JP2003203645A - Separator for polymer electrolyte fuel cell and fuel cell using the same - Google Patents
Separator for polymer electrolyte fuel cell and fuel cell using the sameInfo
- Publication number
- JP2003203645A JP2003203645A JP2002000746A JP2002000746A JP2003203645A JP 2003203645 A JP2003203645 A JP 2003203645A JP 2002000746 A JP2002000746 A JP 2002000746A JP 2002000746 A JP2002000746 A JP 2002000746A JP 2003203645 A JP2003203645 A JP 2003203645A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- separator
- plate
- fuel cell
- conductive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
Abstract
(57)【要約】
【課題】固体高分子型燃料電池用セパレータの提供にあ
る。
【解決手段】電解質膜1の両側に正極3aおよび負極3
bを配置した単位セルと、前記単位セルを挟持し、正極
側に燃料ガスを、負極側に酸化剤ガスを供給するセパレ
ータを備えた固体高分子型燃料電池の前記セパレータ
が、ガス不透過性の導電性仕切り板21を中心とし、該
仕切り板の一方の側に正極へ燃料ガスを供給する周辺部
がガス不透過性の導電性多孔体16が、他方の側に負極
へ酸化剤ガスを供給する周辺部がガス不透過性の導電性
多孔体17が配置されており、これらの3枚の板が導電
性接着剤により一体化されている固体高分子型燃料電池
用セパレータ。
(57) [Problem] To provide a separator for a polymer electrolyte fuel cell. A positive electrode and a negative electrode are provided on both sides of an electrolyte membrane.
b, and a separator for a polymer electrolyte fuel cell including a separator for sandwiching the unit cell, supplying a fuel gas to the positive electrode side, and supplying an oxidizing gas to the negative electrode side, has a gas-impermeable property. The conductive porous body 16 having a gas-impermeable peripheral part for supplying the fuel gas to the positive electrode is provided on one side of the conductive partition plate 21 and the oxidant gas is supplied to the negative electrode on the other side. A separator for a polymer electrolyte fuel cell, in which a gas-impermeable conductive porous body 17 is disposed in a peripheral portion to be supplied, and these three plates are integrated by a conductive adhesive.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、固体高分子型燃料
電池のセパレータに係わり、特に、組立て容易な低コス
トセパレータおよびそれを用いた燃料電池に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid polymer fuel cell separator, and more particularly to a low cost separator which is easy to assemble and a fuel cell using the same.
【0002】[0002]
【従来の技術】燃料電池は、使用される電解質により固
体高分子型燃料電池,リン酸型燃料電池,溶融炭酸塩型
燃料電池,固体酸化物型燃料電池等に分けられる。2. Description of the Related Art Fuel cells are classified into solid polymer fuel cells, phosphoric acid fuel cells, molten carbonate fuel cells, solid oxide fuel cells, etc., depending on the electrolyte used.
【0003】固体高分子型燃料電池は、他の燃料電池に
比べて高電流密度で、長寿命で、起動・停止による劣化
が少なく、低動作温度(約80℃)で、運転制御がし易
い等の長所を有しているため、定置並びに家庭用電源,
自動車用電源等の幅広い用途が見込まれている。The polymer electrolyte fuel cell has a higher current density than other fuel cells, a long life, less deterioration due to start / stop, a low operating temperature (about 80 ° C.), and easy operation control. Because it has advantages such as stationary, household power supply,
A wide range of applications such as automobile power supplies are expected.
【0004】図6は、従来の黒鉛製セパレータを使用し
た固体高分子型燃料電池単セルの構造の一例を示す模式
断面図である。固体高分子からなる電解質膜1は、厚さ
20〜50μmで、一辺が10〜15cmの矩形をして
いる。電解質膜1として、現在、パーフルオロスルホン
酸樹脂(例えば、デュポン社のナフィオン膜、旭化成の
アシプレックス膜、旭硝子のフレミオン膜)等が知られ
ている。電解質膜1は、分子中にプロトン(水素イオ
ン)交換基を有する高分子膜で、飽和に含水されると常
温で20Ωcm以下の抵抗率となる。FIG. 6 is a schematic cross-sectional view showing an example of the structure of a solid polymer electrolyte fuel cell single cell using a conventional graphite separator. The electrolyte membrane 1 made of a solid polymer has a thickness of 20 to 50 μm and a rectangular shape with one side of 10 to 15 cm. As the electrolyte membrane 1, perfluorosulfonic acid resin (eg, Nafion membrane manufactured by DuPont, Aciplex membrane manufactured by Asahi Kasei, Flemion membrane manufactured by Asahi Glass Co., Ltd.) is known at present. The electrolyte membrane 1 is a polymer membrane having a proton (hydrogen ion) exchange group in the molecule, and has a resistivity of 20 Ωcm or less at room temperature when saturated with water.
【0005】電解質膜1の一方側には、電解質膜1と密
接して、水素または水素を高濃度で含有する燃料ガスの
供給を受けるアノード(正極)3aがあり、他方側には
電解質膜1と密接して、空気または酸素を高濃度で含有
する酸化剤ガスの供給を受けるカソード(負極)3bが
ある。アノード3aおよびカソード3bは、厚さ数10
μmで、微細なPtまたはPt合金触媒を担持した多孔
質の黒鉛粒子層からなり、ホットプレス等により電解質
膜1に焼付けされている場合が多い。On one side of the electrolyte membrane 1, there is an anode (positive electrode) 3a which is in close contact with the electrolyte membrane 1 and is supplied with hydrogen or a fuel gas containing hydrogen at a high concentration, and on the other side of the electrolyte membrane 1. There is a cathode (negative electrode) 3b which is closely supplied with and is supplied with an oxidant gas containing air or oxygen at a high concentration. The anode 3a and the cathode 3b have a thickness of 10
It is composed of a porous graphite particle layer supporting fine Pt or Pt alloy catalyst with a thickness of μm, and is often baked on the electrolyte membrane 1 by hot pressing or the like.
【0006】アノード3aおよびカソード3bの外側に
は、アノード側ガス拡散層5aおよびカソード側ガス拡
散層5bが配置される。該ガス拡散層5a,5bには、
溌水処理された厚さ200〜400μmのカーボンクロ
ス等が用いられる。An anode side gas diffusion layer 5a and a cathode side gas diffusion layer 5b are arranged outside the anode 3a and the cathode 3b. In the gas diffusion layers 5a and 5b,
A water-repellent carbon cloth having a thickness of 200 to 400 μm or the like is used.
【0007】電解質膜1およびその両側に配置されたガ
ス拡散層5a,5bは、セパレータ2a,2bにより挟
み込まれている。アノード側セパレータ2aとアノード
側ガス拡散層5aとが接触する側には、水素等の燃料ガ
スをアノード3aに供給するための燃料ガス流路7が、
また、カソード側セパレータ2bとカソード側ガス拡散
層5bとが接触する側には、空気等の酸化剤ガスをカソ
ード3bに供給するための酸化剤ガス流路6が設けられ
ている。The electrolyte membrane 1 and the gas diffusion layers 5a and 5b arranged on both sides thereof are sandwiched by the separators 2a and 2b. On the side where the anode-side separator 2a and the anode-side gas diffusion layer 5a are in contact with each other, a fuel gas passage 7 for supplying a fuel gas such as hydrogen to the anode 3a is provided.
An oxidant gas flow path 6 for supplying an oxidant gas such as air to the cathode 3b is provided on the side where the cathode side separator 2b and the cathode side gas diffusion layer 5b are in contact with each other.
【0008】燃料ガスおよび酸化剤ガスはそれぞれガス
ケット4a,4bによりシールされている。ガス流路と
しては幅約1mm×深さ約1mmで、約1mmピッチで
形成される場合が多い。上記の単セルが数10層積層さ
れて、固体高分子型燃料電池スタックが構成される。電
極反応は、次式のとおりである。
〔数1〕
アノード側:H2→2H++2e-
カソード側:2H+1/2O2+2e-→H2O
なお、従来は、セパレータ材としてガス不透過処理され
た黒鉛板等が用いられてきた。The fuel gas and the oxidant gas are sealed by gaskets 4a and 4b, respectively. The gas passage has a width of about 1 mm and a depth of about 1 mm, and is often formed with a pitch of about 1 mm. The polymer electrolyte fuel cell stack is formed by stacking several tens of the above-mentioned single cells. The electrode reaction is as follows. [Equation 1] Anode side: H 2 → 2H + + 2e − Cathode side: 2H + ½O 2 + 2e − → H 2 O Conventionally, a gas-impermeable treated graphite plate has been used as a separator material.
【0009】[0009]
【発明が解決しようとする課題】固体高分子型燃料電池
は、前記のように、高電流密度が取れる、寿命が長い、
動作温度が低い(約80℃)等の長所を有しているた
め、定置および家庭用電源、自動車用電源等として注目
されているが、市場に受け入れられるための最大の課題
は低コスト化である。コストは、素材費、加工費、スタ
ック組立て費等からなり、これらのコスト削減が重要な
課題となる。As described above, the polymer electrolyte fuel cell has a high current density, a long life, and
Since it has advantages such as low operating temperature (about 80 ℃), it is attracting attention as a stationary and household power supply, automobile power supply, etc., but the biggest issue for market acceptance is cost reduction. is there. Costs consist of material costs, processing costs, stack assembly costs, etc., and reducing these costs is an important issue.
【0010】従来の黒鉛製セパレータは、黒鉛の細孔に
フェノール等の樹脂を含浸した後、1000℃を超える
高温で熱処理して炭化させ、ガス不透過性とすることが
必要であるために材料自身が高価である。また、得られ
た緻密黒鉛板に、電解質膜へ燃料ガス(H2等)や酸化
剤ガス(空気等)を供給するためのガス流路を、機械切
削加工で作製するために長時間を要し高価となる。A conventional graphite separator is required to be impervious to gas by impregnating graphite pores with a resin such as phenol and then heat-treating at a high temperature of more than 1000 ° C. to carbonize the material. It is expensive by itself. In addition, it takes a long time to make a gas flow path for supplying a fuel gas (H 2 or the like) or an oxidant gas (air or the like) to the electrolyte membrane in the obtained dense graphite plate by mechanical cutting. Becomes expensive.
【0011】さらに、図6に示すように、単セルの構成
は電極付き電解質膜1、拡散層5a,5b、ガスケット
4a,4b、セパレータ2a,2bの計7部品と部品数
が多いため、単セル数が数10層からなるスタックの組
立および検査に、手間と時間を要しコスト高となる。Further, as shown in FIG. 6, since the unit cell has a large number of components including the electrolyte membrane 1 with electrodes, the diffusion layers 5a and 5b, the gaskets 4a and 4b, and the separators 2a and 2b, there are a large number of components. Assembling and inspecting a stack having a cell number of several tens of layers requires labor and time, resulting in high cost.
【0012】加工コストを改善するものとして、特開平
8−255619号公報では、三次元網状を有する多孔
質カーボンをガス供給板(配流板)に用いる方法を提案
している。この方法では、ガス流路の機械切削加工が不
要となるため加工コストは安価になる。しかし、単セル
の部品数は、電解質膜が1箇、多孔質カーボン板が2
箇、ガスケットが2箇、セパレータが2箇の計7部品、
接触抵抗低減のためセパレータとガス配流板間に導電性
シートを挟むと計9部品となる。As a method for improving the processing cost, Japanese Patent Laid-Open No. 8-255619 proposes a method of using porous carbon having a three-dimensional mesh for a gas supply plate (flow distribution plate). This method does not require mechanical cutting of the gas flow path, so the processing cost is low. However, the number of parts of a single cell is one electrolyte membrane and two porous carbon plates.
7 gaskets, 2 gaskets, 2 separators,
If a conductive sheet is sandwiched between the separator and the gas distribution plate to reduce the contact resistance, there will be a total of 9 parts.
【0013】このように部品数が多いこと、ガスケット
と多孔質カーボン板間には隙間を作ってはガスの偏流を
招くので隙間なく嵌め込む必要があり、組立ておよび検
査に長時間を要し、コスト高となる。As described above, since the number of parts is large and a gap is formed between the gasket and the porous carbon plate, the gas is unevenly flown, so it is necessary to fit the gap without gap, and it takes a long time to assemble and inspect. High cost.
【0014】本発明の目的は、上記に鑑み、特性が従来
のものと同等以上で、低コストの固体高分子型燃料電池
用セパレータ、並びに、それを用いた固体高分子型燃料
電池の提供にある。In view of the above, an object of the present invention is to provide a low cost solid polymer fuel cell separator having characteristics equal to or better than those of conventional ones, and a solid polymer fuel cell using the same. is there.
【0015】[0015]
【課題を解決するための手段】前記の目的を達成する本
発明の要旨は次ぎのとおりである。The gist of the present invention for achieving the above object is as follows.
【0016】固体高分子型電解質膜の両側にそれぞれ正
極および負極を配置した単位セルと、前記単位セルを挟
持し、正極側に燃料ガスを、負極側に酸化剤ガスを供給
するセパレータを備えた固体高分子型燃料電池の前記セ
パレータが、ガス不透過性の導電性仕切り板を中心と
し、該仕切り板の一方の側に正極へ燃料ガスを供給する
周辺部がガス不透過性の導電性多孔体板が、他方の側に
負極へ酸化剤ガスを供給する周辺部がガス不透過性の導
電性多孔体板が配置されており、これらの3枚の板が導
電性接着剤により一体化されていることを特徴とする。A unit cell in which a positive electrode and a negative electrode are arranged on both sides of a solid polymer electrolyte membrane and a separator for sandwiching the unit cell and supplying a fuel gas to the positive electrode side and an oxidant gas to the negative electrode side are provided. The separator of the polymer electrolyte fuel cell has a gas-impermeable conductive partition plate as a center, and a gas-impermeable conductive porous plate is provided on one side of the partition plate for supplying fuel gas to the positive electrode. On the other side of the body plate, a gas impermeable conductive porous body plate is arranged on the other side for supplying the oxidant gas to the negative electrode, and these three plates are integrated by a conductive adhesive. It is characterized by
【0017】また、電解質膜の両側に正極および負極を
配置した単位セルと、前記単位セルを挟持し、正極側に
燃料ガスを、負極側に酸化剤ガスを供給するセパレータ
を備えた固体高分子型の燃料電池において、前記セパレ
ータが、ガス不透過性の導電性仕切り板を中心とし、該
仕切り板の一方の側に正極へ燃料ガスを供給する周辺部
がガス不透過性の導電性多孔体板が、他方の側に負極へ
酸化剤ガスを供給する周辺部がガス不透過性の導電性多
孔体板が配置されており、これらの3枚の板が導電性接
着剤により一体化されていることを特徴とする燃料電池
にある。Further, a solid polymer having a unit cell in which a positive electrode and a negative electrode are arranged on both sides of an electrolyte membrane and a separator for sandwiching the unit cell and supplying a fuel gas to the positive electrode side and an oxidant gas to the negative electrode side. Type fuel cell, the separator has a gas impermeable conductive partition plate as a center, and a peripheral portion for supplying fuel gas to the positive electrode on one side of the partition plate is a gas impermeable conductive porous body. On the other side of the plate, a gas impermeable conductive porous plate is arranged on the other side for supplying the oxidant gas to the negative electrode, and these three plates are integrated by a conductive adhesive. The fuel cell is characterized in that
【0018】上記において、前記ガス不透過性の導電性
仕切り板が耐食性導電性塗料が被覆されたステンレス鋼
板または樹脂モールドカーボン板であり、前記導電性多
孔体板がカーボンクロスであり、カーボンクロスの空隙
率が60〜80%であるセパレータを用いることにより
達成される。In the above, the gas-impermeable conductive partition plate is a stainless steel plate or a resin-molded carbon plate coated with a corrosion-resistant conductive paint, and the conductive porous plate is a carbon cloth. It is achieved by using a separator having a porosity of 60 to 80%.
【0019】本発明の上記セパレータは、燃料ガスおよ
び酸化剤ガスを仕切るガス不透過性の導電性板の両側
に、周辺部が樹脂モールドによりガス不透過性とした燃
料ガス供給用導電性多孔質体板(以下、燃料ガス供給板
と称す)および周辺部が樹脂モールドによりガス不透過
性とした酸化剤ガス供給用導電性多孔質体板(以下、酸
化剤ガス供給板と称す)を配置し、3枚の板が導電性接
着剤を介して一体化されたものである。The separator of the present invention is a conductive porous material for supplying fuel gas, which has a gas-impermeable conductive plate for partitioning the fuel gas and the oxidant gas, and the periphery of which is made gas-impermeable by a resin mold. A body plate (hereinafter, referred to as a fuel gas supply plate) and a conductive porous body plate for supplying an oxidant gas (hereinafter, referred to as an oxidant gas supply plate) whose periphery is made gas impermeable by a resin mold are arranged. The three plates are integrated via a conductive adhesive.
【0020】燃料ガスおよび酸化剤ガスを仕切るガス不
透過性の導電性板(以下、導電性ガス仕切り板と称す)
は、形状を維持し、ガスを透過させず、導電性(単位面
積当たりの抵抗が数mΩcm2以下)を有し、さらに、
約80℃の飽和水蒸気圧に近い環境下で、特にカソード
側では空気(酸素)の存在下で使用されるので耐食性に
優れた材料がよく、また、低コストが要求されることか
ら、金属系では耐食導電性塗料を被覆したステンレス
鋼、炭素系では樹脂モールドカーボン板がよい。A gas-impermeable conductive plate for partitioning the fuel gas and the oxidant gas (hereinafter referred to as a conductive gas partition plate)
Retains its shape, does not allow gas to permeate, has electrical conductivity (resistance per unit area of several mΩcm 2 or less), and
Since it is used in an environment near saturated steam pressure of about 80 ° C, especially in the presence of air (oxygen) on the cathode side, a material with excellent corrosion resistance is preferable, and low cost is required. Is preferably stainless steel coated with a corrosion-resistant conductive paint, and a carbon-based resin-molded carbon plate is preferable.
【0021】なお、炭素鋼,銅,アルミニウム等の材料
でも、耐食性導電性塗料を表面にコートすれば使用でき
るが、これらの金属材料はステンレス鋼に比べて腐食性
が劣るので、耐食性導電性塗料コート層にピンホール等
の欠陥があると容易に腐食されてしまうので好ましくな
い。Materials such as carbon steel, copper, and aluminum can be used by coating the surface with a corrosion-resistant conductive paint, but since these metal materials are less corrosive than stainless steel, the corrosion-resistant conductive paint is used. If the coat layer has defects such as pinholes, it is easily corroded, which is not preferable.
【0022】電解質膜に燃料ガスまたは酸化剤ガスを供
給する部材として、周辺部が樹脂モールドによりガス不
透過性とした導電性多孔質体を使用すれば、燃料ガス供
給および酸化剤ガス供給のガス流路を形成するための機
械切削加工が不要となるので加工費が安価となる。If a conductive porous body whose periphery is gas impermeable by resin molding is used as a member for supplying the fuel gas or the oxidant gas to the electrolyte membrane, the gas for supplying the fuel gas and the gas for supplying the oxidant gas are used. Since the mechanical cutting process for forming the flow path is not necessary, the processing cost is low.
【0023】導電性多孔体としては、耐食性導電塗料を
被覆した金属系のパンチ板,各種金網,炭素系のカーボ
ンクロス,カーボンフェルト等が使用できるが、腐食に
対する信頼性の点では炭素系のカーボンクロスが好まし
く、コストも安価である。As the conductive porous body, a metal punch plate coated with a corrosion-resistant conductive paint, various wire nets, carbon-based carbon cloth, carbon felt or the like can be used, but carbon-based carbon is used in terms of reliability against corrosion. A cloth is preferable and the cost is low.
【0024】導電性多孔体の周辺部にガス不透過性の機
能を持たせる樹脂としては、ガスシール性が必要なので
弾性を有し、また、約80℃の飽和水蒸気圧に近い環境
下で使用されるのでスチームに対する耐食性を有する必
要がある。こうしたものとしては、ブチルゴム,ブタジ
ェンゴム,フッ素ゴム,シリコーンゴム等のゴム材がよ
い。The resin having a gas impermeable function in the peripheral portion of the conductive porous body is required to have a gas sealing property and therefore has elasticity, and is used in an environment close to a saturated water vapor pressure of about 80 ° C. Therefore, it is necessary to have corrosion resistance against steam. As such a material, a rubber material such as butyl rubber, butadiene rubber, fluororubber, and silicone rubber is preferable.
【0025】導電性接着剤は、導電性フィラと樹脂とを
混合することにより作製される。導電性フィラとして
は、黒鉛粉,Au,Ag,Fe,Al等の金属粉、W
C,TiC,TiN,TiB,FeSi等の導電性セラ
ミックス粉等がある。黒鉛粉は安価であり、抵抗率も比
較的小さく、80℃で耐食・耐酸化性に優れるので最も
適している。The conductive adhesive is prepared by mixing a conductive filler and a resin. As the conductive filler, graphite powder, metal powder such as Au, Ag, Fe and Al, W
There are conductive ceramic powders such as C, TiC, TiN, TiB, and FeSi. Graphite powder is the most suitable because it is inexpensive, has a relatively low resistivity, and has excellent corrosion resistance and oxidation resistance at 80 ° C.
【0026】Au,Ag粉は高価であり、Fe,Al粉
は燃料電池運転環境下で酸化され抵抗が増大するので好
ましくない。また、導電性セラミックスは、抵抗率がお
よそ10-5Ωcmのオーダであり、Au,Ag等の金属
よりは大きいが黒鉛よりは小さい。しかし、硼化物,窒
化物は耐酸化性が小さく好ましくない。珪化物は耐酸化
性には優れているがコスト高となる。WC,TiCは抵
抗率が小さく、耐酸化性に優れるのでコストは多少高い
が使用できる。The Au and Ag powders are expensive, and the Fe and Al powders are not preferable because they are oxidized in the fuel cell operating environment to increase the resistance. Further, the conductive ceramics have a resistivity of the order of about 10 −5 Ωcm, which is larger than metals such as Au and Ag but smaller than graphite. However, borides and nitrides are not preferable because they have low oxidation resistance. Silicide is excellent in oxidation resistance, but it is costly. Since WC and TiC have low resistivity and excellent resistance to oxidation, they can be used although the cost is somewhat high.
【0027】樹脂としては、熱可塑性のフッ化ビニリデ
ン樹脂、熱硬化性のフェノール樹脂、エポキシ樹脂等が
挙げられる。樹脂への導電フィラの混合割合は、15〜
40vol%がよい。15vol%未満では導電性が悪
くなる。また、40vol%を超えると空隙ができ易く
なるためにガスシール性が悪くなる。また、金属薄板の
接合強度も低下する。Examples of the resin include thermoplastic vinylidene fluoride resin, thermosetting phenol resin, epoxy resin and the like. The mixing ratio of the conductive filler to the resin is 15 to 15.
40 vol% is good. If it is less than 15 vol%, the conductivity will be poor. On the other hand, if it exceeds 40 vol%, voids are likely to be formed, so that the gas sealability is deteriorated. Also, the bonding strength of the thin metal plates is reduced.
【0028】電解質膜に燃料ガスおよび酸化剤ガスを供
給する導電性の多孔体板およびガス仕切り板は、導電性
接着剤により接着一体化されるので、単セルの部品点数
は、燃料ガス供給セパレータが1箇、電解質膜が1箇、
酸化剤ガス供給セパレータが1箇の3部品でよく、スタ
ック組立て時の部品数が大幅に低減できるのでスタック
組立て費が安価となる。Since the conductive porous plate and the gas partition plate for supplying the fuel gas and the oxidant gas to the electrolyte membrane are bonded and integrated by the conductive adhesive, the number of parts of the single cell is the fuel gas supply separator. 1 piece, electrolyte membrane 1 piece,
The oxidant gas supply separator may be composed of three parts, and the number of parts when assembling the stack can be greatly reduced, so that the stack assembling cost becomes low.
【0029】[0029]
【発明の実施の形態】図1は、本発明の燃料ガス供給
板,導電性ガス仕切り板および酸化剤ガス供給板が、導
電性接着剤を介して一体化されたセパレータの上面図で
ある。1 is a top view of a separator in which a fuel gas supply plate, a conductive gas partition plate and an oxidant gas supply plate of the present invention are integrated with a conductive adhesive.
【0030】本実施例のセパレータは、燃料ガス供給板
11、導電性ガス仕切り板21および酸化剤ガス供給板
31を導電性接着剤を介して一体化して作製される。The separator of this embodiment is manufactured by integrating the fuel gas supply plate 11, the conductive gas partition plate 21, and the oxidant gas supply plate 31 with a conductive adhesive.
【0031】燃料ガス供給板11,導電性ガス仕切り板
21および酸化剤ガス供給板31には、それぞれ厚さ方
向に貫通する燃料ガス供給孔12,燃料ガス排出孔1
3,酸化剤ガス供給孔14および酸化剤ガス排出孔15
が設けられている。The fuel gas supply plate 11, the conductive gas partition plate 21, and the oxidant gas supply plate 31 penetrate through the fuel gas supply plate 11, the conductive gas partition plate 21, and the oxidant gas supply plate 31 in the thickness direction, respectively.
3, oxidant gas supply hole 14 and oxidant gas discharge hole 15
Is provided.
【0032】燃料ガス供給板11の燃料ガス供給孔12
に供給された燃料ガスは、燃料ガス供給板11の導電性
多孔体16を流れ、燃料ガス供給板11と接触する固体
高分子型電解質膜(図示省略)に燃料ガスを供給し、燃
料ガス排出孔13を経て系外に排出される。Fuel gas supply hole 12 of fuel gas supply plate 11
The fuel gas supplied to the fuel gas supply plate 11 flows through the conductive porous body 16 to supply the fuel gas to a solid polymer electrolyte membrane (not shown) that is in contact with the fuel gas supply plate 11 and discharge the fuel gas. It is discharged to the outside of the system through the hole 13.
【0033】燃料ガスの酸化剤ガス供給孔14および酸
化剤ガス排出孔15への流出は、ガス不透過性樹脂モー
ルド部18a,18bでシールされる。酸化剤ガス供給
板31の酸化剤ガス供給孔14に供給された酸化剤ガス
は、酸化剤ガス供給板31の導電性多孔体17を流れ、
酸化剤供給板31と接触する固体高分子型電解質膜(図
示省略)に酸化剤ガスを供給し、酸化剤ガス排出孔15
を経て系外に排出される。The outflow of the fuel gas to the oxidant gas supply hole 14 and the oxidant gas discharge hole 15 is sealed by the gas impermeable resin mold parts 18a and 18b. The oxidant gas supplied to the oxidant gas supply hole 14 of the oxidant gas supply plate 31 flows through the conductive porous body 17 of the oxidant gas supply plate 31,
The oxidant gas is supplied to the solid polymer electrolyte membrane (not shown) in contact with the oxidant supply plate 31, and the oxidant gas discharge hole 15 is provided.
Is discharged to the outside of the system.
【0034】一方、酸化剤ガスの燃料ガス供給孔12お
よび燃料ガス排出孔13への流出はガス不透過性樹脂モ
ールド部18c,18dでシールされる。On the other hand, the outflow of the oxidant gas to the fuel gas supply hole 12 and the fuel gas discharge hole 13 is sealed by gas impermeable resin mold parts 18c and 18d.
【0035】上記の燃料ガス供給板11,導電性ガス仕
切り板21および酸化剤ガス供給板31は導電性接着剤
を介して一体化される。The fuel gas supply plate 11, the conductive gas partition plate 21 and the oxidant gas supply plate 31 are integrated with each other through a conductive adhesive.
【0036】〔実施例 1〕次に、図1に示すセパレー
タの具体的な製法の一実施例について説明する。導電性
ガス仕切り板21には、縦100mm×横100mm×
厚さ0.5mmのSUS304鋼薄板を用いた。また、
燃料ガス供給板11および酸化剤ガス供給板31には、
縦100mm×横100mm×厚さ0.5mmで空隙率
約70%のカーボンクロスを用い、4辺から10mmの
幅でシリコーンゴムをモールドした。Example 1 Next, an example of a specific method for producing the separator shown in FIG. 1 will be described. The conductive gas partition plate 21 has a length of 100 mm × a width of 100 mm ×
A SUS304 steel thin plate having a thickness of 0.5 mm was used. Also,
In the fuel gas supply plate 11 and the oxidant gas supply plate 31,
Using a carbon cloth having a length of 100 mm × width of 100 mm × thickness of 0.5 mm and a porosity of about 70%, silicone rubber was molded in a width of 4 mm to 10 mm.
【0037】それぞれの板には、4辺から5mmの位置
に、幅3mm×長さ60mmの燃料ガス供給孔12,燃
料ガス排出孔13,酸化剤ガス供給孔14,酸化剤ガス
排出孔15となる貫通孔をプレス打抜き法で形成したも
のを2組作製した。Each plate is provided with a fuel gas supply hole 12, a fuel gas discharge hole 13, an oxidant gas supply hole 14, and an oxidant gas discharge hole 15 each having a width of 3 mm and a length of 60 mm at a position 5 mm from four sides. Two sets of through holes formed by the press punching method were prepared.
【0038】次いで、呉羽化学製フッ化ビニリデン樹脂
(N−メチルピロリドン12wt%溶液)1000g
に、平均粒子径3μmの黒鉛粉90g、カーボンブラッ
ク微紛30g(炭素粉/フッ化ビニリデン樹脂=50/
50重量比)を加え、3本ロールにより混練して導電性
接着剤を作製した。Next, 1000 g of vinylidene fluoride resin (N-methylpyrrolidone 12 wt% solution) manufactured by Kureha Chemical Co., Ltd.
In addition, 90 g of graphite powder having an average particle diameter of 3 μm and 30 g of carbon black fine powder (carbon powder / vinylidene fluoride resin = 50 /
50 weight ratio) was added and kneaded with a three-roll mill to prepare a conductive adhesive.
【0039】この導電性接着剤をデイップ法によりSU
S304製仕切り板の両面に塗布した後、150×15
0mm×厚さ10mmのSUS304板上に置かれた燃
料ガス供給板11上に重ねて置き、この上に酸化剤ガス
供給板31を重ね、さらに150×150mm×厚さ1
0mmのSUS304板を載置し、1Torr以下の減
圧下で、150℃,15分、250℃,15分の熱処理
を行って燃料ガス供給板11,導電性ガス仕切り板21
および酸化剤ガス供給板31からなる一体化接合体を2
組作製した。This conductive adhesive was applied to SU by the dip method.
After applying to both sides of S304 partition plate, 150 x 15
The fuel gas supply plate 11 placed on a SUS304 plate having a thickness of 0 mm and a thickness of 10 mm is laid on top of the oxidant gas supply plate 31.
A 0 mm SUS304 plate is placed, and heat treatment is performed at a reduced pressure of 1 Torr or less at 150 ° C. for 15 minutes, 250 ° C. for 15 minutes, and a fuel gas supply plate 11 and a conductive gas partition plate 21.
And an oxidant gas supply plate 31
A set was made.
【0040】これを図2に示すように配置し、両側を1
20×120×10mmのSUS板19で挟み込み、ボ
ルトで締付けて単セルを作製した。This is arranged as shown in FIG.
It was sandwiched between 20 × 120 × 10 mm SUS plates 19 and tightened with bolts to produce a single cell.
【0041】電解質膜1には、厚さ約30μmのジャパ
ンゴアテックス社製の電解質膜を用いた。電解質膜1の
両面には、黒鉛粒子に担持したPt系の触媒が焼き付け
られている。燃料極側には加湿した水素ガスを、空気極
側には加湿した空気を供給し、水素利用率70%、空気
利用率40%、70℃の条件下I/V特性を評価した。As the electrolyte membrane 1, an electrolyte membrane manufactured by Japan Gore-Tex Co. having a thickness of about 30 μm was used. A Pt-based catalyst supported on graphite particles is baked on both surfaces of the electrolyte membrane 1. Humidified hydrogen gas was supplied to the fuel electrode side and humidified air was supplied to the air electrode side, and the I / V characteristics were evaluated under the conditions of 70% hydrogen utilization rate, 40% air utilization rate and 70 ° C.
【0042】図3は、上記のセパレータを用いた単セル
の特性を示すグラフである。なお、図3には比較のため
従来技術による100mm×100mm×厚さ約5mm
の人造黒鉛製板に、幅1mm×深さ1mmのガス流路を
1mmピッチで機械切削により形成したセパレータを用
いた場合の結果も併せて示した。FIG. 3 is a graph showing the characteristics of a single cell using the above separator. Note that, in FIG. 3, for comparison, 100 mm × 100 mm × thickness of about 5 mm according to the related art.
The results of using a separator in which a gas passage having a width of 1 mm and a depth of 1 mm is formed by mechanical cutting at a pitch of 1 mm on the artificial graphite plate of 3 are also shown.
【0043】本実施例によるセパレータを用いた単セル
は、従来技術による黒鉛製セパレータを用いた比較例1
と比べ、ほぼ同じ電流密度/電圧特性が得られた。これ
により本発明の周辺部をシリコーンゴムモールドにより
ガス不透過性としたカーボンクロス製の燃料ガス供給板
11,ステンレス製の電性ガス仕切り板21および周辺
部をシリコーンゴムモールドによりガス不透過性とした
カーボンクロス製の酸化剤ガス供給板31とを、黒鉛粉
/フッ化ビニリデン導電性接着剤による一体接合型セパ
レータが、燃料電池用セパレータとして使用できること
が分かる。The single cell using the separator according to the present embodiment is the comparative example 1 using the graphite separator according to the prior art.
The same current density / voltage characteristics were obtained as compared with the above. As a result, the peripheral portion of the present invention is made gas impermeable by the silicone rubber mold, and the fuel gas supply plate 11 made of carbon cloth, the electrically conductive gas partition plate 21 made of stainless steel, and the peripheral portion are made gas impermeable by the silicone rubber mold. It can be seen that the integrally joined separator made of graphite powder / vinylidene fluoride conductive adhesive and the oxidant gas supply plate 31 made of carbon cloth can be used as a fuel cell separator.
【0044】これらの他に、ガス供給板(多孔質板)の
カーボンクロス周辺部のガス不透過樹脂としてブチルゴ
ム,ブタジェンゴム,フッ素ゴムを使用した場合につい
ても検討したが、同様の結果が得られた。In addition to these, the case where butyl rubber, butadiene rubber, and fluororubber were used as the gas impermeable resin around the carbon cloth of the gas supply plate (porous plate) was also examined, but similar results were obtained. .
【0045】〔実施例 2〕導電性ガス仕切り板21と
しては、縦100mm×横100mm×厚さ1.0mm
の黒鉛モールド板を用い、燃料ガス供給板11および酸
化剤ガス供給板31には、縦100mm×横100mm
×厚さ0.5mmで、空隙率約70%のカーボンクロス
を用い、4辺から10mmの幅でシリコーンゴムをモー
ルドした。[Embodiment 2] The conductive gas partition plate 21 has a length of 100 mm, a width of 100 mm, and a thickness of 1.0 mm.
100 mm in length x 100 mm in width for the fuel gas supply plate 11 and the oxidant gas supply plate 31.
B. Silicone rubber was molded with a width of 4 mm to 10 mm using a carbon cloth having a thickness of 0.5 mm and a porosity of about 70%.
【0046】膨張黒鉛粉70%とフェノール樹脂30%
を混合し、220℃,10MPaで20分間ホットプレ
スすることにより作製した。それぞれの板には、4辺か
ら5mmの位置に、幅3mm×長さ60mmの燃料ガス
供給孔12,燃料ガス排出孔13,酸化剤ガス供給孔1
4,酸化剤ガス排出孔15となる貫通孔をプレス打抜き
法で形成し、これを2組作製した。Expanded graphite powder 70% and phenol resin 30%
Was mixed and hot-pressed at 220 ° C. and 10 MPa for 20 minutes to prepare the same. In each plate, a fuel gas supply hole 12 having a width of 3 mm and a length of 60 mm, a fuel gas discharge hole 13, and an oxidant gas supply hole 1 are located 5 mm from the four sides.
4. A through hole to be the oxidant gas discharge hole 15 was formed by a press punching method, and two sets of this were manufactured.
【0047】得られた燃料ガス供給板11,導電性ガス
仕切り板21および酸化剤ガス供給板31を実施例1と
同じ方法で組立て単セルを作製した。電解質膜には、厚
さ30μmのジャパンゴアテックス社製の膜を使用し
た。燃料極側に、加湿した水素ガスを、空気極側に加湿
した空気を供給し、水素利用率70%、空気利用率40
%、70℃の条件下I/V特性を評価した。The obtained fuel gas supply plate 11, conductive gas partition plate 21 and oxidant gas supply plate 31 were assembled in the same manner as in Example 1 to produce a single cell. As the electrolyte membrane, a 30 μm-thick membrane manufactured by Japan GORE-TEX was used. Humidified hydrogen gas is supplied to the fuel electrode side, and humidified air is supplied to the air electrode side to obtain a hydrogen utilization rate of 70% and an air utilization rate of 40%.
%, 70 ° C. I / V characteristics were evaluated.
【0048】図4は、上記のセパレータを用いた単セル
の特性を示すグラフである。なお、図4には比較のため
従来技術による厚さ約5mmの人造黒鉛製板に、幅1m
m×深さ1mmのガス流路を1mmピッチで機械切削に
より形成したセパレータを用いた場合の結果も併せて示
した。FIG. 4 is a graph showing the characteristics of a single cell using the above separator. In FIG. 4, for comparison, an artificial graphite plate having a thickness of about 5 mm and a width of 1 m according to the conventional technique is used.
The results of using a separator formed by mechanically cutting a gas channel having a depth of m × 1 mm at a pitch of 1 mm are also shown.
【0049】本実施例によるセパレータを用いた単セル
は、従来技術による黒鉛製セパレータを用いた比較例1
と比べ、ほぼ同じ電流密度/電圧特性が得られた。これ
により導電性ガス仕切り板21の材料として、安価な黒
鉛モールド板が使用できることが分かる。The single cell using the separator according to the present example is a comparative example 1 using the graphite separator according to the prior art.
The same current density / voltage characteristics were obtained as compared with the above. This shows that an inexpensive graphite mold plate can be used as the material of the conductive gas partition plate 21.
【0050】〔実施例 3〕空隙率約50〜90%のカ
ーボンクロスを用い、実施例1同じ寸法の単セルを同様
の方法により組み立て、固体高分子型燃料電池運転時の
標準的な電流密度500mA/cm2における起電力と
圧力損失を測定した。図5は、上記のセパレータを用い
た単セルの特性を示すグラフである。[Example 3] Using carbon cloth having a porosity of about 50 to 90%, a single cell having the same dimensions as in Example 1 was assembled by the same method, and a standard current density during operation of the polymer electrolyte fuel cell was obtained. The electromotive force and the pressure loss at 500 mA / cm 2 were measured. FIG. 5 is a graph showing the characteristics of a single cell using the above separator.
【0051】空隙率が増加するにつれて圧力損失は小さ
くなり好ましいが、起電力も小さくなっている。これは
空隙率が大きくなると接触抵抗が大きくなるためであ
る。固体高分子型燃料電池の運転に好適な圧力損失0.
01Mpa以下、電流密度500mA/cm2における
起電力550mV以上の範囲は、空隙率約60〜80%
の範囲である。The pressure loss decreases as the porosity increases, which is preferable, but the electromotive force also decreases. This is because the contact resistance increases as the porosity increases. Suitable pressure loss for operation of polymer electrolyte fuel cell
The porosity is about 60 to 80% in the range of 01 Mpa or less and the electromotive force of 550 mV or more at a current density of 500 mA / cm 2 .
Is the range.
【0052】〔比較例 1〕比較のため従来技術を用い
て黒鉛製セパレータを作製し、単セルのI/V特性を測
定した。[Comparative Example 1] For comparison, a graphite separator was prepared using a conventional technique and the I / V characteristics of a single cell were measured.
【0053】日本黒鉛製の厚さ約5mmの緻密化処理さ
れた人造黒鉛製板を縦100mm×横100mmの大き
さに切り出し、機械切削により幅1mm×深さ1mmの
ガス流路を1mmピッチで形成してセパレータを作製し
た。このセパレータを図6に示すように配列し、両側を
140×140×10mmのSUS板19で挟み込み、
締めつけて単セルを作製した。電解質膜およびガス拡散
層には、それぞれ厚さ30μm、350μmのジャパン
ゴアテックス社製の膜を使用した。A densified artificial graphite plate made of Nippon Graphite having a thickness of about 5 mm was cut into a size of 100 mm in length and 100 mm in width, and a gas passage of 1 mm in width and 1 mm in depth was cut by mechanical cutting at a pitch of 1 mm. It formed and produced the separator. Arrange these separators as shown in FIG. 6, sandwich both sides with a SUS plate 19 of 140 × 140 × 10 mm,
A single cell was produced by tightening. Membranes manufactured by Japan Gore-tex Co., Ltd. having thicknesses of 30 μm and 350 μm were used for the electrolyte membrane and the gas diffusion layer, respectively.
【0054】燃料極側に加湿した水素ガスを、空気極側
に加湿した空気を供給し、水素利用率70%、空気利用
率40%、70℃の条件下I/V特性を評価した。結果
を図4,図5に比較例1として示す。Humidified hydrogen gas was supplied to the fuel electrode side and humidified air was supplied to the air electrode side, and the I / V characteristics were evaluated under the conditions of 70% hydrogen utilization rate, 40% air utilization rate and 70 ° C. The results are shown in FIGS. 4 and 5 as Comparative Example 1.
【0055】電流密度500mA/cm2で電圧0.63
Vと従来報告されている値とほぼ同じ値が得られた。Current density of 500 mA / cm 2 and voltage of 0.63
The value of V was almost the same as that reported previously.
【0056】[0056]
【発明の効果】本発明によれば、固体高分子型燃料電池
用のセパレータとして、従来と同様の特性を有し、か
つ、従来のものよりも約40%低コストで提供すること
ができる。EFFECTS OF THE INVENTION According to the present invention, a separator for a polymer electrolyte fuel cell can be provided with the same characteristics as the conventional one and at a cost about 40% lower than that of the conventional one.
【図1】本発明の燃料ガス供給板,導電性ガス仕切り板
および酸化剤ガス供給板が、導電性接着剤を介して一体
化されたセパレータの上面図である。FIG. 1 is a top view of a separator in which a fuel gas supply plate, a conductive gas partition plate and an oxidant gas supply plate of the present invention are integrated via a conductive adhesive.
【図2】実施例1の固体高分子型燃料電池単セルの構造
を示す模式断面図である。2 is a schematic cross-sectional view showing the structure of a polymer electrolyte fuel cell unit cell of Example 1. FIG.
【図3】実施例1のセパレータを用いた単セルの特性を
示すグラフである。3 is a graph showing characteristics of a single cell using the separator of Example 1. FIG.
【図4】実施例2のセパレータを用いた単セルの特性を
示すグラフである。FIG. 4 is a graph showing characteristics of a single cell using the separator of Example 2.
【図5】実施例3のセパレータを用いた単セルの特性を
示すグラフである。5 is a graph showing characteristics of a single cell using the separator of Example 3. FIG.
【図6】従来の黒鉛製セパレータを使用した固体高分子
型燃料電池単セルの構造の一例を示す模式断面図であ
る。FIG. 6 is a schematic cross-sectional view showing an example of the structure of a solid polymer electrolyte fuel cell single cell using a conventional graphite separator.
1…電解質膜、2a…アノード側セパレータ、2b…カ
ソード側セパレータ、3a…アノード(正極)、3b…
カソード(負極)、4a…アノード側ガスケット、4b
…カソード側ガスケッツト、5a…アノード側ガス拡散
層、5b…カソード側ガス拡散層、6…燃料ガス流路、
7…酸化剤ガス流路、11…燃料ガス供給板、12…燃
料ガス供給孔、13…燃料ガス排出孔、14…酸化剤ガ
ス供給孔、15…酸化剤ガス排出孔、16,17…導電
性多孔体、18a,18b,18c,18d…ガス不透
過性樹脂モールド部、19…SUS板、21…導電性ガ
ス仕切り板、31…酸化剤ガス供給板。DESCRIPTION OF SYMBOLS 1 ... Electrolyte membrane, 2a ... Anode side separator, 2b ... Cathode side separator, 3a ... Anode (positive electrode), 3b ...
Cathode (negative electrode), 4a ... Anode gasket, 4b
... cathode-side gas gasket, 5a ... anode-side gas diffusion layer, 5b ... cathode-side gas diffusion layer, 6 ... fuel gas flow path,
7 ... Oxidant gas flow path, 11 ... Fuel gas supply plate, 12 ... Fuel gas supply hole, 13 ... Fuel gas discharge hole, 14 ... Oxidant gas supply hole, 15 ... Oxidant gas discharge hole, 16, 17 ... Conductivity Porous body, 18a, 18b, 18c, 18d ... Gas impermeable resin mold part, 19 ... SUS plate, 21 ... Conductive gas partition plate, 31 ... Oxidizing gas supply plate.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 山内 博史 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 山田 範雄 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 東山 和寿 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 加茂 友一 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 Fターム(参考) 5H026 AA06 CC08 CX03 CX05 CX07 EE02 EE05 EE18 HH04 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Hiroshi Yamauchi 7-1-1, Omika-cho, Hitachi-shi, Ibaraki Prefecture Inside the Hitachi Research Laboratory, Hitachi Ltd. (72) Inventor Norio Yamada 7-1-1, Omika-cho, Hitachi-shi, Ibaraki Prefecture Inside the Hitachi Research Laboratory, Hitachi Ltd. (72) Inventor Kazutoshi Higashiyama 7-1-1, Omika-cho, Hitachi-shi, Ibaraki Prefecture Inside the Hitachi Research Laboratory, Hitachi Ltd. (72) Inventor Yuichi Kamo 7-1-1, Omika-cho, Hitachi-shi, Ibaraki Prefecture Inside the Hitachi Research Laboratory, Hitachi Ltd. F-term (reference) 5H026 AA06 CC08 CX03 CX05 CX07 EE02 EE05 EE18 HH04
Claims (8)
した単位セルと、前記単位セルを挟持し、正極側に燃料
ガスを、負極側に酸化剤ガスを供給するセパレータを備
えた固体高分子型燃料電池の前記セパレータが、ガス不
透過性の導電性仕切り板を中心とし、該仕切り板の一方
の側に正極へ燃料ガスを供給する周辺部がガス不透過性
の導電性多孔体板が、他方の側に負極へ酸化剤ガスを供
給する周辺部がガス不透過性の導電性多孔体板が配置さ
れており、これらの3枚の板が導電性接着剤により一体
化されていることを特徴とする固体高分子型燃料電池用
セパレータ。1. A solid polymer comprising a unit cell in which a positive electrode and a negative electrode are arranged on both sides of an electrolyte membrane, and a separator which sandwiches the unit cell and supplies a fuel gas to the positive electrode side and an oxidant gas to the negative electrode side. The separator of the fuel cell has a gas-impermeable conductive partition plate as a center, and a peripheral portion for supplying fuel gas to the positive electrode on one side of the partition plate is a gas-impermeable conductive porous plate. , A gas-impermeable conductive porous plate is arranged on the other side for supplying the oxidant gas to the negative electrode, and these three plates are integrated by a conductive adhesive. A polymer electrolyte fuel cell separator characterized by:
食性導電塗料で被覆されているステンレス鋼板、また
は、樹脂モールドカーボン板である請求項1に記載の固
体高分子型燃料電池用セパレータ。2. The solid polymer fuel cell separator according to claim 1, wherein the gas-impermeable conductive partition plate is a stainless steel plate coated with a corrosion-resistant conductive paint or a resin-molded carbon plate.
性を有する樹脂でモールドされたカーボンクロスである
請求項1に記載の固体高分子型燃料電池用セパレータ。3. The separator for a polymer electrolyte fuel cell according to claim 1, wherein the conductive porous plate is a carbon cloth whose peripheral portion is molded with a resin having rubber elasticity.
の空隙率が60〜80%である請求項1に記載の固体高
分子型燃料電池用セパレータ。4. The polymer electrolyte fuel cell separator according to claim 1, wherein the porosity of the conductive porous plate made of carbon cloth is 60 to 80%.
した単位セルと、前記単位セルを挟持し、正極側に燃料
ガスを、負極側に酸化剤ガスを供給するセパレータを備
えた固体高分子型の燃料電池において、 前記セパレータが、ガス不透過性の導電性仕切り板を中
心とし、該仕切り板の一方の側に正極へ燃料ガスを供給
する周辺部がガス不透過性の導電性多孔体板が、他方の
側に負極へ酸化剤ガスを供給する周辺部がガス不透過性
の導電性多孔体板が配置されており、これらの3枚の板
が導電性接着剤により一体化されていることを特徴とす
る燃料電池。5. A solid polymer comprising a unit cell in which a positive electrode and a negative electrode are arranged on both sides of an electrolyte membrane, and a separator which sandwiches the unit cell and supplies a fuel gas to the positive electrode side and an oxidant gas to the negative electrode side. Type fuel cell, the separator has a gas-impermeable conductive partition plate as a center, and a peripheral portion for supplying fuel gas to the positive electrode on one side of the partition plate is a gas-impermeable conductive porous body. On the other side of the plate, a gas impermeable conductive porous plate is arranged on the other side for supplying the oxidant gas to the negative electrode, and these three plates are integrated by a conductive adhesive. Fuel cell characterized by being
食性導電塗料で被覆されているステンレス鋼板、また
は、樹脂モールドカーボン板である請求項5に記載の燃
料電池。6. The fuel cell according to claim 5, wherein the gas-impermeable conductive partition plate is a stainless steel plate coated with a corrosion-resistant conductive paint or a resin-molded carbon plate.
性を有する樹脂でモールドされたカーボンクロスである
請求項5に記載の燃料電池。7. The fuel cell according to claim 5, wherein the conductive porous plate is a carbon cloth whose peripheral portion is molded with a resin having rubber elasticity.
の空隙率が60〜80%である請求項5に記載の燃料電
池。8. The fuel cell according to claim 5, wherein the porosity of the conductive porous plate made of carbon cloth is 60 to 80%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002000746A JP2003203645A (en) | 2002-01-07 | 2002-01-07 | Separator for polymer electrolyte fuel cell and fuel cell using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002000746A JP2003203645A (en) | 2002-01-07 | 2002-01-07 | Separator for polymer electrolyte fuel cell and fuel cell using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003203645A true JP2003203645A (en) | 2003-07-18 |
Family
ID=27641044
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002000746A Pending JP2003203645A (en) | 2002-01-07 | 2002-01-07 | Separator for polymer electrolyte fuel cell and fuel cell using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003203645A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005071635A (en) * | 2003-08-26 | 2005-03-17 | Ibiden Co Ltd | Porous graphite plate, manufacturing method of porous graphite plate, and separator for polyelectrolyte fuel cell |
JP2006348329A (en) * | 2005-06-14 | 2006-12-28 | Mitsubishi Materials Corp | Porous titanium having titanium carbide layer on surface of skeleton, and method for producing the same |
WO2008056778A1 (en) * | 2006-11-10 | 2008-05-15 | Toyota Jidosha Kabushiki Kaisha | Fuel cell and fuel cell manufacturing method |
-
2002
- 2002-01-07 JP JP2002000746A patent/JP2003203645A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005071635A (en) * | 2003-08-26 | 2005-03-17 | Ibiden Co Ltd | Porous graphite plate, manufacturing method of porous graphite plate, and separator for polyelectrolyte fuel cell |
JP4656823B2 (en) * | 2003-08-26 | 2011-03-23 | イビデン株式会社 | Porous graphite plate, method for producing porous graphite plate, separator for polymer electrolyte fuel cell |
JP2006348329A (en) * | 2005-06-14 | 2006-12-28 | Mitsubishi Materials Corp | Porous titanium having titanium carbide layer on surface of skeleton, and method for producing the same |
WO2008056778A1 (en) * | 2006-11-10 | 2008-05-15 | Toyota Jidosha Kabushiki Kaisha | Fuel cell and fuel cell manufacturing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5180473B2 (en) | Membrane electrode assembly for water electrolysis | |
US7226689B2 (en) | Method of making a membrane electrode assembly for electrochemical fuel cells | |
CN101027807B (en) | MEA | |
KR20010022355A (en) | Polymer electrolyte fuel cell and method of manufacture thereof | |
JP2001110432A (en) | Polymer electrolyte type fuel cell | |
JP2006294594A (en) | Electrode catalyst layer for fuel cell, and fuel cell using the same | |
JP2007533088A (en) | Multilayer electrode assembly (ML-MEA) and method of manufacturing the same | |
JP4301397B2 (en) | Membrane electrode assembly for fuel cell and method for producing the same | |
JP2004192950A (en) | Solid polymer fuel cell and its manufacturing method | |
CA2483777A1 (en) | Prevention of membrane contamination in electrochemical fuel cells | |
JP3640333B2 (en) | Polymer electrolyte fuel cell | |
JP4901748B2 (en) | Gas diffusion media with microporous bilayer | |
JP2007042348A (en) | Membrane electrode assembly and production method therefor | |
JP5157050B2 (en) | Membrane electrode assembly and manufacturing method thereof | |
JP2004103296A (en) | Solid polymer type fuel cell | |
JP3494137B2 (en) | Manufacturing method of polymer electrolyte fuel cell | |
JP2006338939A (en) | Electrolyte membrane-electrode assembly | |
JP2006338943A (en) | Electrolyte membrane-electrode assembly | |
JP2002280003A (en) | Method for manufacturing electrode of polymer electrolyte fuel cell and electrolyte membrane electrode joining body | |
JP2003203645A (en) | Separator for polymer electrolyte fuel cell and fuel cell using the same | |
JP2002208412A (en) | Polymer electrolyte fuel cell | |
JP2002334704A (en) | Separators for polymer electrolyte fuel cells | |
CN108352539A (en) | Method for manufacturing diaphragm-electrode-unit and diaphragm-electrode-unit | |
JP2004349013A (en) | Fuel cell stack | |
GB2386467A (en) | Bipolar plates |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040415 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050422 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050628 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20051025 |