[go: up one dir, main page]

JP2003194217A - Switching valve and hydraulic circuit of hydraulic ally driven vehicle - Google Patents

Switching valve and hydraulic circuit of hydraulic ally driven vehicle

Info

Publication number
JP2003194217A
JP2003194217A JP2001392979A JP2001392979A JP2003194217A JP 2003194217 A JP2003194217 A JP 2003194217A JP 2001392979 A JP2001392979 A JP 2001392979A JP 2001392979 A JP2001392979 A JP 2001392979A JP 2003194217 A JP2003194217 A JP 2003194217A
Authority
JP
Japan
Prior art keywords
valve
valve body
passage
throttle passage
hydraulic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001392979A
Other languages
Japanese (ja)
Inventor
Haruyuki Kato
治之 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Howa Machinery Ltd
Original Assignee
Howa Machinery Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Howa Machinery Ltd filed Critical Howa Machinery Ltd
Priority to JP2001392979A priority Critical patent/JP2003194217A/en
Publication of JP2003194217A publication Critical patent/JP2003194217A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Fluid Gearings (AREA)
  • Arrangement And Driving Of Transmission Devices (AREA)
  • Safety Valves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a switching valve which is switchable according to the flow rate of a hydraulic circuit, and a hydraulic circuit of hydraulic ally driven vehicle which is improved in operability by the switching valve. <P>SOLUTION: A valve element 47 of the switching valve 40 which is connected to either suction ports 8, 23 and 24 or discharge ports 10, 25 and 26 of hydraulic motors 7, 13 and 14 which are in parallel in each other is provided with throttled path 49 and a second throttled path 50. When differential pressure generated by the flow rate of pressurized fluid exceeds set pressure in front of or behind the throttled path 49 and the second throttled path 50, the valve element 47 which stands in the middle position moves towards valve seats 51 which are installed in front of or behind the valve body 47 and blocks the throttled path 49. Thus, a flow rate of pressurized fluid through hydraulic motors 7, 13 and 14 can be limited in accordance with the flow rate of the second throttled path 50. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、油圧モータや油圧
シリンダ等を目的通りに作動させるために油圧回路の通
過流量を制御する開閉弁に関し、特に、互いに並列の関
係にある油圧モータに夫々駆動輪を接続してある油圧駆
動車両の油圧回路に用いる開閉弁に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an on-off valve for controlling a flow rate of a hydraulic circuit in order to operate a hydraulic motor, a hydraulic cylinder and the like as desired, and particularly to drive the hydraulic motors in parallel relationship with each other. The present invention relates to an on-off valve used in a hydraulic circuit of a hydraulically driven vehicle having wheels connected thereto.

【0002】[0002]

【従来の技術】従来、図9に示すような、上記した油圧
駆動車両の油圧回路100には、片側の駆動輪101
(103)が走行面の窪みに嵌まったり、脱輪したりし
て前記駆動輪101(103)の油圧モータ102(1
04)に大量の圧流体が流れ込むと、もう一方の駆動輪
103(101)の油圧モータ104(102)に圧流
体が流れず、その駆動輪103(101)に駆動力が発
生しないので、油圧駆動車両の油圧回路100には、周
知の電磁式開閉弁105が接続してあり、スイッチ等に
より電磁式開閉弁105を切換えることで、大量の圧流
体が流れ込んだ油圧モータ102(104)への流量を
絞り通路106により制限して、もう一方の駆動輪10
3(101)の油圧モータ104(102)に圧流体を
流し込むことで、駆動輪103(101)に駆動力を発
生させて、その場から脱出させるようにしたものが知ら
れている(特開2000−118247号参照)。
2. Description of the Related Art Conventionally, a hydraulic circuit 100 for a hydraulically driven vehicle as shown in FIG.
The hydraulic motor 102 (1) of the drive wheel 101 (103) is caused by (103) fitting into a recess on the traveling surface or removing the wheel.
When a large amount of pressure fluid flows into 04), the pressure fluid does not flow into the hydraulic motor 104 (102) of the other drive wheel 103 (101), and no driving force is generated in that drive wheel 103 (101). A well-known electromagnetic on-off valve 105 is connected to the hydraulic circuit 100 of the drive vehicle. By switching the electromagnetic on-off valve 105 with a switch or the like, a large amount of pressure fluid flows into the hydraulic motor 102 (104). The flow rate is restricted by the throttle passage 106 so that the other drive wheel 10
There is known one in which a hydraulic fluid is caused to flow into the hydraulic motor 104 (102) of No. 3 (101) to generate a driving force in the driving wheel 103 (101) so that the driving wheel 103 (101) escapes from the place (Japanese Patent Application Laid-Open No. 2003-101242). 2000-118247).

【0003】[0003]

【発明が解決しようとする課題】ところが、片側の駆動
輪101(103)が走行面の窪みに嵌まったり、脱輪
したりして前記駆動輪101(103)の油圧モータ1
02(104)に大量の圧流体が流れ込む度に、運転者
が操作ボックス上のスイッチ等を操作して電磁式開閉弁
105を切換えなければならない煩わしさがあった。そ
こで、本発明の課題は、油圧回路の通過流量に対応して
切換自在な開閉弁を提供することにある。また、本願で
は、油圧回路の通過流量に対応して切換自在な開閉弁に
よって操作性が向上する油圧駆動車両の油圧回路を提供
することにある。
However, the drive wheel 101 (103) on one side is fitted into a recess on the running surface or is removed from the drive wheel 101 (103) to cause the hydraulic motor 1 of the drive wheel 101 (103) to be removed.
Each time a large amount of pressurized fluid flows into 02 (104), the driver has to operate switches on the operation box to switch the electromagnetic on-off valve 105, which is troublesome. Then, the subject of this invention is providing the switching valve which can be switched according to the flow volume of a hydraulic circuit. Another object of the present invention is to provide a hydraulic circuit for a hydraulically driven vehicle in which operability is improved by an open / close valve that can be switched according to the flow rate of the hydraulic circuit.

【0004】[0004]

【課題を解決するための手段】上記課題解決のために、
本願は、ケーシングに圧流体の流路を形成し、その流路
に弁体を摺動可能に嵌装して弁体で流路を区画し、その
弁体には弁体前後の流路を連通する絞り通路を形成し、
その流路には前記弁体の前後に、弁体がその移動方向の
いずれか一方側に移動したときに弁体と圧接して前記絞
り通路を塞ぐ弁座を設け、弁体の前後には更に、弁体を
前記前後の弁座に対して開弁状態となる中立位置に弁体
を保持可能な一対の付勢手段を設け、弁体で区画された
一方側の流路から前記絞り通路を介して他方側に圧流体
を通過させたときに、絞り通路の前後で圧流体の流量に
より生じる差圧が設定圧以上となると、中立位置にあっ
た弁体が他方側にある前記付勢手段による付勢力に抗し
て他方側の弁座に向けて移動して絞り通路を塞ぐように
構成した。
[Means for Solving the Problems] In order to solve the above problems,
The present application forms a flow path of a pressure fluid in a casing, and a valve body is slidably fitted in the flow path to partition the flow path with the valve body. Form a communicating throttle passage,
In the flow passage, a valve seat is provided in front of and behind the valve body to close the throttle passage by making pressure contact with the valve body when the valve body moves in either one of its moving directions. Further, a pair of biasing means capable of holding the valve body is provided at a neutral position where the valve body is opened with respect to the front and rear valve seats, and the throttle passage is provided from a flow passage on one side divided by the valve body. When the pressure fluid is passed through the throttle valve to the other side and the differential pressure generated by the flow rate of the pressure fluid before and after the throttle passage becomes equal to or higher than the set pressure, the valve element in the neutral position is biased to the other side. It is constructed so as to block the throttle passage by moving toward the valve seat on the other side against the biasing force of the means.

【0005】また、弁体には、上記開閉される絞り通路
のほか、弁体位置に無関係に、弁体前後の流路を常時連
通する第2の絞り通路を有し、第2の絞り通路は、開閉
される絞り通路の絞り度合いよりも小さな絞り度合いと
してある。
In addition to the above-mentioned throttle passage that is opened and closed, the valve body has a second throttle passage that always communicates with the flow passages in front of and behind the valve body regardless of the valve body position. Is a throttle degree smaller than the throttle degree of the throttle passage that is opened and closed.

【0006】油圧駆動車両の駆動輪の配置形態としては
各種あり、左右に夫々駆動輪を持つ場合、前輪と後輪を
夫々駆動輪とする場合、前輪1輪と左右の後輪とする場
合、左右前輪と左右後輪が全て駆動輪である場合、左右
前輪が駆動輪であり、後輪は駆動されない場合など、多
種多様であるが、本願では、前輪が前輪駆動用油圧モー
タに接続され、左右後輪が夫々左右の後輪駆動用油圧モ
ータに接続され、それら左右の後輪駆動用油圧モータ
が、油圧回路中において互いに並列かつ、前輪駆動用油
圧モータとも並列の関係にある油圧駆動車両において、
前記各後輪駆動用油圧モータの吐出または吸入ポートの
いずれか一方に上記のように構成した開閉弁を接続し
た。
There are various arrangements of the drive wheels of a hydraulically driven vehicle. When the drive wheels are provided on the left and right respectively, the front wheels and the rear wheels are respectively the drive wheels, and the front wheel is one wheel and the left and right rear wheels are respectively, There are various types, such as the case where the left and right front wheels and the left and right rear wheels are all driving wheels, the left and right front wheels are driving wheels, and the rear wheels are not driven.However, in the present application, the front wheels are connected to the front wheel driving hydraulic motor, A hydraulic drive vehicle in which the left and right rear wheels are respectively connected to the left and right rear wheel drive hydraulic motors, and the left and right rear wheel drive hydraulic motors are in parallel with each other in the hydraulic circuit and in parallel with the front wheel drive hydraulic motor. At
The open / close valve configured as described above was connected to either the discharge port or the suction port of each of the rear wheel drive hydraulic motors.

【0007】また、本願では、前輪が前輪駆動用油圧モ
ータに接続され、後輪が後輪駆動用油圧モータに接続さ
れ、それら前後の駆動用油圧モータが、油圧回路中にお
いて互いに並列の関係にある油圧駆動車両において、前
記各駆動用油圧モータの吐出または吸入ポートのいずれ
か一方に上記のように構成した開閉弁を接続した。
Further, in the present application, the front wheels are connected to the front wheel drive hydraulic motor, the rear wheels are connected to the rear wheel drive hydraulic motor, and the front and rear drive hydraulic motors are in a parallel relationship with each other in the hydraulic circuit. In a hydraulically driven vehicle, the on-off valve configured as described above is connected to either the discharge port or the suction port of each driving hydraulic motor.

【0008】[0008]

【発明の実施の形態】実施の形態について図面を参照し
て説明する。油圧駆動車両として、ここでは転圧機械
(ロードローラ)1に適用した場合で説明する。図1に
示すロードローラ1の油圧回路2において、流体圧ポン
プ3は、エンジン4の駆動力により両方向流れが可能な
可変容量型油圧ポンプ(例えばアキシャル型斜板式の流
体圧ポンプ)であり、流体圧ポンプ3の一方の圧流体給
排ポートである吐出ポート5は、前側の鋼製の転圧輪
(前輪:前側の駆動輪)6を駆動する前輪駆動用油圧モ
ータ7の吸入ポート8に接続され、流体圧ポンプ3の他
方の圧流体給排ポートである吸入ポート9は、油圧モー
タ7の吐出ポート10に接続されている。また、流体圧
ポンプ3には、後側の駆動輪としての左右転圧タイヤ
(後輪)11,12を夫々独立して駆動する左右の後輪
駆動用油圧モータ13,14が前記転圧輪6を駆動する
油圧モータ7と並列に接続されていると共に、各左右油
圧モータ13,14相互も互いに並列関係となるように
接続されている。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments will be described with reference to the drawings. As a hydraulically driven vehicle, a case where it is applied to a compaction machine (road roller) 1 will be described here. In the hydraulic circuit 2 of the load roller 1 shown in FIG. 1, the fluid pressure pump 3 is a variable displacement hydraulic pump (for example, an axial swash plate type fluid pressure pump) capable of bidirectional flow due to the driving force of the engine 4. The discharge port 5, which is one of the pressure fluid supply / discharge ports of the pressure pump 3, is connected to an intake port 8 of a front wheel drive hydraulic motor 7 that drives a front steel rolling wheel (front wheel: front drive wheel) 6. The suction port 9, which is the other pressure fluid supply / discharge port of the fluid pressure pump 3, is connected to the discharge port 10 of the hydraulic motor 7. Further, in the fluid pressure pump 3, left and right rear wheel drive hydraulic motors 13 and 14 for independently driving left and right compaction tires (rear wheels) 11 and 12 as rear drive wheels are provided. The hydraulic motor 7 for driving 6 is connected in parallel, and the left and right hydraulic motors 13, 14 are also connected in parallel with each other.

【0009】流体圧ポンプ3の吐出ポート5には、主流
路20が接続されている。主流路20は、途中で2つの
流路21,22に分岐している。一方の分岐流路21は
油圧モータ13の一方の圧流体給排ポートである吸入ポ
ート23に接続されており、他方の分岐流路22は油圧
モータ14の一方の圧流体給排ポートである吸入ポート
24に接続されている。油圧モータ13と油圧モータ1
4の他方の圧流体給排ポートである吐出ポート25,2
6には、夫々途中に後述する開閉弁40a,40bを備
えた流路27,28が接続されている。流路27と流路
28は合流して主流路29を介して流体圧ポンプ3の吸
入ポート9に接続されている。尚、30はチェック弁、
31はリリーフ弁、32はチャージポンプである。
A main flow path 20 is connected to the discharge port 5 of the fluid pressure pump 3. The main flow path 20 is branched into two flow paths 21 and 22 on the way. One branch flow passage 21 is connected to an intake port 23 which is one pressure fluid supply / discharge port of the hydraulic motor 13, and the other branch flow passage 22 is an intake port which is one pressure fluid supply / discharge port of the hydraulic motor 14. It is connected to port 24. Hydraulic motor 13 and hydraulic motor 1
Discharge ports 25 and 2 which are the other pressure fluid supply and discharge ports
The channels 6 and 6 are connected to the flow paths 27 and 28, respectively, which are provided with on-off valves 40a and 40b which will be described later. The flow paths 27 and 28 join together and are connected to the suction port 9 of the fluid pressure pump 3 via the main flow path 29. In addition, 30 is a check valve,
Reference numeral 31 is a relief valve, and 32 is a charge pump.

【0010】図2に示す開閉弁40について説明する。
ケーシング41を貫通するように大径孔部42と一対の
小径孔部43から成る圧流体の流路44が形成されてい
る。その流路44の大径孔部42を塞ぐように、塞ぎ部
材45がネジ部材46によって取付けられている。塞ぎ
部材45には、塞ぎ部材45を貫通して前記流路44の
一方の小径孔部43が形成されている。流路44の大径
孔部42に弁体47を摺動可能に嵌装して弁体47で流
路44を区画している。弁体47は大径部47aの両端
面から軸方向に小径部47bを夫々突出させ、大径部4
7aの周りに後述する付勢手段52が当接する当接部4
7cが備えられている。そして、前記区画した流路44
間で圧流体が流れ込まないように、当接部47cにはシ
ール部材48が取付けてある。弁体47には、弁体47
の大径部47aに設けた開閉される絞り通路49のほ
か、弁体47位置に無関係に、弁体47前後の流路44
A,44Bを常時連通する第2の絞り通路50を設け、
第2の絞り通路50は、開閉される絞り通路49の絞り
度合いよりも小さな絞り度合いとしてある。前記絞り通
路49は、図2,3に示すように、弁体47の軸線に対
して上下に設けたオリフィス孔から成る。流路44には
前記弁体47の前後に、弁体47がその移動方向のいず
れか一方側に移動したときに弁体47の小径部47bと
圧接して前記絞り通路49を塞ぐ弁座51が設けてあ
る。弁体47の前後には更に、弁体47を前記前後の弁
座51に対して開弁状態となる中立位置(図2の状態)
に弁体47を保持可能な一対の付勢手段として例示する
バネ部材52a,52bが備えてある。
The on-off valve 40 shown in FIG. 2 will be described.
A fluid passage 44 of a fluid having a large diameter hole 42 and a pair of small diameter holes 43 is formed so as to penetrate the casing 41. A closing member 45 is attached by a screw member 46 so as to close the large diameter hole portion 42 of the flow path 44. One small-diameter hole portion 43 of the flow path 44 is formed in the closing member 45 so as to penetrate the closing member 45. The valve body 47 is slidably fitted in the large-diameter hole portion 42 of the flow channel 44 to define the flow channel 44 by the valve body 47. In the valve body 47, the small diameter portions 47b are axially projected from both end surfaces of the large diameter portion 47a, respectively.
Abutting portion 4 with which a biasing means 52 described later abuts around 7a
7c is provided. Then, the divided flow path 44
A seal member 48 is attached to the contact portion 47c so that the pressurized fluid does not flow in between. The valve body 47 has a valve body 47.
In addition to the opening / closing throttle passage 49 provided in the large diameter portion 47a of the
A second throttle passage 50 that always connects A and 44B is provided,
The second throttle passage 50 has a smaller throttle degree than the throttle passage 49 that is opened and closed. As shown in FIGS. 2 and 3, the throttle passage 49 is composed of orifice holes provided above and below the axis of the valve body 47. A valve seat 51 that closes the throttle passage 49 by press-contacting the small diameter portion 47b of the valve body 47 when the valve body 47 moves in one of the moving directions of the flow path 44 before and after the valve body 47. Is provided. Before and after the valve element 47, a neutral position where the valve element 47 is opened with respect to the front and rear valve seats 51 (state of FIG. 2).
Further, spring members 52a and 52b exemplified as a pair of biasing means capable of holding the valve body 47 are provided.

【0011】この開閉弁40は、一方側の流路44Aか
ら絞り通路49及び第2の絞り通路50に圧流体を大流
量Q1で通過させると、圧流体の大流量Q1が絞り通路
49及び第2の絞り通路50で大きく絞られるために、
圧流体は一方側の流路44Aに滞留するようになり、絞
り通路49及び第2の絞り通路50の前後で設定圧(通
常の転圧作業走行時に油圧回路に流れる流量Qに対応し
た差圧△P)以上の差圧が生じるから、開弁状態となる
中立位置にある弁体47が他方側にあるバネ部材52b
による付勢力に抗して他方側の流路44Bの弁座51に
向けて移動して絞り通路49が塞がれ、他方側の流路4
4Bに通過する流量を第2の絞り通路50の通過流量Q
2に制限するようになっている(図4の状態)。そし
て、一方側の流路44Aに滞留していた圧流体の一部を
他の流路に流し込むことで、圧流体の流量が流量Qに戻
ると、弁体47はバネ部材52bの付勢力により再び中
立位置に押し戻される(図2の状態)。尚、他方の流路
44Bから絞り通路49及び第2の絞り通路50に圧流
体を大流量Q1で通過させると、弁体47は一方側にあ
るバネ部材52aによる付勢力に抗して一方側の流路4
4Aの弁座51に向けて移動して絞り通路49が塞がれ
るようになっている。
In this on-off valve 40, when a large amount of pressure fluid Q1 is passed from the flow passage 44A on one side to the throttle passage 49 and the second throttle passage 50, the large flow amount Q1 of the pressure fluid is increased to the throttle passage 49 and the second passage. Because it is greatly throttled by the second throttle passage 50,
The pressurized fluid comes to stay in the flow passage 44A on one side, and has a set pressure before and after the throttle passage 49 and the second throttle passage 50 (differential pressure corresponding to the flow rate Q flowing in the hydraulic circuit during normal rolling work). ΔP) or more of the differential pressure is generated, so that the valve member 47 in the neutral position in which the valve is opened is on the other side of the spring member 52b.
The flow passage 4B on the other side moves toward the valve seat 51 of the flow passage 44B on the other side to close the throttle passage 49 and the flow passage 4 on the other side.
4B to the flow rate Q passing through the second throttle passage 50.
It is limited to 2 (state of FIG. 4). Then, when the flow rate of the pressure fluid returns to the flow rate Q by causing a part of the pressure fluid staying in the one side flow passage 44A to flow into the other flow passage, the valve body 47 is urged by the spring member 52b. It is pushed back to the neutral position again (state of FIG. 2). Incidentally, when the pressurized fluid is passed from the other flow passage 44B to the throttle passage 49 and the second throttle passage 50 at a large flow rate Q1, the valve body 47 is resisted against the urging force of the spring member 52a on one side and is on one side. Channel 4
The throttle passage 49 is closed by moving toward the valve seat 51 of 4A.

【0012】通常の転圧作業走行時においては、流体圧
ポンプ3の吐出ポート5から出た圧油(圧流体)は、前
側の転圧輪6を駆動する前輪駆動用油圧モータ7へ流
れ、前側の転圧輪6を駆動回転させて、流体圧ポンプ3
に戻る。一方、主流路20から分岐流路21,22に流
れた圧油により、後側の左右転圧タイヤ(後輪)11,
12を夫々独立して駆動する左右の後輪駆動用油圧モー
タ13,14が夫々駆動され、後側の左右転圧タイヤ1
1,12を駆動回転させる。左右の後輪駆動用油圧モー
タ13,14を通過した圧油は、油圧モータ13側では
流路27と主流路29を経て流体圧ポンプ3に戻る。ま
た、油圧モータ14側では流路28と主流路29を経て
流体圧ポンプ3に戻る。
During a normal rolling operation, the pressure oil (pressure fluid) discharged from the discharge port 5 of the fluid pressure pump 3 flows to the front wheel drive hydraulic motor 7 for driving the front rolling wheel 6, The fluid pressure pump 3 is driven by rotating the compaction wheel 6 on the front side.
Return to. On the other hand, by the pressure oil flowing from the main flow path 20 to the branch flow paths 21 and 22, the rear left and right compaction tires (rear wheels) 11,
Left and right rear wheel drive hydraulic motors 13 and 14 that drive 12 independently of each other are driven, respectively, and rear left and right compaction tires 1
1, 12 are driven and rotated. The pressure oil that has passed through the left and right rear wheel drive hydraulic motors 13 and 14 returns to the fluid pressure pump 3 via the flow passage 27 and the main flow passage 29 on the hydraulic motor 13 side. Further, on the hydraulic motor 14 side, it returns to the fluid pressure pump 3 via the flow passage 28 and the main flow passage 29.

【0013】走行中に、例えば路面の窪みやぬかるみに
後側の左右何れか一方の転圧タイヤ(ここでは転圧タイ
ヤ11とする)が嵌まり込んでしまった時には、前記転
圧タイヤ11が空転して転圧タイヤ11を駆動する油圧
モータ13に圧油が大量に流れ込んでしまい、他の油圧
モータ7,14への圧油の流量Qが減少して駆動力が発
生できず、その場から脱出できない。しかし、開閉弁4
0aにおいて、圧油の大流量Q1に応じて絞り通路49
及び第2の絞り通路50の前後で設定圧以上の差圧が生
じるから、弁体47の移動によって絞り通路49が塞が
れ、大量の圧油が流れ込む油圧モータ13への圧油の流
量を第2の絞り通路50の通過流量Q2に制限できる。
その結果、開閉弁40aに滞留していた圧油の一部が他
の油圧モータ7,14に流れ込み、転圧輪6と転圧タイ
ヤ12に駆動力が発生するので、窪みに入り込んだ状態
から、あるいは、ぬかるみに入り込んだ状態から脱出す
ることができる。このように第2の絞り通路50を設け
ておけば、回転数が増加していた油圧モータ13を急停
止させることを防ぐ。その後、開閉弁40aの弁体47
は中立位置に戻され、再びロードローラ1は通常の転圧
作業走行を行う。
During running, for example, when one of the left and right rolling compaction tires (herein referred to as compaction rolling tire 11) is fitted in a depression or muddy road surface, the rolling compaction tire 11 is A large amount of pressure oil flows into the hydraulic motor 13 that idles to drive the compaction tire 11, and the flow rate Q of the pressure oil to the other hydraulic motors 7 and 14 is reduced, so that the driving force cannot be generated. I can't escape from. However, the on-off valve 4
0a, depending on the large flow rate Q1 of the pressure oil, the throttle passage 49
Since a differential pressure equal to or higher than the set pressure is generated before and after the second throttle passage 50, the movement of the valve body 47 closes the throttle passage 49, and the flow rate of the pressure oil to the hydraulic motor 13 into which a large amount of pressure oil flows is increased. It is possible to limit the passage flow rate Q2 of the second throttle passage 50.
As a result, a part of the pressure oil accumulated in the on-off valve 40a flows into the other hydraulic motors 7 and 14, and a driving force is generated in the compaction wheels 6 and compaction tires 12. Or, you can get out of the muddy state. By providing the second throttle passage 50 in this manner, it is possible to prevent the hydraulic motor 13 whose rotational speed has been increased from being suddenly stopped. After that, the valve body 47 of the on-off valve 40a
Is returned to the neutral position, and the road roller 1 again performs a normal rolling operation.

【0014】次に、別の実施形態について説明する。図
5では、図1の実施形態に加えて、前側の転圧輪6を駆
動する前輪駆動用油圧モータ7の、前進時吐出ポート1
0から流体圧ポンプ3への戻り回路途中に、開閉弁40
cを介在させたものである。この構成においても、窪み
等に前側の転圧輪6若しくは後側の左右転圧タイヤ1
1,12の何れか一方の駆動輪(ここでは、転圧輪6と
転圧タイヤ11とする)が嵌まり込んでしまったとき、
各開閉弁40a,40cにより各油圧モータ7,13へ
の圧油の流量を第2の絞り通路50の通過流量Q2に制
限できる。その結果、開閉弁40a,40cに滞留して
いた圧油の一部が油圧モータ14に流れ込み、転圧タイ
ヤ12に駆動力が発生するので、窪みに入り込んだ状態
から、あるいは、ぬかるみに入り込んだ状態から脱出す
ることができる。その後、開閉弁40a,40cの弁体
47は中立位置に戻され、再びロードローラ1は通常の
転圧作業走行を行う。
Next, another embodiment will be described. 5, in addition to the embodiment of FIG. 1, the forward discharge port 1 of the front wheel drive hydraulic motor 7 that drives the front compaction wheel 6
In the middle of the return circuit from 0 to the fluid pressure pump 3, the on-off valve 40
c is interposed. Also in this configuration, the front compaction wheel 6 or the rear left / right compaction tire 1 is formed in the depression or the like.
When either one of the drive wheels 1 and 12 (here, the compaction wheel 6 and the compaction tire 11) is fitted,
The flow rate of the pressure oil to the hydraulic motors 7 and 13 can be limited to the flow rate Q2 passing through the second throttle passage 50 by the open / close valves 40a and 40c. As a result, a part of the pressure oil accumulated in the on-off valves 40a and 40c flows into the hydraulic motor 14 and a driving force is generated in the compaction tire 12, so that the pressure oil enters the depression or enters the muddy state. You can escape from the state. After that, the valve bodies 47 of the on-off valves 40a and 40c are returned to the neutral position, and the load roller 1 again performs the normal rolling operation.

【0015】更に、別の実施形態を説明する。前記と同
じ部分には同一符号を付し、説明を省略する。図6は、
前後輪が夫々1輪ずつの転圧輪6,6aである場合を示
し、各転圧輪6,6aは夫々油圧モータ7,7Aに直結
されてこれらを駆動する。そして、後側の転圧輪6aを
駆動する後輪駆動用油圧モータ7Aの、吐出ポート8A
から流体圧ポンプ3への戻り回路途中に、開閉弁40c
を介在させたものである。この実施形態でも、窪み等に
前後何れかの転圧輪(ここでは後側の転圧輪6aとす
る)が嵌まり込んでしまったとき、開閉弁40dにより
転圧輪6aの油圧モータ7Aへの圧油の流量を第2の絞
り通路50の通過流量Q2に制限できる。その結果、開
閉弁40dに滞留していた圧油の一部が転圧輪6の油圧
モータ7に流れ込み、転圧輪6に駆動力が発生するの
で、窪みに入り込んだ状態から、あるいは、ぬかるみに
入り込んだ状態から脱出することができる。その後、開
閉弁40cの弁体47は中立位置に戻され、再びロード
ローラ1は通常の転圧作業走行を行う。
Further, another embodiment will be described. The same parts as those described above are designated by the same reference numerals, and description thereof will be omitted. Figure 6
The case where the front and rear wheels are one compaction wheel 6 and 6a respectively is shown, and each compaction wheel 6 and 6a is directly connected to the hydraulic motors 7 and 7A to drive them. The discharge port 8A of the rear wheel drive hydraulic motor 7A that drives the rear compaction wheel 6a.
On-off valve 40c in the middle of the return circuit from fluid pressure pump 3 to
Is interposed. Also in this embodiment, when either the front or rear compaction wheel (here, the rear compaction wheel 6a) is fitted in the depression or the like, the opening / closing valve 40d causes the hydraulic motor 7A of the compaction wheel 6a to move. The flow rate of the pressure oil can be limited to the flow rate Q2 passing through the second throttle passage 50. As a result, a part of the pressure oil accumulated in the on-off valve 40d flows into the hydraulic motor 7 of the compaction wheel 6 and a driving force is generated in the compaction wheel 6. You can escape from a trapped state. After that, the valve element 47 of the on-off valve 40c is returned to the neutral position, and the load roller 1 again performs the normal compaction work traveling.

【0016】上記第1〜3実施形態で記載した前輪駆動
用油圧モータ7及び後輪駆動用油圧モータ13,14へ
の圧油供給を急激に変化させても各油圧モータに影響が
でない場合では、開閉弁40Aを図7に示すように構成
できる。この開閉弁40Aでは、一方側の流路44Aか
ら絞り通路49に圧流体を大流量Q1で通過させると、
圧流体の大流量Q1を絞り通路49で大きく絞られるた
めに、圧流体は一方側の流路44Aに滞留するようにな
り、絞り通路49の前後で設定圧(通常の転圧作業時に
油圧回路に流れる流量Qに対応した差圧△P1)以上の
差圧が生じるから、開弁状態となる中立位置にある弁体
47が他方側にあるバネ部材50bによる付勢力に抗し
て他方側の流路44Bの弁座51に向けて移動して絞り
通路49が塞がれるようになっている。このことから、
開閉弁40Aを上記した第1〜3の何れかの実施形態に
用いた場合(例えば図8)、絞り通路49を塞ぐことで
大量の圧油が流れ込み回転数が増加していた油圧モータ
13(14)を急停止させるが、開閉弁40Aに滞留し
ていた圧油が他の流路に流れ込むことで開閉弁40Aの
弁体47は中立位置に戻されるから、第1〜3の実施形
態と全く同じ効果を得ることができる。
In the case where the hydraulic oil supply to the front wheel drive hydraulic motor 7 and the rear wheel drive hydraulic motors 13 and 14 described in the first to third embodiments does not affect each hydraulic motor even if it is suddenly changed. The on-off valve 40A can be configured as shown in FIG. In this on-off valve 40A, when the pressurized fluid is passed at a large flow rate Q1 from the flow passage 44A on one side to the throttle passage 49,
Since the large flow rate Q1 of the pressure fluid is greatly throttled by the throttle passage 49, the pressure fluid is retained in the flow passage 44A on one side, and the set pressure is set before and after the throttle passage 49 (the hydraulic circuit during a normal rolling operation). Since a pressure difference equal to or higher than the pressure difference ΔP1) corresponding to the flow rate Q flowing to the valve is generated, the valve element 47 in the neutral position, which is in the valve open state, resists the biasing force of the spring member 50b on the other side. The throttle passage 49 is closed by moving toward the valve seat 51 of the flow passage 44B. From this,
When the opening / closing valve 40A is used in any of the above-described first to third embodiments (for example, FIG. 8), a large amount of pressure oil flows in by closing the throttle passage 49, and the rotational speed of the hydraulic motor 13 increases. 14) is abruptly stopped, but the valve body 47 of the on-off valve 40A is returned to the neutral position by the pressure oil accumulated in the on-off valve 40A flowing into another flow path. You can get exactly the same effect.

【0017】従って、開閉弁40の弁体47に絞り通路
49及び第2の絞り通路50を設け、その絞り通路49
及び第2の絞り通路50の前後で圧流体の流量により生
じる差圧が設定圧以上となると、中立位置にあった弁体
47が一方の弁座51に向けて移動して絞り通路49を
塞ぐので、大量の圧流体が流れ込んだ流路では、圧流体
の流量を自動的に第2の絞り通路50の通過量のみに制
限できるから、従来のように、片側の駆動輪101(1
03)が走行面の窪みに嵌まったり、脱輪したりして前
記駆動輪101(103)の油圧モータ102(10
4)に大量の圧流体が流れ込む度に、運転者が操作ボッ
クス上のスイッチ等を操作して、大量の圧流体が流れ込
んだ流路側の開閉弁105を切換える必要が無くなるの
で、油圧駆動車両の操作性向上に繋がる。
Therefore, the throttle passage 49 and the second throttle passage 50 are provided in the valve body 47 of the opening / closing valve 40, and the throttle passage 49 is provided.
When the differential pressure generated by the flow rate of the pressure fluid before and after the second throttle passage 50 becomes equal to or higher than the set pressure, the valve body 47 in the neutral position moves toward the one valve seat 51 and closes the throttle passage 49. Therefore, in the flow path into which a large amount of pressure fluid has flowed, the flow rate of the pressure fluid can be automatically limited only to the passage amount of the second throttle passage 50.
03) is fitted into a recess on the running surface or is derailed to cause the hydraulic motor 102 (10) of the drive wheel 101 (103) to move.
Every time a large amount of pressure fluid flows into 4), it is not necessary for the driver to operate the switch or the like on the operation box to switch the opening / closing valve 105 on the flow path side into which a large amount of pressure fluid has flown. This leads to improved operability.

【0018】[0018]

【発明の効果】以上のように本発明は、ケーシングに設
けた流路に弁体を摺動可能に嵌装し、その弁体には絞り
通路を設け、絞り通路の前後で圧流体の流量によって生
じる差圧が設定圧以上となると中立位置にある弁体が移
動して絞り通路を塞ぎ、差圧が設定圧となると弁体が中
立位置に戻されるようにしたことで、開閉弁に入り込む
圧流体の流量を制限できる。また、駆動輪が窪みに入っ
たり、あるいはぬかるみで空転するような場合には、開
閉弁に入り込む圧流体の流量によって弁体が移動するの
で、その都度運転者が操作ボックス上のスイッチ等を操
作して、圧流体が大量に流れ込んだ流路側を制御する必
要がないので、油圧駆動車両の操作性が向上する。
As described above, according to the present invention, the valve body is slidably fitted in the flow passage provided in the casing, the valve body is provided with the throttle passage, and the flow rate of the pressurized fluid is provided before and after the throttle passage. When the differential pressure caused by is equal to or higher than the set pressure, the valve element in the neutral position moves to block the throttle passage, and when the differential pressure reaches the set pressure, the valve element is returned to the neutral position so that it enters the open / close valve. The flow rate of the pressurized fluid can be limited. In addition, when the drive wheel goes into a dent or runs idle due to muddyness, the valve element moves due to the flow rate of the pressurized fluid entering the on-off valve, so the driver operates the switches on the operation box each time. Further, since it is not necessary to control the flow path side into which a large amount of pressurized fluid has flowed, the operability of the hydraulically driven vehicle is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の開閉弁を転圧車両に用いた油圧回路で
ある。
FIG. 1 is a hydraulic circuit in which the on-off valve of the present invention is used in a compaction vehicle.

【図2】開閉弁の断面図である。FIG. 2 is a sectional view of an on-off valve.

【図3】図2のIII−III線断面図であって、バネ
部材を省略した図である。
FIG. 3 is a cross-sectional view taken along the line III-III in FIG. 2, in which a spring member is omitted.

【図4】一方側の流路から大量の圧流体が流れ込んだ状
態を示す参考図である。
FIG. 4 is a reference diagram showing a state in which a large amount of pressurized fluid has flowed in from a flow path on one side.

【図5】別の実施形態である。FIG. 5 is another embodiment.

【図6】更に別の実施形態である。FIG. 6 is still another embodiment.

【図7】開閉弁の他の実施形態を示す図である。FIG. 7 is a view showing another embodiment of the open / close valve.

【図8】図7の弁体を転圧車両に用いた油圧回路であ
る。
8 is a hydraulic circuit in which the valve body of FIG. 7 is used in a compaction vehicle.

【図9】従来の油圧回路を示す図である。FIG. 9 is a diagram showing a conventional hydraulic circuit.

【符号の説明】[Explanation of symbols]

1 ロードローラ 2 油圧回路 6 前輪 7 前輪駆動用油圧モータ 8 吸入ポート 9 吐出ポート 10,11 後輪 13,14 後輪駆動用油圧モータ 40 開閉弁 41 ケーシング 44 流路 47 弁体 49 絞り通路 50 第2の絞り通路 51 弁座 52 バネ部材 1 Road roller 2 hydraulic circuit 6 front wheels 7 Front wheel hydraulic motor 8 suction ports 9 discharge ports 10,11 Rear wheel 13, 14 Rear wheel drive hydraulic motor 40 open / close valve 41 casing 44 channel 47 Disc 49 throttle passage 50 Second throttle passage 51 seat 52 Spring member

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ケーシングに圧流体の流路を形成し、そ
の流路に弁体を摺動可能に嵌装して弁体で流路を区画
し、その弁体には弁体前後の流路を連通する絞り通路を
形成し、その流路には前記弁体の前後に、弁体がその移
動方向のいずれか一方側に移動したときに弁体と圧接し
て前記絞り通路を塞ぐ弁座を設け、弁体の前後には更
に、弁体を前記前後の弁座に対して開弁状態となる中立
位置に弁体を保持可能な一対の付勢手段を設け、弁体で
区画された一方側の流路から前記絞り通路を介して他方
側に圧流体を通過させたときに、絞り通路の前後で圧流
体の流量により生じる差圧が設定圧以上となると、中立
位置にあった弁体が他方側にある前記付勢手段による付
勢力に抗して他方側の弁座に向けて移動して絞り通路を
塞ぐように構成したことを特徴とする開閉弁。
1. A flow passage for a pressure fluid is formed in a casing, and a valve body is slidably fitted in the flow passage to divide the flow passage by the valve body. A valve that forms a throttle passage communicating with a passage, and closes the throttle passage by pressing the valve body before and after the valve body when the valve body moves to either side in the moving direction. A seat is provided, and a pair of urging means capable of holding the valve body at the neutral position where the valve body is opened to the front and rear valve seats are further provided in front of and behind the valve body, and are partitioned by the valve body. When a pressure fluid was passed from one side flow path to the other side through the throttle passage and the differential pressure generated by the flow rate of the pressure fluid before and after the throttle passage was equal to or higher than the set pressure, it was in the neutral position. The valve body is configured to move toward the valve seat on the other side against the biasing force of the biasing means on the other side to close the throttle passage. An on-off valve characterized by.
【請求項2】 弁体には、上記開閉される絞り通路のほ
か、弁体位置に無関係に、弁体前後の流路を常時連通す
る第2の絞り通路を有し、第2の絞り通路は、開閉され
る絞り通路の絞り度合いよりも小さな絞り度合いとして
あることを特徴とする請求項1記載の開閉弁。
2. The valve body has, in addition to the throttle passage that is opened and closed, a second throttle passage that always communicates with the flow passages before and after the valve body regardless of the valve body position. The opening / closing valve according to claim 1, wherein the opening degree is smaller than the opening degree of the opening / closing passage to be opened / closed.
【請求項3】 前輪が前輪駆動用油圧モータに接続さ
れ、左右後輪が夫々左右の後輪駆動用油圧モータに接続
され、それら左右の後輪駆動用油圧モータが、油圧回路
中において互いに並列かつ、前輪駆動用油圧モータとも
並列の関係にある油圧駆動車両において、前記各後輪駆
動用油圧モータの吐出または吸入ポートのいずれか一方
に請求項1または2記載の開閉弁を接続したこと特徴と
する油圧駆動車両の油圧回路。
3. The front wheels are connected to a front wheel drive hydraulic motor, the left and right rear wheels are respectively connected to left and right rear wheel drive hydraulic motors, and the left and right rear wheel drive hydraulic motors are parallel to each other in a hydraulic circuit. Further, in the hydraulically driven vehicle in parallel with the front wheel driving hydraulic motor, the on-off valve according to claim 1 or 2 is connected to either one of the discharge port and the suction port of each of the rear wheel driving hydraulic motors. A hydraulic circuit for a hydraulically driven vehicle.
【請求項4】 前輪が前輪駆動用油圧モータに接続さ
れ、後輪が後輪駆動用油圧モータに接続され、それら前
後の駆動用油圧モータが、油圧回路中において互いに並
列の関係にある油圧駆動車両において、前記各駆動用油
圧モータの吐出または吸入ポートのいずれか一方に請求
項1または2記載の開閉弁を接続したこと特徴とする油
圧駆動車両の油圧回路。
4. A hydraulic drive in which front wheels are connected to a front wheel drive hydraulic motor, rear wheels are connected to a rear wheel drive hydraulic motor, and the front and rear drive hydraulic motors are in a parallel relationship in a hydraulic circuit. A hydraulic circuit for a hydraulically driven vehicle, wherein the on-off valve according to claim 1 or 2 is connected to either one of a discharge port and an intake port of each of the drive hydraulic motors.
JP2001392979A 2001-12-26 2001-12-26 Switching valve and hydraulic circuit of hydraulic ally driven vehicle Pending JP2003194217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001392979A JP2003194217A (en) 2001-12-26 2001-12-26 Switching valve and hydraulic circuit of hydraulic ally driven vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001392979A JP2003194217A (en) 2001-12-26 2001-12-26 Switching valve and hydraulic circuit of hydraulic ally driven vehicle

Publications (1)

Publication Number Publication Date
JP2003194217A true JP2003194217A (en) 2003-07-09

Family

ID=27600084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001392979A Pending JP2003194217A (en) 2001-12-26 2001-12-26 Switching valve and hydraulic circuit of hydraulic ally driven vehicle

Country Status (1)

Country Link
JP (1) JP2003194217A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015135186A (en) * 2015-03-03 2015-07-27 Ntn株式会社 Hydraulic auto tensioner and belt transmission device
JP2016142356A (en) * 2015-02-03 2016-08-08 株式会社デンソー Selector valve for hydraulic control
CN115853844A (en) * 2022-06-29 2023-03-28 江苏海鹏特种车辆有限公司 A fully hydraulic automatic anti-skid system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016142356A (en) * 2015-02-03 2016-08-08 株式会社デンソー Selector valve for hydraulic control
JP2015135186A (en) * 2015-03-03 2015-07-27 Ntn株式会社 Hydraulic auto tensioner and belt transmission device
CN115853844A (en) * 2022-06-29 2023-03-28 江苏海鹏特种车辆有限公司 A fully hydraulic automatic anti-skid system

Similar Documents

Publication Publication Date Title
JPH082269A (en) Travel control circuit for hydraulic drive type traveling device
EP1120573A2 (en) Hydraulic drive unit with counter balancing valve
JPH08121405A (en) Counterbalance valve
JP2003194217A (en) Switching valve and hydraulic circuit of hydraulic ally driven vehicle
JP3188067B2 (en) Power steering device
JP4015960B2 (en) Power steering device
JP2621600B2 (en) Hydraulic valve device for power steering gear
KR100450433B1 (en) Power steering device
JP2776702B2 (en) Hydraulic circuit of construction machinery
JPH0243672B2 (en)
WO1995023260A1 (en) Travelling hydraulic device
JP4325851B2 (en) HST travel drive device
JP2001219857A (en) Hydraulic power steering system for vehicles
JP3365964B2 (en) Hydraulic circuit of construction machinery
JP3855000B2 (en) Hydraulic drive
JP3815990B2 (en) Work machine travel operation circuit
JP4260103B2 (en) Hydraulic drive
JP2004044667A (en) Work machine traveling operation circuit
JP2819478B2 (en) Hydraulic circuit of closed circuit hydraulic transmission
JP3727738B2 (en) Hydraulic control circuit
JP2606323Y2 (en) Hydraulic circuit of hydraulic traveling device
JPH0638934Y2 (en) Traveling speed switching device for traveling vehicle
JP2002372149A (en) Hydraulic circuit for hydraulically driven vehicle
JPH0899551A (en) Four wheel drive
JP2602155Y2 (en) Hydraulic pressure control device for anti-skid device