[go: up one dir, main page]

JP2003192731A - Method for producing polytetrafluoroethylene - Google Patents

Method for producing polytetrafluoroethylene

Info

Publication number
JP2003192731A
JP2003192731A JP2001395012A JP2001395012A JP2003192731A JP 2003192731 A JP2003192731 A JP 2003192731A JP 2001395012 A JP2001395012 A JP 2001395012A JP 2001395012 A JP2001395012 A JP 2001395012A JP 2003192731 A JP2003192731 A JP 2003192731A
Authority
JP
Japan
Prior art keywords
ptfe
monomer
reaction system
polytetrafluoroethylene
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001395012A
Other languages
Japanese (ja)
Inventor
Masazumi Shimizu
正純 清水
Yasuaki Yamamoto
康彰 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2001395012A priority Critical patent/JP2003192731A/en
Publication of JP2003192731A publication Critical patent/JP2003192731A/en
Pending legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

(57)【要約】 【課題】融点以上において、成型に適した溶融粘度特性
を示すPTFEの製造方法を提供する。 【解決手段】分子中に遊離し易いフッ素原子を有するパ
ーフルオロビニルモノマーを分岐促進コモノマーとして
含み、連鎖移動剤を分岐長さの調節のための分子量調節
剤として含む反応系において、テトラフルオロエチレン
モノマーを重合することによって分岐状のポリテトラフ
ルオロエチレンを生成させる。
(57) [Problem] To provide a method for producing PTFE exhibiting a melt viscosity characteristic suitable for molding at a melting point or higher. A reaction system comprising a perfluorovinyl monomer having a fluorine atom which is easily liberated in a molecule as a branching promoting comonomer and a chain transfer agent as a molecular weight regulator for controlling the branch length, comprising a tetrafluoroethylene monomer. Is polymerized to produce a branched polytetrafluoroethylene.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ポリテトラフルオ
ロエチレン(以下、PTFEという)の製造方法に関
し、特に、融点以上において、成型に適した溶融粘度特
性を示すPTFEの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing polytetrafluoroethylene (hereinafter referred to as PTFE), and more particularly to a method for producing PTFE showing melt viscosity characteristics suitable for molding at a melting point or higher.

【0002】[0002]

【従来の技術】PTFEは、繰り返し単位を規則正しく
並べた鎖状の分子構成を有し、これによる高い結晶性を
備える点においてポリエチレンと共通するところがある
が、骨格炭素原子に結合するフッ素原子がポリエチレン
分子における水素原子より大きく、従って、分子の自由
回転性に大きな制約があることと、これにより分子鎖が
剛直性を帯びている点においては、ポリエチレンと大き
く異なっている。
2. Description of the Related Art PTFE has a molecular structure in a chain structure in which repeating units are regularly arranged and has a high crystallinity, which is common with polyethylene, but a fluorine atom bonded to a skeletal carbon atom is a polyethylene. It differs greatly from polyethylene in that it is larger than a hydrogen atom in a molecule, and thus has a large restriction on the free rotation of the molecule, and that the molecular chain is rigid due to this.

【0003】また、PTFEは、骨格炭素原子の表面が
フッ素原子でほとんど埋め尽くされているために、その
分子鎖から炭化水素の性質が失われていること、従っ
て、フッ素を主体とした構成物特有の極度に低い摩擦係
数を備えており、さらに、低屈折率による優れた光学的
特性を有している点においても、ポリエチレンとは異な
るところがある。
Further, PTFE has a structure in which fluorine is the main constituent, because the surface of the skeletal carbon atoms is almost completely filled with fluorine atoms, so that the molecular chain loses the property of hydrocarbons. It is different from polyethylene in that it has a peculiar extremely low coefficient of friction and has excellent optical properties due to a low refractive index.

【0004】また、分子鎖を構成する骨格炭素原子とフ
ッ素原子の間の共有結合エネルギーが、水素原子や塩素
原子結合のものよりも大きく、従って、このことによる
プラスティックス中最高の耐熱性を備えていることも、
この重合体の大きな特色であり、さらには、高周波特性
および耐化学薬品性等に優れていることも、この重合体
の大きな利点として挙げることができる。
Further, the covalent bond energy between the skeletal carbon atom and the fluorine atom constituting the molecular chain is larger than that of the hydrogen atom or chlorine atom bond, and therefore, this provides the highest heat resistance in plastics. That
It is a great feature of this polymer that it is a major feature of this polymer and that it is also excellent in high frequency characteristics and chemical resistance.

【0005】以上のように優れた特性を有するPTFE
は、絶縁材料、機械部品材料あるいは電子部品材料等多
くの用途に活用されており、特に、光通信、半導体およ
び先端医療の分野においては、他のプラスティックス類
では代替えすることのできない特殊な材料として、揺る
ぎない地位を占めている。
PTFE having excellent properties as described above
Is used in many applications such as insulating materials, mechanical parts materials, electronic parts materials, etc. In particular, in the fields of optical communication, semiconductors and advanced medicine, special materials that cannot be replaced by other plastics. As such, it occupies an unwavering position.

【0006】[0006]

【発明が解決しようとする課題】しかし、従来のPTF
Eによると、加工性に著しく劣る性質を有するため、そ
の成型に際しては、ペースト状押出あるいは金型加工等
の非効率的な方法に依存せざるを得ず、このため、生産
性の面において大きな不利益性を有している。
[Problems to be Solved by the Invention] However, conventional PTF
According to E, since it has a property of being extremely inferior in workability, it has no choice but to rely on an inefficient method such as paste-like extrusion or die processing in its molding. It has a disadvantage.

【0007】即ち、従来のPTFEの溶融粘度は、38
0℃で約1011ポイズと極めて高く、従って、ゲルのよ
うな流動性を示さないことから、通常の押出機等による
溶融成型は望めない。このため、乳化重合より得られる
ファインパウダーの場合には、主としてペースト状押出
加工が採られ、一方、懸濁重合より得られるモールディ
ンググレード品の場合には、金型による成型か普通とな
るが、これらの方法は、非効率的であり、低い生産性を
余儀なくされる。
That is, the melt viscosity of conventional PTFE is 38
Since it is extremely high at about 10 11 poise at 0 ° C. and therefore does not show fluidity like gel, it cannot be expected to be melt-molded by an ordinary extruder or the like. Therefore, in the case of fine powder obtained by emulsion polymerization, mainly paste-like extrusion processing is adopted, while in the case of molding grade products obtained by suspension polymerization, molding by a mold is common, These methods are inefficient and force low productivity.

【0008】この融点以上の温度において極度に高い溶
融粘度を示す原因は、いまだ充分に解明されてはおら
ず、さらに、PTFEを溶解させるのに適した溶剤がな
いために、その溶液粘度あるいは分子量を特定するため
の精密測定すら、不可能な状態にあるのが実情である。
The cause of the extremely high melt viscosity at temperatures above this melting point has not yet been fully clarified, and since there is no suitable solvent for dissolving PTFE, its solution viscosity or molecular weight is The reality is that even precise measurements for identification are impossible.

【0009】分子量については、溶融粘度やクリープ測
定の結果より、ポリエチレンよりも大きな、およそ数百
万程度の高水準にあるものと推定されているが、これを
成型性確保のために数十万程度に下げる場合には、なぜ
か実用上の機械的特性が得られなくなる特質を有してお
り、このように従来のPTFEには、成型性を改良する
うえにおいて、多くの未解明事項ないしは問題点が内在
している。
Regarding the molecular weight, it is estimated from the results of melt viscosity and creep measurement that it is at a high level of about several million, which is larger than that of polyethylene. When it is lowered to a certain degree, it has a characteristic that mechanical properties for practical use cannot be obtained for some reason. Thus, in the conventional PTFE, there are many unclear points or problems in improving the moldability. The dot is inherent.

【0010】従って、本発明の目的は、融点以上におい
て、成型に適した溶融粘度特性を示す新規タイプのPT
FEの製造方法を提供することにある。
Therefore, an object of the present invention is to provide a novel type of PT which exhibits a melt viscosity characteristic suitable for molding at a melting point or higher.
It is to provide a manufacturing method of FE.

【0011】[0011]

【課題を解決するための手段】本発明は、上記の目的を
達成するため、融点以上において流動性を示し、前記流
動性に基づく良好な成型性を有するPTFEの製造方法
において、遊離し易いフッ素原子を分子中に含むパーフ
ルオロビニルモノマーを分岐促進コモノマーとして含
み、連鎖移動剤を分岐長さの調節のための分子量調節剤
として含む反応系において、テトラフルオロエチレンモ
ノマーを重合することによって前記反応系に分岐状の分
子構成を有するPTFEを生成させることを特徴とする
PTFEの製造方法を提供するものである。
[Means for Solving the Problems] In order to achieve the above-mentioned object, the present invention shows a flowable substance at a melting point or higher, and a fluorine which is easily liberated in a method for producing PTFE having good moldability based on the fluidity. In a reaction system containing a perfluorovinyl monomer containing an atom in the molecule as a branching-promoting comonomer and a chain transfer agent as a molecular weight controlling agent for controlling the branch length, the reaction system by polymerizing a tetrafluoroethylene monomer. The present invention provides a method for producing PTFE, characterized in that PTFE having a branched molecular structure is produced.

【0012】本発明は、実用上における充分な機械的特
性と、融点以上での低い溶融粘度特性を両立させること
に基盤をおくもので、従来のPTFEがほぼ線状の分子
構成を有していることの確認と、これとは異質の多数の
長分岐を有するPTFEが、融点以上において良好な流
動性を示すことの発見により成立しているものである。
The present invention is based on achieving both sufficient mechanical properties for practical use and low melt viscosity properties above the melting point, and conventional PTFE has an almost linear molecular structure. It has been confirmed by the confirmation that it is present and that PTFE having a large number of long branches, which are different from each other, exhibits good fluidity at the melting point or higher.

【0013】また、これに加え、分岐は比較的長いもの
であること、末端と分岐の間の分子鎖が従来の線状のP
TFEより短いこと、および分岐状PTFEの分子1個
の平均の数平均分子量が従来の線状PTFEのそれとほ
ぼ同等であることが、実用的な機械的特性を得るための
前提となることを見出したものである。
In addition to this, the branch is relatively long, and the molecular chain between the end and the branch is a conventional linear P
It was found that it is shorter than TFE and that the average number average molecular weight of one molecule of branched PTFE is almost the same as that of conventional linear PTFE, which is a prerequisite for obtaining practical mechanical properties. It is a thing.

【0014】そして、その基本的な考え方は、連鎖反応
により生成する重合体の分子構造をして、分岐促進コモ
ノマーの存在により成長しつつある鎖状ラジカルへフッ
素原子を移動させ易い構造とし、これにより鎖状ラジカ
ルの成長を停止させることによって重合体の分子を再活
性化させ、この再活性化した重合体にモノマーを付加し
て成長させるか、あるいは他の成長鎖状ラジカルと結合
させて分岐状PTFEを生成させることにある。
The basic idea is that the molecular structure of the polymer formed by the chain reaction is set to a structure in which the fluorine atom is easily transferred to the growing chain radical due to the presence of the branch promoting comonomer. To reactivate the molecule of the polymer by stopping the growth of the chain radical by adding a monomer to this reactivated polymer to grow it, or to combine it with another growing chain radical to branch it. The purpose is to generate PTFE.

【0015】但し、これらの反応を繰り返し継続して行
わせるためには、適度な長さに制御された鎖状ラジカル
が多数存在していることが必要であり、これは、分子量
を調節することによって達成される。本発明における連
鎖移動剤は、この意味において重要な存在であり、従っ
て、本発明が目的とする分岐状のPTFEを生成させる
ためには、前述した分岐促進コモノマーと同じく、連鎖
移動剤も重要な要素となる。
However, in order to carry out these reactions repeatedly and continuously, it is necessary that a large number of chain radicals controlled to have an appropriate length be present, which is to control the molecular weight. Achieved by The chain transfer agent in the present invention is important in this sense, and therefore, in order to produce the branched PTFE targeted by the present invention, the chain transfer agent is also important in the same manner as the above-mentioned branch promoting comonomer. It becomes an element.

【0016】本発明における分岐促進コモノマーの量
は、このコモノマーとテトラフルオロエチレンモノマー
との合計量のうちの0.5〜3.0重量%(以下、単に
%という)を占めるように設定することが好ましく、ま
た、連鎖移動剤の量は、分岐促進コモノマーおよびテト
ラフルオロエチレンモノマーを含む反応系100重量部
(以下、単に部という)に対して、0.002〜0.0
2部となるように設定することが好ましい。
The amount of the branch promoting comonomer in the present invention is set so as to account for 0.5 to 3.0% by weight (hereinafter, simply referred to as%) of the total amount of the comonomer and the tetrafluoroethylene monomer. The amount of the chain transfer agent is preferably 0.002 to 0.0 with respect to 100 parts by weight of the reaction system containing the branching promoting comonomer and the tetrafluoroethylene monomer (hereinafter simply referred to as "parts").
It is preferable to set the number of copies to be two.

【0017】前者の数値範囲における下限値は、得られ
るPTFEに良好な成型性を与えるうえでの守るべき最
低水準であり、一方、上限値は、PTFEとしての特質
を維持するのに守るべき限界値となる。また、後者の数
値範囲における下限値は、有効な分子量調節効果を得る
ための好ましい最低値であり、一方、上限値は、反応の
進行を阻害しないようにするために守るべき最大値とな
る。
The lower limit in the numerical range of the former is the minimum level that should be observed in order to give the obtained PTFE good moldability, while the upper limit is the limit that should be observed in order to maintain the characteristics of PTFE. It becomes a value. In addition, the lower limit of the latter numerical range is a preferable minimum for obtaining an effective molecular weight adjusting effect, while the upper limit is a maximum that should be observed so as not to hinder the progress of the reaction.

【0018】分岐促進コモノマーを構成するパーフルオ
ロビニルモノマーは、遊離し易いフッ素原子を有するこ
とによって特徴づけられるものであり、具体的には、ヘ
キサフルオロプロピレンあるいはフルオロアルキルビニ
ルエーテル等が好適な例として挙げられる。一方、分子
量調節剤の例としては、たとえば、n−フルオロブチル
メルカプタン、n−フルオロドデシルメルカプタンある
いはt−フルオロブチルメルカプタン等が挙げられる。
The perfluorovinyl monomer which constitutes the branching-promoting comonomer is characterized by having a fluorine atom which is easily released, and specific examples thereof include hexafluoropropylene and fluoroalkyl vinyl ether. To be On the other hand, examples of the molecular weight modifier include n-fluorobutyl mercaptan, n-fluorododecyl mercaptan, t-fluorobutyl mercaptan and the like.

【0019】なお、本発明による製造方法は、従来と同
じく乳化重合あるいは懸濁重合に基づいて行われる。従
って、反応遂行のためには、当然、開始剤が必要であ
り、これには、ハイドロパーオキサイド類、脂肪族系ア
ゾビスニトリル類;あるいは水溶性有機過酸化物、過酸
化加里、過酸化水素または第1鉄イオン等の水溶性開始
剤などが使用される。反応開始剤の代わりに各種の放射
線を使用することは可能である。
The production method according to the present invention is carried out on the basis of emulsion polymerization or suspension polymerization as in the conventional case. Therefore, in order to carry out the reaction, of course, an initiator is required, which includes hydroperoxides, aliphatic azobisnitriles; or water-soluble organic peroxides, potassium peroxide, hydrogen peroxide. Alternatively, a water-soluble initiator such as ferrous ion is used. It is possible to use various radiations instead of the initiator.

【0020】[0020]

【発明の実施の形態】次に、本発明によるPTFEの製
造方法の実施の形態を説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Next, an embodiment of the method for producing PTFE according to the present invention will be described.

【実施例1】水64部に脂肪酸石けん0.7部と過酸化
加里0.04部を加えて攪拌することにより水媒体を調
合し、この水媒体に連鎖移動剤としてn−フルオロブチ
ルメルカプタン0.01部を加えて攪拌した後、この閉
じられた反応系の温度を60℃に加熱昇温させ、これ
に、テトラフルオロエチレン97%とヘキサフルオロプ
ロピレン(分岐促進コモノマー)3%の混合ガス36部
を封入して30分間攪拌反応させた。
Example 1 An aqueous medium was prepared by adding 0.7 part of fatty acid soap and 0.04 part of potassium peroxide to 64 parts of water and stirring, and n-fluorobutyl mercaptan 0 as a chain transfer agent was added to this aqueous medium. After adding 0.01 part and stirring, the temperature of the closed reaction system was raised to 60 ° C. and heated to a mixed gas 36 of tetrafluoroethylene 97% and hexafluoropropylene (branching promoting comonomer) 3%. The part was sealed and the reaction was carried out with stirring for 30 minutes.

【0021】反応終了後、得られた乳化液を破壊・分離
させることによって液中に生成した重合体を採取および
精製し、これにより、分岐状の分子構成を有する所定の
PTFE(厳密には、ヘキサフルオロプロピレンとの共
重合体)を得た。
After completion of the reaction, the resulting emulsion is destroyed and separated to collect and purify the polymer produced in the emulsion, whereby a predetermined PTFE having a branched molecular structure (strictly speaking, A copolymer with hexafluoropropylene) was obtained.

【0022】次に、このPTFEを加熱プレスによって
成形したところ、400℃×30分の条件下において、
0.5mmの厚さにシート化することができた。得られ
たシートは、透明であり、浮沈比重法による密度は、
2.105g/cm3を示した。
Next, when this PTFE was molded by a hot press, under the condition of 400 ° C. × 30 minutes,
It could be formed into a sheet having a thickness of 0.5 mm. The obtained sheet is transparent, and the density by the float-sink specific gravity method is
It showed 2.105 g / cm 3 .

【0023】一方、このシートを使用して動的粘弾性の
温度分散を測定したところ、測定周波数が1Hzにおい
て、従来のPTFE(線状PTFE)より値が若干低い
ものの、310℃以上400℃までプラトーモジュラス
を示した。
On the other hand, when the temperature dispersion of dynamic viscoelasticity was measured using this sheet, the value was slightly lower than that of conventional PTFE (linear PTFE) at a measurement frequency of 1 Hz, but from 310 ° C to 400 ° C. The plateau modulus was shown.

【0024】また、測定周波数を1/10の0.1Hz
に下げ、同じく動的粘弾性の温度分散を測定したとこ
ろ、モジュラスは、310℃以上において急激な低下を
示し、さらに、測定後のシートサンプルの外観状態も、
構成重合体が溶解し、流動した痕跡を明確に残してい
た。
The measurement frequency is 1/10, 0.1 Hz.
When the temperature dispersion of the dynamic viscoelasticity was similarly measured, the modulus showed a sharp decrease at 310 ° C. or higher, and the appearance state of the sheet sample after the measurement was also
The constituent polymer dissolved, leaving a clear trace of fluidization.

【0025】なお、この実施例で得られたシートの引張
強度を温度24℃および引張速度50mm/minの条
件下に測定したところ、1.6kgf/mm2と、充分
な特性を示した。また、DSC融点を昇温速度10℃/
minのもとに測定したところ、312℃を示し、さら
に、400℃のフローテスターによる押出テストを実施
した結果、成型するのに充分な良好な押出加工性を示し
た。
The tensile strength of the sheet obtained in this example was measured under the conditions of a temperature of 24 ° C. and a pulling speed of 50 mm / min. As a result, it showed 1.6 kgf / mm 2 and sufficient characteristics. In addition, the DSC melting point is set to a temperature rising rate of 10 ° C /
When measured under min, it showed 312 ° C. Further, as a result of carrying out an extrusion test with a flow tester at 400 ° C., good extrusion processability sufficient for molding was shown.

【0026】[0026]

【実施例2】実施例1において、連鎖移動剤および開始
剤として、それぞれt−フルオロブチルメルカプタン
0.018部および過酸化水素0.18部を使用し、さ
らに、封入する混合ガスの組成をテトラフルオロエチレ
ン99%およびフルオロアルキルビニルエーテル1%に
設定するとともに、反応系の温度を70℃に設定するこ
とにより、所定の分岐状PTFEを製造した。
Example 2 In Example 1, 0.018 parts of t-fluorobutyl mercaptan and 0.18 part of hydrogen peroxide were used as the chain transfer agent and the initiator, respectively, and the composition of the mixed gas to be sealed was changed to tetra. Fluoroethylene 99% and fluoroalkyl vinyl ether 1% were set, and the temperature of the reaction system was set to 70 ° C. to produce a predetermined branched PTFE.

【0027】得られたPTFEを加熱プレスによりシー
ト化したところ、実施例1と同様に成型可能であり、4
00℃×30分の条件で容易にシート化することができ
た。また、得られたシートの密度は2.20g/cm3
を示し、さらに、実施例1と同じ条件によりDSC融点
および引張強度を測定したところ、それぞれ318℃お
よび1.8kgf/mm2の結果が得られた。
When the obtained PTFE was formed into a sheet by a hot press, it could be molded in the same manner as in Example 1, and 4
A sheet could be easily formed under the condition of 00 ° C x 30 minutes. The density of the obtained sheet is 2.20 g / cm 3.
Furthermore, when the DSC melting point and the tensile strength were measured under the same conditions as in Example 1, the results of 318 ° C. and 1.8 kgf / mm 2 were obtained, respectively.

【0028】また、このシートを使用して動的粘弾性の
温度分散を測定したところ、測定周波数によって大きな
違いを示し、およそ320℃以上では、1Hzでプラト
ーモジュラスを示す一方、0.1Hzになると、大きく
緩和する傾向を示した。なお、400℃のフローテスタ
ーによる押出テストでは、充分に良好な押出加工性を示
した。
When the temperature dispersion of dynamic viscoelasticity was measured using this sheet, a large difference was observed depending on the measurement frequency. At about 320 ° C. or higher, the plateau modulus was shown at 1 Hz, while it was 0.1 Hz. , Showed a tendency to greatly ease. In the extrusion test using a flow tester at 400 ° C., sufficiently good extrusion processability was exhibited.

【0029】[0029]

【参考例1】実施例1において、分岐促進コモノマーを
使用せず、他を同じ条件に設定することによりPTFE
の重合を実施したところ、得られた重合体の加熱プレス
による成型は可能であったが、動的粘弾性の測定は、測
定中に試料が破断したため、実施不可能であった。
[Reference Example 1] In Example 1, a PTFE was obtained by using the same conditions except that the branching promoting comonomer was not used.
When the polymerization was carried out, the obtained polymer could be molded by hot pressing, but the dynamic viscoelasticity could not be measured because the sample broke during the measurement.

【0030】[0030]

【参考例2】実施例1において、連鎖移動剤を使用せ
ず、他を同一条件に設定することによりPTFEの重合
を実施したところ、生成重合体は融点以上で流動せず、
加熱プレスによる成形が不可能であった。また、この重
合体を圧縮成型し、これより切り出したシートを使用し
て動的粘弾性の測定を実施した結果、測定周波数1Hz
および0.1Hzのいずれにおいても堅固なプラトーモ
ジュラスを示し、緩和の傾向を全く示さなかった。
Reference Example 2 The polymerization of PTFE was carried out in the same manner as in Example 1 except that the chain transfer agent was not used and the other conditions were set to the same conditions.
Molding by hot pressing was impossible. In addition, the polymer was compression molded and the sheet cut out therefrom was used to measure the dynamic viscoelasticity.
At 0.1 Hz and 0.1 Hz, a firm plateau modulus was exhibited and no tendency of relaxation was shown.

【0031】[0031]

【参考例3】実施例1において、ヘキサフルオロプロピ
レンのテトラフルオロエチレンに対する混合比を4〜1
0%の範囲内において数例設定するとともに、他を同一
条件に設定することによりそれぞれPTFEの重合を実
施したところ、結果は、いずれも、参考例2と同じであ
った。
[Reference Example 3] In Example 1, the mixing ratio of hexafluoropropylene to tetrafluoroethylene was 4 to 1
When several cases were set in the range of 0% and the polymerization of PTFE was carried out by setting the other conditions under the same conditions, the results were all the same as in Reference Example 2.

【0032】[0032]

【参考例4】実施例1において、連鎖移動剤の量を0.
035部に設定するとともに、他を同一条件に設定する
ことによりPTFEの重合反応を実施したところ、得ら
れた生成物の加熱プレスによる成形は不可能であった。
この例および参考例3の結果より、本発明の実施に際し
ては、連鎖移動剤および分岐促進コモノマーの量に対し
て、充分な配慮を行うべきである。
Reference Example 4 In Example 1, the amount of the chain transfer agent was adjusted to 0.
When the polymerization reaction of PTFE was carried out by setting the amount to 035 parts and the other conditions to the same, it was impossible to mold the obtained product by hot pressing.
From the results of this Example and Reference Example 3, sufficient consideration should be given to the amounts of the chain transfer agent and the branching promoting comonomer when carrying out the present invention.

【0033】なお、以上に述べた実施例1および2にお
ける融点以上での引張モジュラスモードによる動的粘弾
性の温度分散の測定において、周波数1Hzでプラトー
領域を示しながら、0.1Hzで非プラトー化し、緩和
する挙動は、分子中に長い分岐を有するPTFEの特有
の性質といえる。
In the measurement of the temperature dispersion of the dynamic viscoelasticity by the tensile modulus mode above the melting point in Examples 1 and 2 described above, a plateau region was shown at a frequency of 1 Hz, and a non-plateau was obtained at 0.1 Hz. The relaxation behavior can be said to be a characteristic property of PTFE having a long branch in the molecule.

【0034】従って、1011ポイズもの溶融粘度を有す
る従来の線状PTFEとは全く異質の、370〜440
℃における良好な流動性が確認されているが、本発明に
よるPTFEは、この優位性以外に、卓越した摩耗抵抗
性を有することによっても特徴づけられる。
Therefore, 370 to 440 which is completely different from the conventional linear PTFE having a melt viscosity of 10 11 poises.
Although good flowability at 0 ° C has been confirmed, the PTFE according to the present invention is also characterized not only by this advantage, but also by having excellent abrasion resistance.

【0035】即ち、実施例1および2により得られたエ
マルジョンより粉状のPTFEを採取し、これを濃度2
0%となるように線状PTFE粉にブレンドしたものを
圧力30MPaで1時間圧縮成型し、これにより縦横5
0mmおよび厚さ10mmのブロックを得た後、その比
摩耗量をJIS K7218に基づいて従来の線状PT
FEとの対比において測定したところ、従来の線状PT
FE単独によるものが105×10-8mm3/N・m3
示したのに比べ、実施例1のPTFEを混入したものが
50×10-8mm3/N・mm3 、および実施例2のP
TFEを混入したものが30×10-8mm3/N・m
3と、著しく低い結果を示した。
That is, powdery PTFE was collected from the emulsions obtained in Examples 1 and 2, and the powdery PTFE was collected at a concentration of 2
A linear PTFE powder blended so as to be 0% was compression molded at a pressure of 30 MPa for 1 hour.
After obtaining a block with a thickness of 0 mm and a thickness of 10 mm, the specific wear amount was determined according to JIS K7218 and the conventional linear PT
When measured in comparison with FE, conventional linear PT
The FE alone showed 10 5 × 10 -8 mm 3 / N · m 3 , whereas the FE alone mixed with PTFE was 50 × 10 -8 mm 3 / N · mm 3 , and P in example 2
Those containing TFE are 30 × 10 -8 mm 3 / N ・ m
3, which was a remarkably low result.

【0036】この理由についての解明は、充分に行われ
ていないが、恐らく、摩損のメカニズムのなか、融点以
上の領域において、分子鎖が線状PTFEよりも容易に
緩和して外力による損傷を受けにくいこと、および流動
できることが関係しているものと推定される。この性質
は、PTFEの活用範囲を広げるうえにおいて、明らか
に有益な特質となる。
Although the reason for this has not been sufficiently clarified, it is conceivable that the molecular chains are more easily relaxed and damaged by external force than the linear PTFE in the region above the melting point in the mechanism of abrasion. It is presumed that difficulty and fluidity are involved. This property is an apparently useful property in expanding the range of use of PTFE.

【0037】[0037]

【発明の効果】以上説明したように、本発明によるPT
FEの製造方法によれば、分子中に遊離し易いフッ素原
子を有するパーフルオロビニルモノマーを分岐促進コモ
ノマーとして含み、連鎖移動剤を分岐長さの調節のため
の分子量調節剤として含む反応系において、テトラフル
オロエチレンモノマーを重合することによってPTFE
を製造するため、分岐状の分子構成を有し、従って、溶
融押出等による成型に適した溶融粘度特性を備えるPT
FEを提供することができる。
As described above, the PT according to the present invention
According to the method for producing FE, in a reaction system containing a perfluorovinyl monomer having a fluorine atom which is easily released in the molecule as a branching promoting comonomer, and a chain transfer agent as a molecular weight controlling agent for controlling the branch length, PTFE by polymerizing tetrafluoroethylene monomer
Has a branched molecular structure and therefore has a melt viscosity characteristic suitable for molding by melt extrusion or the like.
FE can be provided.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】融点以上において流動性を示し、前記流動
性に基づく良好な成型性を有するポリテトラフルオロエ
チレンの製造方法において、 遊離し易いフッ素原子を分子中に有するパーフルオロビ
ニルモノマーを分岐促進コモノマーとして含み、連鎖移
動剤を分岐長さの調節のための分子量調節剤として含む
反応系において、テトラフルオロエチレンモノマーを重
合することによって前記反応系に分岐状の分子構成を有
するポリテトラフルオロエチレンを生成させることを特
徴とするポリテトラフルオロエチレンの製造方法。
1. A method for producing polytetrafluoroethylene which exhibits fluidity at a temperature equal to or higher than a melting point and has good moldability based on the fluidity, which promotes branching of a perfluorovinyl monomer having a fluorine atom which is easily liberated in the molecule. In a reaction system containing a comonomer and a chain transfer agent as a molecular weight modifier for adjusting the branch length, polytetrafluoroethylene having a branched molecular structure is polymerized in the reaction system by polymerizing a tetrafluoroethylene monomer. A method for producing polytetrafluoroethylene, which comprises producing the polytetrafluoroethylene.
【請求項2】前記テトラフルオロエチレンモノマーを重
合するステップは、前記反応系が、前記分岐促進コモノ
マーを前記テトラフルオロエチレンモノマーとの合計量
のうちの0.5〜3.0重量%を占めるように含むとと
もに、前記連鎖移動剤を当該反応系100重量部当たり
0.002〜0.02重量部含む条件下において行われ
ることを特徴とする請求項1項記載のポリテトラフルオ
ロエチレンの製造方法。
2. The step of polymerizing the tetrafluoroethylene monomer so that the reaction system accounts for 0.5 to 3.0% by weight of the total amount of the branch promoting comonomer and the tetrafluoroethylene monomer. And a chain transfer agent in an amount of 0.002 to 0.02 part by weight per 100 parts by weight of the reaction system.
【請求項3】前記テトラフルオロエチレンモノマーを重
合するステップは、前記分岐促進コモノマーとして、ヘ
キサフルオロプロピレンモノマーあるいはフルオロアル
キルビニルエーテルモノマーを含む前記反応系において
行われることを特徴とする請求項1項記載のポリテトラ
フルオロエチレンの製造方法。
3. The step of polymerizing the tetrafluoroethylene monomer is performed in the reaction system containing a hexafluoropropylene monomer or a fluoroalkyl vinyl ether monomer as the branch promoting comonomer. Method for producing polytetrafluoroethylene.
JP2001395012A 2001-12-26 2001-12-26 Method for producing polytetrafluoroethylene Pending JP2003192731A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001395012A JP2003192731A (en) 2001-12-26 2001-12-26 Method for producing polytetrafluoroethylene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001395012A JP2003192731A (en) 2001-12-26 2001-12-26 Method for producing polytetrafluoroethylene

Publications (1)

Publication Number Publication Date
JP2003192731A true JP2003192731A (en) 2003-07-09

Family

ID=27601567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001395012A Pending JP2003192731A (en) 2001-12-26 2001-12-26 Method for producing polytetrafluoroethylene

Country Status (1)

Country Link
JP (1) JP2003192731A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005052015A1 (en) * 2003-11-26 2005-06-09 Daikin Industries, Ltd. Fluororesin and coated electric wire

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005052015A1 (en) * 2003-11-26 2005-06-09 Daikin Industries, Ltd. Fluororesin and coated electric wire
US7638588B2 (en) 2003-11-26 2009-12-29 Daikin Industries, Ltd. Fluororesin and coated electric wire

Similar Documents

Publication Publication Date Title
JP4792622B2 (en) Tetrafluoroethylene / perfluoro (alkyl vinyl ether) copolymer and method for producing the same
JP5066096B2 (en) Fluoropolymer composition
JPS584728B2 (en) Method for producing fluorine-containing multi-segmented polymer
WO2007061914A1 (en) Core/shell polymer
CN108495891A (en) Process for producing ASA graft copolymer, process for producing thermoplastic ASA resin composition comprising same, and process for producing ASA molded article
JP2002138210A (en) Multiple polymer additive system
TWI372167B (en) Polymer latex suitable for the preparation of dip-molded articles
JP6573933B2 (en) Acrylic processing aid and vinyl chloride resin composition containing the same
EP0931798A1 (en) Process for preparing modified PTFE
CN101611090B (en) Improved heat aged perfluoropolymer
EP0111342B1 (en) Non-melt-fabricable granular modified terafluoroethylene polymer
JPS61266459A (en) Sulfur-containing poly(arylether ketone) composition
JP2003192731A (en) Method for producing polytetrafluoroethylene
CN112574347B (en) Fluorine-containing vinyl chloride copolymer, method for producing same, composition comprising same, and resin article made from same
JPS6149327B2 (en)
KR20080026971A (en) Acrylic copolymer for processing aid of vinyl chloride-based resin composition, method for preparing the same, and vinyl chloride-based resin composition comprising the same
CN117820535A (en) Soft vinyl chloride copolymer, process for producing the same, vinyl chloride resin composition, and resin product
Haba et al. Development and characterization of reactively extruded PVC/polystyrene blends
Abreu et al. Reversible deactivation radical polymerization of vinyl chloride
CN117801151A (en) Rigid vinyl chloride copolymer and preparation method thereof, vinyl chloride resin composition and resin product
WO2004056887A1 (en) Tetrafluoroethylene copolymer
CN111253512A (en) Tetrafluoroethylene-alkyl acrylate-perfluoroalkyl vinyl ether dispersion resin and microporous membrane prepared from same
CN112574349B (en) Rigid polyvinyl chloride-based copolymer, method for producing same, composition comprising same, and resin product made from composition
JP3791223B2 (en) Ethylene / tetrafluoroethylene copolymer composition
Chakrabarti et al. Studies on engineering properties of PVC–PMMA semi‐interpenetrating polymer networks

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050401

A131 Notification of reasons for refusal

Effective date: 20050712

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051206