[go: up one dir, main page]

JP2003199378A - Spindle motor controller for machine tool - Google Patents

Spindle motor controller for machine tool

Info

Publication number
JP2003199378A
JP2003199378A JP2001391855A JP2001391855A JP2003199378A JP 2003199378 A JP2003199378 A JP 2003199378A JP 2001391855 A JP2001391855 A JP 2001391855A JP 2001391855 A JP2001391855 A JP 2001391855A JP 2003199378 A JP2003199378 A JP 2003199378A
Authority
JP
Japan
Prior art keywords
motor
warm
mode
machine
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001391855A
Other languages
Japanese (ja)
Inventor
Akira Kumagai
彰 熊谷
Mitsujiro Sawamura
光次郎 沢村
Yuji Sajigawa
勇二 佐次川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2001391855A priority Critical patent/JP2003199378A/en
Publication of JP2003199378A publication Critical patent/JP2003199378A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Landscapes

  • Motor And Converter Starters (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To shorten the warming up time especially when the rotor of a motor is in stationary state. <P>SOLUTION: The motor controller of a machine where thermal displacement has an effect on the machining accuracy and the positioning accuracy comprises a circuit for switching the control between a warming up mode and a normal machining mode wherein the motor is applied with a harmonic voltage having a frequency higher than the driving frequency in the warming up mode. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、モータの制御装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a motor control device.

【0002】[0002]

【従来の技術】従来、研削盤などの加工精度を要する工
作機械においては機械が冷えた状態から加工を始める
と、主軸モータの温度が上がるにつれて、シャフトに熱
変位が生じ加工精度が悪くなっていた。そのために実際
の加工作業に取り掛かる前に機械の温度が飽和するまで
予め通常の運転を繰り返して暖気運転を行ない温度を一
定にする必要があった。近年、機械の小型化のために主
軸にモータを埋め込むビルトインモータが主流になりモ
ータの発熱がシャフトに伝わり熱変位の大きな要因とな
っている。そこで熱変位や省エネのために、誘導電動機
ではなく、回転子鉄心中に永久磁石を埋め込んだ構造で
あるIPM(Interior permanent magnet)同期電動機
が使用され始めている。
2. Description of the Related Art Conventionally, in a machine tool such as a grinding machine which requires high machining accuracy, when machining is started from a cold state of the machine, as the temperature of the spindle motor increases, thermal displacement occurs on the shaft, resulting in poor machining accuracy. It was For this reason, it was necessary to repeat the normal operation in advance and perform the warm-up operation until the temperature of the machine became saturated before the actual machining work was started to make the temperature constant. In recent years, a built-in motor in which a motor is embedded in a main shaft has become mainstream for downsizing of a machine, and heat generation of the motor is transmitted to a shaft, which is a major cause of thermal displacement. Therefore, for thermal displacement and energy saving, not an induction motor but an IPM (Interior permanent magnet) synchronous motor, which has a structure in which a permanent magnet is embedded in a rotor core, has begun to be used.

【0003】[0003]

【発明が解決しようとする課題】近年、ツール交換時間
の短縮や位置決め時間などの短縮などを行ない非加工時
間の短縮が進んでおり、加工前の暖気運転時間は機械の
効率化の妨げとなる。特に前記IPM同期電動機では、
誘導電動機と比較すると2次銅損がないためモータ発生
損失が小さいので加工時の発生損失が小さくできる利点
がある。しかし、加工前の暖気運転時は逆に発生損失が
小さいため、暖気運転時間が長くなるという問題点があ
った。本発明はこのような問題点に鑑みてなされたもの
であり、その第1の目的は暖気運転時間を短縮すること
にある。また、通常の加工を行う前に機械を動かすこと
ができない場合(即ちモータを回転させることができな
い場合)であっても、モータの回転子を静止した状態
で、暖気運転を短時間でできるようにすることを第2の
目的とする。
In recent years, the non-machining time has been shortened by shortening the tool exchange time and the positioning time, and the warming-up time before machining hinders the efficiency of the machine. . Especially in the IPM synchronous motor,
Compared with an induction motor, there is no secondary copper loss, so the motor generated loss is small, so there is the advantage that the generated loss during processing can be made small. However, there is a problem in that the warm-up time is long because the loss generated during the warm-up operation before processing is small. The present invention has been made in view of such problems, and a first object thereof is to shorten the warm-up operation time. In addition, even if the machine cannot be moved before performing normal machining (that is, the motor cannot be rotated), warm-up operation can be performed in a short time with the rotor of the motor stationary. The second purpose is to

【0004】[0004]

【課題を解決するための手段】上記問題を解決するた
め、本発明においては加工前に温度を上昇させる暖気運
転モードと通常の加工を行なう通常運転モードを切り替
え、暖気運転モードにおいては高周波の電流または電圧
をモータに印加して銅損および鉄損を増加させ、温度上
昇を促せる制御を行ない、通常モードにおいては高周波
指令を切離し通常制御を行なう。請求項1記載の発明
は、熱変位が加工精度および位置決め精度などに影響を
及ぼす機械のモータ制御装置において、暖気運転を行な
う暖気運転モードと通常の加工を行なう通常モードで制
御を切り替える切替制御回路を備え、暖気運転モードに
おいては駆動周波数に比べて高い周波数の高調波電圧を
モータに重畳して与えることを特徴とする工作機械用主
軸モータ制御装置である。また、請求項2記載の発明
は、熱変位が加工精度および位置決め精度などに影響を
及ぼす機械のモータ制御装置において、暖気運転を行な
う暖気運転モードと通常の加工を行なう通常モードで制
御を切り替える切替制御回路を備え、暖気運転モードに
おいては駆動周波数に比べて高い周波数の高調波電流を
モータに重畳して与えることを特徴とする工作機械用主
軸モータ制御装置である。また、請求項3記載の発明
は、モータまたは機械の温度を測定する手段と、測定温
度により暖気運転を行なう暖気運転モードを判定する手
段と、暖気運転モードと通常モードで制御を切り替える
切替制御回路を備え、暖気運転モードにおいては駆動周
波数に比べて高い周波数の高調波電流をモータに重畳し
て与えることを特徴とする請求項1または2記載の工作
機械用主軸モータ制御装置である。また、請求項4記載
の発明は、前記モータを回転子鉄中に永久磁石を埋め込
んだ構造であるIPM同期電動機としたものである請求
項1ないし3のいずれか一項に記載の工作機械用主軸モ
ータ制御装置である。
In order to solve the above problems, the present invention switches between a warm-up operation mode in which the temperature is raised before machining and a normal operation mode in which normal machining is performed. Alternatively, a voltage is applied to the motor to increase copper loss and iron loss, and control is performed to accelerate the temperature rise. In the normal mode, the high frequency command is cut off and normal control is performed. According to a first aspect of the present invention, in a motor control device for a machine in which thermal displacement affects machining accuracy and positioning accuracy, a switching control circuit that switches control between a warm-up operation mode in which warm-up operation is performed and a normal mode in which normal machining is performed. In the warm-up operation mode, the spindle motor control device for machine tools is characterized in that a harmonic voltage having a frequency higher than the drive frequency is applied to the motor in a superimposed manner. According to a second aspect of the present invention, in a motor control device for a machine in which thermal displacement affects machining accuracy, positioning accuracy, etc., switching is performed to switch control between a warm-up operation mode in which warm-up operation is performed and a normal mode in which normal machining is performed. A spindle motor control device for machine tools, comprising a control circuit, wherein a harmonic current having a higher frequency than a drive frequency is superimposed and applied to a motor in a warm-up operation mode. Further, the invention according to claim 3 is a means for measuring a temperature of a motor or a machine, a means for determining a warming-up operation mode for performing warming-up operation based on the measured temperature, and a switching control circuit for switching control between the warming-up operation mode and the normal mode. 3. The spindle motor control device for a machine tool according to claim 1, further comprising: a harmonic current having a frequency higher than a drive frequency in the warm-up operation mode to be superposed on the motor. Further, the invention according to claim 4 is an IPM synchronous motor in which the motor is a structure in which a permanent magnet is embedded in a rotor iron, and the machine tool according to any one of claims 1 to 3. It is a spindle motor control device.

【0005】[0005]

【発明の実施の形態】上記手段を使用して、暖気運転に
おいては高調波分の電圧または電流を重畳することによ
り、鉄損および銅損を増加させ温度上昇を促すことがで
きるため、暖気運転時間を短縮することができる。ま
た、通常の加工などを行なう前に機械を動かすことがで
きない場合は高調波または直流の電圧または電流を印加
することにより暖機運転を行なうことができる。以下、
本発明の実施例を図面に基づいて説明する。第1の実施
例を図1に示す。1は上位コントローラから与えられる
速度指令、2は与えられた速度指令に対して速度を一定
にしようとする速度制御器、3は上位コントローラから
与えられる通常運転モードと暖気運転モードのモードを
切替えるモード切替え指令、4は高調波信号発生回路、
5は3の指令に従いオン・オフするスイッチ、6は高調
波信号発生回路から出力される高周波電流指令Icom
p、7は速度制御器から出力される電流指令Iref、
8は加算計算を行なう加算器、10は電流指令通りに電
流を制御する電流制御器、11は電流制御器から出力さ
れる電圧指令Vref、12は電圧指令Vrefに従っ
てパワー変換回路のパワー素子に与えるPWM信号を作
成するPWM発生回路、13はPWM発生回路から与え
られる信号に従ってモータに可変周波数の可変電圧・電
流を供給するパワー変換回路である。17は13により
駆動されるモータである。
BEST MODE FOR CARRYING OUT THE INVENTION In the warming-up operation, the voltage or current of the harmonic components is superposed in the warming-up operation to increase the iron loss and the copper loss and accelerate the temperature rise. The time can be shortened. Further, when the machine cannot be moved before the normal machining or the like, warm-up operation can be performed by applying a harmonic or direct current voltage or current. Less than,
An embodiment of the present invention will be described with reference to the drawings. The first embodiment is shown in FIG. Reference numeral 1 is a speed command given by the host controller, 2 is a speed controller for keeping the speed constant with respect to the given speed command, and 3 is a mode for switching between the normal operation mode and the warm-up operation mode provided by the host controller. Switching command, 4 is a harmonic signal generation circuit,
Reference numeral 5 is a switch which is turned on / off according to the instruction of 3, and 6 is a high frequency current instruction Icom output from the harmonic signal generating circuit.
p and 7 are current commands Iref output from the speed controller,
Reference numeral 8 is an adder for performing addition calculation, 10 is a current controller for controlling the current according to the current command, 11 is a voltage command Vref output from the current controller, and 12 is a power element of the power conversion circuit according to the voltage command Vref. A PWM generating circuit that creates a PWM signal, and 13 is a power conversion circuit that supplies a variable voltage / current of a variable frequency to the motor in accordance with a signal given from the PWM generating circuit. Reference numeral 17 is a motor driven by 13.

【0006】作業者は加工前に温度を上げておく必要が
ある場合は、NC制御装置などの上位コントローラを介
して3のモード切替え信号をオンにしてSW1を接続状
態にする。速度指令には従来と同じ通常の加工プログラ
ムの速度指令を与える。SW1がオン(接続状態)にな
ると速度制御器から得られる7の電流指令(Iref)
に4の高周波発生回路から出力される6高周波電流指令
(Icomp)が8の加算器によって加算されて電流制
御器に与えられる。4の高周波信号発生回路はモータが
追従出来ない程度の高周波の信号をテーブルからの呼び
出し、または演算により、SIN波形または矩形波など
の正負を繰り返す信号を発生する。10の電流制御器に
は8で加算された高調波を含んだ電流指令である(Ir
ef+Icomp)が与えられ、これに応じて10の電
流制御器が必要な電圧を計算し11のVrefを12の
PWM発生回路へ渡し、最終的に13のパワー変換回路
がモータへ高調波を含んだ電流を出力する。暖気運転モ
ードにて一定時間高調波を含んだ電流がモータに流れる
と通常の運転による発熱に加えて高調波分でモータ14
の鉄損および銅損が増加してモータ温度の上昇が早ま
る。そして所定の温度まで上昇すると上位コントローラ
を介してモード切替えスイッチSW1を通常モードに切
替え、高周波信号(Icomp)は切離され通常の制御
に戻る。
When it is necessary for the operator to raise the temperature before processing, the operator turns on the mode switching signal 3 through a host controller such as an NC controller to put SW1 in a connected state. As the speed command, the same speed command as the conventional machining program is given. Current command (Iref) of 7 obtained from speed controller when SW1 is turned on (connection state)
6 high-frequency current command (Icomp) output from the high-frequency generator circuit 4 is added by the adder 8 and given to the current controller. The high-frequency signal generating circuit 4 generates a high-frequency signal that cannot be followed by the motor from the table, or generates a signal such as a SIN waveform or a square wave that repeats positive and negative by calling or calculation. The current controller 10 has a current command including the harmonics added in 8 (Ir
ef + Icomp), and 10 current controllers calculate the required voltage accordingly and pass 11 Vref to 12 PWM generation circuits, and finally 13 power conversion circuits included harmonics to the motor. Output current. In the warm-up operation mode, when a current containing harmonics flows into the motor for a certain period of time, the motor 14 generates the harmonics in addition to the heat generated by normal operation.
The iron loss and copper loss of the motor increase and the motor temperature rises faster. When the temperature rises to a predetermined temperature, the mode selector switch SW1 is switched to the normal mode via the host controller, the high frequency signal (Icomp) is disconnected, and the normal control is resumed.

【0007】次に第2の実施例を図2に示す。図1と同
一名称には同一符号を付け、重複説明を省略する。図1
では電流指令に高調波信号を加算したのに対し、図2で
は電圧指令に高調波信号を加算した点が異なる。図1と
の差異は切替スイッチ(SW1)を電流制御器から出力
される電圧指令(Vref)に接続した実施例で高周波
指令も電圧換算の高調波電圧指令(Vcomp)が加え
られる。切替えについては図1と同様に上位コントロー
ラからのモード切替え指令でSW1が行ない、暖気モー
ドにおいてはオン(接続)、通常モードにおいてはオフ
(切断)とする。
Next, a second embodiment is shown in FIG. The same names as those in FIG. 1 are denoted by the same reference numerals, and duplicated description will be omitted. Figure 1
2, the harmonic signal is added to the current command, but in FIG. 2, the harmonic signal is added to the voltage command. The difference from FIG. 1 is the embodiment in which the changeover switch (SW1) is connected to the voltage command (Vref) output from the current controller, and the high frequency command is also added with the voltage-converted harmonic voltage command (Vcomp). As for switching, SW1 is operated by a mode switching command from the host controller, as in FIG. 1, and is turned on (connected) in the warm mode and turned off (disconnected) in the normal mode.

【0008】次に第3の実施例を図3に示す。図3が図
2と異なる部分は図3は上位コントローラからモード切
替え指令をもらうのではなく、モータまたは機械に取り
付けられたサーマルなどの温度検出器からの温度検出信
号15を取り込み、検出温度が一定の値より低い場合は
暖気モード、高い場合は通常モードと判定する判定回路
である暖気モード判定手段16を備えSW1を切替える
部分である。また、図3では高調波電圧指令を重畳して
いるが、高調波電流指令を重畳する場合も同様に考えら
れる。さらに、高調波発生回路と加算器を使用して高調
波指令を作成する例を示したが、ソフトウェアでテーブ
ルなどを利用して、基本指令に高調波成分を加えるよう
にすることもできる。高調波発生回路から出力される高
調波信号はモータが回転、追従できない程度の周波数に
しているため、モータが回転することはない。特に本発
明はIPMモータに用いると、暖気運転時間を短縮する
ことができる。
Next, a third embodiment is shown in FIG. 3 is different from FIG. 2 in that FIG. 3 receives a temperature detection signal 15 from a temperature detector such as a thermal attached to a motor or a machine instead of receiving a mode switching command from a host controller, and the detected temperature is constant. When it is lower than the value of, the warm-up mode is determined, and when it is higher, the warm-up mode determination means 16 is a determination circuit for determining the normal mode. Further, although the harmonic voltage command is superimposed in FIG. 3, the case of superimposing the harmonic current command can be considered in the same manner. Furthermore, although an example in which the harmonic command is created using the harmonic generation circuit and the adder is shown, it is also possible to add a harmonic component to the basic command by using a table or the like by software. The harmonic signal output from the harmonic generation circuit has a frequency that does not allow the motor to rotate or follow, so the motor does not rotate. Especially when the present invention is applied to the IPM motor, the warm-up operation time can be shortened.

【0009】[0009]

【発明の効果】以上述べたように、本発明を用いれば、
暖気運転においては高調波の電圧または電流を重畳する
ことにより、モータの鉄損および銅損を増加させモータ
の温度上昇を促すことができるため、暖気運転時間を短
縮することができる。また、通常の加工などを行なう前
に機械を動かすことができない場合は高調波の電圧また
は電流を印加することによりモータの回転子を静止した
状態で暖機運転を行なうことができる。
As described above, according to the present invention,
In the warm-up operation, by superposing the harmonic voltage or current, the iron loss and the copper loss of the motor can be increased and the temperature rise of the motor can be promoted, so that the warm-up operation time can be shortened. Further, when the machine cannot be moved before performing the normal machining or the like, warm-up operation can be performed with the rotor of the motor being stationary by applying a harmonic voltage or current.

【図面の簡単な説明】[Brief description of drawings]

【図1】高調波電流指令を重畳した本発明の第1実施例
の構成図
FIG. 1 is a configuration diagram of a first embodiment of the present invention in which a harmonic current command is superimposed.

【図2】高調波電圧指令を重畳した本発明の第2実施例
の構成図
FIG. 2 is a configuration diagram of a second embodiment of the present invention in which a harmonic voltage command is superimposed.

【図3】高調波電圧指令を重畳した本発明の第3実施例
の構成図
FIG. 3 is a configuration diagram of a third embodiment of the present invention in which a harmonic voltage command is superimposed.

【符号の説明】[Explanation of symbols]

1 速度指令 2 速度制御器 3 モード切替え指令 4 高調波信号発生回路 5 スイッチ 6 高周波電流指令 7 電流指令 8 加算器 10 電流制御器 11 電圧指令 12 PWM発生回路 13 パワー変換回路 14 高調波電圧指令 15 温度検出信号 16 暖気モード判定回路 17 モータ Iref 速度制御器にて演算された電流指令 Icomp 高周波電流指令 Vref 電流制御器にてにて演算された電圧指令 Vcomp 高周波電圧指令 SW1 モード切替えスイッチ 1 Speed command 2 speed controller 3 Mode switching command 4 Harmonic signal generation circuit 5 switches 6 High frequency current command 7 Current command 8 adder 10 Current controller 11 Voltage command 12 PWM generation circuit 13 Power conversion circuit 14 Harmonic voltage command 15 Temperature detection signal 16 Warm-up mode determination circuit 17 motor Iref Current command calculated by speed controller Icomp High frequency current command Vref Voltage command calculated by current controller Vcomp High frequency voltage command SW1 mode selector switch

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H001 AA02 AB11 AC02 AD05 AE02 5H576 AA17 DD07 EE11 FF01 GG02 GG04 GG07    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 5H001 AA02 AB11 AC02 AD05 AE02                 5H576 AA17 DD07 EE11 FF01 GG02                       GG04 GG07

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 熱変位が加工精度および位置決め精度な
どに影響を及ぼす機械のモータ制御装置において、 暖気運転を行なう暖気運転モードと通常の加工を行なう
通常モードで制御を切り替える切替制御回路を備え、暖
気運転モードにおいては駆動周波数に比べて高い周波数
の高調波電圧をモータに重畳して与えることを特徴とす
る工作機械用主軸モータ制御装置。
1. A motor control device for a machine in which thermal displacement affects machining accuracy, positioning accuracy, etc., comprising a switching control circuit for switching control between a warm-up operation mode for performing warm-up operation and a normal mode for performing normal machining, A spindle motor control device for machine tools, characterized in that, in the warm-up operation mode, a harmonic voltage having a higher frequency than the drive frequency is superimposed and applied to the motor.
【請求項2】 熱変位が加工精度および位置決め精度な
どに影響を及ぼす機械のモータ制御装置において、 暖気運転を行なう暖気運転モードと通常の加工を行なう
通常モードで制御を切り替える切替制御回路を備え、暖
気運転モードにおいては駆動周波数に比べて高い周波数
の高調波電流をモータに重畳して与えることを特徴とす
る工作機械用主軸モータ制御装置。
2. A motor control device for a machine in which thermal displacement affects machining accuracy, positioning accuracy, etc., comprising a switching control circuit for switching control between a warm-up operation mode for performing warm-up operation and a normal mode for performing normal machining, A spindle motor control device for machine tools, characterized in that, in the warm-up operation mode, a harmonic current having a higher frequency than the drive frequency is superimposed and applied to the motor.
【請求項3】 モータまたは機械の温度を測定する手段
と、測定温度により暖気運転を行なう暖気運転モードを
判定する手段と、暖気運転モードと通常モードで制御を
切り替える切替制御回路を備え、暖気運転モードにおい
ては駆動周波数に比べて高い周波数の高調波電流をモー
タに重畳して与えることを特徴とする請求項1または2
記載の工作機械用主軸モータ制御装置。
3. A warm-up operation comprising means for measuring the temperature of a motor or machine, means for determining a warm-up operation mode for performing warm-up operation based on the measured temperature, and a switching control circuit for switching control between the warm-up operation mode and the normal mode. 3. In the mode, a harmonic current having a frequency higher than the driving frequency is superimposed and given to the motor.
Spindle motor control device for machine tool described.
【請求項4】 前記モータを回転子鉄中に永久磁石を埋
め込んだ構造であるIPM同期電動機としたものである
請求項1ないし3のいずれか一項に記載の工作機械用主
軸モータ制御装置。
4. The spindle motor controller for a machine tool according to claim 1, wherein the motor is an IPM synchronous motor having a structure in which a permanent magnet is embedded in a rotor iron.
JP2001391855A 2001-12-25 2001-12-25 Spindle motor controller for machine tool Pending JP2003199378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001391855A JP2003199378A (en) 2001-12-25 2001-12-25 Spindle motor controller for machine tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001391855A JP2003199378A (en) 2001-12-25 2001-12-25 Spindle motor controller for machine tool

Publications (1)

Publication Number Publication Date
JP2003199378A true JP2003199378A (en) 2003-07-11

Family

ID=27599324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001391855A Pending JP2003199378A (en) 2001-12-25 2001-12-25 Spindle motor controller for machine tool

Country Status (1)

Country Link
JP (1) JP2003199378A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010193667A (en) * 2009-02-19 2010-09-02 Aisin Seiki Co Ltd Motor control device
JP2011089625A (en) * 2009-10-26 2011-05-06 Honda Motor Co Ltd Method and apparatus for controlling oil temperature increase for electric vehicle, and electric vehicle
JP2013099220A (en) * 2011-11-07 2013-05-20 Daikin Ind Ltd Preheating device
JP2015188972A (en) * 2014-03-28 2015-11-02 キヤノン株式会社 Robot device and method for controlling robot device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010193667A (en) * 2009-02-19 2010-09-02 Aisin Seiki Co Ltd Motor control device
JP2011089625A (en) * 2009-10-26 2011-05-06 Honda Motor Co Ltd Method and apparatus for controlling oil temperature increase for electric vehicle, and electric vehicle
JP2013099220A (en) * 2011-11-07 2013-05-20 Daikin Ind Ltd Preheating device
JP2015188972A (en) * 2014-03-28 2015-11-02 キヤノン株式会社 Robot device and method for controlling robot device

Similar Documents

Publication Publication Date Title
KR0132904B1 (en) Method and apparatus for controlling and driving induction motor
CN1037221C (en) Inverter control method and apparatus
JP2013163229A (en) Electric tool
JP5891410B2 (en) Electric tool
JP2004048885A (en) Power converter
JP5217477B2 (en) Control device for voltage type PWM inverter
JP5726369B2 (en) VEHICLE GENERATOR MOTOR POWER CONVERTER AND VEHICLE GENERATOR MOTOR CONTROL METHOD
CN115157182A (en) electrical tools
JP2003199378A (en) Spindle motor controller for machine tool
WO2020261756A1 (en) Electric tool
JP2005253213A (en) Method and device for controlling multi-axis motor
JP2003158892A (en) Method for controlling rotational speed of electric motor
JP6656404B2 (en) Generator motor control device and generator motor control method
Lee et al. Implementation of a novel brushless DC motor controller
CN115065295A (en) Motor control method, motor controller, electric drive system and new energy automobile
CN112769360A (en) Control method and device for vehicle motor
JP2020072640A (en) How to control a vehicle inverter
CN222029843U (en) An electric tool
JP2002186274A (en) Brushless dc motor controller
JPH10164882A (en) Method and apparatus for control of induction motor
JPS62260583A (en) Controller for motor
JP2012070489A (en) Drive control device and drive control method for motor
JPH07251325A (en) Solid tap control method
JP4591949B2 (en) Control device for multiphase induction motor
JPH09312989A (en) Method and device for controlling brushless motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070906

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071228