[go: up one dir, main page]

JP2003183975A - Heat treating oven - Google Patents

Heat treating oven

Info

Publication number
JP2003183975A
JP2003183975A JP2002277268A JP2002277268A JP2003183975A JP 2003183975 A JP2003183975 A JP 2003183975A JP 2002277268 A JP2002277268 A JP 2002277268A JP 2002277268 A JP2002277268 A JP 2002277268A JP 2003183975 A JP2003183975 A JP 2003183975A
Authority
JP
Japan
Prior art keywords
heat treatment
hot air
yarn
treatment chamber
flow velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002277268A
Other languages
Japanese (ja)
Other versions
JP4292771B2 (en
Inventor
Hiroyuki Inoue
博之 井上
Toshinori Kawamura
俊紀 河村
Tetsushi Onishi
徹史 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2002277268A priority Critical patent/JP4292771B2/en
Publication of JP2003183975A publication Critical patent/JP2003183975A/en
Application granted granted Critical
Publication of JP4292771B2 publication Critical patent/JP4292771B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatment Of Fiber Materials (AREA)
  • Inorganic Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat treating oven which can prevent hot gas from flowing out a heat treating chamber and prevent outer gas from flowing in the chamber without setting additional equipment and has excellent temperature uniformity in the chamber, and to provide a method for producing carbon fibers with the heat treating oven. <P>SOLUTION: This heat treating oven has a heat treating chamber, a hot gas exhaust port and a hot gas supply port disposed on the upper and lower sides of the chamber, respectively. A yarn-feeding and yarn-drawing ports are disposed on the sides of the chamber, and fibers travel in the horizontal direction. Simultaneously blowing hot gas is blown on the lower sides of the fibers. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、炭素繊維の製造に
用いて好適な熱処理炉およびそれを用いた炭素繊維の製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat treatment furnace suitable for producing carbon fibers and a method for producing carbon fibers using the furnace.

【0002】[0002]

【従来の技術】従来の熱処理炉、特に炭素繊維の製造に
用いられる熱処理炉としては、熱処理室の上面に設けた
熱風供給口および下面に設けた熱風排出口と、熱処理室
の側壁に糸条導入口と糸条導出口とを有し、熱処理室内
で糸条を水平方向に走行させながら、その糸条に上方か
ら熱風を吹き付けて熱処理するようにした熱処理炉が知
られている(例えば、特許文献1参照)。
2. Description of the Related Art A conventional heat treatment furnace, particularly a heat treatment furnace used for producing carbon fibers, includes a hot air supply port provided on the upper surface of the heat treatment chamber and a hot air discharge port provided on the lower surface thereof, and a yarn on the side wall of the heat treatment chamber. There is known a heat treatment furnace that has an inlet and a yarn outlet, and that heats the yarn by blowing hot air from above onto the yarn while horizontally moving the yarn in the heat treatment chamber (for example, See Patent Document 1).

【0003】このような熱処理炉においては、例えばそ
れが耐炎化炉である場合、複数本のポリアクリロニトリ
ル(PAN)系のプリカーサ(前駆体繊維)からなる糸
条は、水平面内において任意のピッチを保ちながら熱処
理室内に導入され、かつ、熱処理室の両側に設置された
ガイドローラによって走行方向を反転しながら熱処理室
内への出入を繰り返し、熱処理室の上下方向において任
意のピッチを保ちながら走行し、耐炎化処理される。
In such a heat treatment furnace, for example, when it is a flameproofing furnace, a yarn made of a plurality of polyacrylonitrile (PAN) type precursors (precursor fibers) has an arbitrary pitch in a horizontal plane. While being maintained, it is introduced into the heat treatment chamber, and the guide rollers installed on both sides of the heat treatment chamber repeat the movement in and out of the heat treatment chamber while reversing the traveling direction, traveling while maintaining an arbitrary pitch in the vertical direction of the heat treatment chamber, Flameproofed.

【0004】特許文献1に開示されている熱処理炉にお
いては、熱処理室側壁の糸条導入口および糸条導出口の
外側に隣接してシール室を設け、そのシール室に排気機
構を備えることで、熱処理室から流出する熱風を排気
し、有害ガスの炉外への漏出を阻止すると共に、熱処理
室内への外気流入を抑制している。
In the heat treatment furnace disclosed in Patent Document 1, a seal chamber is provided adjacent to the outside of the yarn introduction port and the yarn discharge port on the side wall of the heat treatment chamber, and the exhaust chamber is provided in the seal chamber. The hot air flowing out of the heat treatment chamber is exhausted to prevent the harmful gas from leaking out of the furnace, and the outside air is prevented from flowing into the heat treatment chamber.

【0005】[0005]

【特許文献1】特開平11−173761号公報(第2
−6頁、第1図)
[Patent Document 1] Japanese Patent Application Laid-Open No. 11-173761 (second
(See page 6, Fig. 1)

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記特
許文献1に開示された熱処理炉では、生産性を上げるた
めの一手段として、熱処理室内を出入りする糸条の段数
を増やす場合、流れが糸条を通過する際に生じる抵抗が
大きくなり、流れの上流から下流に向けて生じる圧力低
下が増大する。このため、熱処理室内と炉外雰囲気との
圧力差も増大し、前記シール室だけでは熱処理室内への
外気流入を防ぐことができなくなる。結果、熱処理室の
上方に設けた糸条導入口および糸条導出口からは熱処理
室内の熱風が流出し、熱処理室の下方に設けた糸条導入
口および糸条導出口からは外気が熱処理室内へ流入する
ようになる。
However, in the heat treatment furnace disclosed in the above-mentioned Patent Document 1, as one means for increasing productivity, when the number of yarn steps entering and leaving the heat treatment chamber is increased, the flow is The resistance that occurs when passing through the pipe increases, and the pressure drop that occurs from upstream to downstream of the flow increases. For this reason, the pressure difference between the heat treatment chamber and the atmosphere outside the furnace also increases, and it becomes impossible to prevent the outside air from flowing into the heat treatment chamber only with the seal chamber. As a result, the hot air in the heat treatment chamber flows out from the yarn introduction port and the yarn discharge port provided above the heat treatment chamber, and the outside air is discharged from the yarn introduction port and the yarn discharge port provided below the heat treatment chamber into the heat treatment chamber. To flow into.

【0007】熱処理室内への外気流入は、熱処理室内の
温度むらを引き起こし、製品の品質を低下させるという
問題がある。また、外気の流入した領域は、温度が低い
ために糸条の熱処理が進行せず、生産性が低下する。ま
た、熱風排出口から排出される熱風を熱風供給口に戻し
て循環使用する場合、外気の流入によって温度が低下し
た循環熱風を、再び所望の温度に加熱するためのヒータ
消費電力量が増えるため、エネルギー効率が低下すると
いう問題がある。
There is a problem that the inflow of outside air into the heat treatment chamber causes temperature unevenness in the heat treatment chamber and deteriorates product quality. Further, in the region where the outside air flows, the heat treatment of the yarn does not proceed because the temperature is low, and the productivity is reduced. Further, when the hot air discharged from the hot air outlet is returned to the hot air supply port for circulation, the circulating hot air whose temperature has been lowered by the inflow of outside air increases the power consumption of the heater for heating it again to the desired temperature. However, there is a problem that energy efficiency decreases.

【0008】また上記熱処理炉では、熱処理室から流出
する熱風を排気すると共に、熱処理室への外気流入を抑
制するために、熱処理室の外側にシール室という追加設
備が必要であり、設備の設置スペースが大きくなるとと
もに、設備費が増大し製造原価が上がるという問題があ
る。
In addition, in the above heat treatment furnace, in order to exhaust hot air flowing out from the heat treatment chamber and suppress the inflow of outside air into the heat treatment chamber, an additional facility called a seal chamber is required outside the heat treatment chamber. There is a problem that the space becomes large, the equipment cost increases, and the manufacturing cost increases.

【0009】本発明の課題は、上記のような問題点に着
目し、特別な追加設備を設置することなく、熱処理室外
への熱風流出と熱処理室内への外気流入とを防ぎ、熱処
理室内の温度均一性に優れた熱処理炉、およびそれを用
いた炭素繊維の製造方法を提供することにある。
The object of the present invention is to pay attention to the above problems and prevent hot air outflow to the outside of the heat treatment chamber and inflow of outside air into the heat treatment chamber without installing special additional equipment, and to prevent the temperature inside the heat treatment chamber from increasing. It is intended to provide a heat treatment furnace excellent in uniformity and a method for producing carbon fiber using the heat treatment furnace.

【0010】[0010]

【課題を解決するための手段】上記課題に対し、本発明
者らは、熱風に作用する浮力を利用することで解決でき
ることを見出した。すなわち、本発明によれば、熱処理
室と、この熱処理室の上方側に設けた熱風排出口および
下方側に設けた熱風供給口と、熱処理室の側方側に設け
た糸条導入口および糸条導出口とを有し、熱処理室内で
糸条を水平方向に走行させながらその糸条に下方から熱
風を吹き付けて熱処理するようにした熱処理炉が提供さ
れる。
The present inventors have found that the above problems can be solved by utilizing buoyancy acting on hot air. That is, according to the present invention, the heat treatment chamber, the hot air discharge port provided on the upper side of the heat treatment chamber and the hot air supply port provided on the lower side, the yarn introduction port and the yarn provided on the side of the heat treatment chamber. Provided is a heat treatment furnace which has a yarn outlet and is adapted to perform a heat treatment by blowing hot air from below onto the yarn while running the yarn horizontally in the heat treatment chamber.

【0011】ここで水平方向とは、地面に対して概略平
行となる方向のことである。概略平行とした理由の1つ
は、糸条は自重によって懸垂するため、その走行方向は
地面に対して完全に平行とはならないためである。もう
1つの理由は、熱処理室の両側で糸条を支えるガイドロ
ーラに段差があるなどの原因で、糸条の走行方向が地面
に対して傾斜しても、糸条が熱処理室の向かい合う2側
面に渡してあれば、実質的には以下に記す本発明の原理
が成り立つためである。
Here, the horizontal direction is a direction substantially parallel to the ground. One of the reasons for making them substantially parallel is that the yarn is suspended by its own weight, and the traveling direction thereof is not completely parallel to the ground. Another reason is that the guide rollers that support the yarns on both sides of the heat treatment chamber have steps, so that even if the traveling direction of the yarns is inclined with respect to the ground, the yarns are on two opposite sides of the heat treatment chamber. This is because the principle of the present invention described below is substantially established if it is passed.

【0012】一般に、熱処理室内の熱風は外気に比べ気
体密度が小さいため、熱風には浮力が作用し、熱処理室
の上下方向に圧力勾配が生じる。すなわち、炉外雰囲気
の圧力に対して熱処理室上方の圧力は大きくなり、熱処
理室下方の圧力は小さくなる。一方、熱処理室内の熱風
には、流れが糸条を通過する際の抵抗によって圧力損失
が生じ、熱風の上流から下流に向けて圧力が低下する。
Generally, since the hot air in the heat treatment chamber has a smaller gas density than the outside air, buoyancy acts on the hot air and a pressure gradient occurs in the vertical direction of the heat treatment chamber. That is, the pressure above the heat treatment chamber becomes higher and the pressure below the heat treatment chamber becomes smaller than the pressure of the atmosphere outside the furnace. On the other hand, in the hot air in the heat treatment chamber, a pressure loss occurs due to the resistance when the flow passes through the yarn, and the pressure decreases from upstream to downstream of the hot air.

【0013】本発明の熱処理炉は、熱風の上流となる熱
風供給口を熱処理室の下方側に設け、熱風の下流となる
熱風排出口を熱処理室の上方側に設けることで、流れが
糸条を通過する際の抵抗によって生じる圧力勾配が、浮
力の作用によって生じる圧力勾配に対して逆符号となる
ようにしている。そのため、浮力の作用によって生じる
圧力勾配と流れが糸条を通過する際の抵抗によって生じ
る圧力勾配とが打ち消し合い、熱処理室の上下方向に生
じる圧力勾配が小さくなる。結果として、熱処理室内と
炉外雰囲気との圧力差が小さくなり、何ら特別な追加設
備を設置することなく、熱処理室外への熱風流出と熱処
理室内への外気流入とを防ぎ、熱処理室内の温度均一性
に優れた熱処理炉が提供される。
In the heat treatment furnace of the present invention, the hot air supply port upstream of the hot air is provided on the lower side of the heat treatment chamber, and the hot air discharge port downstream of the hot air is provided on the upper side of the heat treatment chamber so that the flow of the yarn is increased. The pressure gradient generated by the resistance when passing through is set to have the opposite sign to the pressure gradient generated by the action of buoyancy. Therefore, the pressure gradient generated by the action of buoyancy cancels out the pressure gradient generated by the resistance when the flow passes through the yarn, and the pressure gradient generated in the vertical direction of the heat treatment chamber becomes small. As a result, the pressure difference between the heat treatment chamber and the atmosphere outside the furnace becomes small, and hot air outflow to the outside of the heat treatment chamber and outside air inflow to the heat treatment chamber can be prevented without installing any special additional equipment, and the temperature inside the heat treatment chamber can be made uniform. A heat treatment furnace having excellent properties is provided.

【0014】上記熱処理炉において、複数本の糸条を、
水平面内において任意のピッチPhを保つように熱処理
室内に導入し、かつ、熱処理室内への出入を繰り返しな
がら熱処理室の上下方向において任意のピッチPvを保
つようにした場合、糸条の大量処理が可能な多段熱処理
炉が提供される。
In the heat treatment furnace, a plurality of yarns are
In the case of introducing into the heat treatment chamber so as to keep an arbitrary pitch Ph in the horizontal plane and keeping the arbitrary pitch Pv in the vertical direction of the heat treatment chamber while repeatedly moving in and out of the heat treatment chamber, a large amount of yarns can be processed. A possible multi-stage heat treatment furnace is provided.

【0015】上記多段熱処理炉における好ましい態様と
して、熱風が糸条を通過するときの圧力低下量をΔP
(単位:Pa)、炉外雰囲気の密度と熱風の密度との差
に基づいて熱風に生ずる浮力をF(単位:N/m3)、
上下方向の糸条ピッチをPv(単位:m)としたとき、
F×Pv/ΔPが0.7〜1.6の範囲内になるよう
に、熱風の流速、熱風の温度、糸条のピッチPhおよび
Pvから選ばれる少なくとも一つの条件を調整すること
で、温度均一性に優れた熱処理炉が提供される。F×P
v/ΔPの範囲は、外気流入を防止するための範囲とし
て採用したものである。
In a preferred embodiment of the multi-stage heat treatment furnace, the pressure drop amount when hot air passes through the yarn is ΔP.
(Unit: Pa), the buoyancy generated in the hot air based on the difference between the density of the atmosphere outside the furnace and the density of the hot air is F (unit: N / m3),
When the vertical thread pitch is Pv (unit: m),
The temperature is adjusted by adjusting at least one condition selected from the flow velocity of hot air, the temperature of hot air, and the pitches Ph and Pv of the yarns so that F × Pv / ΔP falls within the range of 0.7 to 1.6. A heat treatment furnace having excellent uniformity is provided. F × P
The range of v / ΔP is adopted as a range for preventing outside air inflow.

【0016】ここでF×Pv/ΔPの調整に、熱風の流
速、熱風の温度、糸条のピッチPhを用いる理由を以下
に述べる。
The reason why the flow velocity of the hot air, the temperature of the hot air, and the pitch Ph of the yarn are used to adjust F × Pv / ΔP will be described below.

【0017】ΔPは流れが糸条を通過する際に生じる糸
条1段あたりの圧力低下量である。ΔPは、水平面内に
おける糸条のピッチPh、糸条の形状、熱風の流速など
によって変化する。このうち変更可能な生産条件は、糸
条ピッチPhと熱風の流速である。ΔPの値は、実験的
に測定しても良いし、生産機において測定しても良い
し、数値シミュレーションによって求めても良い。
ΔP is the amount of pressure drop per stage of yarn that occurs when the flow passes through the yarn. ΔP changes depending on the yarn pitch Ph in the horizontal plane, the yarn shape, the flow velocity of hot air, and the like. Among these, the production conditions that can be changed are the yarn pitch Ph and the flow velocity of the hot air. The value of ΔP may be experimentally measured, may be measured in a production machine, or may be obtained by numerical simulation.

【0018】また、熱風に作用する浮力Fは、炉外雰囲
気の密度をρ0(単位:kg/m3)、熱風の密度をρ
h(単位:kg/m3)、重力加速度の大きさをg(単
位:m/s2)とすると、F=g(ρ0−ρh)と表さ
れる。地上の常温・大気圧雰囲気下に置かれた熱処理炉
の場合、重力加速度の大きさgと炉外雰囲気密度ρ0は
ほぼ固定されるため、変更可能な生産条件は熱風の温度
によって決まる密度ρhである。糸条が熱処理室の上下
方向にピッチPvを保ちながら多段に並んでいる場合、
浮力による糸条1段あたりの圧力上昇量はF×Pvとな
る。
As for the buoyancy F acting on the hot air, the density of the atmosphere outside the furnace is ρ0 (unit: kg / m3), and the density of the hot air is ρ.
If h (unit: kg / m3) and the magnitude of gravitational acceleration are g (unit: m / s2), then F = g (ρ0−ρh). In the case of a heat treatment furnace placed on the ground at room temperature and atmospheric pressure, the magnitude g of gravitational acceleration and the outside atmosphere density ρ0 are almost fixed, so the production conditions that can be changed are the density ρh determined by the temperature of hot air. is there. When the yarns are arranged in multiple stages while maintaining the pitch Pv in the vertical direction of the heat treatment chamber,
The amount of pressure increase per one stage of yarn due to buoyancy is F × Pv.

【0019】以上の理由により、熱風の流速、熱風の温
度、糸条のピッチPhの調整によって、F×Pv/ΔP
が決定されることになる。
For the above reasons, F × Pv / ΔP can be obtained by adjusting the flow velocity of hot air, the temperature of hot air, and the pitch Ph of the yarn.
Will be decided.

【0020】また、前記多段熱処理炉における別の好ま
し態様として、熱処理室上部の圧力P1と熱処理室下部
の圧力P2との関係が、−9Pa≦P1−P2≦6Pa
となるように、熱風の流速、熱風の温度、糸条のピッチ
PhおよびPvから選ばれる少なくとも一つの条件を調
整することで、温度均一性に優れた熱処理炉が提供され
る。P1−P2の範囲は、外気流入を防止するための範
囲として採用したものである。
As another preferred mode of the multi-stage heat treatment furnace, the relationship between the pressure P1 in the upper part of the heat treatment chamber and the pressure P2 in the lower part of the heat treatment chamber is -9 Pa≤P1-P2≤6 Pa.
By adjusting at least one condition selected from the flow velocity of hot air, the temperature of hot air, and the pitches Ph and Pv of the yarns, a heat treatment furnace excellent in temperature uniformity is provided. The range of P1-P2 is adopted as a range for preventing outside air inflow.

【0021】圧力を測定する際の熱処理室上部とは、糸
条の最上段より上側で、かつ熱処理室の上面より下側の
領域である。同様に熱処理室下部とは、糸条の最下段よ
り下側で、かつ熱処理室の下面よりも上側の領域であ
る。圧力P1およびP2は各領域内の静圧である。P1
とP2との圧力差は、絶対圧力計で測定したそれぞれの
領域の圧力の差として求めても良いし、差圧計を用いて
2つの領域の圧力差を直接測定しても良い。また、数値
シミュレーションによって求めても良い。測定値は時間
的に変動するので、各測定箇所で3回以上サンプリング
し、その平均値とすることが好ましい。測定箇所は、各
領域内で1カ所づつとしても良いし、各領域内で複数箇
所測定し、その平均値として求めても良い。
The upper part of the heat treatment chamber when measuring the pressure is a region above the uppermost stage of the yarn and below the upper face of the heat treatment chamber. Similarly, the lower part of the heat treatment chamber is a region below the lowermost stage of the yarn and above the lower surface of the heat treatment chamber. The pressures P1 and P2 are static pressures in each region. P1
The pressure difference between P2 and P2 may be obtained as the difference between the pressures in the respective areas measured by an absolute pressure gauge, or the pressure difference between the two areas may be directly measured using a differential pressure gauge. Alternatively, it may be obtained by numerical simulation. Since the measured value fluctuates with time, it is preferable to sample three or more times at each measuring point and use it as the average value. The number of measurement points may be one in each area, or may be measured at a plurality of points in each area and obtained as an average value.

【0022】また、前記多段熱処理炉における別の好ま
しい態様として、熱処理室上部の圧力P1と熱処理室下
部の圧力P2との関係が、P1−P2>6Paであれば
熱風の流速が大きくなるように調整し、P1−P2<−
9Paであれば熱風の流速が小さくなるように調整する
手段を有する熱処理炉が提供される。
As another preferable mode of the multi-stage heat treatment furnace, if the relationship between the pressure P1 in the upper part of the heat treatment chamber and the pressure P2 in the lower part of the heat treatment chamber is P1-P2> 6 Pa, the flow velocity of hot air becomes large. Adjust, P1-P2 <-
A heat treatment furnace having means for adjusting the flow rate of hot air to be low at 9 Pa is provided.

【0023】熱風の流速を調整する手段としては、ファ
ンの回転数を変更するものや、ダンパの開き具合を変更
するものがある。また、これを自動化するために、圧力
差を逐次検出するための検出装置と、同検出装置によっ
て検出された信号により、ファンの回転数やダンパの開
き具合を調整する制御装置とを備えることもある。
As means for adjusting the flow velocity of the hot air, there are means for changing the rotation speed of the fan and means for changing the opening degree of the damper. In order to automate this, a detection device for sequentially detecting the pressure difference, and a control device for adjusting the rotation speed of the fan and the opening degree of the damper based on the signal detected by the detection device may be provided. is there.

【0024】また、前記多段熱処理炉における別の好ま
しい態様として、熱処理室上部の圧力P1と炉外雰囲気
の圧力P0との関係が、P1−P0>3Paであれば熱
風の流速が大きくなるように調整し、P1−P0<−5
Paであれば熱風の流速が小さくなるように調整する手
段を有する熱処理炉が提供される。
As another preferable mode of the multi-stage heat treatment furnace, if the relationship between the pressure P1 in the upper part of the heat treatment chamber and the pressure P0 of the atmosphere outside the furnace is P1-P0> 3 Pa, the flow velocity of hot air is increased. Adjust, P1-P0 <-5
If it is Pa, a heat treatment furnace having means for adjusting the flow velocity of hot air to be small is provided.

【0025】また、前記多段熱処理炉における別の好ま
しい態様として、熱処理室下部の圧力P2と炉外雰囲気
の圧力P0との関係が、P2−P0<−3Paであれば
熱風の流速が大きくなるように調整し、P2−P0>4
Paであれば熱風の流速が小さくなるように調整する手
段を有する熱処理炉が提供される。P1−P0およびP
2−P0の範囲は、外気流入を防止するための範囲とし
て採用したものである。
As another preferred mode of the multi-stage heat treatment furnace, if the relationship between the pressure P2 in the lower part of the heat treatment chamber and the pressure P0 of the atmosphere outside the furnace is P2-P0 <-3 Pa, the flow velocity of hot air is increased. Adjust to P2-P0> 4
If it is Pa, a heat treatment furnace having means for adjusting the flow velocity of hot air to be small is provided. P1-P0 and P
The range of 2-P0 is adopted as a range for preventing outside air inflow.

【0026】また、前記多段熱処理炉における別の好ま
しい態様として、熱処理室の上半分にある糸条導入口ま
たは糸条導出口から熱処理室外への熱風流出が観測され
た場合には熱風の流速が大きくなるように調整し、熱処
理室の下半分にある糸条導入口または糸条導出口から熱
処理室外への熱風流出が観測された場合には熱風の流速
が小さくなるように調整する手段を有する熱処理炉が提
供される。
As another preferred mode of the multi-stage heat treatment furnace, when hot air outflow to the outside of the heat treatment chamber from the yarn introduction port or yarn discharge port in the upper half of the heat treatment chamber is observed, the flow velocity of the hot air is It has a means to adjust so that the flow velocity of the hot air becomes smaller when hot air outflow from the yarn inlet or yarn outlet in the lower half of the heat treatment chamber to the outside of the heat treatment chamber is observed. A heat treatment furnace is provided.

【0027】熱処理室の上半分とは、熱処理室の高さ方
向において、中央より上側の領域の少なくとも一部のこ
とである。同様に、熱処理室の下半分とは、熱処理室の
高さ方向において、中央より下側の領域の少なくとも一
部のことである。
The upper half of the heat treatment chamber is at least a part of the region above the center in the height direction of the heat treatment chamber. Similarly, the lower half of the heat treatment chamber is at least a part of the region below the center in the height direction of the heat treatment chamber.

【0028】また、前記多段熱処理炉における別の好ま
しい態様として、熱風排出口から排出される熱風の温度
が最大になるように、熱風の流速を調整する手段を有す
る熱処理炉が提供される。
As another preferred embodiment of the multi-stage heat treatment furnace, there is provided a heat treatment furnace having means for adjusting the flow velocity of the hot air so that the temperature of the hot air discharged from the hot air outlet is maximized.

【0029】また、前記全ての熱処理炉における別の好
ましい態様として、糸条と熱処理室側面を構成する側壁
との間の未処理ゾーンにおいて、水平方向に設置した仕
切板を上下方向に少なくとも1つ以上有する熱処理炉が
提供される。
Further, as another preferable mode in all the heat treatment furnaces, at least one partition plate installed in the horizontal direction is provided in the vertical direction in the untreated zone between the yarn and the side wall constituting the side surface of the heat treatment chamber. A heat treatment furnace having the above is provided.

【0030】ここで未処理ゾーンとは、糸条と熱処理室
側面を構成する側壁との間の空間のことである。具体的
には、熱処理室の側面を構成する側壁のうち、糸条導入
口または糸条導出口のいずれをも有さない側壁と糸条と
の間の空間である。未処理ゾーンは、通常、炉外への放
熱によって側壁近傍の温度が低下し、糸条の熱処理不足
が生じるのを回避するために設けられるが、熱処理室内
で糸条を水平方向に走行させながらその糸条に下方から
熱風を吹き付けて熱処理する場合に、下方からの熱風が
走行糸条を避けてこの未処理ゾーンを通過するため、こ
の未処理ゾーンを仕切板によって塞ぐことによって効率
よく熱処理することができるのである。
Here, the untreated zone is a space between the yarn and the side wall forming the side surface of the heat treatment chamber. Specifically, it is a space between a yarn and a side wall that does not have a yarn introduction port or a yarn ejection port among the side walls forming the side surface of the heat treatment chamber. The untreated zone is usually provided in order to prevent the temperature near the side wall from decreasing due to heat dissipation to the outside of the furnace, and to avoid insufficient heat treatment of the yarn. When heat treatment is performed by blowing hot air from below onto the yarn, the hot air from below passes through the untreated zone while avoiding the traveling yarn, so that the untreated zone is blocked by a partition plate for efficient heat treatment. It is possible.

【0031】前記仕切板は、上下方向には糸条と同じ高
さとなる位置に設置するのがより好ましい。また前記仕
切板は、糸条走行方向に糸条導入口から糸条導出口にか
けて設置することがより好ましい。
It is more preferable that the partition plate is installed at the same height as the yarn in the vertical direction. Further, it is more preferable that the partition plate is installed from the yarn introduction port to the yarn ejection port in the yarn traveling direction.

【0032】また、前記の熱処理炉は全て、炭素繊維の
製造に用いて好適なものであり、耐炎化炉や炭化炉とし
て用いることができ、特に耐炎化炉として好適なもので
ある。
Further, all of the above heat treatment furnaces are suitable for use in the production of carbon fiber, can be used as a flameproofing furnace or a carbonizing furnace, and are particularly suitable as a flameproofing furnace.

【0033】したがって本発明に係る炭素繊維の製造方
法は、上記の耐炎化炉を用いて炭素繊維を製造すること
を特徴とする方法からなる。
Therefore, the method for producing carbon fiber according to the present invention comprises a method characterized in that the carbon fiber is produced by using the above-mentioned flameproofing furnace.

【0034】[0034]

【発明の実施の形態】以下に、本発明の望ましい実施の
形態を、図面を参照しながら説明する。図1は本発明の
熱処理炉を、炭素繊維製造用の耐炎化炉として使用する
場合の一例を示す概略構成図である。耐炎化炉内の熱処
理室1には、熱処理室の上方側にある上面に設けた熱風
排出口2と熱処理室の下方側にある下面に設けた熱風供
給口3とが、糸条6を挟んで対向するように配置されて
いる。熱処理室1の側方側にある側壁には糸条導入口4
および糸条導出口5を有し、熱処理室1内で糸条6を水
平方向に走行させ、その糸条6に下方から200〜35
0℃の熱風を吹き付けて耐炎化処理する。糸条導入口4
および糸条導出口5は、熱処理室外への熱風流出や熱処
理室内への外気流入を防止する効果を高めるため、糸条
が接触しない程度に開口面積が小さいことが好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION Preferred embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic configuration diagram showing an example in which the heat treatment furnace of the present invention is used as a flameproofing furnace for carbon fiber production. In the heat treatment chamber 1 in the flameproofing furnace, the hot air discharge port 2 provided on the upper side of the heat treatment chamber and the hot air supply port 3 provided on the lower side of the heat treatment chamber sandwich the yarn 6. Are arranged so as to face each other. On the side wall on the side of the heat treatment chamber 1, the yarn introduction port 4
And the yarn outlet port 5, the yarn 6 runs in the heat treatment chamber 1 in the horizontal direction, and the yarn 6 extends from 200 to 35 from below.
A flameproof treatment is performed by blowing hot air of 0 ° C. Thread introduction port 4
In order to enhance the effect of preventing hot air outflow to the outside of the heat treatment chamber and outside air inflow to the heat treatment chamber, it is preferable that the yarn outlet port 5 has a small opening area to the extent that the yarns do not contact.

【0035】糸条6は、各ガイドローラ7で走行方向を
反転しながら、熱処理室1の側壁に設けた糸条導入口4
と糸条導出口5とを通り、熱処理室1内を複数回通過す
る。糸条6は、熱処理室1の上下方向において、ガイド
ローラ7の設置間隔によって決まる任意のピッチPvを
保ちながら走行する。
The yarn 6 is guided by the guide rollers 7 while reversing the traveling direction, and the yarn introducing port 4 provided on the side wall of the heat treatment chamber 1 is used.
And the yarn outlet 5, and passes through the heat treatment chamber 1 a plurality of times. The yarn 6 runs in the vertical direction of the heat treatment chamber 1 while maintaining an arbitrary pitch Pv determined by the installation interval of the guide rollers 7.

【0036】図2は図1の鉛直断面の一例である。複数
本の糸条6が水平面内において任意のピッチPhを保ち
ながら導入される。熱処理室の側面を構成する側壁のう
ち、糸条導入口または糸条導出口を有さない側壁と糸条
との間には未処理ゾーン10を有する。図3は溝付きの
ガイドローラ断面の一例である。水平面内におけるピッ
チPhは、ガイドローラに刻まれた溝のピッチによって
決まる。
FIG. 2 is an example of the vertical cross section of FIG. A plurality of yarns 6 are introduced while maintaining an arbitrary pitch Ph in the horizontal plane. Among the side walls forming the side surface of the heat treatment chamber, an untreated zone 10 is provided between the side wall having no yarn introduction port or yarn ejection port and the yarn. FIG. 3 is an example of a cross section of a guide roller having a groove. The pitch Ph in the horizontal plane is determined by the pitch of the grooves carved in the guide roller.

【0037】図4は、熱風排出口2から排出される熱風
を熱風供給口3に戻して循環使用するようにした場合の
一例である。ファン8は、熱風供給口3へ熱風を送風す
ると共に熱風排出口2から熱風を吸い込み、ヒータ9で
熱風を所望の温度に制御している。
FIG. 4 shows an example of the case where the hot air discharged from the hot air outlet 2 is returned to the hot air supply port 3 and is circulated and used. The fan 8 sends the hot air to the hot air supply port 3 and sucks the hot air from the hot air discharge port 2, and the heater 9 controls the hot air to a desired temperature.

【0038】また特開平11−173761号公報に開
示されているように、熱処理室1の側壁に設けた糸条導
入口4および糸条導出口5の外側に、シール室を設けて
も良い。
As disclosed in Japanese Patent Laid-Open No. 11-173761, a seal chamber may be provided outside the yarn introducing port 4 and the yarn extracting port 5 provided on the side wall of the heat treatment chamber 1.

【0039】以下、実施例により本発明をさらに具体的
に説明する。
Hereinafter, the present invention will be described more specifically with reference to Examples.

【0040】[0040]

【実施例】[実施例1]太さ1.1デシテックスのPA
N系のプリカーサ単糸を12,000本束ねた糸条を耐
炎化処理した。熱処理室の下面に熱風供給口を設け、上
面に熱風排出口を設けることで、熱処理室の下から上へ
熱風を流し、糸条に対して下方から熱風を吹き付けた。
熱風排出口から排出した熱風は、再び熱風供給口に戻し
て循環使用した。熱風排出口と熱風供給口との間に設け
たファンの回転数を変更し、熱風供給口および熱風排出
口における熱風の平均速度が1m/秒になるように制御
した。また、熱風排出口と熱風供給口との間に設けたヒ
ータによって、熱風供給口における熱風の平均温度が2
50℃になるように制御した。糸条は、熱処理室の両側
に設置されたガイドローラによって走行方向を反転しな
がら、熱処理室内へ19回の出入を繰り返すようにし
た。糸条の走行速度は0.05m/秒とした。上下方向
の糸条ピッチPvは0.2m、水平面内の糸条ピッチP
hは0.01mとした。熱処理室の側面を構成する側壁
のうち、糸条導入口または糸条導出口を有さない側壁か
ら0.3m内側までの領域を未処理ゾーンとした。炉外
雰囲気の温度は30℃であった。
[Example] [Example 1] PA with a thickness of 1.1 decitex
A yarn obtained by bundling 12,000 N-type precursor single yarns was subjected to flameproofing treatment. By providing a hot air supply port on the lower surface of the heat treatment chamber and providing a hot air discharge port on the upper surface, the hot air flowed from the bottom to the top of the heat treatment chamber, and the hot air was blown onto the yarn from below.
The hot air discharged from the hot air outlet was returned to the hot air supply port and used again. The rotation speed of the fan provided between the hot air outlet and the hot air outlet was changed so that the average speed of the hot air at the hot air inlet and the hot air outlet was 1 m / sec. Further, the average temperature of the hot air at the hot air supply port is set to 2 by the heater provided between the hot air discharge port and the hot air supply port.
The temperature was controlled to 50 ° C. The yarn was made to repeat in and out of the heat treatment chamber 19 times while reversing the running direction by guide rollers installed on both sides of the heat treatment chamber. The running speed of the yarn was 0.05 m / sec. The yarn pitch Pv in the vertical direction is 0.2 m, and the yarn pitch P in the horizontal plane
h was 0.01 m. Among the side walls forming the side surface of the heat treatment chamber, a region from the side wall having no yarn introduction port or yarn ejection port to the inside 0.3 m was defined as an untreated zone. The temperature of the atmosphere outside the furnace was 30 ° C.

【0041】糸条導入口および糸条導出口を有する熱処
理室の側壁から0.2m離れた位置に、熱処理室の高さ
方向に5カ所、熱電対を配置し、熱処理室内の温度を測
定した。5カ所の測定点は、糸条の最上段付近に設けた
ものをA点、糸条の最下段付近に設けたものE点とし、
残りの3点はA点とE点との間にほぼ等間隔になるよう
に設け、上からB点、C点、D点とした。測定の結果、
A点:249℃、B点:248℃、C点:247℃、D
点:249℃、E点、250℃となり、設定温度(熱風
供給口の平均温度250℃)との差は最大で3℃となっ
た。
Thermocouples were arranged at five locations in the height direction of the heat treatment chamber at a position 0.2 m away from the side wall of the heat treatment chamber having the yarn introduction port and the yarn ejection port, and the temperature inside the heat treatment chamber was measured. . The five measurement points are the point A provided near the top of the yarn and the point E provided near the bottom of the yarn.
The remaining three points were provided at approximately equal intervals between points A and E, and were set as points B, C, and D from the top. As a result of the measurement,
A point: 249 ° C, B point: 248 ° C, C point: 247 ° C, D
Point: 249 ° C., E point, 250 ° C., and the difference from the set temperature (average temperature of hot air supply port 250 ° C.) was 3 ° C. at maximum.

【0042】また、糸条導入口および糸条導出口の周辺
に78デシテックス24フィラメントのナイロン糸を長
さ約0.07mに切断した吹き流しを設置し、熱処理室
外への熱風流出を観測した結果、吹き流しは垂れ下がっ
た状態であり、顕著な熱風の流出は観測されなかった。
Further, a windsock made by cutting a nylon yarn of 78 decitex 24 filaments to a length of about 0.07 m was installed around the yarn inlet and the yarn outlet, and the hot air outflow to the outside of the heat treatment room was observed. The windsock was in a hanging state, and no significant hot air outflow was observed.

【0043】[比較例1]太さ1.1デシテックスのP
AN系のプリカーサ単糸を12,000本束ねた糸条を
耐炎化処理した。従来の熱処理炉と同様に、熱処理室の
上面に熱風供給口を設け、下面に熱風排出口を設けるこ
とで、熱処理室の上から下へ熱風を流し、糸条に対して
上方から熱風を吹き付けた。その他の条件は実施例1と
同じにした。概略図を図5に示す。
[Comparative Example 1] P having a thickness of 1.1 decitex
A yarn obtained by bundling 12,000 AN-based precursor single yarns was subjected to flame resistance treatment. Similar to the conventional heat treatment furnace, the hot air supply port is provided on the upper surface of the heat treatment chamber and the hot air discharge port is provided on the lower surface so that the hot air flows from the top to the bottom of the heat treatment chamber, and the hot air is blown from above the yarn. It was The other conditions were the same as in Example 1. A schematic diagram is shown in FIG.

【0044】実施例1と同様に、熱処理室内の温度を測
定した結果、A点:249℃、B点:241℃、C点:
233℃、D点:170℃、E点、136℃となり、設
定温度(熱風供給口の平均温度250℃)との差は最大
で114℃となった。このことから、熱処理室の下方で
は、糸条導入口および糸条導出口から外気が流入してい
ることが明らかであった。
As in Example 1, the temperature inside the heat treatment chamber was measured. As a result, point A: 249 ° C., point B: 241 ° C., point C:
233 ° C., D point: 170 ° C., E point, 136 ° C., and the maximum difference from the set temperature (average temperature of hot air supply port 250 ° C.) was 114 ° C. From this, it was clear that outside air was flowing in from the yarn inlet and the yarn outlet under the heat treatment chamber.

【0045】また、実施例1と同様に、糸条導入口およ
び糸条導出口の周辺に78デシテックス24フィラメン
トのナイロン糸を長さ約0.07mに切断した吹き流し
を設置した結果、熱処理室の上方では吹き流しが炉外側
になびき、顕著な熱風の流出が観測された。また、熱処
理室の下方では吹き流しが炉内側になびき、顕著な熱風
の流入が観測された。
Further, as in Example 1, a windsock made by cutting a nylon yarn of 78 decitex 24 filaments to a length of about 0.07 m was installed around the yarn introduction port and the yarn ejection port. At the upper part, the windsock fluttered outside the furnace, and a remarkable outflow of hot air was observed. In addition, in the lower part of the heat treatment chamber, the windsock fluttered inside the furnace, and a remarkable inflow of hot air was observed.

【0046】このように、本発明によれば、熱処理室の
下から上へ熱風を流すことで、熱処理室内からの熱風流
出と熱処理室内への外気流入とを防ぎ、熱処理室内の温
度均一性を大幅に向上させることができた。
As described above, according to the present invention, by flowing hot air from the bottom to the top of the heat treatment chamber, the outflow of hot air from the heat treatment chamber and the inflow of outside air into the heat treatment chamber are prevented, and the temperature uniformity in the heat treatment chamber is improved. I was able to improve significantly.

【0047】[実施例2〜10]太さ1.1デシテック
スのPAN系のプリカーサ単糸を12,000本束ねた
糸条を耐炎化処理した。熱処理室の下面に熱風供給口を
設け、上面に熱風排出口を設けることで、熱処理室の下
から上へ熱風を流し、糸条に対して下方から熱風を吹き
付けた。熱風排出口から排出した熱風は、再び熱風供給
口に戻して循環使用した。熱風排出口と熱風供給口との
間に設けたファンの回転数を調節し、熱風供給口および
熱風排出口における熱風の平均速度を0.6m/秒から
1.4m/秒まで0.1m/秒刻みで変化させた。その
他の条件は実施例1と同じにした。
[Examples 2 to 10] A yarn obtained by bundling 12,000 PAN-based precursor single yarns having a thickness of 1.1 decitex was subjected to flameproofing treatment. By providing a hot air supply port on the lower surface of the heat treatment chamber and providing a hot air discharge port on the upper surface, the hot air flowed from the bottom to the top of the heat treatment chamber, and the hot air was blown onto the yarn from below. The hot air discharged from the hot air outlet was returned to the hot air supply port and used again. By adjusting the rotation speed of a fan provided between the hot air outlet and the hot air supply port, the average velocity of the hot air at the hot air supply port and the hot air discharge port is 0.1 m / sec from 0.6 m / sec to 1.4 m / sec. It changed every second. The other conditions were the same as in Example 1.

【0048】上記熱処理炉において、糸条の最上段から
上側へ0.1m離れた位置の熱処理室の側壁に圧力測定
管を設け、この位置の圧力をP1とした。差圧計の一端
を圧力測定管につなぎ、他端を熱処理室外へ設置するこ
とで、熱処理室上部と炉外雰囲気との圧力差P1−P0
を測定した。同様に、糸条の最下段から下側へ0.1m
離れた位置の熱処理室の側壁に圧力測定管を設け、熱処
理室下部と炉外雰囲気との圧力差P2−P0を測定し
た。また、熱処理室上部と熱処理室下部との圧力差P1
−P2は、前述のP1−P0とP2−P0との差として
求めた。その他、実施例1と同様に、熱処理室内の温度
をA点〜E点の5カ所で測定した。また実施例1と同様
に、糸条導入口および糸条導出口の周辺に78デシテッ
クス24フィラメントのナイロン糸を長さ約0.07m
に切断した吹き流しを設置し、熱処理室外への熱風流出
を観測した。
In the above heat treatment furnace, a pressure measuring tube was provided on the side wall of the heat treatment chamber at a position 0.1 m away from the uppermost stage of the yarn, and the pressure at this position was P1. By connecting one end of the differential pressure gauge to the pressure measuring pipe and installing the other end outside the heat treatment chamber, the pressure difference between the upper portion of the heat treatment chamber and the atmosphere outside the furnace P1-P0
Was measured. Similarly, 0.1m from the bottom of the yarn to the bottom
A pressure measuring tube was provided on the side wall of the heat treatment chamber at a distant position, and the pressure difference P2-P0 between the lower portion of the heat treatment chamber and the atmosphere outside the furnace was measured. In addition, the pressure difference P1 between the upper part of the heat treatment chamber and the lower part of the heat treatment chamber
-P2 was obtained as the difference between P1-P0 and P2-P0 described above. In addition, as in Example 1, the temperature inside the heat treatment chamber was measured at five points A to E. In the same manner as in Example 1, a nylon yarn of 78 decitex 24 filaments was wound around the yarn introduction port and the yarn ejection port to a length of about 0.07 m.
A cut windsock was installed in the room, and hot air outflow to the outside of the heat treatment room was observed.

【0049】測定結果を表1に示す。熱処理室外への熱
風流出が起こらない圧力範囲は、−9Pa≦P1−P2
≦6Pa、−5Pa≦P1−P0≦3Pa、−3Pa≦
P2−P0≦4Paであった。
The measurement results are shown in Table 1. The pressure range where hot air does not flow out of the heat treatment chamber is −9 Pa ≦ P1−P2
≤6 Pa, -5 Pa ≤P1-P0 ≤3 Pa, -3 Pa≤
It was P2-P0 <= 4Pa.

【0050】表1中に示したF×Pv/ΔPの導出方法
を以下に記す。熱風が糸条を通過するときに生じる糸条
1段あたりの圧力低下量は、数値シミュレーションによ
って求めた。具体的には、図6に示すような2次元断面
モデルにおいて、糸条を固体とし、それを通過する熱風
の流速を変化させることで、各流速における圧力低下量
を知ることができる。数値シミュレーションの結果、上
記の耐炎化処理条件における圧力低下量(単位:Pa)
は、ΔP=0.93×U2となった。ここで、Uは熱風
の平均流速(単位:m/s)である。次に、浮力Fは、
炉外雰囲気の密度をρ0(単位:kg/m3)、熱風の
密度をρh(単位:kg/m3)、重力加速度の大きさ
をg(単位:m/s2)とすると、F=g(ρ0−ρ
h)で表され、F=9.8×(1.15−0.67)=
4.7N/m3となる。
A method of deriving F × Pv / ΔP shown in Table 1 will be described below. The amount of pressure drop per stage of the yarn generated when the hot air passes through the yarn was obtained by numerical simulation. Specifically, in the two-dimensional cross-sectional model as shown in FIG. 6, the yarn is made solid and the flow velocity of the hot air passing therethrough is changed, so that the pressure drop amount at each flow velocity can be known. As a result of the numerical simulation, the pressure drop amount (unit: Pa) under the above flameproof treatment condition
Was ΔP = 0.93 × U2. Here, U is an average flow velocity of hot air (unit: m / s). Next, the buoyancy F is
If the density of the atmosphere outside the furnace is ρ0 (unit: kg / m3), the density of hot air is ρh (unit: kg / m3), and the magnitude of gravity acceleration is g (unit: m / s2), then F = g (ρ0 −ρ
h) and F = 9.8 × (1.15-0.67) =
It becomes 4.7 N / m3.

【0051】上記熱処理室内の圧力勾配は、主に、熱風
の浮力によって生じる圧力勾配と、熱風が糸条を通過す
る際の抵抗によって生じる圧力勾配とが打ち消し合った
結果として生じる。したがって、F×Pv/ΔPが1に
近いほど熱処理室上部と熱処理室下部との圧力差は小さ
くなる。表1に示すように、F×Pv/ΔPが0.7〜
1.6の範囲内であれば、熱処理室外への熱風流出はな
かった。また、F×Pv/ΔPが1に近いほど、熱風排
出口で測定した循環排気温度が大きくなった。また、A
点〜E点の5カ所で測定した熱処理室内の温度と、設定
温度(熱風供給口の平均温度250℃)との差は、F×
Pv/ΔPが1に近いほど小さくなった。
The pressure gradient in the heat treatment chamber mainly occurs as a result of the pressure gradient generated by the buoyancy of the hot air and the pressure gradient generated by the resistance when the hot air passes through the yarn, canceling each other out. Therefore, the pressure difference between the upper portion of the heat treatment chamber and the lower portion of the heat treatment chamber becomes smaller as F × Pv / ΔP becomes closer to 1. As shown in Table 1, F × Pv / ΔP is 0.7 to
Within the range of 1.6, hot air did not flow out of the heat treatment chamber. Also, the closer F × Pv / ΔP is to 1, the higher the circulating exhaust gas temperature measured at the hot air outlet. Also, A
The difference between the temperature in the heat treatment chamber measured at 5 points from point E to the set temperature (average temperature of hot air supply port 250 ° C.) is F ×
The smaller Pv / ΔP is closer to 1, the smaller the value.

【0052】このように、本発明によれば、F×Pv/
ΔPが0.7〜1.6の範囲内になるように、熱風の流
速U、熱風の温度、糸条のピッチPhおよびPvから選
ばれる少なくとも一つの条件を調整することで、熱処理
室内からの熱風流出を防ぐことができる。また、熱風排
出口から排出される熱風の温度が最大になるように熱風
の流速を調整することで、熱風を循環使用する際に必要
なヒータの消費エネルギーが小さくなると同時に、熱処
理室内の温度均一性が向上する。
As described above, according to the present invention, F × Pv /
By adjusting at least one condition selected from the flow velocity U of hot air, the temperature of hot air, and the pitches Ph and Pv of the yarns so that ΔP falls within the range of 0.7 to 1.6, Hot air outflow can be prevented. Also, by adjusting the flow velocity of the hot air so that the temperature of the hot air discharged from the hot air outlet is maximized, the energy consumption of the heater required to circulate the hot air is reduced and at the same time the temperature inside the heat treatment chamber is made uniform. The property is improved.

【0053】[0053]

【表1】 [Table 1]

【0054】[実施例11]太さ1.1デシテックスの
PAN系のプリカーサ単糸を12,000本束ねた糸条
を耐炎化処理した。熱処理室の下面に熱風供給口を設
け、上面に熱風排出口を設けることで、熱処理室の下か
ら上へ熱風を流し、糸条に対して下方から熱風を吹き付
けた。熱風排出口から排出した熱風は、再び熱風供給口
に戻して循環使用した。熱風排出口と熱風供給口との間
に設けたファンの回転数を変更し、熱風供給口および熱
風排出口における熱風の平均速度が1m/秒になるよう
に制御した。概略図を図7に示すように、熱処理室の側
面を構成する側壁のうち、糸条導入口または糸条導出口
を有さない側壁から0.3m内側までの領域を未処理ゾ
ーン10とした。未処理ゾーン内には糸条と同じ高さと
なる位置に、糸条と同じ段数の仕切板11を設置した。
仕切板11の幅は0.27mとし、糸条導入口から糸条
導出口にかけて連続的に設置した。その他の条件は実施
例1と同じにした。
[Example 11] A yarn obtained by bundling 12,000 PAN-based precursor single yarns having a thickness of 1.1 decitex was subjected to flame resistance treatment. By providing a hot air supply port on the lower surface of the heat treatment chamber and providing a hot air discharge port on the upper surface, the hot air flowed from the bottom to the top of the heat treatment chamber, and the hot air was blown onto the yarn from below. The hot air discharged from the hot air outlet was returned to the hot air supply port and used again. The rotation speed of the fan provided between the hot air outlet and the hot air outlet was changed so that the average speed of the hot air at the hot air inlet and the hot air outlet was 1 m / sec. As shown in the schematic view of FIG. 7, of the side walls forming the side surface of the heat treatment chamber, a region from the side wall having no yarn introduction port or yarn ejection port to 0.3 m inside is defined as an untreated zone 10. . The partition plate 11 having the same number of stages as the yarns was installed in the untreated zone at the same height as the yarns.
The partition plate 11 had a width of 0.27 m and was continuously installed from the yarn introduction port to the yarn ejection port. The other conditions were the same as in Example 1.

【0055】未処理ゾーン10は仕切板11によって流
れが滞留し、ほぼ無風の状態となった。糸条が走行する
領域の風速は1.0±0.2m/秒であり、熱風供給口
および熱風排出口における平均速度とほぼ等しかった。
これに対し実施例1では、糸条が存在しない未処理ゾー
ンの風速が3〜5m/秒と非常に速く、糸条が走行する
領域の風速は0.9±0.2m/秒と熱風供給口および
熱風排出口における平均速度よりも若干遅くなってい
た。
In the untreated zone 10, the flow was retained by the partition plate 11 and the wind became almost zero. The wind speed in the region where the yarn traveled was 1.0 ± 0.2 m / sec, which was almost equal to the average speed at the hot air supply port and the hot air discharge port.
On the other hand, in Example 1, the wind speed in the untreated zone where no yarn is present is very high at 3 to 5 m / sec, and the wind velocity in the region where the yarn is traveling is 0.9 ± 0.2 m / sec, and hot air is supplied. It was slightly slower than the average speed at the mouth and hot air outlet.

【0056】実施例1と同様に、熱処理室内の温度を測
定した結果、A点:247℃、B点:248℃、C点:
245℃、D点:249℃、E点、249℃となり、設
定温度(熱風供給口の平均温度250℃)との差は最大
で5℃となった。
As in Example 1, the temperature inside the heat treatment chamber was measured. As a result, point A: 247 ° C., point B: 248 ° C., point C:
245 ° C., D point: 249 ° C., E point, 249 ° C., and the maximum difference from the set temperature (average temperature of hot air supply port 250 ° C.) was 5 ° C.

【0057】このように本発明によれば、熱処理室内の
温度むらだけでなく風速むらも小さくなるため、糸条の
ばたつきが低減し、工程安定性が向上する。
As described above, according to the present invention, not only the temperature unevenness in the heat treatment chamber but also the wind speed unevenness is reduced, so that the flapping of the yarn is reduced and the process stability is improved.

【0058】[0058]

【発明の効果】以上説明したように、本発明の熱処理炉
によれば、特別な追加設備を設置することなく、熱処理
室内からの熱風流出と熱処理室内への外気流入とを防
ぎ、熱処理室内の温度むらを小さくすることが可能であ
り、工程安定性の確保と、製造原価の低減が実現でき
る。
As described above, according to the heat treatment furnace of the present invention, hot air outflow from the heat treatment chamber and outside air inflow into the heat treatment chamber can be prevented without installing special additional equipment, and It is possible to reduce temperature unevenness, ensure process stability, and reduce manufacturing costs.

【0059】また、熱処理室内の温度均一性に優れてい
るため、熱風を循環使用する際に必要なヒータの消費電
力量が小さくなり、省エネ効果がある。
Further, since the temperature uniformity in the heat treatment chamber is excellent, the power consumption of the heater required when circulating hot air is reduced, resulting in an energy saving effect.

【0060】また、熱処理室内では熱風に作用する浮力
によって生じる圧力勾配と、熱風が糸条を通過する際の
抵抗によって生じる圧力勾配とが打ち消し合うため、熱
処理室内の温度均一性を悪化させることなく、糸条の段
数を増やし、生産性を上げることができる。
Further, in the heat treatment chamber, the pressure gradient generated by the buoyancy acting on the hot air and the pressure gradient generated by the resistance when the hot air passes through the yarns cancel each other, so that the temperature uniformity in the heat treatment chamber is not deteriorated. It is possible to increase the number of yarn steps and improve productivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態に係る熱処理炉の概略構成
図である。
FIG. 1 is a schematic configuration diagram of a heat treatment furnace according to an embodiment of the present invention.

【図2】本発明の一実施形態に係る熱処理炉の概略構成
図であり、図1の鉛直方向断面図である。
FIG. 2 is a schematic configuration diagram of a heat treatment furnace according to an embodiment of the present invention, and is a vertical cross-sectional view of FIG.

【図3】溝付きのガイドロールの一例を示す部分断面図
である。
FIG. 3 is a partial sectional view showing an example of a grooved guide roll.

【図4】本発明の一実施形態に係る熱処理炉の概略構成
図である。
FIG. 4 is a schematic configuration diagram of a heat treatment furnace according to an embodiment of the present invention.

【図5】従来用いられてきた熱処理炉の一般的な形態で
ある。
FIG. 5 is a general form of a conventionally used heat treatment furnace.

【図6】熱風が糸条を通過する際に生じる糸条1段あた
りの圧力低下量を数値シミュレーションで求めるために
用いる、解析モデルの一実施形態である。
FIG. 6 is an embodiment of an analytical model used for obtaining a pressure drop amount per one stage of a yarn generated when hot air passes through the yarn by a numerical simulation.

【図7】本発明の一実施形態に係る熱処理炉の概略構成
図であり、図1の鉛直方向断面図である。
7 is a schematic configuration diagram of a heat treatment furnace according to an embodiment of the present invention, and is a vertical cross-sectional view of FIG.

【符号の説明】[Explanation of symbols]

1:熱処理室 2:熱風排出口 3:熱風供給口 4:糸条導入口 5:糸条導出口 6:糸条 7:ガイドローラ 8:ファン 9:ヒータ 10:未処理ゾーン 11:仕切板 Ph:水平面内の糸条ピッチ Pv:上下方向の糸条ピッチ P0:炉外雰囲気の圧力 P1:熱処理室上部の圧力 P2:熱処理室下部の圧力 ΔP:熱風が糸条を通過する際に生じる糸条1段あたり
の圧力低下量 F:熱風に作用する浮力 g:重力加速度の大きさ ρ0:炉外雰囲気の密度 ρh:熱風の密度 U:熱風の平均流速
1: Heat treatment chamber 2: Hot air outlet 3: Hot air supply port 4: Yarn inlet port 5: Yarn outlet port 6: Yarn 7: Guide roller 8: Fan 9: Heater 10: Untreated zone 11: Partition plate Ph : Yarn pitch Pv in the horizontal plane: yarn pitch P0 in the vertical direction P: pressure in the atmosphere outside the furnace P1: pressure in the upper part of the heat treatment chamber P2: pressure in the lower part of the heat treatment chamber ΔP: yarn generated when hot air passes through the yarn Pressure drop amount per stage F: Buoyancy acting on hot air g: Gravity acceleration magnitude ρ0: Outside atmosphere density ρh: Hot air density U: Average hot air velocity

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3B154 AA14 AB09 BA60 BB12 BB76 BB77 BC01 BC11 BC17 BC22 BC28 BC47 CA08 CA37 CA39 CA42 DA24 4L037 CS02 CT11 CT12 CT42 FA01 PA53 PS02    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 3B154 AA14 AB09 BA60 BB12 BB76                       BB77 BC01 BC11 BC17 BC22                       BC28 BC47 CA08 CA37 CA39                       CA42 DA24                 4L037 CS02 CT11 CT12 CT42 FA01                       PA53 PS02

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】熱処理室と、この熱処理室の上方側に設け
た熱風排出口および下方側に設けた熱風供給口と、熱処
理室の側方側に設けた糸条導入口および糸条導出口とを
有し、熱処理室内で糸条を水平方向に走行させながら、
その糸条に下方から熱風を吹き付けて熱処理するように
したことを特徴とする熱処理炉。
1. A heat treatment chamber, a hot air discharge port provided at an upper side of the heat treatment chamber and a hot air supply port provided at a lower side thereof, and a yarn introduction port and a yarn discharge port provided at a side of the heat treatment chamber. And having the yarn run horizontally in the heat treatment chamber,
A heat treatment furnace characterized in that hot air is blown onto the yarn from below to perform heat treatment.
【請求項2】複数本の糸条を、水平面内において任意の
ピッチPhを保つように熱処理室内に導入し、かつ、熱
処理室内への出入を繰り返しながら熱処理室の上下方向
において任意のピッチPvを保つようにしたことを特徴
とする請求項1に記載の熱処理炉。
2. A plurality of yarns are introduced into a heat treatment chamber so as to keep an arbitrary pitch Ph in a horizontal plane, and an arbitrary pitch Pv is set in the vertical direction of the heat treatment chamber while repeatedly entering and leaving the heat treatment chamber. The heat treatment furnace according to claim 1, wherein the heat treatment furnace is maintained.
【請求項3】熱風が糸条を通過するときの圧力低下量を
ΔP(Pa)、炉外雰囲気の密度と熱風の密度との差に
基づいて熱風に生ずる浮力をF(N/m3)、上下方向
の糸条ピッチをPv(m)としたとき、F×Pv/ΔP
が0.7〜1.6の範囲内になるように、熱風の流速、
熱風の温度、糸条のピッチPhおよびPvから選ばれる
少なくとも一つの条件が調整されてなることを特徴とす
る請求項2に記載の熱処理炉。
3. A pressure drop amount when hot air passes through the yarn is ΔP (Pa), and a buoyancy force generated in the hot air based on the difference between the density of the atmosphere outside the furnace and the density of the hot air is F (N / m3), When the vertical yarn pitch is Pv (m), F × Pv / ΔP
So that it falls within the range of 0.7 to 1.6, the flow velocity of the hot air,
The heat treatment furnace according to claim 2, wherein at least one condition selected from the temperature of the hot air and the yarn pitches Ph and Pv is adjusted.
【請求項4】熱処理室上部の圧力P1と熱処理室下部の
圧力P2との関係が、−9Pa≦P1−P2≦6Paと
なるように、熱風の流速、熱風の温度、糸条のピッチP
hおよびPvから選ばれる少なくとも一つの条件が調整
されてなることを特徴とする請求項2に記載の熱処理
炉。
4. The flow velocity of hot air, the temperature of hot air, and the pitch P of yarns so that the relationship between the pressure P1 in the upper part of the heat treatment chamber and the pressure P2 in the lower part of the heat treatment chamber is −9 Pa ≦ P1−P2 ≦ 6 Pa.
The heat treatment furnace according to claim 2, wherein at least one condition selected from h and Pv is adjusted.
【請求項5】熱処理室上部の圧力P1と熱処理室下部の
圧力P2との関係が、P1−P2>6Paであれば熱風
の流速が大きくなるように調整し、P1−P2<−9P
aであれば熱風の流速が小さくなるように調整する手段
を有することを特徴とする請求項1または2に記載の熱
処理炉。
5. If the relationship between the pressure P1 in the upper part of the heat treatment chamber and the pressure P2 in the lower part of the heat treatment chamber is P1-P2> 6 Pa, the flow velocity of hot air is adjusted so as to increase, and P1-P2 <-9P.
The heat treatment furnace according to claim 1 or 2, further comprising: a means for adjusting the flow velocity of the hot air to be small in the case of "a".
【請求項6】熱処理室上部の圧力P1と炉外雰囲気の圧
力P0との関係が、P1−P0>3Paであれば熱風の
流速が大きくなるように調整し、P1−P0<−5Pa
であれば熱風の流速が小さくなるように調整する手段を
有することを特徴とする請求項1または2に記載の熱処
理炉。
6. If the relationship between the pressure P1 in the upper part of the heat treatment chamber and the pressure P0 in the atmosphere outside the furnace is P1-P0> 3 Pa, the flow velocity of hot air is adjusted to be high, and P1-P0 <-5 Pa.
In this case, the heat treatment furnace according to claim 1 or 2, further comprising means for adjusting the flow velocity of the hot air to be small.
【請求項7】熱処理室下部の圧力P2と炉外雰囲気の圧
力P0との関係が、P2−P0<−3Paであれば熱風
の流速が大きくなるように調整し、P2−P0>4Pa
であれば熱風の流速が小さくなるように調整する手段を
有することを特徴とする請求項1または2に記載の熱処
理炉。
7. If the relationship between the pressure P2 in the lower part of the heat treatment chamber and the pressure P0 in the atmosphere outside the furnace is P2-P0 <-3 Pa, the flow velocity of hot air is adjusted to be high, and P2-P0> 4 Pa.
In this case, the heat treatment furnace according to claim 1 or 2, further comprising means for adjusting the flow velocity of the hot air to be small.
【請求項8】熱処理室の上半分にある糸条導入口または
糸条導出口から熱処理室外への熱風流出が観測された場
合には熱風の流速が大きくなるように調整し、熱処理室
の下半分にある糸条導入口または糸条導出口から熱処理
室外への熱風流出が観測された場合には熱風の流速が小
さくなるように調整する手段を有することを特徴とする
請求項1または2に記載の熱処理炉。
8. When hot air outflow from the yarn inlet or yarn outlet in the upper half of the heat treatment chamber to the outside of the heat treatment chamber is observed, the flow velocity of the hot air is adjusted so as to increase, and The means for adjusting the flow velocity of the hot air to be small when hot air outflow to the outside of the heat treatment chamber from the yarn introduction port or yarn ejection port in the half is observed. The heat treatment furnace described.
【請求項9】熱風排出口から排出される熱風の温度が最
大になるように、熱風の流速を調整する手段を有するこ
とを特徴とする請求項1または2に記載の熱処理炉。
9. The heat treatment furnace according to claim 1, further comprising means for adjusting the flow velocity of the hot air so that the temperature of the hot air discharged from the hot air outlet is maximized.
【請求項10】糸条と熱処理室側面を構成する側壁との
間の未処理ゾーンにおいて、水平方向に設置した仕切板
を上下方向に少なくとも1つ以上有することを特徴とす
る請求項1〜9のいずれかに記載の熱処理炉。
10. The untreated zone between the yarn and the side wall constituting the side surface of the heat treatment chamber has at least one partition plate installed in the horizontal direction in the vertical direction. The heat treatment furnace according to any one of 1.
【請求項11】前記熱処理炉が炭素繊維の製造に用いら
れる耐炎化炉であることを特徴とする請求項1〜10の
いずれかに記載の熱処理炉。
11. The heat treatment furnace according to any one of claims 1 to 10, wherein the heat treatment furnace is a flameproofing furnace used for producing carbon fibers.
【請求項12】請求項11に記載の耐炎化炉を用いたこ
とを特徴とする炭素繊維の製造方法。
12. A method for producing a carbon fiber, which comprises using the flameproofing furnace according to claim 11.
JP2002277268A 2001-09-27 2002-09-24 Heat treatment furnace Expired - Fee Related JP4292771B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002277268A JP4292771B2 (en) 2001-09-27 2002-09-24 Heat treatment furnace

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-295897 2001-09-27
JP2001295897 2001-09-27
JP2002277268A JP4292771B2 (en) 2001-09-27 2002-09-24 Heat treatment furnace

Publications (2)

Publication Number Publication Date
JP2003183975A true JP2003183975A (en) 2003-07-03
JP4292771B2 JP4292771B2 (en) 2009-07-08

Family

ID=27615188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002277268A Expired - Fee Related JP4292771B2 (en) 2001-09-27 2002-09-24 Heat treatment furnace

Country Status (1)

Country Link
JP (1) JP4292771B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101076571B1 (en) 2009-12-31 2011-10-24 주식회사 효성 Flame Resisting Treatment Furnace For Precursors And Preparing Method Of Carbon Fiber Using The Same
KR101349190B1 (en) 2011-12-13 2014-01-09 최대규 Apparatus for maunfacturing carbon fiber
KR101408377B1 (en) 2011-12-06 2014-06-18 최대규 Apparatus for maunfacturing carbon fiber
KR101574802B1 (en) 2009-12-31 2015-12-04 주식회사 효성 Heat treatment apparatus for oxidation of carbon fiber with heating distribution means

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101076571B1 (en) 2009-12-31 2011-10-24 주식회사 효성 Flame Resisting Treatment Furnace For Precursors And Preparing Method Of Carbon Fiber Using The Same
KR101574802B1 (en) 2009-12-31 2015-12-04 주식회사 효성 Heat treatment apparatus for oxidation of carbon fiber with heating distribution means
KR101408377B1 (en) 2011-12-06 2014-06-18 최대규 Apparatus for maunfacturing carbon fiber
KR101349190B1 (en) 2011-12-13 2014-01-09 최대규 Apparatus for maunfacturing carbon fiber

Also Published As

Publication number Publication date
JP4292771B2 (en) 2009-07-08

Similar Documents

Publication Publication Date Title
JP2007247130A (en) Heat-treating furnace and method for producing carbon fiber
JP5443825B2 (en) Enamel wire printing equipment
JP5716872B1 (en) Horizontal heat treatment apparatus and carbon fiber manufacturing method using the horizontal heat treatment apparatus
JP5765425B2 (en) Carbon fiber bundle manufacturing method and carbon fiber precursor fiber bundle heating furnace
JP4279925B2 (en) Horizontal heat treatment furnace and heat treatment method
EP0110557A2 (en) Apparatus for producing oxidized filaments
JP2003183975A (en) Heat treating oven
JP4463047B2 (en) Flameproofing furnace and flameproofing method
JP4241950B2 (en) Horizontal heat treatment furnace and heat treatment method
JP4408308B2 (en) Horizontal heat treatment furnace and heat treatment method
JPS62228865A (en) Horizontal heat treatment furnace
JP4796467B2 (en) Horizontal flameproof furnace and flameproofing method
JP2001194071A (en) Yarn horizontal heat treatment apparatus and heat treatment method thereof
KR20220146497A (en) Flame-resistant fiber bundle, method for manufacturing carbon fiber bundle, and flame-resistant furnace
JP2007132657A (en) Horizontal heat treatment furnace and heat treatment method
WO2015012311A1 (en) Gas supply blowout nozzle and method for producing carbon fibers and flameproofed fibers using same
JP5262189B2 (en) Manufacturing method of prepreg and vertical drying furnace used for manufacturing the same
JP2002194627A (en) Heat-treating oven and method for producing carbon fiber by use of the same
JP4572460B2 (en) Heat treatment furnace and method for producing carbon fiber using the same
JPH034834B2 (en)
JP2007224432A (en) Horizontal heat treatment apparatus and heat treatment method
US3048381A (en) Shaft kiln with orifice controlled combustion
JP2014221956A (en) Heat treatment apparatus, and method for producing flame-resistant fiber by using the same
JP2006193863A (en) Flame resisting treatment furnace
JP2009074183A (en) Heat treatment furnace and method for producing carbon fiber using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080410

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080730

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090330

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140417

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees