required for mixing is not particularly limited as long as it is 10 minutes or more, but is usually 1 to 6 hours, and it is desirable to perform the mixing in an oxygen-free atmosphere using an inert gas such as nitrogen or argon.
【0065】溶媒を用いた場合、得られた混合物をコニ
カルドライヤー、棚段式乾燥機などを用いて、80℃未
満、好ましくは50℃未満で乾燥する。80℃以上の温
度で乾燥すると、ニオブまたは水素化ニオブ微粉の酸素
量が増加するため好ましくない。When a solvent is used, the resulting mixture is dried at a temperature of less than 80 ° C., preferably less than 50 ° C., using a conical dryer, a tray dryer or the like. Drying at a temperature of 80 ° C. or higher is not preferable because the amount of oxygen in niobium or niobium hydride fine powder increases.
【0066】賦活剤が焼結温度以下でガスとなる場合、
焼結時に賦活剤を除去することも可能だが、賦活剤の化
学的性質に合わせ除去しやすい温度、圧力、時間等の条
件下で、焼結前に賦活剤を気体にして除去する工程を独
立に設けてもよい。この場合、例えば、100℃〜80
0℃、減圧下、数時間で賦活剤を留去する。When the activator becomes a gas below the sintering temperature,
It is possible to remove the activator during sintering, but the process of removing the activator as a gas before sintering under conditions such as temperature, pressure and time that are easy to remove according to the chemical properties of the activator is independent. May be provided. In this case, for example, 100 ° C. to 80
The activator is distilled off at 0 ° C. under reduced pressure for several hours.
【0067】また、原料ニオブとして水素化ニオブまた
は水素化ニオブ合金を用いた場合、賦活剤の種類にかか
わらず、本工程を行うことで脱水素することができる。When niobium hydride or a niobium hydride alloy is used as the raw material niobium, dehydrogenation can be performed by this step regardless of the type of activator.
【0068】焼結工程は、減圧下またはアルゴンなどの
還元雰囲気下で、500℃〜2000℃、好ましくは8
00℃〜1500℃、さらに好ましくは1000℃〜1
300℃、で行なう。好ましくは、焼結終了後、ニオブ
の温度(品温とも略する)が30℃以下になるまで冷却
し、0.01体積%〜10体積%、好ましくは、0.1
体積%〜1体積%の酸素を含む窒素やアルゴンなどの不
活性ガスを品温が30℃を越えないように徐々に加え、
8時間以上放置後取り出し、焼結塊を得る。解砕工程で
は、焼結塊をロールグラニュレーターなどの解砕機を用
いて、適当な粒径に解砕する。The sintering step is carried out under reduced pressure or a reducing atmosphere such as argon at 500 ° C. to 2000 ° C., preferably 8 ° C.
00 ° C to 1500 ° C, more preferably 1000 ° C to 1
Perform at 300 ° C. Preferably, after the completion of sintering, the temperature of niobium (also abbreviated as the product temperature) is cooled to 30 ° C. or lower, and 0.01 vol% to 10 vol%, preferably 0.1 vol%.
An inert gas such as nitrogen or argon containing oxygen of 1% by volume to 1% by volume is gradually added so that the product temperature does not exceed 30 ° C.
After standing for 8 hours or more, it is taken out to obtain a sintered mass. In the crushing step, the sintered mass is crushed to an appropriate particle size using a crusher such as a roll granulator.
【0069】賦活剤が、少なくとも焼結工程後に溶媒に
可溶である場合、焼結後で解砕前、解砕中、解砕後、ま
たはこれら複数の工程で適当な溶媒を焼結塊または解砕
粉に接触させ、賦活剤成分を溶解し除去する。除去し易
さから、解砕後の解砕粉から溶解除去するのが好まし
い。When the activator is soluble in the solvent at least after the sintering step, an appropriate solvent is added to the sintered mass after sintering, before crushing, during crushing, after crushing, or in these multiple steps. The activator component is dissolved and removed by bringing it into contact with the crushed powder. For ease of removal, it is preferable to dissolve and remove the crushed powder after crushing.
【0070】ここで用いる溶媒としては、溶解すべき賦
活剤の溶解度が十分に得られる溶媒であり、好ましく
は、安価で残留しにくいものがよい。例えば、賦活剤
が、水溶性ならば水を用い、有機溶剤可溶性ならば、メ
チルイソブチルケトン、エタノール、ジメチルスルホキ
ルシド(DMSO)等の有機溶媒を用い、酸可溶性なら
ば、硝酸、硫酸、リン酸、硼酸、炭酸、フッ化水素酸、
塩酸、臭化水素酸、沃化水素酸、有機酸等の酸溶液を用
い、アルカリ可溶性ならば、アルカリ金属の水酸化物、
アルカリ土類金属の水酸化物、アンモニア等のアルカリ
溶液を用い、可溶性錯体を形成するならば、その配位子
となるアンモニア、エチレンジアミン等のアミン類、グ
リシン等のアミノ酸類、トリポリ燐酸ナトリウム等のポ
リリン酸類、クラウンエーテル類、チオ硫酸ナトリウム
等のチオ硫酸塩、エチレンジアミン四酢酸等のキレート
剤等の溶液を用いればよい。The solvent used here is a solvent in which the solubility of the activator to be dissolved is sufficiently obtained, and it is preferable that the solvent is inexpensive and does not easily remain. For example, if the activator is water-soluble, water is used. If the organic solvent is soluble, an organic solvent such as methylisobutylketone, ethanol, dimethylsulfoylside (DMSO) is used, and if it is acid-soluble, nitric acid, sulfuric acid, phosphorus is used. Acid, boric acid, carbonic acid, hydrofluoric acid,
An acid solution of hydrochloric acid, hydrobromic acid, hydroiodic acid, organic acid or the like is used. If alkali-soluble, an alkali metal hydroxide,
If a soluble complex is formed using an alkaline earth metal hydroxide or an alkaline solution such as ammonia, the ligand thereof is ammonia, amines such as ethylenediamine, amino acids such as glycine, sodium tripolyphosphate and the like. Solutions of polyphosphoric acids, crown ethers, thiosulfates such as sodium thiosulfate, chelating agents such as ethylenediaminetetraacetic acid, etc. may be used.
【0071】また、塩化アンモニウム、硝酸アンモニウ
ム、硫酸アンモニウムなどのアンモニウム塩の溶液や陽
イオン交換樹脂、陰イオン交換樹脂なども好適に使用で
きる。賦活剤の溶解除去する温度は、低いことが望まし
い。ニオブは酸素との親和性が高いため、溶解除去する
温度が高いとニオブ表面が酸化される。したがって、5
0℃以下が好ましい。−10℃〜40℃で溶解除去する
ことが好ましく、0℃〜30℃で行うことが特に好まし
い。また、前記理由により、溶解除去する際に発熱が少
ない方法を選択することが好ましい。例えば、賦活剤に
金属酸化物や金属を用いた場合、酸で溶解除去する方法
は、中和熱などが発生する。したがって、たとえば、水
や有機溶剤に溶解させる方法、硝酸アンモニウム塩水溶
液やエチレンジアミン4酢酸などを用いて可溶性錯体を
形成する方法、イオン交換樹脂を含む溶液に溶解する方
法などの発熱しにくい方法を選択することもできる。Further, a solution of an ammonium salt such as ammonium chloride, ammonium nitrate or ammonium sulfate, a cation exchange resin or an anion exchange resin can be preferably used. It is desirable that the temperature for dissolving and removing the activator is low. Since niobium has a high affinity with oxygen, the niobium surface is oxidized if the temperature for dissolution and removal is high. Therefore, 5
It is preferably 0 ° C or lower. Dissolution and removal is preferably carried out at -10 ° C to 40 ° C, and particularly preferably carried out at 0 ° C to 30 ° C. For the above reason, it is preferable to select a method that generates less heat when dissolved and removed. For example, when a metal oxide or a metal is used as an activator, heat of neutralization is generated in the method of dissolving and removing with an acid. Therefore, for example, a method that does not generate heat is selected, such as a method of dissolving in water or an organic solvent, a method of forming a soluble complex using an ammonium nitrate salt aqueous solution or ethylenediaminetetraacetic acid, a method of dissolving in a solution containing an ion exchange resin. You can also
【0072】より具体的に賦活剤と溶媒との組み合わせ
は、例えば、酸化バリウムと水、蓚酸カルシウムと塩
酸、酸化アルミニウムと水酸化ナトリウム水溶液、酸化
ハフニウムとメチルイソブチルケトン、炭酸マグネシウ
ムとエチレンジアミン四酢酸4ナトリウム塩水溶液等が
挙げられる。More specifically, the combination of the activator and the solvent is, for example, barium oxide and water, calcium oxalate and hydrochloric acid, aluminum oxide and sodium hydroxide aqueous solution, hafnium oxide and methyl isobutyl ketone, magnesium carbonate and ethylenediaminetetraacetic acid 4 Examples thereof include sodium salt aqueous solution.
【0073】賦活剤を溶解除去した後、十分洗浄し、乾
燥する。例えば、酸化バリウムを水で除去した場合、イ
オン交換水を用いて洗浄水の電気伝導度が、5μS/c
m以下になるまで充分に洗浄する。次に減圧下、品温5
0℃以下で乾燥する。ここで残留する賦活剤や溶媒成分
の量は、洗浄の条件にもよるが、通常100ppm以下
である。After the activator is dissolved and removed, it is thoroughly washed and dried. For example, when barium oxide is removed with water, the electric conductivity of the wash water is 5 μS / c using ion-exchanged water.
Thoroughly wash to m or less. Next, under reduced pressure, the product temperature is 5
Dry below 0 ° C. The amount of the activator and the solvent component remaining here is usually 100 ppm or less, though it depends on the washing conditions.
【0074】このようにして得られたニオブ粉、前記焼
結塊、またはニオブ原料粉に、LC値を更に改善するた
めに、ニオブ粉の一部を窒化、ホウ化、炭化、硫化、ま
たは複数のこれらの処理をしてもよい。In order to further improve the LC value of the niobium powder thus obtained, the sintered mass, or the niobium raw material powder, a part of the niobium powder is nitrided, borated, carbonized, sulphurized, or plural. You may perform these processes of.
【0075】得られたニオブの窒化物、ニオブのホウ化
物、ニオブの炭化物、ニオブの硫化物、またはこれらの
複数種を本発明のニオブ粉中に含有してもよい。その窒
素、ホウ素、炭素、及び硫黄の各元素の含有量の総和
は、ニオブ粉の形状にもよって変わるが、0ppm〜2
00,000ppm、好ましくは50ppm〜100,
000ppm、さらに好ましくは、200ppm〜2
0,000ppmである。200,000ppmを越え
ると容量特性が悪化し、コンデンサとして適さない。The obtained niobium nitride, niobium boride, niobium carbide, niobium sulfide, or plural kinds thereof may be contained in the niobium powder of the present invention. The total content of each element of nitrogen, boron, carbon, and sulfur varies depending on the shape of the niobium powder, but is 0 ppm to 2
0,000 ppm, preferably 50 ppm-100,
000 ppm, more preferably 200 ppm to 2
It is 0000 ppm. If it exceeds 200,000 ppm, the capacitance characteristic deteriorates and it is not suitable as a capacitor.
【0076】ニオブ粉の窒化方法は、液体窒化、イオン
窒化、ガス窒化などのうち、何れかあるいは、それらの
組み合わせた方法で実施することができる。窒素ガス雰
囲気によるガス窒化は、装置が簡便で操作が容易なため
好ましい。例えば、窒素ガス雰囲気によるガス窒化の方
法は、前記ニオブ粉を窒素雰囲気中に放置することによ
り達成される。窒化する雰囲気の温度は、2000℃以
下、放置時間は100時間以内で目的とする窒化量のニ
オブ粉が得られる。また、より高温で処理することによ
り処理時間を短縮できる。As the nitriding method of niobium powder, any one of liquid nitriding, ion nitriding, gas nitriding and the like, or a combination thereof can be used. Gas nitriding in a nitrogen gas atmosphere is preferable because the apparatus is simple and the operation is easy. For example, the method of gas nitriding in a nitrogen gas atmosphere is achieved by leaving the niobium powder in a nitrogen atmosphere. The temperature of the nitriding atmosphere is 2000 ° C. or less, and the leaving time is 100 hours or less, so that the desired amount of niobium powder is obtained. Further, the processing time can be shortened by processing at a higher temperature.
【0077】ニオブ粉のホウ化方法は、ガスホウ化、固
相ホウ化いずれであってもよい。例えば、ニオブ粉をホ
ウ素ペレットやトリフルオロホウ素などのハロゲン化ホ
ウ素のホウ素源とともに、減圧下、2000℃以下で1
分〜100時間放置しておけばよい。The method for boring the niobium powder may be either gas boration or solid phase boration. For example, niobium powder may be used at a temperature of 2000 ° C. or lower under reduced pressure with a boron source such as boron pellets or boron halide such as trifluoroboron.
Leave it for a minute to 100 hours.
【0078】ニオブ粉の炭化は、ガス炭化、固相炭化、
液体炭化いずれであってもよい。例えば、ニオブ粉を炭
素材やメタンなどの炭素を有する有機物などの炭素源と
ともに、減圧下、2000℃以下で1分〜100時間放
置しておけばよい。Carbonization of niobium powder includes gas carbonization, solid phase carbonization,
Either liquid carbonization may be used. For example, the niobium powder may be allowed to stand under reduced pressure at 2000 ° C. or lower for 1 minute to 100 hours together with a carbon source such as a carbon material or an organic substance having carbon such as methane.
【0079】ニオブ粉の硫化方法は、ガス硫化、イオン
硫化、固相硫化いずれであってもよい。例えば、硫黄ガ
ス雰囲気によるガス硫化の方法は、前記ニオブ粉を硫黄
雰囲気中に放置することにより達成される。硫化する雰
囲気の温度は、2000℃以下、放置時間は100時間
以内で目的とする硫化量のニオブ粉が得られる。また、
より高温で処理することにより処理時間を短縮できる。The sulfurization method of niobium powder may be any of gas sulfurization, ion sulfurization and solid phase sulfurization. For example, the method of gas sulphurization in a sulfur gas atmosphere is accomplished by leaving the niobium powder in a sulfur atmosphere. The temperature of the sulfurizing atmosphere is 2000 ° C. or less, and the standing time is 100 hours or less, so that the desired amount of sulfurizing niobium powder is obtained. Also,
Processing time can be shortened by processing at a higher temperature.
【0080】以上の様にして得られる本発明のニオブ粉
のBET比表面積は、通常、0.5〜40m2/g、好
ましくは0.7〜10m2/g、さらに好ましくは0.
9〜2m2/gである。The BET specific surface area of the niobium powder of the present invention obtained as described above is usually 0.5 to 40 m 2 / g, preferably 0.7 to 10 m 2 / g, more preferably 0.
It is 9-2 m < 2 > / g.
【0081】本発明のニオブ粉は、タッピング密度、粒
径、安息角、BET比表面積、細孔径分布、窒化、ホウ
化、炭化、硫化による処理のそれぞれ異なるニオブ粉同
士を混合して使用してもよい。The niobium powder of the present invention is prepared by mixing niobium powders having different tapping densities, particle sizes, angles of repose, BET specific surface areas, pore size distributions, nitriding, boriding, carbonizing and sulfurizing treatments. Good.
【0082】コンデンサ用電極に用いることのできる本
発明の焼結体は、例えば、前述した本発明のニオブ粉を
焼結して製造することが好ましい。例えば、ニオブ粉を
所定の形状に加圧成形した後に10-5〜102Paで1
分〜10時間、500℃〜2000℃、好ましくは80
0℃〜1500℃、さらに好ましくは1000℃〜13
00℃の範囲で加熱して焼結体を得ることができる。The sintered body of the present invention that can be used for the capacitor electrode is preferably manufactured by, for example, sintering the niobium powder of the present invention described above. For example, after niobium powder is pressure-molded into a predetermined shape, it is 1 at 10 −5 to 10 2 Pa.
Minutes to 10 hours, 500 ° C to 2000 ° C, preferably 80
0 ° C to 1500 ° C, more preferably 1000 ° C to 13
A sintered body can be obtained by heating in the range of 00 ° C.
【0083】本発明のニオブ粉より得られる焼結体の細
孔径分布は、通常、細孔直径ピークトップを、0.01
μm〜500μmの範囲内に持つ。The pore size distribution of the sintered body obtained from the niobium powder of the present invention is usually 0.01 in terms of the pore diameter peak top.
Within the range of μm to 500 μm.
【0084】また、成形時の加圧を特定の加圧値に調節
することにより、ニオブ粉の持つ細孔直径ピークトップ
の数より多くの細孔直径ピークトップを焼結体に持たせ
ることが出来る。この加圧値は、ニオブ粉の物性、成形
体の形状、あるいは成形機等の加圧成形条件により異な
るが、加圧成形が可能な圧力以上、焼結体の細孔が閉鎖
しない程度の圧力以下の範囲内にある。好ましい加圧値
は、予備実験により、複数の細孔径ピークトップを持つ
ように、成形するニオブ粉の物性等に合わせて決定でき
る。なお、加圧値は、例えば、成形機の成形体へかける
加重を調節することで調整できる。Further, by adjusting the pressure applied during molding to a specific pressure value, it is possible to give the sintered body more pore diameter peak tops than the number of pore diameter peak tops of niobium powder. I can. This pressure value varies depending on the physical properties of the niobium powder, the shape of the molded body, or the pressure molding conditions of the molding machine, etc., but is a pressure above which pressure molding is possible and at which the pores of the sintered body do not close. It is within the following range. A preferable pressurizing value can be determined by a preliminary experiment in accordance with the physical properties of the niobium powder to be molded so that the peak tops have a plurality of pore sizes. The pressure value can be adjusted, for example, by adjusting the load applied to the molded product of the molding machine.
【0085】焼結体の細孔径分布は、所望の容量が得ら
れる程度に小さい細孔と、陰極剤の物性に合わせて陰極
剤が十分含浸する程度に大きい細孔とが含まれるよう
に、少なくとも2つの細孔径ピークトップを有すること
が好ましい。このように、細孔直径分布が複数のピーク
トップを持つような焼結体からは、対電極の含浸性が良
好で、容量出現率が高いコンデンサが得られる。The pore size distribution of the sintered body is such that pores that are small enough to obtain the desired capacity and pores that are large enough to be sufficiently impregnated with the catholyte according to the physical properties of the catholyte are included. It is preferable to have at least two pore size peak tops. As described above, a sintered body having a pore diameter distribution having a plurality of peak tops can provide a capacitor having a good counter electrode impregnation property and a high capacity appearance rate.
【0086】また、複数の細孔直径ピークトップの内、
相対強度が最も大きい2つのピークのピークトップが、
それぞれ各々0.2〜0.7μmと0.7〜3μmに、
好ましくは各々0.2〜0.7μmと0.9〜3μmに
存在する場合、この焼結体から作製したコンデンサの耐
湿性は、好ましいものになる。さらに、複数の細孔直径
ピークトップの内、相対強度が最も大きいピークのピー
クトップが、相対強度が次に大きいピークのピークトッ
プより大径側にある場合、より耐湿性が良好なコンデン
サとなるため、特に好ましい。Further, among the plurality of pore diameter peak tops,
The peak top of the two peaks with the highest relative intensity is
0.2 to 0.7 μm and 0.7 to 3 μm respectively,
The moisture resistance of the capacitor produced from this sintered body becomes preferable when they are respectively present at 0.2 to 0.7 μm and 0.9 to 3 μm, respectively. Furthermore, if the peak top of the peak having the largest relative intensity among the plurality of pore diameter peak tops is on the larger diameter side than the peak top of the peak having the next largest relative intensity, a capacitor with better moisture resistance is obtained. Therefore, it is particularly preferable.
【0087】このように作製した焼結体の比表面積は、
一般に、0.2m2/g〜7m2/gになる。通常、焼結
体の形状は大きいほど対電極の含浸が困難になる。例え
ば、焼結体の大きさが10mm3以上である場合、本発
明の複数のピークトップを有する細孔直径分布を持つ焼
結体を特に有効に用いることができる。The specific surface area of the thus produced sintered body is
In general, it is 0.2m 2 / g~7m 2 / g. Generally, the larger the shape of the sintered body, the more difficult the impregnation of the counter electrode becomes. For example, when the size of the sintered body is 10 mm 3 or more, the sintered body having a pore diameter distribution having a plurality of peak tops of the present invention can be particularly effectively used.
【0088】本発明の焼結体は、一部窒化されていても
良い。窒化方法として、前述したニオブ粉に適用した方
法と反応条件が採用できる。焼結体を作製するニオブ粉
の一部を窒化しておき、さらにこの粉体から作製した焼
結体の一部を窒化することも可能である。The sintered body of the present invention may be partially nitrided. As the nitriding method, the method and reaction conditions applied to the niobium powder described above can be adopted. It is also possible to nitride a part of the niobium powder for producing the sintered body and further nitride a part of the sintered body produced from this powder.
【0089】尚、このような焼結体には酸素が、通常、
500〜70000質量ppm含まれる。これは、焼結
前からニオブ粉に含まれている自然酸化酸素と、焼結後
に自然酸化したことによって加わった酸素があるためで
ある。また、本発明の焼結体中のニオブ、合金形成元
素、酸素、窒素以外の元素の含有量は、通常、400質
量ppm以下である。It should be noted that oxygen is usually contained in such a sintered body.
500 to 70,000 mass ppm is contained. This is because there is natural oxidized oxygen contained in the niobium powder before sintering and oxygen added by natural oxidation after sintering. Further, the content of elements other than niobium, alloy forming elements, oxygen and nitrogen in the sintered body of the present invention is usually 400 mass ppm or less.
【0090】本発明の焼結体は、一例として、1300
℃で焼結した場合、CV値(0.1質量%燐酸水溶液中
で、80℃120分化成した場合の化成電圧値と120
Hzでの容量との積)が、40000〜200000μ
FV/gとなる。The sintered body of the present invention is, for example, 1300
When sintered at ℃, CV value (the conversion voltage value when differentiated at 80 ℃ 120 in 0.1 mass% phosphoric acid aqueous solution and 120
(Product with capacity in Hz) is 40,000 to 200,000 μ
It becomes FV / g.
【0091】次に、コンデンサ素子の製造について説明
する。例えば、ニオブ又はタンタルなどの弁作用金属か
らなる、適当な形状及び長さを有するリードワイヤーを
用意し、これを前述したニオブ粉の加圧成形時にリード
ワイヤーの一部が成形体の内部に挿入させるように一体
成形して、リードワイヤーを前記焼結体の引き出しリー
ドとなるように組み立て設計するか、あるいは、リード
ワイヤーなしで成形、焼結した後に別途用意したリード
ワイヤーを溶接などで接続するように設計する。Next, the manufacture of the capacitor element will be described. For example, a lead wire made of a valve metal such as niobium or tantalum and having an appropriate shape and length is prepared, and a part of the lead wire is inserted into the inside of the molded body during the pressure molding of the niobium powder described above. So that the lead wire is assembled and designed so as to be the lead of the sintered body, or the lead wire separately prepared after molding and sintering without the lead wire is connected by welding or the like. To design.
【0092】前述した焼結体を一方の電極とし、対電極
との間に介在した誘電体とからコンデンサを製造するこ
とができる。例えば、ニオブ焼結体を一方の電極とし、
その焼結体表面(細孔内表面含む)上に誘電体を形成
し、前記誘電体上に対電極を設け、コンデンサを構成す
る。A capacitor can be manufactured using the above-mentioned sintered body as one electrode and a dielectric interposed between the electrode and the counter electrode. For example, using niobium sintered body as one electrode,
A dielectric is formed on the surface of the sintered body (including the surface inside the pores), and a counter electrode is provided on the dielectric to form a capacitor.
【0093】ここでコンデンサの誘電体として、酸化ニ
オブを主体とする誘電体が好ましく、さらに好ましくは
五酸化ニオブを主体とする誘電体が挙げられる。五酸化
ニオブを主体とする誘電体は、例えば、一方の電極であ
るニオブ焼結体を電解酸化することによって得られる。
ニオブ電極を電解液中で電解酸化するには、通常プロト
ン酸水溶液、例えば、0.1%リン酸水溶液、硫酸水溶
液又は1%の酢酸水溶液、アジピン酸水溶液等を用いて
行われる。このように、ニオブ電極を電解液中で化成し
て酸化ニオブ誘電体を得る場合、本発明のコンデンサ
は、電解コンデンサとなりニオブ電極が陽極となる。Here, as the dielectric of the capacitor, a dielectric mainly containing niobium oxide is preferable, and a dielectric mainly containing niobium pentoxide is more preferable. The dielectric mainly composed of niobium pentoxide can be obtained, for example, by electrolytically oxidizing a niobium sintered body which is one of the electrodes.
The electrolytic oxidation of the niobium electrode in the electrolytic solution is usually performed using a protic acid aqueous solution, for example, a 0.1% phosphoric acid aqueous solution, a sulfuric acid aqueous solution or a 1% acetic acid aqueous solution, an adipic acid aqueous solution, or the like. As described above, when the niobium electrode is formed in the electrolytic solution to obtain the niobium oxide dielectric, the capacitor of the present invention serves as an electrolytic capacitor and the niobium electrode serves as the anode.
【0094】本発明のコンデンサにおいて、ニオブ焼結
体の対電極(対極)は格別限定されるものではなく、例
えば、アルミ電解コンデンサ業界で公知である電解液、
有機半導体及び無機半導体から選ばれた少なくとも1種
の材料(化合物)が使用できる。In the capacitor of the present invention, the counter electrode (counter electrode) of the niobium sintered body is not particularly limited. For example, an electrolytic solution known in the aluminum electrolytic capacitor industry,
At least one material (compound) selected from organic semiconductors and inorganic semiconductors can be used.
【0095】電解液の具体例としては、イソブチルトリ
プロピルアンモニウムボロテトラフルオライド電解質を
5質量%溶解したジメチルホルムアミドとエチレングリ
コールの混合溶液、テトラエチルアンモニウムボロテト
ラフルオライドを7質量%溶解したプロピレンカーボネ
ートとエチレングリコールの混合溶液などが挙げられ
る。Specific examples of the electrolytic solution include a mixed solution of dimethylformamide and ethylene glycol in which 5% by mass of isobutyltripropylammonium borotetrafluoride electrolyte is dissolved, and propylene carbonate in which 7% by mass of tetraethylammonium borotetrafluoride is dissolved. Examples include a mixed solution of ethylene glycol.
【0096】有機半導体の具体例としては、ベンゾピロ
リン4量体とクロラニルからなる有機半導体、テトラチ
オテトラセンを主成分とする有機半導体、テトラシアノ
キノジメタンを主成分とする有機半導体、あるいは下記
一般式(1)又は一般式(2)で表される繰り返し単位
を含む導電性高分子が挙げられる。Specific examples of the organic semiconductor include an organic semiconductor containing benzopyrroline tetramer and chloranil, an organic semiconductor containing tetrathiotetracene as a main component, an organic semiconductor containing tetracyanoquinodimethane as a main component, or the following general compounds. Examples of the conductive polymer include a repeating unit represented by the formula (1) or the general formula (2).
【0097】[0097]
【化5】 [Chemical 5]
【0098】式中、R1〜R4はそれぞれ独立して水素原
子、炭素数1乃至10の直鎖上もしくは分岐状の飽和も
しくは不飽和のアルキル基、アルコキシ基あるいはアル
キルエステル基、またはハロゲン原子、ニトロ基、シア
ノ基、1級、2級もしくは3級アミノ基、CF3基、フ
ェニル基及び置換フェニル基からなる群から選ばれる一
価基を表わす。R1とR2及びR3とR4の炭化水素鎖は互
いに任意の位置で結合して、かかる基により置換を受け
ている炭素原子と共に少なくとも1つ以上の3〜7員環
の飽和または不飽和炭化水素の環状構造を形成する二価
鎖を形成してもよい。前記環状結合鎖には、カルボニ
ル、エーテル、エステル、アミド、スルフィド、スルフ
ィニル、スルホニル、イミノの結合を任意の位置に含ん
でもよい。Xは酸素、硫黄又は窒素原子を表し、R5は
Xが窒素原子の時のみ存在して、独立して水素又は炭素
数1乃至10の直鎖上もしくは分岐状の飽和もしくは不
飽和のアルキル基を表す。In the formula, R 1 to R 4 are each independently a hydrogen atom, a linear or branched saturated or unsaturated alkyl group having 1 to 10 carbon atoms, an alkoxy group or an alkyl ester group, or a halogen atom. Represents a monovalent group selected from the group consisting of a nitro group, a cyano group, a primary, secondary or tertiary amino group, a CF 3 group, a phenyl group and a substituted phenyl group. The hydrocarbon chains of R 1 and R 2 and R 3 and R 4 are bonded to each other at any position, and at least one saturated or unsaturated 3 to 7 membered ring together with the carbon atom substituted by such a group. You may form the bivalent chain which forms the cyclic structure of a saturated hydrocarbon. The cyclic bond chain may contain a bond of carbonyl, ether, ester, amide, sulfide, sulfinyl, sulfonyl and imino at any position. X represents an oxygen, sulfur or nitrogen atom, R 5 is present only when X is a nitrogen atom, and is independently hydrogen or a linear or branched saturated or unsaturated alkyl group having 1 to 10 carbon atoms. Represents
【0099】さらに、本発明においては前記一般式
(1)又は一般式(2)のR1〜R4は、好ましくは、そ
れぞれ独立して水素原子、炭素数1乃至6の直鎖上もし
くは分岐状の飽和もしくは不飽和のアルキル基又はアル
コキシ基を表し、R1とR2及びR 3とR4は互いに結合し
て環状になっていてもよい。Further, in the present invention, the above general formula
R in (1) or general formula (2)1~ RFourIs preferably
Each independently a hydrogen atom, straight chain having 1 to 6 carbon atoms
Or branched saturated or unsaturated alkyl group or alkyl
Represents a Coxy group, R1And R2And R 3And RFourAre bound to each other
It may be circular.
【0100】さらに、本発明においては、前記一般式
(1)で表される繰り返し単位を含む導電性高分子は、
好ましくは下記一般式(3)で示される構造単位を繰り
返し単位として含む導電性高分子が挙げられる。Further, in the present invention, the conductive polymer containing the repeating unit represented by the general formula (1) is
A conductive polymer containing a structural unit represented by the following general formula (3) as a repeating unit is preferable.
【0101】[0101]
【化6】 [Chemical 6]
【0102】式中、R6及びR7は、各々独立して水素原
子、炭素数1乃至6の直鎖状もしくは分岐状の飽和もし
くは不飽和のアルキル基、または該アルキル基が互いに
任意の位置で結合して、2つの酸素元素を含む少なくと
も1つ以上の5〜7員環の飽和炭化水素の環状構造を形
成する置換基を表わす。また、前記環状構造には置換さ
れていてもよいビニレン結合を有するもの、置換されて
いてもよいフェニレン構造のものが含まれる。In the formula, R 6 and R 7 are each independently a hydrogen atom, a linear or branched saturated or unsaturated alkyl group having 1 to 6 carbon atoms, or the alkyl groups are located at arbitrary positions. Represents a substituent which forms a cyclic structure of at least one or more 5- to 7-membered saturated hydrocarbon containing two oxygen elements. The cyclic structure includes those having a vinylene bond which may be substituted and those having a phenylene structure which may be substituted.
【0103】このような化学構造を含む導電性高分子に
は、ドーパントがドープされる。ドーパントには公知の
ドーパントが制限なく使用できる。A conductive polymer having such a chemical structure is doped with a dopant. Known dopants can be used as the dopant without limitation.
【0104】無機半導体の具体例としては、二酸化鉛又
は二酸化マンガンを主成分とする無機半導体、四三酸化
鉄からなる無機半導体などが挙げられる。このような半
導体は単独でも、又は二種以上組み合わせて使用しても
よい。Specific examples of the inorganic semiconductor include an inorganic semiconductor containing lead dioxide or manganese dioxide as a main component and an inorganic semiconductor containing triiron tetraoxide. Such semiconductors may be used alone or in combination of two or more.
【0105】一般式(1)又は一般式(2)で表される
繰り返し単位を含む重合体としては、例えば、ポリアニ
リン、ポリオキシフェニレン、ポリフェニレンサルファ
イド、ポリチオフェン、ポリフラン、ポリピロール、ポ
リメチルピロール、及びこれらの置換誘導体や共重合体
などが挙げられる。中でもポリピロール、ポリチオフェ
ン及びこれらの置換誘導体(例えばポリ(3,4−エチ
レンジオキシチオフェン)等)が好ましい。Examples of the polymer containing the repeating unit represented by the general formula (1) or (2) include polyaniline, polyoxyphenylene, polyphenylene sulfide, polythiophene, polyfuran, polypyrrole, polymethylpyrrole, and these. Substituted derivatives and copolymers thereof are listed. Among them, polypyrrole, polythiophene and substituted derivatives thereof (for example, poly (3,4-ethylenedioxythiophene) etc.) are preferable.
【0106】上記有機半導体及び無機半導体として、電
導度10-2S/cm〜103S/cmの範囲のものを使
用すると、作製したコンデンサのインピーダンス値がよ
り小さくなり高周波での容量を更に一層大きくすること
ができる。When an organic semiconductor or an inorganic semiconductor having an electric conductivity in the range of 10 -2 S / cm to 10 3 S / cm is used, the impedance value of the produced capacitor becomes smaller and the capacitance at high frequencies is further increased. Can be large.
【0107】前記導電性高分子層を製造する方法として
は、例えばアニリン、チオフェン、フラン、ピロール、
メチルピロール又はこれらの置換誘導体の重合性化合物
を、脱水素的2電子酸化の酸化反応を充分行わせ得る酸
化剤の作用で重合する方法が採用される。重合性化合物
(モノマー)からの重合反応は、例えばモノマーの気相
重合、溶液重合等があり、誘電体を有するニオブ焼結体
の表面に形成される。導電性高分子が溶液塗布可能な有
機溶媒可溶性のポリマーの場合には、表面に塗布して形
成する方法が採用される。As the method for producing the conductive polymer layer, for example, aniline, thiophene, furan, pyrrole,
A method in which a polymerizable compound of methylpyrrole or a substituted derivative thereof is polymerized by the action of an oxidant capable of sufficiently performing an oxidation reaction of dehydrogenative two-electron oxidation is adopted. The polymerization reaction from the polymerizable compound (monomer) includes, for example, gas phase polymerization of the monomer, solution polymerization, etc., and is formed on the surface of the niobium sintered body having a dielectric. When the conductive polymer is a solution-soluble polymer soluble in an organic solvent, a method of coating on the surface to form the conductive polymer is adopted.
【0108】溶液重合による好ましい製造方法の1つと
して、誘電体層を形成したニオブ焼結体を、酸化剤を含
む溶液(溶液1)に浸漬し、次いでモノマー及びドーパ
ントを含む溶液(溶液2)に浸漬して重合し、該表面に
導電性高分子層を形成得する方法が例示される。また、
前記焼結体を、溶液2に浸漬した後で溶液1に浸漬して
もよい。また、前記溶液2においては、ドーパントを含
まないモノマー溶液として前記方法に使用してもい。ま
た、ドーパントを使用する場合、酸化剤を含む溶液に共
存させて使用してもよい。As one of preferred production methods by solution polymerization, a niobium sintered body having a dielectric layer formed thereon is dipped in a solution containing an oxidizing agent (solution 1), and then a solution containing a monomer and a dopant (solution 2). A method of immersing in and polymerizing to form a conductive polymer layer on the surface is exemplified. Also,
The sintered body may be dipped in the solution 2 and then in the solution 1. The solution 2 may be used in the above method as a monomer solution containing no dopant. When a dopant is used, it may be used together with a solution containing an oxidizing agent.
【0109】このような重合工程操作を、誘電体を有す
る前記ニオブ焼結体に対して1回以上、好ましくは3〜
20回繰り返すことによって緻密で層状の導電性高分子
層を容易に形成することができる。Such polymerization process operation is performed once or more, preferably 3 to 3 times for the above-mentioned niobium sintered body having a dielectric material.
By repeating 20 times, a dense and layered conductive polymer layer can be easily formed.
【0110】本発明のコンデンサの製造方法において
は、酸化剤はコンデンサ性能に悪影響を及ぼすことな
く、その酸化剤の還元体がドーパントになって導電性高
分子の電動度を向上させ得る酸化剤であれば良く、工業
的に安価で製造上取り扱いの容易な化合物が好まれる。In the method for producing a capacitor of the present invention, the oxidizing agent is an oxidizing agent that can improve the electric conductivity of the conductive polymer by using the reduced form of the oxidizing agent as a dopant without adversely affecting the performance of the capacitor. It is sufficient that a compound that is industrially inexpensive and easy to handle in production is preferred.
【0111】このような酸化剤としては、具体的には、
例えばFeCl3やFeClO4、Fe(有機酸アニオ
ン)塩等のFe(III)系化合物類、または無水塩化ア
ルミニウム/塩化第一銅、アルカリ金属過硫酸塩類、過
硫酸アンモニウム塩類、過酸化物類、過マンガン酸カリ
ウム等のマンガン類、2,3−ジクロロ−5,6−ジシ
アノ−1,4−ベンゾキノン(DDQ)、テトラクロロ
−1,4−ベンゾキノン、テトラシアノ−1,4−ベン
ゾキノン等のキノン類、よう素、臭素等のハロゲン類、
過酸、硫酸、発煙硫酸、三酸化硫黄、クロロ硫酸、フル
オロ硫酸、アミド硫酸等のスルホン酸、オゾン等及びこ
れら複数の酸化剤の組み合わせが挙げられる。Specific examples of such an oxidizing agent include:
For example, FeCl 3 , FeClO 4 , Fe (III) -based compounds such as Fe (organic acid anion) salts, or anhydrous aluminum chloride / cuprous chloride, alkali metal persulfates, ammonium persulfate salts, peroxides, peroxides, Manganese such as potassium manganate, quinones such as 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), tetrachloro-1,4-benzoquinone and tetracyano-1,4-benzoquinone, Halogens such as iodine and bromine,
Examples thereof include peracid, sulfuric acid, fuming sulfuric acid, sulfur trioxide, chlorosulfuric acid, fluorosulfuric acid, sulfonic acid such as amido sulfuric acid, ozone and the like, and combinations of a plurality of these oxidizing agents.
【0112】これらの中で、前記Fe(有機酸アニオ
ン)塩を形成する有機酸アニオンの基本化合物として
は、有機スルホン酸または有機カルボン酸、有機リン
酸、有機ホウ酸等が挙げられる。有機スルホン酸の具体
例としては、ベンゼンスルホン酸やp−トルエンスルホ
ン酸、メタンスルホン酸、エタンスルホン酸、α−スル
ホ−ナフタレン、β−スルホ−ナフタレン、ナフタレン
ジスルホン酸、アルキルナフタレンスルホン酸(アルキ
ル基としてはブチル、トリイソプロピル、ジ−t−ブチ
ル等)等が使用される。Among these, examples of the basic compound of the organic acid anion forming the Fe (organic acid anion) salt include organic sulfonic acid or organic carboxylic acid, organic phosphoric acid and organic boric acid. Specific examples of the organic sulfonic acid include benzenesulfonic acid, p-toluenesulfonic acid, methanesulfonic acid, ethanesulfonic acid, α-sulfo-naphthalene, β-sulfo-naphthalene, naphthalenedisulfonic acid, alkylnaphthalenesulfonic acid (alkyl group). Examples thereof include butyl, triisopropyl, di-t-butyl and the like).
【0113】一方、有機カルボン酸の具体例としては、
酢酸、プロピオン酸、安息香酸、シュウ酸等が挙げられ
る。さらに本発明においては、ポリアクリル酸、ポリメ
タクリル酸、ポリスチレンスルホン酸、ポリビニルスル
ホン酸、ポリビニル硫酸ポリ−α−メチルスルホン酸、
ポリエチレンスルホン酸、ポリリン酸等の高分子電解質
アニオンも使用される。なお、これら有機スルホン酸ま
たは有機カルボン酸の例は単なる例示であり、これらに
限定されるものではないない。また、前記アニオンの対
カチオンは、H+、Na+、K+等のアルカリ金属イオ
ン、または水素原子やテトラメチル基、テトラエチル
基、テトラブチル基、テトラフェニル基等で置換された
アンモニウムイオン等が例示されるが、これらに限定さ
れるものではない。前記の酸化剤のうち、特に好ましい
のは、3価のFe系化合物類、または塩化第一銅系、過
硫酸アルカリ塩類、過硫酸アンモニウム塩類酸類、キノ
ン類を含む酸化剤である。On the other hand, specific examples of the organic carboxylic acid include:
Examples thereof include acetic acid, propionic acid, benzoic acid and oxalic acid. Furthermore, in the present invention, polyacrylic acid, polymethacrylic acid, polystyrene sulfonic acid, polyvinyl sulfonic acid, polyvinyl sulfate poly-α-methyl sulfonic acid,
Polyelectrolyte anions such as polyethylene sulphonic acid, polyphosphoric acid are also used. The examples of these organic sulfonic acids or organic carboxylic acids are merely examples, and the present invention is not limited to these. Examples of the counter cation of the anion include an alkali metal ion such as H + , Na + , and K + , or an ammonium ion substituted with a hydrogen atom, a tetramethyl group, a tetraethyl group, a tetrabutyl group, a tetraphenyl group, or the like. However, the present invention is not limited to these. Among the above-mentioned oxidizing agents, particularly preferable are oxidizing agents containing trivalent Fe-based compounds, cuprous chloride-based compounds, alkali persulfate salts, ammonium persulfate acids and quinones.
【0114】導電性高分子の重合体組成物の製造方法に
おいて必要に応じて共存させるドーパント能を有するア
ニオン(酸化剤の還元体アニオン以外のアニオン)は、
前述の酸化剤から産生される酸化剤アニオン(酸化剤の
還元体)を対イオンに持つ電解質アニオンまたは他の電
解質アニオンを使用することができる。具体的には例え
ば、PF6 -、SbF6 -、AsF6 -の如き5B族元素のハ
ロゲン化物アニオン、BF4 -の如き3B族元素のハロゲ
ン化物アニオン、I-(I3 -)、Br-、Cl-の如きハ
ロゲンアニオン、ClO4 -の如き過ハロゲン酸アニオ
ン、AlCl4 -、FeCl4 -、SnCl5 -等の如きルイ
ス酸アニオン、あるいはNO3 -、SO4 2-の如き無機酸
アニオン、またはp−トルエンスルホン酸やナフタレン
スルホン酸、炭素数1乃至5(C1〜5と略する)のア
ルキル置換ナフタレンスルホン酸等のスルホン酸アニオ
ン、CF3SO3 -,CH3SO3 -の如き有機スルホン酸ア
ニオン、またはCH3COO-、C6H5COO-のごとき
カルボン酸アニオン等のプロトン酸アニオンを挙げるこ
とができる。In the method for producing a polymer composition of a conductive polymer, an anion having a dopant ability (an anion other than the reducing anion of an oxidant) coexisted as necessary,
An electrolyte anion having an oxidant anion (reduced form of the oxidant) produced from the aforementioned oxidant as a counter ion, or another electrolyte anion can be used. Specifically, for example, halide anions of Group 5B elements such as PF 6 − , SbF 6 − , AsF 6 − , halide anions of Group 3B elements such as BF 4 − , I − (I 3 − ), Br − , A halogen anion such as Cl −, a perhalogenate anion such as ClO 4 −, a Lewis acid anion such as AlCl 4 − , FeCl 4 − and SnCl 5 − or an inorganic acid anion such as NO 3 − and SO 4 2−. Or a sulfonic acid anion such as p-toluenesulfonic acid, naphthalenesulfonic acid, an alkyl-substituted naphthalenesulfonic acid having 1 to 5 carbon atoms (abbreviated as C1-5), CF 3 SO 3 − , CH 3 SO 3 − , etc. Examples thereof include organic sulfonic acid anions, or protonic acid anions such as carboxylic acid anions such as CH 3 COO − and C 6 H 5 COO − .
【0115】また、同じく、ポリアクリル酸、ポリメタ
クリル酸、ポリスチレンスルホン酸、ポリビニルスルホ
ン酸、ポリビニル硫酸、ポリ−α−メチルスルホン酸、
ポリエチレンスルホン酸、ポリリン酸等の高分子電解質
のアニオン等を挙げることができるが、これらに限定さ
れるものではない。しかしながら、好ましくは、高分子
系及び低分子系の有機スルホン酸化合物あるいはポリリ
ン酸化合物のアニオンが挙げられ、望ましくは芳香族系
のスルホン酸化合物(ドデシルベンゼンスルホン酸ナト
リウム、ナフタレンスルホン酸ナトリウム等)がアニオ
ン供出化合物として用いられる。Similarly, polyacrylic acid, polymethacrylic acid, polystyrene sulfonic acid, polyvinyl sulfonic acid, polyvinyl sulfuric acid, poly-α-methyl sulfonic acid,
Examples thereof include anions of polyelectrolytes such as polyethylene sulfonic acid and polyphosphoric acid, but are not limited thereto. However, preferably, anions of high molecular weight and low molecular weight organic sulfonic acid compounds or polyphosphoric acid compounds are mentioned, and preferably aromatic sulfonic acid compounds (sodium dodecylbenzene sulfonate, sodium naphthalene sulfonate, etc.) Used as anion-donating compound.
【0116】また、有機スルホン酸アニオンのうち、さ
らに有効なドーパントとしては、分子内に一つ以上のス
ルホアニオン基(−SO3 -)とキノン構造を有するスル
ホキノン化合物や、アントラセンスルホン酸アニオンが
挙げられる。[0116] Among the organic sulfonate anions, the more effective dopant, one or more sulfo anion group in the molecule (-SO 3 -) or sulfoquinone compound having a quinone structure, anthracene sulfonate anion To be
【0117】前記スルホキノン化合物のスルホキノンア
ニオンの基本骨格として、p−ベンゾキノン、o−ベン
ゾキノン、1,2−ナフトキノン、1,4−ナフトキノ
ン、2,6−ナフトキノン、9,10−アントラキノ
ン、1,4−アントラキノン、1,2−アントラキノ
ン、1,4−クリセンキノン、5,6−クリセンキノ
ン、6,12−クリセンキノン、アセナフトキノン、ア
セナフテンキノン、カンホルキノン、2,3−ボルナン
ジオン、9,10−フェナントレンキノン、2,7−ピ
レンキノンが挙げられる。As the basic skeleton of the sulfoquinone anion of the sulfoquinone compound, p-benzoquinone, o-benzoquinone, 1,2-naphthoquinone, 1,4-naphthoquinone, 2,6-naphthoquinone, 9,10-anthraquinone, 1,4 -Anthraquinone, 1,2-anthraquinone, 1,4-chrysenequinone, 5,6-chrysenequinone, 6,12-chrysenequinone, acenaphthoquinone, acenaphthenequinone, camphorquinone, 2,3-bornanedione, 9,10-phenanthrenequinone, 2 , 7-pyrenequinone.
【0118】対電極(対極)が固体の場合には、所望に
より用いられる外部引き出しリード(例えば、リードフ
レームなど)との電気的接触をよくするため、その上に
導電体層を設けてもよい。When the counter electrode (counter electrode) is solid, a conductor layer may be provided thereon in order to improve electrical contact with an external lead lead (for example, a lead frame) which is optionally used. .
【0119】導電体層としては、例えば、導電ペースト
の固化、メッキ、金属蒸着、耐熱性の導電樹脂フィルム
などにより形成することができる。導電ペーストとして
は、銀ペースト、銅ペースト、アルミペースト、カーボ
ンペースト、ニッケルペーストなどが好ましいが、これ
らは、1種を用いても2種以上を用いてもよい。2種以
上を用いる場合、混合してもよく、又は別々の層として
重ねてもよい。導電ペースト適用した後、空気中に放置
するか、又は加熱して固化せしめる。メッキとしては、
ニッケルメッキ、銅メッキ、銀メッキ、アルミメッキな
どがあげられる。また、蒸着金属としては、アルミニウ
ム、ニッケル、銅、銀などがあげられる。The conductor layer can be formed, for example, by solidifying a conductive paste, plating, metal deposition, a heat-resistant conductive resin film, or the like. As the conductive paste, silver paste, copper paste, aluminum paste, carbon paste, nickel paste and the like are preferable, but these may be used alone or in combination of two or more. When two or more types are used, they may be mixed or may be stacked as separate layers. After applying the conductive paste, it is left in the air or heated to solidify. As for plating,
Examples include nickel plating, copper plating, silver plating, aluminum plating. Further, examples of the vapor deposition metal include aluminum, nickel, copper, silver and the like.
【0120】具体的には、例えば第二の電極上にカーボ
ンペースト、銀ペーストを順次積層し、エポキシ樹脂の
ような材料で封止してコンデンサが構成される。このコ
ンデンサは、ニオブ焼結体と一体に焼結成形された、ま
たは、後で溶接されたニオブ又は、タンタルリードを有
していてもよい。Specifically, for example, a carbon paste and a silver paste are sequentially laminated on the second electrode and sealed with a material such as an epoxy resin to form a capacitor. The capacitor may have niobium or tantalum leads that are sintered together with the niobium sinter or are subsequently welded.
【0121】以上のような構成の本発明のコンデンサ
は、例えば、樹脂モールド、樹脂ケース、金属性の外装
ケース、樹脂のディッピング、ラミネートフィルムによ
る外装により各種用途のコンデンサ製品とすることがで
きる。The capacitor of the present invention having the above-described structure can be used as a capacitor product for various purposes by, for example, resin molding, a resin case, a metallic outer case, resin dipping, and a laminated film outer case.
【0122】また、対電極が液体の場合には、前記両極
と誘電体から構成されたコンデンサを、例えば、対電極
と電気的に接続した缶に収納してコンデンサが形成され
る。この場合、ニオブ焼結体の電極側は、前記したニオ
ブ又はタンタルリードを介して外部に導出すると同時
に、絶縁性ゴムなどにより、缶との絶縁がはかられるよ
うに設計される。When the counter electrode is a liquid, the capacitor formed of the both electrodes and the dielectric is housed in, for example, a can electrically connected to the counter electrode to form the capacitor. In this case, the electrode side of the niobium sintered body is designed to be led out to the outside through the niobium or tantalum lead described above, and at the same time, insulated from the can by the insulating rubber or the like.
【0123】以上、説明した本発明の実施態様にしたが
って製造したニオブ粉を用いてコンデンサ用焼結体を作
製し、該焼結体からコンデンサを製造することにより、
漏れ電流値の小さい信頼性の良好なコンデンサを得るこ
とができる。As described above, a niobium powder produced according to the embodiment of the present invention described above is used to produce a sintered body for a capacitor, and a capacitor is produced from the sintered body.
A highly reliable capacitor having a small leakage current value can be obtained.
【0124】また、本発明のコンデンサは、従来のタン
タルコンデンサよりも容積の割に静電容量が大きく、よ
り小型のコンデンサ製品を得ることができる。Further, the capacitor of the present invention has a large electrostatic capacity relative to the volume of the conventional tantalum capacitor, and a smaller capacitor product can be obtained.
【0125】このような特性を持つ本発明のコンデンサ
は、例えば、アナログ回路及びデジタル回路中で多用さ
れるバイパスコンデンサ、カップリングコンデンサとし
ての用途や、従来のタンタルコンデンサの用途にも適用
できる。The capacitor of the present invention having such characteristics can be applied to, for example, bypass capacitors and coupling capacitors often used in analog circuits and digital circuits, and conventional tantalum capacitors.
【0126】一般に、このようなコンデンサは電子回路
中で多用されるので、本発明のコンデンサを用いれば、
電子部品の配置や排熱の制約が緩和され、信頼性の高い
電子回路を従来より狭い空間に収めることができる。In general, since such a capacitor is often used in an electronic circuit, if the capacitor of the present invention is used,
The restrictions on the arrangement of electronic components and the exhaust heat are alleviated, and a highly reliable electronic circuit can be stored in a narrower space than before.
【0127】さらに、本発明のコンデンサを用いれば、
従来より小型で信頼性の高い電子機器、例えば、コンピ
ュータ、PCカード等のコンピュータ周辺機器、携帯電
話などのモバイル機器、家電製品、車載機器、人工衛
星、通信機器等を得ることができる。Furthermore, if the capacitor of the present invention is used,
It is possible to obtain electronic devices that are smaller and more reliable than before, such as computers, computer peripheral devices such as PC cards, mobile devices such as mobile phones, home appliances, vehicle-mounted devices, artificial satellites, and communication devices.
【0128】[0128]
【実施例】以下、実施例及び比較例を挙げて本発明を具
体的に説明するが、本発明はこれらの例に限定されるも
のではない。The present invention will be specifically described below with reference to examples and comparative examples, but the present invention is not limited to these examples.
【0129】なお、各例におけるニオブ粉のタッピング
密度、安息角、粒子径及び細孔直径、並びにコンデンサ
の容量、漏れ電流値、容量出現率、耐湿値及びESR値
は以下の方法により測定した。The tapping density, repose angle, particle diameter and pore diameter of niobium powder, and the capacity, leakage current value, capacity appearance rate, humidity resistance value and ESR value of the capacitor in each example were measured by the following methods.
【0130】(1)タッピング密度測定
タッピング密度は、JIS(日本工業規格2000年
版)K1201−1に規定される工業用炭酸ナトリウム
の見掛比重測定法のうちタッピング装置による方法、及
び測定機器に準じて測定した。(1) Tapping Density Measurement The tapping density is in accordance with the method using a tapping device among the methods for measuring the apparent specific gravity of industrial sodium carbonate specified in JIS (Japanese Industrial Standard 2000) K1201-1, and the measuring equipment. Measured.
【0131】(2)安息角測定
安息角は、JIS(日本工業規格2000年版)Z25
04に規定される流れ性の測定機器と試料量を用い、水
平面に対するホッパー下部の高さ6cmから、水平面に
ニオブ粉を落下させ、生じた円錐の頂点から水平面に対
する斜面の水平面に対する角度を安息角とした。(2) Measurement of angle of repose The angle of repose can be measured according to JIS (Japanese Industrial Standard 2000 version) Z25.
Using the flow measurement equipment and sample amount specified in 04, drop niobium powder from the height of the hopper 6 cm below the horizontal plane to the horizontal plane, and from the apex of the resulting cone to the angle of repose to the horizontal plane of the slope to the horizontal plane. And
【0132】(3)粒子径測定
マイクロトラック社製(HRA 9320−X100)
の装置を用い粒度分布をレーザー回折散乱法で測定し
た。その累積体積%が、50体積%に相当する粒径値
(D50;μm)を平均粒子径とした。(3) Particle size measurement: manufactured by Microtrac (HRA 9320-X100)
The particle size distribution was measured by the laser diffraction scattering method using the above apparatus. The particle size value (D 50 ; μm) corresponding to the cumulative volume% of 50% by volume was taken as the average particle size.
【0133】(4)細孔直径測定
Micro Meritics社製 Poresier
9320を用い細孔分布を水銀圧入法で測定した。な
お、本発明では、圧入量の変化率から極大値を求め、極
大値が示す細孔直径をピークトップとし、極大値をこの
ピークトップの属するピークの相対強度の大きさとし
た。(4) Pore Diameter Measurement Poresier manufactured by Micro Meritics
9320 was used to measure the pore size distribution by mercury porosimetry. In the present invention, the maximum value was obtained from the change rate of the press-fitting amount, the pore diameter indicated by the maximum value was taken as the peak top, and the maximum value was taken as the magnitude of the relative intensity of the peak to which this peak top belongs.
【0134】(5)コンデンサの容量測定
室温において、作製したチップの端子間にヒューレット
パッカード社製LCR測定器を接続し、120Hzでの
容量測定値をチップ加工したコンデンサの容量とした。(5) Capacitance Measurement of Capacitor At room temperature, an LCR measuring instrument manufactured by Hewlett-Packard was connected between the terminals of the produced chip, and the capacitance measurement value at 120 Hz was taken as the capacitance of the chip-processed capacitor.
【0135】(6)コンデンサの漏れ電流測定
室温において、作製したチップの端子間に直流電圧6.
3Vを1分間印加し続けた後に測定された電流値をチッ
プに加工したコンデンサの漏れ電流値とした。(6) Measurement of Leakage Current of Capacitor At room temperature, a DC voltage of 6.
The current value measured after continuously applying 3 V for 1 minute was taken as the leakage current value of the capacitor processed into a chip.
【0136】(7)コンデンサの容量出現率
0.1%燐酸水溶液中で、80℃,20Vの条件で10
00分間化成したときの焼結体を、30%硫酸中で測定
した容量を100%として、コンデンサ形成後の容量と
の比で表現した。(7) Capacitance appearance rate of capacitor 10% in a 0.1% phosphoric acid aqueous solution at 80 ° C. and 20 V.
The sintered body after chemical conversion for 00 minutes was expressed as a ratio with the capacity after forming a capacitor, with the capacity measured in 30% sulfuric acid as 100%.
【0137】(8)コンデンサの耐湿値
作製したコンデンサを、60℃95%RHで500時間
放置したときの容量が、初期値の110%未満および1
20%未満の個数で表現した。110%未満の個数が多
いほど、耐湿値は良好と判断した。
(9)コンデンサのESR測定
室温において、作製したチップの端子間にヒューレット
パッカード社製LCR測定器を接続し、100kHz、
1.5VDC、0.5Vrms.でのESR測定値をチ
ップ加工したコンデンサのESRとした。
実施例1:ニッケル製坩堝中、80℃で充分に真空乾燥
したフッ化ニオブ酸カリウム5000gに、フッ化ニオ
ブ酸カリウムの10倍モル量のナトリウムを投入し、ア
ルゴン雰囲気下1000℃で20時間還元反応を行っ
た。反応後冷却させ、還元物を水洗した後に、95%硫
酸、水で順次洗浄した後に真空乾燥した。さらにシリカ
アルミナボール入りのアルミナポットのボールミルを用
いて40時間粉砕した後、粉砕物を50%硝酸と10%
過酸化水素水の3:2(質量比)混合液中に浸漬撹拌し
た。その後、pHが7になるまで充分水洗して不純物を
除去し、真空乾燥した。原料ニオブ粉の平均粒子径は
1.2μmであった。(8) Humidity resistance value of capacitor When the manufactured capacitor was left at 60 ° C. and 95% RH for 500 hours, the capacity was less than 110% of the initial value and 1 or less.
The number is expressed as less than 20%. The more the number of particles less than 110%, the better the moisture resistance value. (9) ESR measurement of capacitor At room temperature, a Hewlett Packard LCR measuring device was connected between terminals of the produced chip, and 100 kHz,
1.5 VDC, 0.5 Vrms. The ESR measurement value in Example 1 was taken as the ESR of the chip-processed capacitor. Example 1: In a nickel crucible, 5000 g of potassium fluorinated niobate that had been sufficiently vacuum-dried at 80 ° C. was charged with 10 times the molar amount of sodium fluorinated niobate, and reduced at 1000 ° C. for 20 hours under an argon atmosphere. The reaction was carried out. After the reaction, the reaction product was cooled, and the reduced product was washed with water, successively washed with 95% sulfuric acid and water, and then vacuum dried. Further, after crushing for 40 hours using a ball mill having an alumina pot containing silica-alumina balls, the crushed product was mixed with 50% nitric acid and 10%.
The mixture was immersed and stirred in a 3: 2 (mass ratio) mixed solution of hydrogen peroxide water. Then, it was sufficiently washed with water until the pH reached 7, to remove impurities, and dried in vacuum. The raw material niobium powder had an average particle diameter of 1.2 μm.
【0138】この原料ニオブ粉500gをニオブ製のポ
ットに入れ、平均粒子径が1μmのポリメチルメタクリ
ル酸ブチルエステル50g、およびトルエン1リットル
を添加した。更にジルコニアボールを加えて、振とう混
合機で1時間混合した。ジルコニアボールを除去した混
合物をコニカルドライヤーに入れ、1×102Pa、8
0℃の条件で真空乾燥した。500 g of this raw material niobium powder was placed in a niobium pot, and 50 g of polymethylmethacrylic acid butyl ester having an average particle diameter of 1 μm and 1 liter of toluene were added. Further, zirconia balls were added and mixed with a shaking mixer for 1 hour. The mixture from which the zirconia balls were removed was placed in a conical dryer and 1 × 10 2 Pa, 8
It was vacuum dried under the condition of 0 ° C.
【0139】続いて、このニオブ粉を1×10-2Pa、
250〜400℃で12時間加熱し、ポリメチルメタク
リル酸ブチルエステルを分解除去し、さらに、4×10
-3Paの減圧下、1150℃で2時間焼結した。品温が
30℃以下になるまで冷却した後、ニオブ焼結塊をロー
ルグラニュレーターで解砕し、平均粒子径100μmの
ニオブ解砕粉を得た。Subsequently, this niobium powder was added at 1 × 10 -2 Pa,
It is heated at 250 to 400 ° C. for 12 hours to decompose and remove polymethylmethacrylic acid butyl ester, and further 4 × 10
It was sintered at 1150 ° C. for 2 hours under a reduced pressure of −3 Pa. After cooling the product temperature to 30 ° C. or lower, the niobium sinter lump was crushed with a roll granulator to obtain crushed niobium powder having an average particle diameter of 100 μm.
【0140】このニオブ解砕粉を、加圧下、窒素を流通
させ、300℃で2時間、窒化処理を行い、約450g
ニオブ粉を得た。窒素含有量は、0.22%であった。The crushed powder of niobium was subjected to nitriding treatment at 300 ° C. for 2 hours under a pressure of nitrogen to obtain about 450 g.
I got niobium powder. The nitrogen content was 0.22%.
【0141】このニオブ粉のタッピング密度、平均粒子
径、安息角、BET比表面積、細孔直径ピークトップな
どの物理物性を表1に示す。Table 1 shows the physical properties of the niobium powder such as tapping density, average particle size, angle of repose, BET specific surface area and pore diameter peak top.
【0142】このようにして得られた、ニオブ粉(約
0.1g)をタンタル素子自動成形機(株式会社 精研
製 TAP−2R)ホッパーに入れ、0.3mmφのニ
オブ線と共に自動成形し、大きさがおよそ0.3cm×
0.18cm×0.45cmとなるように成形体を作製
した。この成形体の外観、質量のばらつきを表1に示
す。The niobium powder (about 0.1 g) thus obtained was put into a tantalum element automatic molding machine (TAP-2R manufactured by Seiken Co., Ltd.) hopper, and was automatically molded together with a niobium wire of 0.3 mmφ to obtain a large size. Approximately 0.3 cm x
A molded body was prepared to have a size of 0.18 cm × 0.45 cm. Table 1 shows the appearance and mass variation of this molded product.
【0143】次にこれらの成形体を4×10-3Paの真
空下、1250℃で30分間放置することにより焼結体
を得た。この焼結体100個を用意し、20Vの電圧
で、0.1%リン酸水溶液を用い、200分間電解化成
して、表面に誘電体酸化皮膜を形成した。Next, these compacts were left under vacuum at 4 × 10 −3 Pa at 1250 ° C. for 30 minutes to obtain sintered compacts. 100 pieces of this sintered body were prepared, and a 0.1% phosphoric acid aqueous solution was used for electrolysis for 200 minutes at a voltage of 20 V to form a dielectric oxide film on the surface.
【0144】続いて、60%硝酸マンガン水溶液に浸漬
後220℃で30分間加熱することを繰り返して、誘電
体酸化皮膜上に対電極層として二酸化マンガン層を形成
した。引き続き、その上に、カーボン層、銀ペースト層
を順次積層した。次にリードフレームを載せた後、全体
をエポキシ樹脂で封止して、チップ型コンデンサを作製
した。このコンデンサの容量出現率、およびこのチップ
型コンデンサの容量と漏れ電流値(以下「LC」と略
す)の平均(n=100個)を表1に示す。尚、LC値
は室温で6.3V、1分間印加した時の値である。Then, the manganese dioxide layer was formed as a counter electrode layer on the dielectric oxide film by repeating the heating in the 60% manganese nitrate aqueous solution for 30 minutes at 220 ° C. Subsequently, a carbon layer and a silver paste layer were sequentially laminated on it. Next, after mounting a lead frame, the whole was sealed with an epoxy resin to manufacture a chip type capacitor. Table 1 shows the capacitance appearance ratio of this capacitor, and the average (n = 100) of the capacitance and the leakage current value (hereinafter abbreviated as “LC”) of this chip type capacitor. The LC value is a value when 6.3 V is applied for 1 minute at room temperature.
【0145】実施例2:ニオブインゴット1000gを
SUS304製の反応容器に入れ、400℃で10時間
水素を導入し続けた。冷却後、水素化されたニオブ塊
を、ジルコニアボールを入れたSUS製のポットに入れ
10時間粉砕した。次に、スパイクミルに、この水素化
物を水で20体積%のスラリーにしたもの及びジルコニ
アボールを入れ、40℃以下で7時間湿式粉砕して水素
化ニオブの粉砕スラリーを取得した。この原料水素化ニ
オブ粉の平均粒子径は、0.9μmであった。Example 2 1000 g of a niobium ingot was placed in a reaction vessel made of SUS304, and hydrogen was continuously introduced at 400 ° C. for 10 hours. After cooling, the hydrogenated niobium lump was placed in a SUS pot containing zirconia balls and ground for 10 hours. Next, a slurried 20% by volume slurry of this hydride with water and zirconia balls were placed in a spike mill, and wet milled at 40 ° C. or lower for 7 hours to obtain a milled slurry of niobium hydride. The average particle size of the raw material niobium hydride powder was 0.9 μm.
【0146】このスラリー(スラリー濃度98%)をS
US製のポットに入れ、平均粒子径が1μmの酸化バリ
ウム200gを添加した。更にジルコニアボールを加え
て、振とう混合機で1時間混合した。ジルコニアボール
を除去した混合物をニオブ製のバットに入れ、1×10
2Pa、50℃の条件で乾燥した。This slurry (slurry concentration 98%) was mixed with S
In a US pot, 200 g of barium oxide having an average particle size of 1 μm was added. Further, zirconia balls were added and mixed with a shaking mixer for 1 hour. The mixture from which the zirconia balls have been removed is placed in a niobium bat and 1 × 10
It was dried under the conditions of 2 Pa and 50 ° C.
【0147】続いて、得られた混合物を1×10-2P
a、400℃で4時間加熱し水素化ニオブを脱水素し、
さらに、この混合物を4×10-3Paの減圧下、110
0℃で2時間焼結した。品温が30℃以下になるまで冷
却した後、酸化バリウム混合のニオブ焼結塊をロールグ
ラニュレーターで解砕し、平均粒子径95μmの酸化バ
リウム混合のニオブ解砕粉を得た。Subsequently, the resulting mixture was mixed with 1 × 10 -2 P
a, heating at 400 ° C. for 4 hours to dehydrogenate niobium hydride,
Further, this mixture was subjected to 110 ° C. under reduced pressure of 4 × 10 −3 Pa.
Sintered for 2 hours at 0 ° C. After cooling to a product temperature of 30 ° C. or lower, the barium oxide-mixed niobium sinter was crushed with a roll granulator to obtain barium oxide-mixed niobium crushed powder having an average particle diameter of 95 μm.
【0148】この酸化バリウム混合のニオブ解砕粉50
0gとイオン交換水1000gをポリテトラフルオロエ
チレン製の容器に入れ、15℃以下になるように冷却し
た。これとは別に、15℃以下に冷却した、60%硝酸
600g、30%過酸化水素150g、イオン交換水7
50gを混合した水溶液を用意し、この水溶液500g
を攪拌しながら、水温が20℃を越えないように酸化バ
リウム混合のニオブ解砕粉懸濁水溶液に滴下した。滴下
終了後、さらに1時間攪拌を継続し、30分静置した
後、デカンテーションした。イオン交換水2000gを
加え、30分攪拌の後、30分静置した後、デカンテー
ションした。この作業を5回繰り返し、さらに、ニオブ
解砕粉をポリテトラフルオロエチレン製のカラム入れ、
イオン交換水を流しながら4時間水洗浄を行った。この
時の洗浄水の電気伝導度は、0.9μS/cmであっ
た。This barium oxide-mixed niobium crushed powder 50
0 g and 1000 g of ion-exchanged water were placed in a container made of polytetrafluoroethylene and cooled to 15 ° C or lower. Separately, 60 g nitric acid 600 g, 30% hydrogen peroxide 150 g, ion-exchanged water 7 cooled to 15 ° C. or lower
Prepare an aqueous solution mixed with 50 g and 500 g of this aqueous solution
While stirring, was added dropwise to an aqueous suspension of niobium crushed powder mixed with barium oxide so that the water temperature did not exceed 20 ° C. After completion of dropping, stirring was continued for another 1 hour, and the mixture was allowed to stand for 30 minutes and then decanted. Ion-exchanged water (2000 g) was added, the mixture was stirred for 30 minutes, allowed to stand for 30 minutes, and then decanted. This operation is repeated 5 times, and further niobium crushed powder is put into a column made of polytetrafluoroethylene,
Water washing was performed for 4 hours while flowing ion-exchanged water. The electric conductivity of the wash water at this time was 0.9 μS / cm.
【0149】水洗浄を終了したニオブ解砕粉を、減圧
下、50℃で乾燥し、更に加圧下、窒素を流通させ、3
00℃で3時間、窒化処理を行い、約350gのニオブ
粉を得た。 窒素含有量は、0.28%であった。The niobium crushed powder which has been washed with water is dried at 50 ° C. under reduced pressure, and nitrogen is circulated under pressure to make it 3
Nitriding treatment was performed at 00 ° C. for 3 hours to obtain about 350 g of niobium powder. The nitrogen content was 0.28%.
【0150】このニオブ粉のタッピング密度、平均粒子
径、安息角、BET比表面積、平均細孔直径などの物理
物性を表1に示す。Table 1 shows the physical properties of this niobium powder such as tapping density, average particle size, angle of repose, BET specific surface area and average pore diameter.
【0151】このようにして得られた、ニオブ粉(約
0.1g)をタンタル素子自動成形機(株式会社 精研
製 TAP−2R)ホッパーに入れ、0.3mmφのニ
オブ線と共に自動成形し、大きさがおよそ0.3cm×
0.18cm×0.45cmとなるように成形体を作製
した。この成形体の外観、質量のばらつきを表1に示
す。The niobium powder (about 0.1 g) thus obtained was put into a tantalum element automatic molding machine (TAP-2R manufactured by Seiken Co., Ltd.) hopper and automatically molded together with a 0.3 mmφ niobium wire to obtain a large size. Approximately 0.3 cm x
A molded body was prepared to have a size of 0.18 cm × 0.45 cm. Table 1 shows the appearance and mass variation of this molded product.
【0152】次にこれらの成形体を4×10-3Paの減
圧下、1250℃で30分間放置することにより焼結体
を得た。この焼結体100個を用意し、20Vの電圧
で、0.1%リン酸水溶液を用い、200分間電解化成
して、表面に誘電体酸化皮膜を形成した。Next, these compacts were left under reduced pressure of 4 × 10 −3 Pa at 1250 ° C. for 30 minutes to obtain a sintered compact. 100 pieces of this sintered body were prepared, and a 0.1% phosphoric acid aqueous solution was used for electrolysis for 200 minutes at a voltage of 20 V to form a dielectric oxide film on the surface.
【0153】続いて、誘電体酸化被膜の上に、過硫酸ア
ンモニウム10%水溶液とアントラキノンスルホン酸
0.5%水溶液の等量混合液を接触させた後、ピロール
蒸気を触れさせる操作を少なくとも5回行うことにより
ポリピロールからなる対電極(対極)を形成した。Subsequently, the dielectric oxide film is brought into contact with an equal volume mixture of 10% ammonium persulfate aqueous solution and 0.5% anthraquinonesulfonic acid aqueous solution, and then pyrrole vapor is contacted at least 5 times. As a result, a counter electrode (counter electrode) made of polypyrrole was formed.
【0154】引き続き、その上に、カーボン層、銀ペー
スト層を順次積層した。次にリードフレームを載せた
後、全体をエポキシ樹脂で封止して、チップ型コンデン
サを作製した。このコンデンサの容量出現率、およびこ
のチップ型コンデンサの容量とLC値の平均(n=10
0個)を表1に示す。尚、LC値は室温で6.3V、1
分間印加した時の値である。Successively, a carbon layer and a silver paste layer were sequentially laminated on it. Next, after mounting a lead frame, the whole was sealed with an epoxy resin to manufacture a chip type capacitor. The capacitance appearance rate of this capacitor, and the average of the capacitance and LC value of this chip-type capacitor (n = 10
0) is shown in Table 1. The LC value was 6.3 V at room temperature, 1
It is the value when applied for a minute.
【0155】実施例3〜10:実施例1と同様な方法を
用いポリメチルメタクリル酸ブチルエステルの平均粒子
径、添加量を、また実施例2と同様な方法を用い酸化バ
リウムの平均粒子径、添加量を、それぞれ変化させ、ニ
オブ粉、その成形体、焼結体およびコンデンサを作製し
た。これらのニオブ粉の物理物性、成形体の外観、質量
バラツキおよびコンデンサの容量、LCを表1に示す。Examples 3 to 10: Using the same method as in Example 1, the average particle size and addition amount of polymethylmethacrylic acid butyl ester, and by using the same method as in Example 2, the average particle size of barium oxide, The amount of addition was changed, and niobium powder, its molded body, a sintered body, and a capacitor were produced. Table 1 shows the physical properties of these niobium powders, the appearance of molded products, the variation in mass, the capacitance of capacitors, and LC.
【0156】実施例11〜22:実施例11〜14及び
16〜18は実施例1と同様な方法を用い、実施例15
及び19〜22は実施例2と同様な方法を用い、それぞ
れポリメチルメタクリル酸ブチルエステルまたは酸化バ
リウムの替わりに表1に示した賦活剤を用い、ニオブ
粉、成形体および焼結体を作製した。ニオブ粉の物理物
性、成形体の外観、質量バラツキを表1に示す。Examples 11 to 22: Examples 11 to 14 and 16 to 18 use the same method as in Example 1 and Example 15
And Nos. 19 to 22 used the same method as in Example 2 except that the activator shown in Table 1 was used instead of polymethylmethacrylic acid butyl ester or barium oxide to prepare niobium powder, a molded body and a sintered body. . Table 1 shows the physical properties of the niobium powder, the appearance of the molded product, and the variation in mass.
【0157】次にこれらの成形体を4×10-3Paの減
圧下、1250℃で30分間放置することにより焼結体
を得た。この焼結体100個を用意し、20Vの電圧
で、0.1%リン酸水溶液を用い、200分間電解化成
して、表面に誘電体酸化皮膜を形成した。Next, these compacts were left under reduced pressure of 4 × 10 −3 Pa at 1250 ° C. for 30 minutes to obtain sintered bodies. 100 pieces of this sintered body were prepared, and a 0.1% phosphoric acid aqueous solution was used for electrolysis for 200 minutes at a voltage of 20 V to form a dielectric oxide film on the surface.
【0158】続いて、過硫酸アンモニウム25質量%を
含む水溶液(溶液1)に浸漬した後引き上げ、80℃で
30分間乾燥させ、次いで誘電体を形成した焼結体を、
3,4−エチレンジオキシチオフェン18質量%を含む
イソプロパノール溶液(溶液2)に浸漬した後引き上
げ、60℃の雰囲気に10分放置することで酸化重合を
行った。これを再び溶液1に浸漬し、さらに前記と同様
に処理した。溶液1に浸漬してから酸化重合を行うまで
の操作を8回繰り返した後、50℃の温水で10分洗浄
を行い、100℃で30分乾燥を行うことにより、導電
性のポリ(3,4−エチレンジオキシチオフェン)から
なる対電極(対極)を形成した。Subsequently, the sintered body was immersed in an aqueous solution containing 25% by mass of ammonium persulfate (Solution 1), then pulled up, dried at 80 ° C. for 30 minutes, and then the sintered body having a dielectric formed thereon was
It was immersed in an isopropanol solution (solution 2) containing 18% by mass of 3,4-ethylenedioxythiophene, pulled up, and left standing in an atmosphere of 60 ° C. for 10 minutes to carry out oxidative polymerization. This was immersed again in the solution 1 and further treated in the same manner as described above. After repeating the operation from the immersion in the solution 1 to the oxidative polymerization 8 times, washing with warm water at 50 ° C. for 10 minutes and drying at 100 ° C. for 30 minutes were performed to obtain the conductive poly (3,3). A counter electrode (counter electrode) made of 4-ethylenedioxythiophene was formed.
【0159】引き続き、その上に、カーボン層、銀ペー
スト層を順次積層した。次にリードフレームを載せた
後、全体をエポキシ樹脂で封止して、チップ型コンデン
サを作製した。このコンデンサの容量出現率、およびこ
のチップ型コンデンサの容量とLC値の平均(n=10
0個)を表1に示す。尚、LC値は室温で6.3V、1
分間印加した時の値である。Subsequently, a carbon layer and a silver paste layer were sequentially laminated thereon. Next, after mounting a lead frame, the whole was sealed with an epoxy resin to manufacture a chip type capacitor. The capacitance appearance rate of this capacitor, and the average of the capacitance and LC value of this chip-type capacitor (n = 10
0) is shown in Table 1. The LC value was 6.3 V at room temperature, 1
It is the value when applied for a minute.
【0160】実施例23〜25:実施例2と同様な方法
を用い、出発原料に、実施例23ではニオブースズ合金
粉、実施例24では水素化ニオブ−レニウム合金粉、実
施例25では水素化ニオブ−イットリウム−硼素合金粉
をそれぞれ用いて、ニオブ粉、焼結体およびコンデンサ
を作製した。その物理物性および容量、LCを表1に示
す。Examples 23 to 25: Using the same method as in Example 2, the starting materials were Niobose alloy powder in Example 23, niobium hydride-rhenium alloy powder in Example 24, and niobium hydride in Example 25. -A yttrium-boron alloy powder was used to produce a niobium powder, a sintered body, and a capacitor. Its physical properties, capacity, and LC are shown in Table 1.
【0161】比較例1〜3:ニッケル製坩堝中、80℃
で充分に真空乾燥したフッ化ニオブ酸カリウム2000
gにナトリウムをフッ化ニオブ酸カリウムの10倍モル
量を投入し、アルゴン雰囲気下1000℃で20時間還
元反応を行った。反応後冷却させ、還元物を水洗した後
に、95%硫酸、水で順次洗浄した後に真空乾燥した。
さらにシリカアルミナボール入りのアルミナポットのボ
ールミルを用いて粉砕時間を変化させ粉砕した後、粉砕
物を50%硝酸と10%過酸化水素水の3:2(質量
比)混合液中に浸漬撹拌した。その後、pHが7になる
まで充分水洗して不純物を除去し、真空乾燥した。作製
したニオブ粉の平均粒子径は1.3〜10μmであっ
た。Comparative Examples 1-3: 80 ° C. in nickel crucible
2000 fully dried in vacuum with potassium fluoroniobate
Sodium was added to g in a molar amount 10 times that of potassium fluorinated niobate, and a reduction reaction was carried out at 1000 ° C. for 20 hours in an argon atmosphere. After the reaction, the reaction product was cooled, and the reduced product was washed with water, successively washed with 95% sulfuric acid and water, and then vacuum dried.
Furthermore, after crushing was performed by changing the crushing time using a ball mill of an alumina pot containing silica-alumina balls, the crushed product was immersed and stirred in a 3: 2 (mass ratio) mixture of 50% nitric acid and 10% hydrogen peroxide. . Then, it was sufficiently washed with water until the pH reached 7, to remove impurities, and dried in vacuum. The produced niobium powder had an average particle size of 1.3 to 10 μm.
【0162】この様にして得られた、それぞれのニオブ
粉50gをSUS304製の反応容器に入れ、300℃
で2〜4時間窒素を導入し続けて、ニオブ窒化物を得
た。50 g of each niobium powder thus obtained was placed in a reaction container made of SUS304 and heated to 300 ° C.
The nitrogen was continuously introduced for 2 to 4 hours to obtain a niobium nitride.
【0163】このニオブ粉のタッピング密度、平均粒子
径、安息角、BET比表面積、平均細孔直径などの物理
物性を表1に示す。Table 1 shows the physical properties of the niobium powder such as tapping density, average particle diameter, repose angle, BET specific surface area and average pore diameter.
【0164】このようにして得られた、ニオブ粉(約
0.1g)をタンタル素子自動成形機(株式会社 精研
製 TAP−2R)ホッパーに入れ、0.3mmφのニ
オブ線と共に自動成形を試みた。結果を表1に示す。The niobium powder (about 0.1 g) thus obtained was put into a tantalum element automatic molding machine (TAP-2R manufactured by Seiken Co., Ltd.) hopper, and an attempt was made to perform automatic molding together with a niobium wire having a diameter of 0.3 mm. . The results are shown in Table 1.
【0165】比較例4〜9:平均粒子径が1μmの酸化
バリウムの添加量を変化させて、実施例2と同様な方法
で、タッピング密度が0.2〜0.4g/mlおよび
2.6〜3.3g/mlのニオブ粉を得た。このものの
物理物性を表1に示す。Comparative Examples 4 to 9: The tapping density was 0.2 to 0.4 g / ml and 2.6 in the same manner as in Example 2 except that the addition amount of barium oxide having an average particle diameter of 1 μm was changed. ~ 3.3 g / ml of niobium powder was obtained. The physical properties of this product are shown in Table 1.
【0166】このようにして得られた、ニオブ粉(約
0.1g)をタンタル素子自動成形機(株式会社 精研
製 TAP−2R)ホッパーに入れ、0.3mmφのニ
オブ線と共に自動成形し、大きさがおよそ0.3cm×
0.18cm×0.45cmとなるように成形体を作製
した。この成形体の外観、質量のばらつきを表1に示
す。The niobium powder (about 0.1 g) thus obtained was put into a tantalum element automatic molding machine (TAP-2R manufactured by Seiken Co., Ltd.) hopper and automatically molded together with a 0.3 mmφ niobium wire to obtain a large size. Approximately 0.3 cm x
A molded body was prepared to have a size of 0.18 cm × 0.45 cm. Table 1 shows the appearance and mass variation of this molded product.
【0167】次にこれらの成形体を4×10-3Paの真
空下、1250℃で30分間放置することにより焼結体
を得た。この焼結体100個を用意し、20Vの電圧
で、0.1%リン酸水溶液を用い、200分間電解化成
して、表面に誘電体酸化皮膜を形成した。Next, these compacts were left for 30 minutes at 1250 ° C. under a vacuum of 4 × 10 -3 Pa to obtain sintered compacts. 100 pieces of this sintered body were prepared, and a 0.1% phosphoric acid aqueous solution was used for electrolysis for 200 minutes at a voltage of 20 V to form a dielectric oxide film on the surface.
【0168】続いて、誘電体酸化被膜の上に、過硫酸ア
ンモニウム10%水溶液とアントラキノンスルホン酸
0.5%水溶液の等量混合液を接触させた後、ピロール
蒸気を触れさせる操作を少なくとも5回行うことにより
ポリピロールからなる対電極(対極)を形成した。Subsequently, a 10% aqueous solution of ammonium persulfate and a 0.5% aqueous solution of anthraquinonesulfonic acid are brought into contact with the dielectric oxide film, and then pyrrole vapor is touched at least 5 times. As a result, a counter electrode (counter electrode) made of polypyrrole was formed.
【0169】引き続き、その上に、カーボン層、銀ペー
スト層を順次積層した。次にリードフレームを載せた
後、全体をエポキシ樹脂で封止して、チップ型コンデン
サを作製した。このコンデンサの容量出現率、およびこ
のチップ型コンデンサの容量とLC値の平均(n=10
0個)を表1に示す。尚、LC値は室温で6.3V、1
分間印加した時の値である。Subsequently, a carbon layer and a silver paste layer were sequentially laminated on it. Next, after mounting a lead frame, the whole was sealed with an epoxy resin to manufacture a chip type capacitor. The capacitance appearance rate of this capacitor, and the average of the capacitance and LC value of this chip-type capacitor (n = 10
0) is shown in Table 1. The LC value was 6.3 V at room temperature, 1
It is the value when applied for a minute.
【0170】実施例26〜31
ニオブインゴットの水素化物を粉砕し脱水素することに
より平均粒径0.8μmの一次粒子を得た。この一次粒
子を焼成、粉砕し、ニオブの造粒粉を得た。この造粒粉
0.1gを、別途用意した、長さ10mm、太さ0.3
mmのニオブ線と共に、金型(4.0mm×3.5mm
×1.8mm)に入れ、タンタル素子自動成形機(株式
会社 精研製 TAP−2R)で表2に示したように加
重し、成形体を作製した。ついで1300℃で30分間
焼結して目的とする焼結体を得た。成形機の加重を調整
することによって、表2のように細孔直径分布を持つ焼
結体を作成した。実施例26の焼結体の大きさ、比表面
積、CV値は各々順に、24.7mm3、1.1m2/
g、85000μFV/gであり、他の例の各数値も実
施例26の±2%以内であった。Examples 26 to 31 Niobium ingot hydrides were pulverized and dehydrogenated to obtain primary particles having an average particle diameter of 0.8 μm. The primary particles were fired and crushed to obtain niobium granulated powder. 0.1 g of this granulated powder was prepared separately, length 10 mm, thickness 0.3
mm niobium wire and die (4.0 mm x 3.5 mm
× 1.8 mm), and a tantalum element automatic molding machine (TAP-2R manufactured by Seiken Co., Ltd.) was loaded as shown in Table 2 to prepare a molded body. Then, it was sintered at 1300 ° C. for 30 minutes to obtain a desired sintered body. By adjusting the load of the molding machine, a sintered body having a pore diameter distribution as shown in Table 2 was prepared. The size, specific surface area, and CV value of the sintered body of Example 26 were 24.7 mm 3 , 1.1 m 2 /
g, 85,000 μFV / g, and the numerical values of other examples were within ± 2% of Example 26.
【0171】実施例32〜34
一次粒子を分級することにより、一次粒子の平均粒径を
0.5μmとした以外は、実施例26〜28と同様にし
て焼結体を得た。実施例32の焼結体の大きさ、比表面
積、CV値は各々順に、24.9mm3、1.5m2/
g、125000μFV/gであり、他の例の各数値も
実施例32の±1%以内であった。作製した焼結体の細
孔直径分布を表2に記載した。Examples 32 to 34 Sintered bodies were obtained in the same manner as in Examples 26 to 28 except that the average particle size of the primary particles was changed to 0.5 μm by classifying the primary particles. The size, specific surface area, and CV value of the sintered body of Example 32 were 24.9 mm 3 , 1.5 m 2 /
g, 125,000 μFV / g, and the numerical values of other examples were within ± 1% of Example 32. The pore diameter distribution of the produced sintered body is shown in Table 2.
【0172】実施例35
造粒粉の代りに実施例4と同様にして得たニオブ粉を用
い、実施例31と同様にして焼結体を得た。実施例35
の焼結体の大きさ、比表面積、CV値は各々順に、2
4.8mm3、1.2m2/g、78000μFV/gで
あった。作製した焼結体の細孔直径分布を表2に記載し
た。Example 35 A niobium powder obtained in the same manner as in Example 4 was used in place of the granulated powder, and a sintered body was obtained in the same manner as in Example 31. Example 35
The size, specific surface area, and CV value of the
The values were 4.8 mm 3 , 1.2 m 2 / g and 78000 μFV / g. The pore diameter distribution of the produced sintered body is shown in Table 2.
【0173】比較例10〜12
実施例26〜28で使用したニオブ造粒粉の代わりに、
塩化ニオブをマグネシウムで還元して得たニオブ粉を1
100℃で熱処理して得たニオブ粉とした以外は実施例
26〜28と同様にして焼結体を作製した。作製した比
較例10の焼結体の大きさ、比表面積,CV値は各々順
に、24.3mm3、0.8m2/g、84000μFV
/gであり、他の実施例の諸数値も比較例10の±2%
以内であった。作製した焼結体の細孔直径分布を表2に
記載した。Comparative Examples 10 to 12 Instead of the niobium granulated powder used in Examples 26 to 28,
1 niobium powder obtained by reducing niobium chloride with magnesium
Sintered bodies were produced in the same manner as in Examples 26 to 28 except that niobium powder obtained by heat treatment at 100 ° C. was used. The size, the specific surface area, and the CV value of the produced sintered body of Comparative Example 10 were 24.3 mm 3 , 0.8 m 2 / g, and 84000 μFV, respectively.
/ G, and the numerical values of other examples are ± 2% of those of Comparative Example 10.
It was within. The pore diameter distribution of the produced sintered body is shown in Table 2.
【0174】実施例36
実施例21及び実施例26〜35で焼結体を作製した方
法で、同様の焼結体を各々で60個作製し、各焼結体を
0.1%燐酸水溶液中で80℃,1000分,20Vで
化成し、焼結体表面に誘電体酸化皮膜層を形成した。次
にこの化成済み焼結体を各々30個づつに分け、各30
個組の焼結体に表3に示したA,Bの2種類の陰極剤を
含浸させた後、カーボンペースト、銀ペーストを順に積
層し、エポキシ樹脂で封口してチップ型コンデンサを作
製した。作製したコンデンサの容量出現率および耐湿値
を表4に示した。Example 36 By the method of producing the sintered bodies in Example 21 and Examples 26 to 35, 60 similar sintered bodies were produced respectively, and each sintered body was immersed in a 0.1% phosphoric acid aqueous solution. At 80 ° C. for 1000 minutes at 20 V to form a dielectric oxide film layer on the surface of the sintered body. Next, each of the formed sintered bodies is divided into 30 pieces, each of which is divided into 30 pieces.
After a set of sintered bodies was impregnated with two kinds of cathodic agents A and B shown in Table 3, a carbon paste and a silver paste were sequentially laminated and sealed with an epoxy resin to produce a chip type capacitor. Table 4 shows the capacity appearance rate and the moisture resistance value of the manufactured capacitors.
【0175】比較例13
比較例9〜12で焼結体を作製した方法で、同様の焼結
体を各々で60個作製し、各焼結体を0.1%燐酸水溶
液中で80℃,1000分,20Vで化成し、焼結体表
面に誘電体酸化皮膜層を形成した。次にこの化成済み焼
結体を各々30個づつに分け、各30個組の焼結体に表
3に示したAの陰極剤を含浸させた後、カーボンペース
ト、銀ペーストを順に積層し、エポキシ樹脂で封口して
チップ型コンデンサを作製した。作製したコンデンサの
容量出現率および耐湿値を表4に示した。Comparative Example 13 By the method of producing the sintered body in Comparative Examples 9 to 60, 60 similar sintered bodies were produced, and each sintered body was heated at 80 ° C. in a 0.1% phosphoric acid aqueous solution. The film was formed at 20 V for 1000 minutes to form a dielectric oxide film layer on the surface of the sintered body. Next, each of the formed sintered bodies was divided into 30 pieces, and each set of 30 sintered pieces was impregnated with the cathodic agent A shown in Table 3, and then a carbon paste and a silver paste were laminated in this order. A chip-type capacitor was manufactured by sealing with an epoxy resin. Table 4 shows the capacity appearance rate and the moisture resistance value of the manufactured capacitors.
【0176】実施例37:実施例2と同様な方法で、原
料水素化ニオブ粉の粉砕スラリーを得た。この水素化ニ
オブ粉の平均粒径は、0.6μmであった。このスラリ
ーを遠心沈降させた後、デカンテーションして上澄みを
除去した。無水アセトンをスラリー濃度40質量%にな
るように添加し良く懸濁させたのち、遠心沈降させ、上
澄みを除去した。この操作を3回繰り返した。無水アセ
トンをスラリー濃度が60質量%になるように添加し良
く懸濁した。このスラリーをSUS製のポットに入れ、
平均粒径が1.4μmと23μmの酸化バリウムをニオ
ブに対してそれぞれ15質量%および10質量%添加し
た。更にジルコニアボールを加えて、振とう混合機で1
時間混合した。ジルコニアボールを除去した混合物をニ
オブ製のバットに入れ、1×102Pa、50℃の条件
で乾燥した。実施例2と同様な操作で酸化バリウム混合
のニオブ焼結塊、およびニオブ解砕粉を得た。Example 37: In the same manner as in Example 2, a ground slurry of raw material niobium hydride powder was obtained. The average particle size of this niobium hydride powder was 0.6 μm. This slurry was centrifuged and sedimented, and then decanted to remove the supernatant. Anhydrous acetone was added so as to have a slurry concentration of 40% by mass and well suspended, followed by centrifugal sedimentation to remove the supernatant. This operation was repeated 3 times. Anhydrous acetone was added so that the slurry concentration would be 60% by mass and well suspended. Put this slurry in a SUS pot,
Barium oxide having average particle diameters of 1.4 μm and 23 μm was added to niobium in an amount of 15% by mass and 10% by mass, respectively. Add zirconia balls and mix with a shaking mixer.
Mixed for hours. The mixture from which the zirconia balls were removed was placed in a niobium vat and dried under the conditions of 1 × 10 2 Pa and 50 ° C. Barium oxide mixed niobium sinter and crushed niobium powder were obtained in the same manner as in Example 2.
【0177】15℃以下に冷却したイオン交換水100
0gに、この酸化バリウム混合のニオブ解砕粉500g
を撹拌しながら、水温が20℃を超えないように添加し
た。添加終了後、更に1時間撹拌を継続し、30分静置
した後デカンテーションした。イオン交換水2000g
を加え、30分撹拌の後、30分静置し、デカンテーシ
ョンした。この作業を5回繰り返し、さらに、ニオブ解
砕粉をポリテトラフルオロエチレン製のカラムに入れイ
オン交換水を流しながら4時間水洗浄をおこなった。こ
の時の洗浄水の電気伝導度は、0.5μS/cmであっ
た。Ion-exchanged water 100 cooled to 15 ° C. or lower
To 0 g, 500 g of this barium oxide mixed niobium crushed powder
Was added while stirring so that the water temperature did not exceed 20 ° C. After the addition was completed, stirring was continued for another 1 hour, and the mixture was allowed to stand for 30 minutes and then decanted. Deionized water 2000g
Was added, the mixture was stirred for 30 minutes, allowed to stand for 30 minutes, and decanted. This operation was repeated 5 times, and the crushed niobium powder was placed in a column made of polytetrafluoroethylene and washed with water for 4 hours while flowing ion-exchanged water. The electric conductivity of the wash water at this time was 0.5 μS / cm.
【0178】水洗浄を終了したニオブ解砕粉を、減圧
下、50℃で乾燥し、更に加圧下、窒素を流通させ、3
00℃で3時間、窒化処理を行い、約350gのニオブ
粉を得た。 窒素含有量は、0.30%であった。この
ニオブ粉のタッピング密度、平均粒子径、安息角、BE
T比表面積、平均細孔直径などの物理物性を表5に示
す。実施例2と同様な操作で成形体を作成した。この成
形体の外観、質量のばらつきを表5に示す。The niobium crushed powder which has been washed with water is dried at 50 ° C. under reduced pressure, and nitrogen is circulated under pressure to make it 3
Nitriding treatment was performed at 00 ° C. for 3 hours to obtain about 350 g of niobium powder. The nitrogen content was 0.30%. Tapping density, average particle size, angle of repose, BE of this niobium powder
Table 5 shows physical properties such as T specific surface area and average pore diameter. A molded body was prepared in the same manner as in Example 2. Table 5 shows the appearance and variation in mass of this molded product.
【0179】更に、実施例2と同様な操作で誘電皮膜を
形成させた後、つい電極を形成し、カーボン層、銀ペー
スト層を積層させた。次にリードフレームを載せた後、
全体をエポキシ樹脂で封止して、チップ型コンデンサを
作製した。このコンデンサの容量出現率、およびこのチ
ップ型コンデンサの容量とLC値の平均(n=100
個)を表5に示す。Further, a dielectric film was formed by the same operation as in Example 2, then an electrode was formed, and a carbon layer and a silver paste layer were laminated. Next, after mounting the lead frame,
The whole was sealed with an epoxy resin to produce a chip type capacitor. The capacitance appearance rate of this capacitor, and the average of the capacitance and LC value of this chip type capacitor (n = 100
Are shown in Table 5.
【0180】実施例38〜44:実施例37と同様な方
法で、添加する賦活剤の種類、混合する2種類の平均粒
径、および添加量を変化させて賦活剤混合のニオブ解砕
粉を得た。賦活剤を溶出する溶媒を、水、酸、アルカ
リ、イオン交換樹脂を含む溶液、硝酸アンモニウム溶
液、エチレンジアミン4酢酸を含む溶液の中から選び、
実施例37と同様な方法で賦活剤を溶出して、ニオブ粉
を得た。その物理物性を表5に示す。更に実施例37と
同様な方法で、成形体、焼結体を作成して、チップ型コ
ンデンサを作成した。成形体の外観、質量のばらつき、
コンデンサの容量とLCの平均を表5に示す。Examples 38 to 44: In the same manner as in Example 37, the type of activator to be added, the average particle diameters of the two types of admixtures, and the addition amount were changed to obtain niobium crushed powder mixed with the activator. Obtained. The solvent for eluting the activator is selected from water, an acid, an alkali, a solution containing an ion exchange resin, an ammonium nitrate solution, and a solution containing ethylenediaminetetraacetic acid,
The activator was eluted in the same manner as in Example 37 to obtain niobium powder. The physical properties are shown in Table 5. Further, a molded body and a sintered body were prepared in the same manner as in Example 37 to prepare a chip type capacitor. Appearance of molded body, variation in mass,
Table 5 shows the average capacitance and LC of the capacitors.
【0181】実施例45〜47:実施例37と同様な方
法を用い、出発原料に実施例45はニオブ−ネオジム合
金粉、実施例46はニオブ−タングステン合金粉、実施
例47はニオブ−タンタル合金粉を用い、それぞれニオ
ブ合金粉を得た。その物理物性を表5に示す。更に実施
例37と同様な方法で、成形体、焼結体を作成して、チ
ップ型コンデンサを作成した。成形体の外観、質量のば
らつき、コンデンサの容量とLCの平均を表5に示す。Examples 45 to 47: Using the same method as in Example 37, the starting materials used in Example 45 were niobium-neodymium alloy powder, Example 46 was niobium-tungsten alloy powder, and Example 47 was niobium-tantalum alloy. Using powder, niobium alloy powder was obtained. The physical properties are shown in Table 5. Further, a molded body and a sintered body were prepared in the same manner as in Example 37 to prepare a chip type capacitor. Table 5 shows the appearance of the molded product, variation in mass, and average capacitance and LC of the capacitor.
【0182】実施例48〜58:実施例37〜47で作
成したニオブ粉を用いて実施例2と同様な方法でニオブ
焼結体を作成した。その焼結体の細孔直径分布を表6に
示す。
実施例59〜69:実施例48〜58で作作製したニオ
ブ焼結体を各々100個作製し、各焼結体を0.1%燐
酸水溶液中で80℃,1000分,20Vで化成し、焼
結体表面に誘電体酸化皮膜層を形成した。次にこの化成
済み焼結体を表3に示したAの陰極剤を含浸させた後、
カーボンペースト、銀ペーストを順に積層し、エポキシ
樹脂で封口してチップ型コンデンサを作製した。作製し
たコンデンサの容量出現率およびESRを表7に示す。Examples 48 to 58: Using the niobium powders produced in Examples 37 to 47, niobium sintered bodies were produced in the same manner as in Example 2. Table 6 shows the pore diameter distribution of the sintered body. Examples 59 to 69: 100 niobium sinters produced in each of Examples 48 to 58 were produced, and each sinter was formed in a 0.1% phosphoric acid aqueous solution at 80 ° C. for 1000 minutes at 20 V. A dielectric oxide film layer was formed on the surface of the sintered body. Next, after impregnating the formed sintered body with the cathodic agent A shown in Table 3,
A carbon paste and a silver paste were sequentially laminated and sealed with an epoxy resin to produce a chip type capacitor. Table 7 shows the capacitance appearance rate and ESR of the manufactured capacitors.
【0183】比較例14〜17:比較例9〜12で作製
したニオブ焼結体を各々100個作製し、各焼結体を
0.1%燐酸水溶液中で80℃,1000分,20Vで
化成し、焼結体表面に誘電体酸化皮膜層を形成した。次
にこの化成済み焼結体を表3に示したAの陰極剤を含浸
させた後、カーボンペースト、銀ペーストを順に積層
し、エポキシ樹脂で封口してチップ型コンデンサを作製
した。作製したコンデンサの容量出現率およびESRを
表7に示す。Comparative Examples 14 to 17: 100 niobium sintered bodies produced in Comparative Examples 9 to 12 were produced, and each sintered body was formed in a 0.1% phosphoric acid aqueous solution at 80 ° C. for 1000 minutes at 20V. Then, a dielectric oxide film layer was formed on the surface of the sintered body. Next, after the formed sintered body was impregnated with the cathode agent A shown in Table 3, a carbon paste and a silver paste were sequentially laminated and sealed with an epoxy resin to manufacture a chip type capacitor. Table 7 shows the capacitance appearance rate and ESR of the manufactured capacitors.
【0184】[0184]
【表1】 [Table 1]
【0185】[0185]
【表2】 [Table 2]
【0186】[0186]
【表3】 [Table 3]
【0187】[0187]
【表4】 [Table 4]
【0188】[0188]
【表5】 [Table 5]
【0189】[0189]
【表6】 [Table 6]
【0190】[0190]
【表7】 [Table 7]
【0191】[0191]
【発明の効果】タッピング密度が0.5〜2.5g/m
l、平均粒子径が10〜1000μm、安息角が10〜
60度、BET比表面積が0.5〜40m2/gである
本発明のコンデンサ用ニオブ粉は、流れ性が良好で、連
続成形が可能であり、そのニオブ粉を焼結して得られる
0.01μm〜500μmの範囲内に細孔直径ピークト
ップを有し、好ましくは、複数の細孔直径ピークトップ
を有する細孔分布を持つ本発明のニオブ焼結体をコンデ
ンサ電極に用いることにより、高い容量出現率が得ら
れ、漏れ電流が低く、耐湿性の良好なコンデンサが生産
できる。The tapping density is 0.5 to 2.5 g / m.
1, the average particle size is 10 to 1000 μm, and the angle of repose is 10
The niobium powder for a capacitor of the present invention having a BET specific surface area of 60 ° and a BET specific surface area of 0.5 to 40 m 2 / g has good flowability, can be continuously molded, and is obtained by sintering the niobium powder. Higher by using the niobium sintered body of the present invention having a pore diameter peak top in the range of 0.01 μm to 500 μm, and preferably having a pore distribution having a plurality of pore diameter peak tops, for a capacitor electrode. Capacitance appearance rate can be obtained, a leakage current is low, and a capacitor with good moisture resistance can be produced.
【0192】[0192]
【図1】本発明のニオブ粉の様子を模式的に示す断面図
である。FIG. 1 is a cross-sectional view schematically showing a state of niobium powder of the present invention.
【図2】本発明のニオブ粉の細孔分布を水銀圧入法で測
定した場合の概略図である。FIG. 2 is a schematic diagram when the pore distribution of the niobium powder of the present invention is measured by the mercury penetration method.
1・・・細孔A 2・・・細孔B 1 ... pore A 2 ... Pores B
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22C 27/02 102 C22C 27/02 102Z H01G 9/00 H01G 9/05 K 9/028 9/24 C 9/032 9/02 311 9/035 321 9/052 331C 331G 331F (72)発明者 川崎 俊哉 神奈川県川崎市川崎区大川町5−1 昭和 電工株式会社研究開発センター内 (72)発明者 和田 紘一 神奈川県川崎市川崎区大川町5−1 昭和 電工株式会社研究開発センター内 Fターム(参考) 4K017 AA04 BA07 CA07 DA08 EA01 EH01 EH04 EH18 FB02 FB04 FB06 FB09 FB10 4K018 AA40 BA20 BB01 BB04 BC13 CA11 DA03 DA12 DA21 DA32 FA27 JA14 KA39 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C22C 27/02 102 C22C 27/02 102Z H01G 9/00 H01G 9/05 K 9/028 9/24 C 9 / 032 9/02 311 9/035 321 9/052 331C 331G 331F (72) Inventor Toshiya Kawasaki 5-1 Okawamachi, Kawasaki-ku, Kawasaki-shi, Kanagawa Showa Denko K.K. (72) Inventor Koichi Wada, Kanagawa 5-1, Okawa-cho, Kawasaki-ku, Kawasaki Prefecture, Japan F-Term in the Research and Development Center, Showa Denko KK (Reference) 4K017 AA04 BA07 CA07 DA08 EA01 EH01 EH04 EH18 FB02 FB04 FB06 FB09 FB10 4K018 AA40 BA20 BB01 BB04 BC13 CA11 DA03 DA12 DA21 DA32 DA27 FA27 FA27 KA39
Claims (63)
であるコンデンサ用ニオブ粉。1. A tapping density of 0.5 to 2.5 g / ml.
Niobium powder for capacitors.
求項1に記載のニオブ粉。2. The niobium powder according to claim 1, which has an average particle diameter of 10 to 1000 μm.
は2に記載のニオブ粉。3. The niobium powder according to claim 1, which has an angle of repose of 10 to 60 degrees.
ある請求項1乃至3のいずれか1項に記載のニオブ粉。4. The niobium powder according to claim 1, which has a BET specific surface area of 0.5 to 40 m 2 / g.
直径ピークトップを有する細孔分布を持つ請求項1乃至
4のいずれか1項に記載のニオブ粉。5. The niobium powder according to claim 1, having a pore distribution having a pore diameter peak top in the range of 0.01 μm to 500 μm.
を有する請求項5に記載のニオブ粉。6. The niobium powder according to claim 5, wherein the pore distribution has a plurality of pore diameter peak tops.
m〜100μmの範囲にある請求項5乃至6のいずれか
1項に記載のニオブ粉。7. All of the pore diameter peak tops are 0.5 μm.
The niobium powder according to claim 5, which is in the range of m to 100 μm.
る群より選ばれる少なくとも1種の元素の含有量が、2
00,000質量ppm以下である請求項1乃至7のい
ずれか1項に記載のニオブ粉。8. The content of at least one element selected from the group consisting of elements of nitrogen, carbon, boron and sulfur is 2
The niobium powder according to any one of claims 1 to 7, having an amount of not more than 0,000 mass ppm.
オブ粉を用いた焼結体。9. A sintered body using the niobium powder according to any one of claims 1 to 8.
孔直径ピークトップを有する細孔分布を持つ請求項9に
記載の焼結体。10. The sintered body according to claim 9, which has a pore distribution having a pore diameter peak top in the range of 0.01 μm to 500 μm.
て、ニオブ焼結体の細孔分布が、複数の細孔直径ピーク
トップを有することを特徴とするニオブ焼結体。11. A niobium sintered body for a capacitor electrode, wherein the pore distribution of the niobium sintered body has a plurality of pore diameter peak tops.
プよりなる請求項11に記載のニオブ焼結体。12. The niobium sintered body according to claim 11, wherein the pore distribution has two pore diameter peak tops.
強度が最も大きい2つのピークのピークトップが、それ
ぞれ0.2〜0.7μm及び0.7〜3μmの範囲にあ
る請求項11または12に記載のニオブ焼結体。13. The peak top of the two peaks having the largest relative intensities among the plurality of pore diameter peak tops is in the range of 0.2 to 0.7 μm and 0.7 to 3 μm, respectively. The niobium sintered body according to item 12.
強度が最も大きいピークのピークトップが、相対強度が
次に大きいピークのピークトップより大径側にある請求
項11乃至13のいずれか1項に記載のニオブ焼結体。14. The plurality of pore diameter peak tops, the peak top of the peak having the largest relative intensity is located on the larger diameter side than the peak top of the peak having the next largest relative intensity. The niobium sintered body according to item 1.
m3以上の体積を持つ請求項9乃至14に記載のニオブ
焼結体。15. The sintered body has a pore volume of 10 m including pore volume.
The niobium sintered body according to claim 9, which has a volume of m 3 or more.
積を持つ請求項9乃至15に記載のニオブ焼結体。16. The niobium sintered body according to claim 9, wherein the sintered body has a specific surface area of 0.2 to 7 m 2 / g.
乃至16に記載のニオブ焼結体。17. The sintered body is partly nitrided.
The niobium sintered body according to any one of 1 to 16.
0000〜200000μFV/gのCV値を持つ焼結
体を与えるニオブ成形体より得られた焼結体である請求
項12乃至17のいずれか1項に記載のニオブ焼結体。18. When the sintered body is sintered at 1300 ° C. 4
The niobium sintered body according to any one of claims 12 to 17, which is a sintered body obtained from a niobium compact which gives a sintered body having a CV value of 0000 to 200000 µFV / g.
のニオブ焼結体を一方の電極とし、対電極との間に介在
した誘電体とから構成されたコンデンサ。19. A capacitor comprising the niobium sintered body according to any one of claims 9 to 18 as one electrode, and a dielectric interposed between the electrode and the counter electrode.
項19に記載のコンデンサ。20. The capacitor according to claim 19, wherein the main component of the dielectric is niobium oxide.
半導体からなる群より選ばれる少なくとも1種の材料で
ある請求項19に記載のコンデンサ。21. The capacitor according to claim 19, wherein the counter electrode is at least one material selected from the group consisting of an electrolytic solution, an organic semiconductor and an inorganic semiconductor.
半導体が、ベンゾピロリン4量体とクロラニルからなる
有機半導体、テトラチオテトラセンを主成分とする有機
半導体、テトラシアノキノジメタンを主成分とする有機
半導体及び導電性高分子からなる群より選ばれる少なく
とも1種の材料である請求項21に記載のコンデンサ。22. The counter electrode is an organic semiconductor, and the organic semiconductor mainly comprises benzopyrroline tetramer and chloranil, an organic semiconductor containing tetrathiotetracene as a main component, and tetracyanoquinodimethane. 22. The capacitor according to claim 21, which is at least one material selected from the group consisting of organic semiconductors and conductive polymers as components.
オフェン、ポリアニリン及びこれらの置換誘導体から選
ばれる少なくとも1種である請求項22に記載のコンデ
ンサ。23. The capacitor according to claim 22, wherein the conductive polymer is at least one selected from polypyrrole, polythiophene, polyaniline and substituted derivatives thereof.
一般式(2) 【化1】 (式中、R1〜R4はそれぞれ独立して水素原子、炭素数
1乃至10の直鎖上もしくは分岐状の飽和もしくは不飽
和のアルキル基、アルコキシ基あるいはアルキルエステ
ル基、またはハロゲン原子、ニトロ基、シアノ基、1
級、2級もしくは3級アミノ基、CF3基、フェニル基
及び置換フェニル基からなる群から選ばれる一価基を表
わす。R1とR2及びR3とR4の炭化水素鎖は互いに任意
の位置で結合して、かかる基により置換を受けている炭
素原子と共に少なくとも1つ以上の3〜7員環の飽和ま
たは不飽和炭化水素の環状構造を形成する二価鎖を形成
してもよい。前記環状結合鎖には、カルボニル、エーテ
ル、エステル、アミド、スルフィド、スルフィニル、ス
ルホニル、イミノの結合を任意の位置に含んでもよい。
Xは酸素、硫黄又は窒素原子を表し、R5はXが窒素原
子の時のみ存在して、独立して水素又は炭素数1乃至1
0の直鎖上もしくは分岐状の飽和もしくは不飽和のアル
キル基を表す。)で示される繰り返し単位を含む重合体
に、ドーパントをドープした導電性高分子である請求項
22に記載のコンデンサ。24. The conductive polymer is represented by the following general formula (1) or general formula (2): (In the formula, R 1 to R 4 are each independently a hydrogen atom, a linear or branched saturated or unsaturated alkyl group having 1 to 10 carbon atoms, an alkoxy group or an alkyl ester group, a halogen atom, or a nitro group. Groups, cyano groups, 1
It represents a monovalent group selected from the group consisting of primary, secondary or tertiary amino group, CF 3 group, phenyl group and substituted phenyl group. The hydrocarbon chains of R 1 and R 2 and R 3 and R 4 are bonded to each other at any position, and at least one saturated or unsaturated 3 to 7 membered ring together with the carbon atom substituted by such a group. You may form the bivalent chain which forms the cyclic structure of a saturated hydrocarbon. The cyclic bond chain may contain a bond of carbonyl, ether, ester, amide, sulfide, sulfinyl, sulfonyl and imino at any position.
X represents an oxygen, sulfur or nitrogen atom, R 5 is present only when X is a nitrogen atom, and is independently hydrogen or C 1 to C 1.
And 0 represents a linear or branched saturated or unsaturated alkyl group. 23. The capacitor according to claim 22, which is a conductive polymer obtained by doping a polymer containing a repeating unit represented by the formula (1) with a dopant.
1乃至6の直鎖状もしくは分岐状の飽和もしくは不飽和
のアルキル基、または該アルキル基が互いに任意の位置
で結合して、2つの酸素元素を含む少なくとも1つ以上
の5〜7員環の飽和炭化水素の環状構造を形成する置換
基を表わす。また、前記環状構造には置換されていても
よいビニレン結合を有するもの、置換されていてもよい
フェニレン構造のものが含まれる。)で示される繰り返
し単位を含む導電性高分子である請求項24に記載のコ
ンデンサ。25. The conductive polymer has the following general formula (3): (In the formula, R 6 and R 7 are each independently a hydrogen atom, a linear or branched saturated or unsaturated alkyl group having 1 to 6 carbon atoms, or the alkyl group is bonded to each other at any position. And represents a substituent forming a cyclic structure of at least one 5- to 7-membered saturated hydrocarbon containing two oxygen elements, and an optionally substituted vinylene bond is contained in the cyclic structure. 25. The capacitor according to claim 24, which is a conductive polymer including a repeating unit represented by the formula (1) or a phenylene structure which may be substituted.
ンジオキシチオフェン)にドーパントをドープした導電
性高分子である請求項22に記載のコンデンサ。26. The capacitor according to claim 22, wherein the conductive polymer is a conductive polymer obtained by doping poly (3,4-ethylenedioxythiophene) with a dopant.
有する材料からなる請求項19に記載のコンデンサ。27. The capacitor according to claim 19, wherein the counter electrode is made of a material having a layered structure in at least a part thereof.
ーパントとして含んだ材料である請求項19に記載のコ
ンデンサ。28. The capacitor according to claim 19, wherein the counter electrode is a material containing an organic sulfonate anion as a dopant.
たはニオブ化合物を賦活処理することを特徴とする請求
項1乃至8のいずれか1項に記載のニオブ粉の製造方
法。29. The method for producing niobium powder according to claim 1, wherein the niobium or niobium compound is activated in the method for producing niobium powder.
が、焼結工程及び解砕工程からなる群より選ばれる少な
くとも1種の工程で行なわれることを特徴とする請求項
29に記載のニオブ粉の製造方法。30. The production of niobium powder according to claim 29, wherein the activation treatment of niobium or a niobium compound is performed in at least one step selected from the group consisting of a sintering step and a crushing step. Method.
が、ニオブまたはニオブ化合物と、賦活剤とを含む混合
物を用いて行なわれることを特徴とする請求項29また
は30に記載のニオブ粉の製造方法。31. The method for producing niobium powder according to claim 29, wherein the activation treatment of niobium or a niobium compound is performed using a mixture containing niobium or a niobium compound and an activator.
が、0.01μm〜10μmである請求項29乃至31
のいずれか1項に記載のニオブ粉の製造方法。32. The average particle size of niobium or a niobium compound is from 0.01 μm to 10 μm.
The method for producing the niobium powder according to any one of 1.
素、ホウ素及び硫黄からなる群より選ばれる少なくとも
1種の元素を200,000ppm以下含有するもので
ある請求項29乃至32のいずれか1項に記載のニオブ
粉の製造方法。33. The niobium or niobium compound contains at least 200,000 ppm or less of at least one element selected from the group consisting of nitrogen, carbon, boron and sulfur. A method for producing the described niobium powder.
合金及び水素化ニオブ合金からなる群より選ばれる少な
くとも1種である請求項29乃至33のいずれか1項に
記載のニオブ粉の製造方法。34. The method for producing niobium powder according to claim 29, wherein the niobium compound is at least one selected from the group consisting of niobium hydride, niobium alloys and niobium hydride alloys.
オブ以外の他の合金成分が、原子番号88以下の元素か
らなる群から、水素、窒素、酸素、フッ素、塩素、臭
素、沃素、ニオブ、ヘリウム、ネオン、アルゴン、クリ
プトン、キセノン、及びラドンを除いた群から選ばれる
少なくとも1種の元素である請求項34に記載のニオブ
粉の製造方法。35. A niobium alloy and a hydrogenated niobium alloy, wherein the alloy components other than niobium are hydrogen, nitrogen, oxygen, fluorine, chlorine, bromine, iodine and niobium, selected from the group consisting of elements having an atomic number of 88 or less. 35. The method for producing niobium powder according to claim 34, which is at least one element selected from the group excluding helium, neon, argon, krypton, xenon, and radon.
を含む混合物が、溶媒を用いて混合されたものである請
求項31に記載のニオブ粉の製造方法。36. The method for producing niobium powder according to claim 31, wherein a mixture containing niobium or a niobium compound and an activator is mixed using a solvent.
類、セルソルブ類、ケトン類、脂肪族炭化水素類、芳香
族炭化水素類、ハロゲン化炭化水素類よりなる群から選
ばれる少なくとも1種の溶媒である請求項36に記載の
ニオブ粉の製造方法。37. At least one solvent selected from the group consisting of water, alcohols, ethers, cellosolves, ketones, aliphatic hydrocarbons, aromatic hydrocarbons and halogenated hydrocarbons as the solvent. 37. The method for producing niobium powder according to claim 36.
総量に対して1〜40質量%で用いられる請求項31に
記載のニオブ粉の製造方法。38. The method for producing niobium powder according to claim 31, wherein the activator is used in an amount of 1 to 40% by mass based on the total amount of niobium or the niobium compound.
μmである請求項31または38に記載のニオブ粉の製
造方法。39. The activator has an average particle size of 0.01 to 500.
The method for producing niobium powder according to claim 31 or 38, wherein the niobium powder has a thickness of μm.
る請求項31、38及び39のいずれか1項に記載のニ
オブ粉の製造方法。40. The method for producing niobium powder according to claim 31, 38, or 39, wherein the activator has a plurality of particle size peak tops.
除去される物質である請求項31乃至40のいずれか1
項に記載のニオブ粉の製造方法。41. The activator is a substance that is removed as a gas at 2000 ° C. or lower, according to any one of claims 31 to 40.
The method for producing the niobium powder according to the item.
キノン、樟脳、ポリアクリル酸、ポリアクリル酸エステ
ル、ポリアクリルアミド、ポリメタクリル酸、ポリメタ
クリル酸エステル、ポリメタクリルアミド、ポリビニル
アルコール、NH 4Cl、ZnO、WO2、SnO2、M
nO3からなる群から選ばれる少なくとも1種である請
求項41に記載のニオブ粉の製造方法。42. The activator is naphthalene, anthracene,
Quinone, camphor, polyacrylic acid, polyacrylic acid ester
, Polyacrylamide, polymethacrylic acid, polymetha
Acrylic ester, polymethacrylamide, polyvinyl
Alcohol, NH FourCl, ZnO, WO2, SnO2, M
nO3A contract which is at least one selected from the group consisting of
The method for producing niobium powder according to claim 41.
物質、酸性溶液可溶性物質、アルカリ性溶液可溶性物
質、錯体を形成しこれらの可溶性物質となる物質、及び
2000℃以下でこれらの可溶性物質となる物質からな
る群から選ばれる少なくとも1種である請求項31乃至
40のいずれか1項に記載のニオブ粉の製造方法。43. An activator comprising a water-soluble substance, an organic solvent-soluble substance, an acidic solution-soluble substance, an alkaline solution-soluble substance, a substance which forms a complex with these soluble substances, and these soluble substances at 2000 ° C. or lower. The method for producing niobium powder according to any one of claims 31 to 40, which is at least one selected from the group consisting of:
酸、ハロゲン、過ハロゲン酸、次亜ハロゲン酸、硝酸、
亜硝酸、燐酸、または硼酸との化合物、金属、金属水酸
化物、及び金属酸化物とからなる群から選ばれる少なく
とも1種である請求項43に記載のニオブ粉の製造方
法。44. The activator is a metal, carbonic acid, sulfuric acid, sulfurous acid, halogen, perhalogen acid, hypohalogen acid, nitric acid,
The method for producing niobium powder according to claim 43, which is at least one selected from the group consisting of a compound with nitrous acid, phosphoric acid, or boric acid, a metal, a metal hydroxide, and a metal oxide.
ウム、ルビジウム、セシウム、フランシウム、ベリリウ
ム、マグネシウム、カルシウム、ストロンチウム、バリ
ウム、ラジウム、スカンジウム、イットリウム、セリウ
ム、ネオジム、チタニウム、ジルコニウム、ハフニウ
ム、バナジウム、ニオブ、タンタル、モリブデン、タン
グステン、マンガン、レニウム、ルテニウム、オスミウ
ム、コバルト、ロジウム、イリジウム、ニッケル、パラ
ジウム、プラチナ、銀、金、亜鉛、カドミウム、硼素、
アルミニウム、ガリウム、インジウム、タリウム、珪
素、ゲルマニウム、錫、鉛、砒素、アンチモン、ビスマ
ス、セレン、テルル、ポロニウム、及びこれらの化合物
からなる群より選ばれる少なくとも1種である請求項4
3に記載のニオブ粉の製造方法。45. The activator is lithium, sodium, potassium, rubidium, cesium, francium, beryllium, magnesium, calcium, strontium, barium, radium, scandium, yttrium, cerium, neodymium, titanium, zirconium, hafnium, vanadium, niobium. , Tantalum, molybdenum, tungsten, manganese, rhenium, ruthenium, osmium, cobalt, rhodium, iridium, nickel, palladium, platinum, silver, gold, zinc, cadmium, boron,
5. At least one selected from the group consisting of aluminum, gallium, indium, thallium, silicon, germanium, tin, lead, arsenic, antimony, bismuth, selenium, tellurium, polonium, and compounds thereof.
3. The method for producing niobium powder according to item 3.
工程時に、加熱及び/または減圧により賦活剤の除去を
行なう処理である請求項29乃至42のいずれか1項に
記載のニオブ粉の製造方法。46. The niobium according to any one of claims 29 to 42, wherein the activation treatment is a treatment of removing the activator by heating and / or reducing pressure before or during the sintering step. Powder manufacturing method.
または解砕工程後の、焼結物または解砕物に溶媒を接触
させ、賦活剤成分を除去する処理である請求項29乃至
40、43乃至45のいずれか1項に記載のニオブ粉の
製造方法。47. The activation treatment is performed after the sintering step and during the crushing step,
The method for producing niobium powder according to any one of claims 29 to 40 and 43 to 45, which is a treatment of bringing a solvent into contact with the sinter or the crushed product after the crushing step to remove the activator component. .
カリ性溶液、及び可溶性錯体を形成する配位子を含む溶
液よりなる群から選ばれる少なくとも1種である請求項
47に記載のニオブ粉の製造方法。48. The niobium powder according to claim 47, wherein the solvent is at least one selected from the group consisting of water, an organic solvent, an acidic solution, an alkaline solution, and a solution containing a ligand that forms a soluble complex. Manufacturing method.
酸、及び塩酸からなる群から選ばれる少なくとも1種の
溶液である請求項48に記載のニオブ粉の製造方法。49. The method for producing niobium powder according to claim 48, wherein the acidic solution is at least one solution selected from the group consisting of nitric acid, sulfuric acid, hydrofluoric acid, and hydrochloric acid.
酸化物及びアンモニアからなる群から選ばれる少なくと
も1種を含む請求項48に記載のニオブ粉の製造方法。50. The method for producing niobium powder according to claim 48, wherein the alkaline solution contains at least one selected from the group consisting of alkali metal hydroxides and ammonia.
エチレンジアミン四酢酸からなる群から選ばれる少なく
とも1種である請求項48に記載のニオブ粉の製造方
法。51. The method for producing niobium powder according to claim 48, wherein the ligand is at least one selected from the group consisting of ammonia, glycine, and ethylenediaminetetraacetic acid.
ある請求項48に記載のニオブ粉の製造方法。52. The method for producing niobium powder according to claim 48, wherein the organic solvent is methyl isobutyl ketone.
ニオブ粉を、液体窒化、イオン窒化、及びガス窒化の方
法からなる群より選ばれる少なくとも1種の方法により
処理することを特徴とする窒素を含むニオブ粉の製造方
法。53. The niobium powder according to any one of claims 1 to 7 is treated by at least one method selected from the group consisting of liquid nitriding, ion nitriding and gas nitriding methods. A method for producing niobium powder containing nitrogen.
ニオブ粉を、固相炭化、及び液体炭化の方法からなる群
より選ばれる少なくとも1種の方法により処理すること
を特徴とする炭素を含むニオブ粉の製造方法。54. The niobium powder according to any one of claims 1 to 7 is treated by at least one method selected from the group consisting of solid phase carbonization and liquid carbonization. A method for producing niobium powder containing carbon.
ニオブ粉を、ガスホウ化、及び固相ホウ化の方法からな
る群より選ばれる少なくとも1種の方法により処理され
ることを特徴とするホウ素を含むニオブ粉の製造方法。55. The niobium powder according to any one of claims 1 to 7 is treated by at least one method selected from the group consisting of gas boration and solid phase boration. A method for producing niobium powder containing boron.
ニオブ粉を、ガス硫化、イオン硫化、及び固相硫化の方
法からなる群より選ばれる少なくとも1種の方法により
処理することを特徴とする硫黄を含むニオブ粉の製造方
法。56. Treating the niobium powder according to any one of claims 1 to 7 by at least one method selected from the group consisting of gas sulfide, ion sulfide, and solid phase sulfide. A method for producing niobium powder containing sulfur, which is characterized.
載の製造方法で得られたニオブ粉。57. A niobium powder obtained by the method according to any one of claims 29 to 56.
か1項に記載のニオブ粉を用ることを特徴とするニオブ
焼結体の製造方法。58. A method for producing a niobium sintered body, which comprises using the niobium powder according to any one of claims 1 to 8 and 57.
結体表面上に形成された誘電体と、前記誘電体上に設け
られた対電極を含むコンデンサの製造方法であって、ニ
オブ焼結体が、請求項1乃至8及び請求項57のいずれ
か1項に記載のニオブ粉を焼結したものであることを特
徴とするコンデンサの製造方法。59. A method of manufacturing a capacitor, comprising a niobium sintered body as one electrode, a dielectric formed on the surface of the sintered body, and a counter electrode provided on the dielectric. A method of manufacturing a capacitor, wherein the sintered body is one obtained by sintering the niobium powder according to any one of claims 1 to 8 and 57.
のである請求59に記載のコンデンサの製造方法。60. The method of manufacturing a capacitor according to claim 59, wherein the dielectric is formed by electrolytic oxidation.
結体表面上に形成された誘電体と、前記誘電体上に設け
られた対電極を含むコンデンサの製造方法であって、ニ
オブ焼結体が、請求項9乃至18のいずれか1項に記載
のニオブ焼結体であることを特徴とするコンデンサの製
造方法。61. A method of manufacturing a capacitor comprising a niobium sintered body as one electrode, a dielectric formed on the surface of the sintered body, and a counter electrode provided on the dielectric, the method comprising: A method for manufacturing a capacitor, wherein the sintered body is the niobium sintered body according to any one of claims 9 to 18.
載のコンデンサを使用した電子回路。62. An electronic circuit using the capacitor according to any one of claims 19 to 28.
載のコンデンサを使用した電子機器。63. An electronic device using the capacitor according to any one of claims 19 to 28.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002138915A JP4010868B2 (en) | 2001-05-15 | 2002-05-14 | Niobium powder, niobium sintered body, and capacitor using niobium sintered body |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001-145571 | 2001-05-15 | ||
JP2001145571 | 2001-05-15 | ||
JP2001340318 | 2001-11-06 | ||
JP2001-340318 | 2001-11-06 | ||
JP2002138915A JP4010868B2 (en) | 2001-05-15 | 2002-05-14 | Niobium powder, niobium sintered body, and capacitor using niobium sintered body |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006336468A Division JP4371323B2 (en) | 2001-05-15 | 2006-12-14 | Niobium powder, niobium sintered body, and capacitor using niobium sintered body |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003213302A true JP2003213302A (en) | 2003-07-30 |
JP4010868B2 JP4010868B2 (en) | 2007-11-21 |
Family
ID=27670178
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002138915A Expired - Fee Related JP4010868B2 (en) | 2001-05-15 | 2002-05-14 | Niobium powder, niobium sintered body, and capacitor using niobium sintered body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4010868B2 (en) |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005093994A (en) * | 2003-08-13 | 2005-04-07 | Showa Denko Kk | Chip-shaped solid electrolytic capacitor and manufacturing method thereof |
JP2005101562A (en) * | 2003-08-20 | 2005-04-14 | Showa Denko Kk | Chip solid electrolytic capacitor and its manufacturing method |
JP2005123605A (en) * | 2003-09-26 | 2005-05-12 | Showa Denko Kk | Capacitor manufacturing method |
WO2005048277A1 (en) * | 2003-11-13 | 2005-05-26 | Showa Denko K.K. | Solid electrolyte capacitor |
JP2005294817A (en) * | 2004-03-09 | 2005-10-20 | Showa Denko Kk | Solid electrolytic capacitor and its use |
JP2006179886A (en) * | 2004-11-29 | 2006-07-06 | Showa Denko Kk | Porous anode body for solid electrolytic capacitor, manufacturing method therefor, and solid electrolytic capacitor |
JP2007220731A (en) * | 2006-02-14 | 2007-08-30 | Sekisui Chem Co Ltd | Porous body for battery, method for producing porous body for battery, solid electrolytic capacitor, electric double layer capacitor, and solid oxide fuel cell |
US7760489B2 (en) | 2007-03-28 | 2010-07-20 | Sanyo Electric Co., Ltd. | Solid electrolytic capacitor and method of manufacturing the same |
JP2010199572A (en) * | 2009-02-20 | 2010-09-09 | Avx Corp | Anode for solid electrolytic capacitor containing non-metallic surface treatment |
JP2010533642A (en) * | 2007-07-18 | 2010-10-28 | キャボット コーポレイション | High voltage niobium oxide and capacitor including the same |
WO2012086272A1 (en) | 2010-12-24 | 2012-06-28 | 昭和電工株式会社 | Tungsten powder, positive electrode body for capacitors, and electrolytic capacitor |
US8349683B2 (en) | 2003-09-26 | 2013-01-08 | Showa Denko K.K. | Production method of a capacitor |
JP2013074032A (en) * | 2011-09-27 | 2013-04-22 | Sanyo Electric Co Ltd | Method for manufacturing solid electrolytic capacitor |
WO2013058018A1 (en) | 2011-10-18 | 2013-04-25 | 昭和電工株式会社 | Method of manufacturing anode of capacitor |
WO2013094252A1 (en) | 2011-12-19 | 2013-06-27 | 昭和電工株式会社 | Tungsten capacitor anode and process for production thereof |
WO2013172453A1 (en) | 2012-05-18 | 2013-11-21 | 昭和電工株式会社 | Method for manufacturing capacitor element |
WO2013190886A1 (en) | 2012-06-22 | 2013-12-27 | 昭和電工株式会社 | Positive electrode body for capacitor |
WO2013190885A1 (en) | 2012-06-22 | 2013-12-27 | 昭和電工株式会社 | Positive electrode body for solid electrolytic capacitor |
US9959980B2 (en) | 2014-12-09 | 2018-05-01 | Showa Denko K.K. | Solid electrolytic capacitor element and method for manufacturing solid electrolytic capacitor element |
CN114787086A (en) * | 2020-10-09 | 2022-07-22 | 第一稀元素化学工业株式会社 | Zirconia powder, zirconia sintered body, and method for producing zirconia sintered body |
CN114823150A (en) * | 2021-01-28 | 2022-07-29 | 松下知识产权经营株式会社 | Electrolytic capacitor and method for manufacturing the same |
JP2023178268A (en) * | 2022-06-02 | 2023-12-14 | ケメット エレクトロニクス コーポレーション | Solid electrolytic capacitor with improved reliability |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2419291A1 (en) * | 2001-05-15 | 2002-11-21 | Showa Denko K.K. | Niobium powder, niobium sintered body and capacitor using the sintered body |
-
2002
- 2002-05-14 JP JP2002138915A patent/JP4010868B2/en not_active Expired - Fee Related
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005093994A (en) * | 2003-08-13 | 2005-04-07 | Showa Denko Kk | Chip-shaped solid electrolytic capacitor and manufacturing method thereof |
JP2005101562A (en) * | 2003-08-20 | 2005-04-14 | Showa Denko Kk | Chip solid electrolytic capacitor and its manufacturing method |
JP2005123605A (en) * | 2003-09-26 | 2005-05-12 | Showa Denko Kk | Capacitor manufacturing method |
US8349683B2 (en) | 2003-09-26 | 2013-01-08 | Showa Denko K.K. | Production method of a capacitor |
US7436652B2 (en) | 2003-11-13 | 2008-10-14 | Showa Denko K.K. | Solid electrolyte capacitor |
WO2005048277A1 (en) * | 2003-11-13 | 2005-05-26 | Showa Denko K.K. | Solid electrolyte capacitor |
JP2005167230A (en) * | 2003-11-13 | 2005-06-23 | Showa Denko Kk | Solid electrolytic capacitor |
JP2005294817A (en) * | 2004-03-09 | 2005-10-20 | Showa Denko Kk | Solid electrolytic capacitor and its use |
JP2006179886A (en) * | 2004-11-29 | 2006-07-06 | Showa Denko Kk | Porous anode body for solid electrolytic capacitor, manufacturing method therefor, and solid electrolytic capacitor |
JP2007220731A (en) * | 2006-02-14 | 2007-08-30 | Sekisui Chem Co Ltd | Porous body for battery, method for producing porous body for battery, solid electrolytic capacitor, electric double layer capacitor, and solid oxide fuel cell |
US7760489B2 (en) | 2007-03-28 | 2010-07-20 | Sanyo Electric Co., Ltd. | Solid electrolytic capacitor and method of manufacturing the same |
JP2010533642A (en) * | 2007-07-18 | 2010-10-28 | キャボット コーポレイション | High voltage niobium oxide and capacitor including the same |
JP2010199572A (en) * | 2009-02-20 | 2010-09-09 | Avx Corp | Anode for solid electrolytic capacitor containing non-metallic surface treatment |
WO2012086272A1 (en) | 2010-12-24 | 2012-06-28 | 昭和電工株式会社 | Tungsten powder, positive electrode body for capacitors, and electrolytic capacitor |
JP2013074032A (en) * | 2011-09-27 | 2013-04-22 | Sanyo Electric Co Ltd | Method for manufacturing solid electrolytic capacitor |
WO2013058018A1 (en) | 2011-10-18 | 2013-04-25 | 昭和電工株式会社 | Method of manufacturing anode of capacitor |
US9478360B2 (en) | 2011-12-19 | 2016-10-25 | Show A Denko K.K. | Tungsten capacitor anode and process for production thereof |
WO2013094252A1 (en) | 2011-12-19 | 2013-06-27 | 昭和電工株式会社 | Tungsten capacitor anode and process for production thereof |
WO2013172453A1 (en) | 2012-05-18 | 2013-11-21 | 昭和電工株式会社 | Method for manufacturing capacitor element |
WO2013190886A1 (en) | 2012-06-22 | 2013-12-27 | 昭和電工株式会社 | Positive electrode body for capacitor |
EP2866239A4 (en) * | 2012-06-22 | 2016-08-03 | Showa Denko Kk | POSITIVE ELECTRODE BODY FOR CAPACITOR |
WO2013190885A1 (en) | 2012-06-22 | 2013-12-27 | 昭和電工株式会社 | Positive electrode body for solid electrolytic capacitor |
US9959980B2 (en) | 2014-12-09 | 2018-05-01 | Showa Denko K.K. | Solid electrolytic capacitor element and method for manufacturing solid electrolytic capacitor element |
CN114787086A (en) * | 2020-10-09 | 2022-07-22 | 第一稀元素化学工业株式会社 | Zirconia powder, zirconia sintered body, and method for producing zirconia sintered body |
CN114787086B (en) * | 2020-10-09 | 2023-10-17 | 第一稀元素化学工业株式会社 | Zirconia powder, zirconia sintered body, and method for producing zirconia sintered body |
CN114823150A (en) * | 2021-01-28 | 2022-07-29 | 松下知识产权经营株式会社 | Electrolytic capacitor and method for manufacturing the same |
JP2022115591A (en) * | 2021-01-28 | 2022-08-09 | パナソニックIpマネジメント株式会社 | Electrolytic capacitor and manufacturing method thereof |
JP7542197B2 (en) | 2021-01-28 | 2024-08-30 | パナソニックIpマネジメント株式会社 | Electrolytic capacitor and its manufacturing method |
CN114823150B (en) * | 2021-01-28 | 2025-03-07 | 松下知识产权经营株式会社 | Electrolytic capacitor and method for manufacturing the same |
JP2023178268A (en) * | 2022-06-02 | 2023-12-14 | ケメット エレクトロニクス コーポレーション | Solid electrolytic capacitor with improved reliability |
Also Published As
Publication number | Publication date |
---|---|
JP4010868B2 (en) | 2007-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4480943B2 (en) | Capacitor using niobium monoxide pulverized powder, niobium monoxide sintered body and niobium monoxide sintered body | |
EP1618575B1 (en) | Valve acting metal sintered body, production method therefor and solid electrolytic capacitor | |
JP4010868B2 (en) | Niobium powder, niobium sintered body, and capacitor using niobium sintered body | |
US7986508B2 (en) | Niobium monoxide powder, niobium monoxide sintered body and capacitor using the sintered body | |
JP4712883B2 (en) | Niobium powder for capacitors, sintered niobium and capacitors | |
US20030104923A1 (en) | Niobium oxide powder, niobium oxide sintered body and capacitor using the sintered body | |
RU2299786C2 (en) | Niobium powder, sintered niobium material and capacitor made with use of such sintered material | |
JPWO2002015208A1 (en) | Niobium powder, sintered body thereof and capacitor using the same | |
JP4727160B2 (en) | Valve action metal sintered body, manufacturing method thereof and solid electrolytic capacitor | |
JP2009033182A (en) | Method of manufacturing capacitor | |
JP4360680B2 (en) | Niobium powder for capacitors, sintered niobium and capacitors | |
JP4707164B2 (en) | Niobium powder for capacitor, sintered body using the same, and capacitor using the same | |
JP4371323B2 (en) | Niobium powder, niobium sintered body, and capacitor using niobium sintered body | |
AU2008200187B2 (en) | Niobium powder, niobium sintered body and capacitor using the sintered body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050422 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20061002 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061017 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061214 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20061214 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20070509 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070706 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20070711 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070903 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070904 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4010868 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100914 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100914 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130914 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |