JP2003212698A - Method of manufacturing gallium phosphide single crystal - Google Patents
Method of manufacturing gallium phosphide single crystalInfo
- Publication number
- JP2003212698A JP2003212698A JP2002016187A JP2002016187A JP2003212698A JP 2003212698 A JP2003212698 A JP 2003212698A JP 2002016187 A JP2002016187 A JP 2002016187A JP 2002016187 A JP2002016187 A JP 2002016187A JP 2003212698 A JP2003212698 A JP 2003212698A
- Authority
- JP
- Japan
- Prior art keywords
- single crystal
- crystal
- gallium phosphide
- temperature
- convexity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 128
- 229910005540 GaP Inorganic materials 0.000 title claims description 63
- HZXMRANICFIONG-UHFFFAOYSA-N gallium phosphide Chemical compound [Ga]#P HZXMRANICFIONG-UHFFFAOYSA-N 0.000 title claims description 37
- 238000004519 manufacturing process Methods 0.000 title claims description 16
- 239000007788 liquid Substances 0.000 claims abstract description 26
- 238000000034 method Methods 0.000 claims abstract description 19
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 3
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 claims description 3
- 229910052698 phosphorus Inorganic materials 0.000 claims description 3
- 239000011574 phosphorus Substances 0.000 claims description 3
- 239000008393 encapsulating agent Substances 0.000 claims description 2
- 238000005538 encapsulation Methods 0.000 claims description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims 1
- 229910052733 gallium Inorganic materials 0.000 claims 1
- 230000012010 growth Effects 0.000 abstract description 13
- 238000007711 solidification Methods 0.000 abstract description 7
- 230000008023 solidification Effects 0.000 abstract description 7
- 239000000155 melt Substances 0.000 abstract description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 10
- 229910052799 carbon Inorganic materials 0.000 description 10
- 239000010453 quartz Substances 0.000 description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 7
- 238000009826 distribution Methods 0.000 description 6
- 239000011810 insulating material Substances 0.000 description 5
- 238000007789 sealing Methods 0.000 description 5
- 238000000354 decomposition reaction Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 239000000565 sealant Substances 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 244000069218 Heracleum sphondylium ssp montanum Species 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、液体封止引き上げ
法によるリン化ガリウム単結晶の製造方法に関し、特
に、多結晶化を抑え、単結晶収率を向上することが可能
なリン化ガリウム単結晶の製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing gallium phosphide single crystal by a liquid sealing pulling method, and more particularly to a gallium phosphide single crystal capable of suppressing polycrystallization and improving single crystal yield. The present invention relates to a method for producing crystals.
【0002】[0002]
【従来の技術】可視光領域における発光ダイオード製造
用の基板に用いられるリン化ガリウム単結晶(以後、
「GaP単結晶」と略す)は、液体封止引き上げ法(以
後、「LEC法」と略す)によって育成される。2. Description of the Related Art A gallium phosphide single crystal used as a substrate for manufacturing a light emitting diode in the visible light region (hereinafter,
"GaP single crystal" is grown by a liquid sealing pulling method (hereinafter abbreviated as "LEC method").
【0003】LEC法による製造装置を、図面を参照し
て説明する。図1は、LEC法による製造装置を示す断
面図である。A manufacturing apparatus using the LEC method will be described with reference to the drawings. FIG. 1 is a sectional view showing a manufacturing apparatus by the LEC method.
【0004】LEC法による製造装置は、100気圧程
度の高圧にも耐えられる圧力容器1からなり、通常Ga
P単結晶の製造は、50気圧のN2やArといった不活
性ガスの中で行われる。圧力容器1内の中心部には、ウ
オール11とベース12の中に石英ルツボ4が配置さ
れ、その中には、原料のリンとガリウムを合成して作成
したリン化ガリウム多結晶(以後、「GaP多結晶」と
略す)と、結晶中でn型またはp型の電気特性を示す不
純物とを添加して、さらに、原料融解時のリンの揮発分
解を防止する液体封止剤8としてB2O3を入れる。石英
ルツボ4を中心に、加熱用カーボンヒーター2が配置さ
れ、その周囲には円筒形のカーボンの断熱材3が設けら
れる。The manufacturing apparatus by the LEC method comprises a pressure vessel 1 that can withstand a high pressure of about 100 atm.
The P single crystal is manufactured in an inert gas such as N 2 or Ar at 50 atm. A quartz crucible 4 is arranged in a wall 11 and a base 12 in the center of the pressure vessel 1, and a gallium phosphide polycrystal (hereinafter, referred to as " GaP polycrystal ”) and an impurity exhibiting n-type or p-type electrical characteristics in the crystal, and further B 2 is used as a liquid sealant 8 for preventing volatile decomposition of phosphorus when the raw material is melted. Add O 3 . A carbon heater 2 for heating is arranged around a quartz crucible 4, and a cylindrical carbon heat insulating material 3 is provided around the carbon heater 2.
【0005】図1に示した製造装置で、GaP単結晶を
育成する方法を説明する。なお、リン化ガリウムの融点
は1465℃であり、この時のリンの分解圧力は約35
気圧と非常に高い。A method of growing a GaP single crystal with the manufacturing apparatus shown in FIG. 1 will be described. The melting point of gallium phosphide is 1465 ° C., and the decomposition pressure of phosphorus at this time is about 35.
Atmospheric pressure and very high.
【0006】前述のような高圧不活性ガス雰囲気下で、
加熱用カーボンヒーター2に通電して、GaPの融点ま
で昇温する。石英ルツボ4内のGaP多結晶が融解後、
上部シャフト5と連結した保持具10に取り付けた(1
00)面種結晶6を降下させて、石英ルツボ4内のB2
O3層の下部に位置するリン化ガリウム融液に浸けて種
付けを行う。この時、事前に(100)面種結晶6と馴
染むリン化ガリウム融液の温度に維持しながら、ウオー
ル11とベース12に入った石英ルツボ4を、指定の回
転数で回転させる。一方、(100)面種結晶6も、指
定の回転数で回転させながら、所定の速度で引き上げて
いき、GaP単結晶7を育成する。In a high pressure inert gas atmosphere as described above,
The heating carbon heater 2 is energized to raise the temperature to the melting point of GaP. After the GaP polycrystal in the quartz crucible 4 has melted,
It was attached to the holder 10 connected to the upper shaft 5 (1
00) Face seed crystal 6 is lowered and B 2 in quartz crucible 4
Seeding is performed by immersing in a gallium phosphide melt located under the O 3 layer. At this time, the quartz crucible 4 contained in the wall 11 and the base 12 is rotated at a designated number of rotations while maintaining the temperature of the gallium phosphide melt compatible with the (100) face seed crystal 6 in advance. On the other hand, the (100) face seed crystal 6 is also pulled up at a predetermined speed while being rotated at a specified number of rotations to grow a GaP single crystal 7.
【0007】しかし、前述の方法で得られたGaP単結
晶7では、結晶直胴部や結晶底部に多結晶化が見られ
る。また、結晶育成途中で結晶質量をモニターしている
結晶質量センサー(図示せず)に、急激な質量増加の異
常信号が入って中止となること(以後、固化と略す)
が、時々発生した。この多結晶化や固化の原因として
は、圧力容器1内に配置されている断熱材3や加熱用カ
ーボンヒーター2の劣化によって、石英ルツボ4内の温
度分布が変動し、固液界面形状が変化するためと考えら
れる。However, in the GaP single crystal 7 obtained by the above-mentioned method, polycrystallization is observed in the crystal straight body part and the crystal bottom part. In addition, a crystal mass sensor (not shown) that monitors the crystal mass during crystal growth gives an abnormal signal of a rapid mass increase and the operation is stopped (hereinafter abbreviated as solidification).
But sometimes it happened. The cause of this polycrystallization and solidification is that the temperature distribution in the quartz crucible 4 changes due to the deterioration of the heat insulating material 3 and the heating carbon heater 2 arranged in the pressure vessel 1, and the solid-liquid interface shape changes. It is thought to be to do.
【0008】従来、この温度分布変動の問題に対して
は、石英ルツボ4と加熱用カーボンヒーター2との相対
位置を、経験的に変えながら(以下ルツボ設定と呼
ぶ)、結晶育成を行ってきた。しかし、この対策は、何
本もの単結晶育成結果を見た後の対応であったり、育成
条件変更後の単結晶化の確認を行うためにも、数回の試
験育成を必要とするなど、ロスも多く、単結晶収率を低
下させていた。Conventionally, to solve the problem of the temperature distribution fluctuation, crystal growth has been carried out while empirically changing the relative positions of the quartz crucible 4 and the heating carbon heater 2 (hereinafter referred to as crucible setting). . However, this measure requires several test growths in order to respond after seeing the results of growing a large number of single crystals and to confirm the single crystallization after changing the growth conditions. There were many losses, and the single crystal yield was reduced.
【0009】[0009]
【発明が解決しようとする課題】本発明は、LEC法に
よる(100)方位のGaP単結晶を製造する際に、得
られるGaP単結晶の結晶直胴部や結晶底部で発生する
多結晶化を抑えたり、結晶育成途中、固液界面形状が極
端に融液側に凸になって固化することがないように、固
液界面形状を制御し、単結晶収率の向上を図ることを目
的としている。DISCLOSURE OF THE INVENTION The present invention, when producing a GaP single crystal having a (100) orientation by the LEC method, prevents the polycrystallization which occurs in the straight body portion or the crystal bottom portion of the obtained GaP single crystal. For the purpose of improving the single crystal yield by controlling the shape of the solid-liquid interface so that the shape of the solid-liquid interface does not become extremely convex and solidify toward the melt during crystal growth. There is.
【0010】前述のように凸になって固化した部分、す
なわち結晶直胴部から結晶底部へかけてテーパになって
いる部分の高さを凸度と称する。The height of the portion which is convex and solidified as described above, that is, the portion which is tapered from the crystal straight body portion to the crystal bottom portion is called convexity.
【0011】[0011]
【課題を解決するための手段】本発明のリン化ガリウム
単結晶製造方法は、酸化ホウ素(B2O3)を液体封止剤
として、(100)面種結晶を用いる液体封止引き上げ
法により、リン化ガリウム単結晶を製造する方法であ
り、該リン化ガリウム単結晶の結晶肩部が所定の直径に
成長した時点のルツボ底温度T1と、得られたリン化ガ
リウム単結晶の結晶底部の固液界面形状を測定すること
により得られるリン化ガリウム単結晶の凸度L1(単
位:mm)とから、(1)凸度L1が、6〜8mmの範
囲の中にある場合は、次回のルツボ底温度T2を式4で
得る。A method for producing a gallium phosphide single crystal of the present invention is a liquid encapsulation pulling method using a (100) face seed crystal with boron oxide (B 2 O 3 ) as a liquid encapsulant. A method for producing a gallium phosphide single crystal, in which the crucible bottom temperature T1 at the time when the crystal shoulder portion of the gallium phosphide single crystal has grown to a predetermined diameter and the crystal bottom portion of the obtained gallium phosphide single crystal From the convexity L1 (unit: mm) of the gallium phosphide single crystal obtained by measuring the solid-liquid interface shape, (1) If the convexity L1 is in the range of 6 to 8 mm, The crucible bottom temperature T2 is obtained by Equation 4.
【0012】[0012]
【式4】
(2)凸度L1が、6〜8mmの範囲の外にある場合
は、式5で算出される補正温度tを用いて、[Formula 4] (2) When the convexity L1 is outside the range of 6 to 8 mm, the correction temperature t calculated by the equation 5 is used,
【0013】[0013]
【式5】 次回のルツボ底温度T2を、式6で得る。[Formula 5] The next crucible bottom temperature T2 is obtained by Equation 6.
【0014】[0014]
【式6】
前記リン化ガリウム単結晶の結晶底部の最適凸度目標値
を、6〜8mmの範囲内とすることが望ましい。[Formula 6] It is preferable that the optimum target value of the convexity of the crystal bottom of the gallium phosphide single crystal is within the range of 6 to 8 mm.
【0015】あるいは、該リン化ガリウム単結晶の結晶
底部の稜線と、リン化ガリウム単結晶を垂下した時の水
平面との角度が、13.5〜17.7°となるように、
リン化ガリウム単結晶の結晶底部の最適凸度目標値を決
定する。Alternatively, the angle between the ridge line of the crystal bottom of the gallium phosphide single crystal and the horizontal plane when the gallium phosphide single crystal is suspended is 13.5-17.7 °.
The optimum convexity target value of the crystal bottom of the gallium phosphide single crystal is determined.
【0016】[0016]
【発明の実施の形態】従来の問題点を解決するため、本
発明者は、結晶成長初期のルツボ底温度を、前回の結晶
育成に対して相対的に制御することにより、結晶育成中
の固液界面形状が、極めて再現性よく制御できることを
見出した。これは、加熱用カーボンヒーターや断熱材の
劣化による温度分布変化の影響を受けにくいという点
で、工業的にも有効である。In order to solve the conventional problems, the present inventor has controlled the crucible bottom temperature in the initial stage of crystal growth relative to the previous crystal growth, so that the temperature during the crystal growth can be controlled. It was found that the shape of the liquid interface can be controlled extremely reproducibly. This is industrially effective in that it is unlikely to be affected by changes in temperature distribution due to deterioration of the heating carbon heater and the heat insulating material.
【0017】本発明者は、図1に示す圧力容器1を利用
し、圧力容器1内の圧力を50気圧にして、リン化ガリ
ウム融液の分解を防ぎながら、1回目のGaP単結晶を
育成した。図3に、育成されたGaP単結晶の側面図を
示す。The present inventor utilizes the pressure vessel 1 shown in FIG. 1 and sets the pressure in the pressure vessel 1 to 50 atm to prevent the decomposition of the gallium phosphide melt while growing the first GaP single crystal. did. FIG. 3 shows a side view of the grown GaP single crystal.
【0018】1回目に育成したGaP単結晶7の結晶底
部7bの固液界面形状をノギス等で測定し、多結晶化や
固化の発生状況に対して、結晶の凸度L1、結晶底部7
bの稜線と水平面とのなす角度等がどのように関係する
かを調べた。The solid-liquid interface shape of the crystal bottom portion 7b of the GaP single crystal 7 grown for the first time was measured with a caliper or the like, and the convexity L1 of the crystal and the crystal bottom portion 7 were checked against the occurrence of polycrystallization or solidification.
The relationship between the angle formed by the ridgeline of b and the horizontal plane and the like was investigated.
【0019】その結果、多結晶化や固化の起こりにくさ
と凸度L1とは相関があり、多結晶化や固化が起こりに
くいのは、凸度L1が6〜8mmの範囲にある時である
ことが分かった。凸度L1の下限値が6mmより小さい
と、得られるGaP単結晶7の結晶直胴部において多結
晶化が発生しやすくなり、8mmより大きいと、得られ
るGaP単結晶7の結晶底部7bで、固液界面形状が極
端に融液側に凸(以上界面成長)となり固化する場合が
増加した。また、得られるGaP単結晶7の結晶底部7
bの稜線と水平面とのなす角度が13.5〜17.7°
であると、上記と同様に、多結晶化や固化が起こりにく
いことがわかった。As a result, there is a correlation between the degree of occurrence of polycrystallization and solidification and the convexity L1, and it is difficult for polycrystallization and solidification to occur when the convexity L1 is in the range of 6 to 8 mm. I found out. If the lower limit of the convexity L1 is smaller than 6 mm, polycrystallization is likely to occur in the crystal straight body portion of the obtained GaP single crystal 7, and if it is larger than 8 mm, the crystal bottom portion 7b of the obtained GaP single crystal 7 is The number of cases where the solid-liquid interface shape became extremely convex on the melt side (above interface growth) and solidified increased. In addition, the crystal bottom portion 7 of the obtained GaP single crystal 7
The angle between the ridge of b and the horizontal plane is 13.5-17.7 °.
Then, similarly to the above, it was found that polycrystallization and solidification were unlikely to occur.
【0020】次に、発明者は、上記の知見に基づき多く
の育成試験を行い、固液界面形状を多結晶化や固化が起
こりにくいGaP単結晶7の結晶底部7bの凸度L1の
下限値を6mmとし、凸度L1の上限値を8mmとし
て、GaP単結晶7の結晶底部7bの稜線と水平面との
なす角度を13.5〜17.7°に制御するためには、
図1に示したように、下部シャフト9に取り付けた熱電
対13で測定されるルツボ底温度を制御するルツボ温度
制御方法が重要であることを見出した。Next, the inventor has conducted a number of growth tests based on the above findings, and the lower limit of the convexity L1 of the crystal bottom portion 7b of the GaP single crystal 7 in which the solid-liquid interface shape is less likely to be polycrystallized or solidified. Is 6 mm and the upper limit of the convexity L1 is 8 mm, in order to control the angle between the ridgeline of the crystal bottom portion 7b of the GaP single crystal 7 and the horizontal plane to 13.5 to 17.7 °,
As shown in FIG. 1, it has been found that a crucible temperature control method for controlling the crucible bottom temperature measured by the thermocouple 13 attached to the lower shaft 9 is important.
【0021】すなわち、本発明のリン化ガリウム単結晶
製造方法は、酸化ホウ素(B2O3)を液体封止剤8とし
て、(100)面種結晶6を用いる液体封止引き上げ法
により、リン化ガリウム単結晶7を製造する方法であ
り、該リン化ガリウム単結晶7の結晶肩部7aが所定の
直径に成長した時点のルツボ底温度T1と、得られたリ
ン化ガリウム単結晶7の結晶底部7bの固液界面形状を
測定することにより得られるリン化ガリウム単結晶7の
凸度L1(単位:mm)とから、(1)凸度L1が、6
〜8mmの範囲の中にある場合は、次回のルツボ底温度
T2を式7で得る。That is, the method for producing a gallium phosphide single crystal of the present invention employs a liquid sealing pulling method using (100) face seed crystal 6 with boron oxide (B 2 O 3 ) as the liquid sealing agent 8. A method for producing a gallium phosphide single crystal 7, wherein the crucible bottom temperature T1 at the time when the crystal shoulder portion 7a of the gallium phosphide single crystal 7 grows to a predetermined diameter, and the obtained crystal of the gallium phosphide single crystal 7 From the convexity L1 (unit: mm) of the gallium phosphide single crystal 7 obtained by measuring the solid-liquid interface shape of the bottom portion 7b, (1) the convexity L1 is 6
When it is within the range of ˜8 mm, the next crucible bottom temperature T2 is obtained by the equation 7.
【0022】[0022]
【式7】
(2)凸度L1が、6〜8mmの範囲の外にある場合
は、式8で算出される補正温度tを用いて、[Formula 7] (2) When the convexity L1 is out of the range of 6 to 8 mm, the correction temperature t calculated by the equation 8 is used,
【0023】[0023]
【式8】 次回のルツボ底温度T2を、式9で得る。[Formula 8] The next crucible bottom temperature T2 is obtained by Expression 9.
【0024】[0024]
【式9】
前記リン化ガリウム単結晶7の結晶底部7bの最適凸度
目標値を、6〜8mmの範囲内とすることが望ましい。[Formula 9] The optimum convexity target value of the crystal bottom portion 7b of the gallium phosphide single crystal 7 is preferably within the range of 6 to 8 mm.
【0025】あるいは、該リン化ガリウム単結晶7の結
晶底部7bの稜線と、リン化ガリウム単結晶7を垂下し
た時の水平面との角度が、13.5〜17.7°となる
ように、リン化ガリウム単結晶7の結晶底部7bの最適
凸度目標値を決定する。Alternatively, the angle between the ridgeline of the crystal bottom portion 7b of the gallium phosphide single crystal 7 and the horizontal plane when the gallium phosphide single crystal 7 is suspended is 13.5 to 17.7 °. The optimum convexity target value of the crystal bottom portion 7b of the gallium phosphide single crystal 7 is determined.
【0026】以下、本発明を、実施例により、図面を参
照して詳細に説明する。Hereinafter, the present invention will be described in detail with reference to the drawings by way of examples.
【0027】[0027]
【実施例】(実施例1)本発明の実施例について、詳細
に説明する。EXAMPLE 1 An example of the present invention will be described in detail.
【0028】圧力容器1内に断熱性の高いカーボン製の
断熱材3を設置し、ルツボ4には直径が100mmΦで
深さが100mmの石英製ルツボを用いた。A carbon heat insulating material 3 having a high heat insulating property was installed in the pressure vessel 1, and a quartz crucible having a diameter of 100 mmΦ and a depth of 100 mm was used as the crucible 4.
【0029】まず、ルツボ4内に原料としてGaP多結
晶原料1100gと添加不純物のS(硫黄)を添加し
て、さらに液体封止剤B2O3150gを入れて、これら
を囲むように加熱用ヒーター2を配置する。圧力容器1
内を真空にした後、高圧窒素ガス雰囲気下で加熱用カー
ボンヒーター2に通電して、GaP融点の1465℃以
上に昇温し、GaP多結晶が溶融後に、予め配置してお
いた(100)方位の種結晶6を回転して下降させ、G
aP融液に浸けた後、10mm/hの速度で引き上げな
がら結晶育成を開始した。結晶肩部の最大径が40mm
φの時のルツボ底温度は1410℃であった。First, 1100 g of a GaP polycrystalline raw material as a raw material and S (sulfur) as an additive impurity are added to the crucible 4 and 150 g of a liquid sealant B 2 O 3 is further added to heat them so as to surround them. Arrange the heater 2. Pressure vessel 1
After the inside was evacuated, the carbon heater 2 for heating was energized in a high-pressure nitrogen gas atmosphere to raise the temperature above the GaP melting point of 1465 ° C., and the GaP polycrystal was melted, and then arranged in advance (100). The seed crystal 6 in the azimuth direction is rotated and lowered, and G
After soaking in the aP melt, crystal growth was started while pulling up at a speed of 10 mm / h. Maximum diameter of crystal shoulder is 40mm
The bottom temperature of the crucible at φ was 1410 ° C.
【0030】得られたGaP単結晶の結晶底部の凸度L
1をノギスで測定したところ、5mmであったので、式
8に従い、補正温度tを算出した。最適凸度目標値は7
mmとして、凸度1mm当たりの補正温度は、3℃/m
mとした。The convexity L of the crystal bottom of the obtained GaP single crystal
When 1 was measured with a caliper, it was 5 mm, so the corrected temperature t was calculated according to the equation 8. Optimal convexity target value is 7
mm, the correction temperature per 1 mm of convexity is 3 ° C / m
m.
【0031】すなわち、補正温度t=(5−7)×3=
−6℃であり、式9の右辺は、1410℃(今回のルツ
ボ底温度T1)−6℃(補正温度t)=1404℃とな
り、これを次回のルツボ底温度T2とした。That is, the correction temperature t = (5-7) × 3 =
It is −6 ° C., and the right side of Expression 9 is 1410 ° C. (current crucible bottom temperature T1) −6 ° C. (correction temperature t) = 1404 ° C. This is set as the next crucible bottom temperature T2.
【0032】上記の方法に従い、GaP単結晶育成を2
00ラン行った。According to the above-mentioned method, the GaP single crystal was grown to 2
I ran 00 runs.
【0033】結晶底部の凸度6〜8mmの割合、および
単結晶収率を表1に示し、凸度の頻度分布を図2に示
す。The ratio of the convexity of the crystal bottom of 6 to 8 mm and the single crystal yield are shown in Table 1, and the frequency distribution of the convexity is shown in FIG.
【0034】表1に示すように、結晶底部の凸度が6〜
8mmの適正範囲内であったものは88.5%であり、
単結晶収率も90%以上であった。As shown in Table 1, the crystal bottom has a convexity of 6 to
88.5% was within the proper range of 8 mm,
The single crystal yield was also 90% or more.
【0035】(従来例)比較のために、本発明の方法を
用いず、従来方法でGaP単結晶育成を200ラン行っ
た。(Conventional Example) For comparison, 200 runs of GaP single crystals were grown by the conventional method without using the method of the present invention.
【0036】結晶底部の凸度6〜8mmの割合、および
単結晶収率を表1に示す(凸度の頻度分布の図示は省略
する)。The ratio of the convexity of the crystal bottom of 6 to 8 mm and the single crystal yield are shown in Table 1 (the frequency distribution of the convexity is not shown).
【0037】表1に示すように、結晶底部の凸度が6〜
8mmの適正範囲内であったものは60.3%であり、
単結晶収率は75.0%となり、本発明の有効性が確認
された。As shown in Table 1, the crystal bottom has a convexity of 6 to
What was within the proper range of 8 mm was 60.3%,
The single crystal yield was 75.0%, confirming the effectiveness of the present invention.
【0038】[0038]
【表1】 [Table 1]
【0039】[0039]
【発明の効果】以上述べたように、本発明の方法によれ
ば、液体封止引き上げ法による(100)方位のGaP
単結晶を製造する際に、結晶直胴部や結晶底部で発生す
る多結晶化や、結晶育成途中、固液界面形状が極端に融
液側に凸になって固化する問題を、固液界面形状の結晶
底部の凸度を制御することによって改善し、単結晶収率
を大幅に向上し、安定して操業することができるように
なった。As described above, according to the method of the present invention, GaP having the (100) orientation by the liquid sealing pulling method is used.
When producing a single crystal, the problem of polycrystallization that occurs in the straight body part of the crystal or the bottom part of the crystal, and the problem that the solid-liquid interface shape is extremely convex and solidifies on the melt side during crystal growth. This was improved by controlling the convexity of the crystal bottom of the shape, the single crystal yield was greatly improved, and stable operation became possible.
【図1】 LEC法による単結晶製造装置を示す断面図
である。FIG. 1 is a sectional view showing an apparatus for producing a single crystal by the LEC method.
【図2】 実施例における結晶底部凸度の頻度分布を示
す棒グラフである。FIG. 2 is a bar graph showing the frequency distribution of the convexity of the crystal bottom portion in the example.
【図3】 育成されたGaP単結晶を示す側面図であ
る。FIG. 3 is a side view showing a grown GaP single crystal.
1 圧力容器 2 加熱用カーボンヒーター 3 断熱材 4 石英ルツボ 5 上部シャフト 6 (100)方位種結晶 7 GaP単結晶 7a 結晶肩部 7b 結晶底部 8 液体封止剤(B2O3) 9 下部シャフト 10 保持具 11 ウオール 12 ベース 13 熱電対(ルツボ底温度)1 Pressure Vessel 2 Heating Carbon Heater 3 Heat Insulating Material 4 Quartz Crucible 5 Upper Shaft 6 (100) Orientation Seed Crystal 7 GaP Single Crystal 7a Crystal Shoulder 7b Crystal Bottom 8 Liquid Sealant (B 2 O 3 ) 9 Lower Shaft 10 Holder 11 Wall 12 Base 13 Thermocouple (crucible bottom temperature)
Claims (3)
て、(100)面種結晶を用いる液体封止引き上げ法に
より、リン化ガリウム単結晶を製造する方法において、
該リン化ガリウム単結晶の結晶肩部が所定の直径に成長
した時点のルツボ底温度T1と、得られたリン化ガリウ
ム単結晶の結晶底部の固液界面形状を測定することによ
り得られるリン化ガリウム単結晶の凸度L1(単位:m
m)とから、(1)凸度L1が、6〜8mmの範囲の中
にある場合は、次回のルツボ底温度T2を式1で得て、 【式1】 (2)凸度L1が、6〜8mmの範囲の外にある場合
は、式2で算出される補正温度tを用いて、 【式2】 次回のルツボ底温度T2を、式3で得る 【式3】 ことを特徴とするリン化ガリウム単結晶製造方法。1. A method for producing a gallium phosphide single crystal by a liquid encapsulation pull-up method using a (100) face seed crystal with boron oxide (B 2 O 3 ) as a liquid encapsulant.
Phosphorus obtained by measuring the crucible bottom temperature T1 at the time when the crystal shoulder of the gallium phosphide single crystal grows to a predetermined diameter and the solid-liquid interface shape of the crystal bottom of the obtained gallium phosphide single crystal. Convexity L1 of gallium single crystal (unit: m
m) and (1) when the convexity L1 is in the range of 6 to 8 mm, the next crucible bottom temperature T2 is obtained by Equation 1, and (2) When the convexity L1 is outside the range of 6 to 8 mm, the corrected temperature t calculated by the equation 2 is used to calculate Obtain the next crucible bottom temperature T2 by Equation 3 [Equation 3] A method for producing a gallium phosphide single crystal, comprising:
最適凸度目標値を、6〜8mmの範囲内とすることを特
徴とする請求項1に記載のリン化ガリウム単結晶製造方
法。2. The method for producing a gallium phosphide single crystal according to claim 1, wherein the optimum convexity target value of the crystal bottom of the gallium phosphide single crystal is within a range of 6 to 8 mm.
線と、リン化ガリウム単結晶を垂下した時の水平面との
角度が、13.5〜17.7°となるように、リン化ガ
リウム単結晶の結晶底部の最適凸度目標値を決定するこ
とを特徴とする請求項1に記載のリン化ガリウム単結晶
製造方法。3. The gallium phosphide so that the angle between the ridgeline of the crystal bottom of the gallium phosphide single crystal and the horizontal plane when the gallium phosphide single crystal hangs is 13.5-17.7 °. The method for producing a gallium phosphide single crystal according to claim 1, wherein an optimum convexity target value of the crystal bottom of the single crystal is determined.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002016187A JP2003212698A (en) | 2002-01-24 | 2002-01-24 | Method of manufacturing gallium phosphide single crystal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002016187A JP2003212698A (en) | 2002-01-24 | 2002-01-24 | Method of manufacturing gallium phosphide single crystal |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003212698A true JP2003212698A (en) | 2003-07-30 |
Family
ID=27652333
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002016187A Pending JP2003212698A (en) | 2002-01-24 | 2002-01-24 | Method of manufacturing gallium phosphide single crystal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003212698A (en) |
-
2002
- 2002-01-24 JP JP2002016187A patent/JP2003212698A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4930166B2 (en) | Method for producing aluminum oxide single crystal | |
JP2007106669A (en) | Method for producing semi-insulating GaAs single crystal | |
JP4120016B2 (en) | Method for producing semi-insulating GaAs single crystal | |
JP2009120453A (en) | Method of manufacturing aluminum oxide single crystal | |
JP3806791B2 (en) | Method for producing compound semiconductor single crystal | |
JP2010064936A (en) | Method for producing semiconductor crystal | |
JP2010059052A (en) | METHOD AND APPARATUS FOR PRODUCING SEMI-INSULATING GaAs SINGLE CRYSTAL | |
JP2003212698A (en) | Method of manufacturing gallium phosphide single crystal | |
JP5172881B2 (en) | Compound semiconductor single crystal manufacturing apparatus and manufacturing method thereof | |
JP4344021B2 (en) | Method for producing InP single crystal | |
JP2004277266A (en) | Method for producing compound semiconductor single crystal | |
JP3831913B2 (en) | Method for producing compound semiconductor single crystal | |
JP2001080987A (en) | Compound semiconductor crystal manufacturing apparatus and manufacturing method using the same | |
JP2002274995A (en) | Method for producing silicon carbide single crystal ingot | |
JP2002234792A (en) | Method of producing single crystal | |
JP3945073B2 (en) | Single crystal manufacturing method | |
JP3937700B2 (en) | Method for producing GaAs semiconductor single crystal doped with conductive impurities | |
JP4930165B2 (en) | Method for producing aluminum oxide single crystal | |
JP2005047797A (en) | InP SINGLE CRYSTAL, GaAs SINGLE CRYSTAL, AND METHOD FOR PRODUCING THEM | |
JPH08104591A (en) | Single crystal growth equipment | |
JP4193681B2 (en) | Gallium phosphide single crystal production equipment | |
JPH10152400A (en) | Method for producing Zn-doped GaAs single crystal and mother alloy for producing Zn-doped GaAs single crystal | |
JP2005132717A (en) | Compound semiconductor single crystal and its manufacturing method | |
JP2004196573A (en) | Method for producing compound semiconductor single crystal | |
JPH0597594A (en) | Method for synthesizing III-V compound semiconductor composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Effective date: 20040615 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A977 | Report on retrieval |
Effective date: 20060531 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070123 |
|
A02 | Decision of refusal |
Effective date: 20070612 Free format text: JAPANESE INTERMEDIATE CODE: A02 |