JP2003183643A - Method of production for inorganic-fluorescent substance and inorganic-fluorescent substance - Google Patents
Method of production for inorganic-fluorescent substance and inorganic-fluorescent substanceInfo
- Publication number
- JP2003183643A JP2003183643A JP2001381440A JP2001381440A JP2003183643A JP 2003183643 A JP2003183643 A JP 2003183643A JP 2001381440 A JP2001381440 A JP 2001381440A JP 2001381440 A JP2001381440 A JP 2001381440A JP 2003183643 A JP2003183643 A JP 2003183643A
- Authority
- JP
- Japan
- Prior art keywords
- inorganic phosphor
- phosphor
- inorganic
- producing
- atmosphere
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 81
- 238000000034 method Methods 0.000 title claims abstract description 24
- 239000000126 substance Substances 0.000 title claims abstract description 24
- 238000010438 heat treatment Methods 0.000 claims abstract description 58
- 239000002245 particle Substances 0.000 claims abstract description 58
- 239000002243 precursor Substances 0.000 claims abstract description 49
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 40
- 239000001301 oxygen Substances 0.000 claims abstract description 40
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 40
- 239000007791 liquid phase Substances 0.000 claims abstract description 12
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 272
- 239000012190 activator Substances 0.000 claims description 32
- 230000005284 excitation Effects 0.000 claims description 25
- 239000007789 gas Substances 0.000 claims description 22
- 229910052749 magnesium Inorganic materials 0.000 claims description 22
- 229910052739 hydrogen Inorganic materials 0.000 claims description 17
- 229910052698 phosphorus Inorganic materials 0.000 claims description 14
- 229910052788 barium Inorganic materials 0.000 claims description 13
- 229910052782 aluminium Inorganic materials 0.000 claims description 11
- 229910052791 calcium Inorganic materials 0.000 claims description 10
- 229910052712 strontium Inorganic materials 0.000 claims description 10
- 238000002425 crystallisation Methods 0.000 claims description 9
- 229910052801 chlorine Inorganic materials 0.000 claims description 8
- 238000003980 solgel method Methods 0.000 claims description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 5
- 239000001257 hydrogen Substances 0.000 claims description 5
- 229910052720 vanadium Inorganic materials 0.000 claims description 5
- 229910052727 yttrium Inorganic materials 0.000 claims description 5
- 229910010272 inorganic material Inorganic materials 0.000 claims 2
- 239000011147 inorganic material Substances 0.000 claims 2
- 238000002845 discoloration Methods 0.000 abstract description 13
- 239000000203 mixture Substances 0.000 description 31
- 230000000052 comparative effect Effects 0.000 description 29
- 238000010304 firing Methods 0.000 description 28
- 239000011777 magnesium Substances 0.000 description 23
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 13
- 229910052757 nitrogen Inorganic materials 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 238000001816 cooling Methods 0.000 description 7
- 239000013078 crystal Substances 0.000 description 7
- 239000011159 matrix material Substances 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- 229910052691 Erbium Inorganic materials 0.000 description 6
- 229910052693 Europium Inorganic materials 0.000 description 6
- 229910052688 Gadolinium Inorganic materials 0.000 description 6
- 229910052689 Holmium Inorganic materials 0.000 description 6
- 229910052779 Neodymium Inorganic materials 0.000 description 6
- 229910052777 Praseodymium Inorganic materials 0.000 description 6
- 229910052775 Thulium Inorganic materials 0.000 description 6
- 229910052769 Ytterbium Inorganic materials 0.000 description 6
- 229910052787 antimony Inorganic materials 0.000 description 6
- 230000003081 coactivator Effects 0.000 description 6
- 238000009826 distribution Methods 0.000 description 6
- 229910052748 manganese Inorganic materials 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 229910021645 metal ion Inorganic materials 0.000 description 6
- 239000002244 precipitate Substances 0.000 description 6
- 229910052761 rare earth metal Inorganic materials 0.000 description 6
- -1 rare earth metal ions Chemical class 0.000 description 6
- 229910052709 silver Inorganic materials 0.000 description 6
- 229910052718 tin Inorganic materials 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 239000011240 wet gel Substances 0.000 description 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 5
- 229910052772 Samarium Inorganic materials 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 229910052771 Terbium Inorganic materials 0.000 description 5
- 238000001914 filtration Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 229910052684 Cerium Inorganic materials 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 229910004283 SiO 4 Inorganic materials 0.000 description 3
- 150000004703 alkoxides Chemical class 0.000 description 3
- BTANRVKWQNVYAZ-UHFFFAOYSA-N butan-2-ol Chemical compound CCC(C)O BTANRVKWQNVYAZ-UHFFFAOYSA-N 0.000 description 3
- 230000008025 crystallization Effects 0.000 description 3
- 238000001879 gelation Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 239000011259 mixed solution Substances 0.000 description 3
- 239000010453 quartz Substances 0.000 description 3
- 229910052692 Dysprosium Inorganic materials 0.000 description 2
- 229910002538 Eu(NO3)3·6H2O Inorganic materials 0.000 description 2
- 101100496858 Mus musculus Colec12 gene Proteins 0.000 description 2
- 101100219325 Phaseolus vulgaris BA13 gene Proteins 0.000 description 2
- IWOUKMZUPDVPGQ-UHFFFAOYSA-N barium nitrate Chemical compound [Ba+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O IWOUKMZUPDVPGQ-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000007429 general method Methods 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- HMUNWXXNJPVALC-UHFFFAOYSA-N 1-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)C(CN1CC2=C(CC1)NN=N2)=O HMUNWXXNJPVALC-UHFFFAOYSA-N 0.000 description 1
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 1
- WZFUQSJFWNHZHM-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)CC(=O)N1CC2=C(CC1)NN=N2 WZFUQSJFWNHZHM-UHFFFAOYSA-N 0.000 description 1
- YJLUBHOZZTYQIP-UHFFFAOYSA-N 2-[5-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]-1,3,4-oxadiazol-2-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C1=NN=C(O1)CC(=O)N1CC2=C(CC1)NN=N2 YJLUBHOZZTYQIP-UHFFFAOYSA-N 0.000 description 1
- CONKBQPVFMXDOV-QHCPKHFHSA-N 6-[(5S)-5-[[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]methyl]-2-oxo-1,3-oxazolidin-3-yl]-3H-1,3-benzoxazol-2-one Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)C[C@H]1CN(C(O1)=O)C1=CC2=C(NC(O2)=O)C=C1 CONKBQPVFMXDOV-QHCPKHFHSA-N 0.000 description 1
- 241000254158 Lampyridae Species 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910020068 MgAl Inorganic materials 0.000 description 1
- 101150051106 SWEET11 gene Proteins 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 150000004696 coordination complex Chemical class 0.000 description 1
- 238000007580 dry-mixing Methods 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000010979 pH adjustment Methods 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 150000003016 phosphoric acids Chemical class 0.000 description 1
- 238000006068 polycondensation reaction Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
Landscapes
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
- Luminescent Compositions (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Silicates, Zeolites, And Molecular Sieves (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は無機蛍光体及び無機
蛍光体の製造方法に関する。TECHNICAL FIELD The present invention relates to an inorganic phosphor and a method for producing the inorganic phosphor.
【0002】[0002]
【従来の技術】従来から、様々な分野で、種々の蛍光体
が用いられている。例えば、照明装置の一例である三波
長発光型の蛍光ランプにおいては、蛍光体として青色、
緑色、赤色の三波長に発光する蛍光体が用いられ、又、
表示装置の一例であるCRT(カソードレイチュー
ブ)、PDP(プラズマディスプレイパネル)にエレク
トロルミネッセンス装置、能動発光液晶装置、放射線計
測等においても各種の蛍光体が用いられている。2. Description of the Related Art Conventionally, various phosphors have been used in various fields. For example, in a three-wavelength emission type fluorescent lamp which is an example of an illumination device, blue is used as the phosphor
A phosphor that emits three wavelengths of green and red is used.
Various phosphors are used in CRTs (cathode ray tubes) and PDPs (plasma display panels), which are examples of display devices, also in electroluminescence devices, active light-emitting liquid crystal devices, and radiation measurement.
【0003】これら従来用いられていた蛍光体材料にあ
っては、蛍光体の粒子サイズが不均一であり、大中小の
粒子が無造作に入り混じった蛍光体粒子が用いられてお
り、例えば、蛍光ランプやCRTでは平均粒子サイズが
3μmから10μmまでの範囲内のものが、PDPでは
平均粒子サイズが1μmから5μmまでの範囲内のもの
が用いられている。又、長残光蛍光体含有物に用いられ
るアルミニウム含有酸化物蛍光体では平均粒子サイズが
5μmから50μmまでの範囲内のものが用いられてい
る。In these conventionally used phosphor materials, phosphor particles having nonuniform particle sizes are used, and phosphor particles in which large, medium and small particles are mixed randomly are used. Lamps and CRTs having an average particle size in the range of 3 μm to 10 μm are used, and PDPs having an average particle size in the range of 1 μm to 5 μm are used. The aluminum-containing oxide phosphor used for the long-afterglow phosphor-containing material has an average particle size in the range of 5 μm to 50 μm.
【0004】[0004]
【発明が解決しようとする課題】これら従来用いられて
いる蛍光体にあっては、粒子サイズが大きく、広い粒径
分布を有するため、プラズマディスプレイ装置、エレク
トロルミネッセンス装置、能動発光液晶装置等の各種の
用途に用いると発光むらが生じる等の問題があった。These conventionally used phosphors have a large particle size and have a wide particle size distribution, so that they are used in various types of plasma display devices, electroluminescent devices, active light emitting liquid crystal devices, and the like. When used for the above-mentioned application, there was a problem such as uneven light emission.
【0005】上記のような事情から、近年、平均粒径が
1μm以下という小粒径で、且つ、発光強度の高い無機
蛍光体への市場ニーズが高くなってきている。更に、最
近、250nm〜430nmという短波長の光で励起さ
れ、且つ、高発光強度の無機蛍光体に対する市場ニーズ
があるが、いまだ、満足すべきレベルのものが得られて
はいないのが現状である。Under the circumstances as described above, in recent years, there is an increasing market need for an inorganic phosphor having a small average particle size of 1 μm or less and high emission intensity. Further, recently, there is a market need for an inorganic phosphor that is excited by light having a short wavelength of 250 nm to 430 nm and has a high emission intensity, but at present, a satisfactory level has not yet been obtained. is there.
【0006】従来の一般的な無機蛍光体製造方法(原料
粉末を乾式で混合し、微量のフラックスと共に焼成)で
は、個々の蛍光体粒子の微視的な制御が困難で、結果と
して巨視的な輝度等の性能が十分に満足できるものでは
なかった。又蛍光体の粒子サイズを小さくしようとして
蛍光体を粉砕すると、発光効率が低下するばかりでな
く、発光強度も低下してしまうという問題が生じてしま
う。[0006] In the conventional general method for producing an inorganic phosphor (dry mixing of raw material powders and firing with a small amount of flux), it is difficult to control each phosphor particle microscopically, resulting in a macroscopic The performance such as brightness was not sufficiently satisfactory. Further, if the phosphor is crushed in order to reduce the particle size of the phosphor, not only the luminous efficiency is lowered but also the emission intensity is lowered.
【0007】蛍光体の粒子サイズ、輝度等の諸特性向上
を目的とする無機蛍光体の製造方法として、特開平6−
287551号には金属アルコキシドの溶液状態で混合
調整する工程を含む製造方法が開示されているが、より
効果の高い詳細な実施態様は開示されていない。又蛍光
体原料混合物を焼成する際に蛍光体原料混合物に有機物
等の不純物が混合している場合、それらが十分に燃焼で
きずに蛍光体が変色する、発光強度が低下する又は焼成
むらが発生する等の問題があった。As a method for producing an inorganic phosphor for the purpose of improving various characteristics such as particle size and brightness of the phosphor, Japanese Patent Laid-Open No.
No. 2,875,551 discloses a production method including a step of mixing and adjusting a metal alkoxide in a solution state, but a more effective detailed embodiment is not disclosed. When impurities such as organic substances are mixed in the phosphor raw material mixture when firing the phosphor raw material mixture, they cannot be burned sufficiently and the phosphor is discolored, the emission intensity is lowered, or firing unevenness occurs. There was a problem such as doing.
【0008】本発明は、前記従来技術における問題を解
決し、以下の目的を達成することにある。即ち、本発明
は、製造過程で変色、焼成むら等が発生することなく製
造安定性に優れ、十分な発光特性を有する無機蛍光体及
びその製造方法を提供することを目的とする。The present invention solves the problems in the prior art and achieves the following objects. That is, it is an object of the present invention to provide an inorganic phosphor having excellent production stability without causing discoloration, firing unevenness and the like in the production process, and a method for producing the same.
【0009】[0009]
【課題を解決するための手段】本発明の前記の目的は下
記構成により達成される。The above object of the present invention is achieved by the following constitution.
【0010】1.前記の工程(1)〜(3)を有する無
機蛍光体の製造方法であって、且つ、得られる無機蛍光
体の平均粒径を1.0μm以下に調整することを特徴と
する無機蛍光体の製造方法。1. A method for producing an inorganic phosphor, comprising the steps (1) to (3), wherein the average particle size of the obtained inorganic phosphor is adjusted to 1.0 μm or less. Production method.
【0011】2.前記の工程(1)〜(3)を有する無
機蛍光体の製造方法であって、且つ、無機蛍光体の励起
波長が250nm〜430nmであることを特徴とする
無機蛍光体の製造方法。2. It is a manufacturing method of the inorganic fluorescent substance which has said process (1)-(3), Comprising: The excitation wavelength of an inorganic fluorescent substance is 250 nm-430 nm, The manufacturing method of the inorganic fluorescent substance characterized by the above-mentioned.
【0012】3.液相法として、ゾルゲル法を用いるこ
とを特徴とする前記1又は2に記載の無機蛍光体の製造
方法。3. 3. The method for producing an inorganic phosphor as described in 1 or 2 above, wherein a sol-gel method is used as the liquid phase method.
【0013】4.液相法として、晶析法を用いることを
特徴とする前記1又は2に記載の無機蛍光体の製造方
法。4. 3. The method for producing an inorganic phosphor as described in 1 or 2 above, wherein a crystallization method is used as the liquid phase method.
【0014】5.無機蛍光体前駆体を酸素を有する雰囲
気に晒しながら加熱する工程が、600℃以上1000
℃以下であることを特徴とする前記1〜4の何れか1項
に記載の無機蛍光体の製造方法。5. The process of heating the inorganic phosphor precursor while exposing it to an atmosphere having oxygen is 600 ° C. or higher and 1000
5. The method for producing an inorganic phosphor according to any one of 1 to 4 above, wherein the temperature is not higher than ° C.
【0015】6.無機蛍光体前駆体を酸素を有する雰囲
気に晒しながら加熱する工程が、30分間以上90分間
以下であることを特徴とする前記1〜5の何れか1項に
記載の無機蛍光体の製造方法。6. 6. The method for producing an inorganic phosphor according to any one of 1 to 5 above, wherein the step of heating the inorganic phosphor precursor while exposing it to an atmosphere containing oxygen is 30 minutes or more and 90 minutes or less.
【0016】7.酸素を有する雰囲気は、酸素濃度が1
%以上50%以下であることを特徴とする前記1〜6の
何れか1項に記載の無機蛍光体の製造方法。7. An oxygen-containing atmosphere has an oxygen concentration of 1
% Or more and 50% or less, The manufacturing method of the inorganic fluorescent substance in any one of said 1-6 characterized by the above-mentioned.
【0017】8.無機蛍光体前駆体を弱還元性雰囲気に
晒しながら加熱する工程が、1000℃以上1800℃
以下であることを特徴とする前記1〜7の何れか1項に
記載の無機蛍光体の製造方法。8. The process of heating the inorganic phosphor precursor while exposing it to a weak reducing atmosphere is 1000 ° C. or higher and 1800 ° C.
The method for producing an inorganic phosphor according to any one of 1 to 7 above, wherein the method is as follows.
【0018】9.弱還元性雰囲気は、酸素濃度が0以上
100ppm以下であることを特徴とする前記1〜8の
何れか1項に記載の無機蛍光体の製造方法。9. The weak reducing atmosphere has an oxygen concentration of 0 or more and 100 ppm or less, The method for producing an inorganic phosphor according to any one of 1 to 8 above.
【0019】10.弱還元性雰囲気は、水素濃度が0.
1%以上10%以下であることを特徴とする前記1〜9
の何れか1項に記載の無機蛍光体の製造方法。10. The weakly reducing atmosphere has a hydrogen concentration of 0.
1 to 9 which is 1% or more and 10% or less
The method for producing the inorganic phosphor according to any one of 1.
【0020】11.酸素を有する雰囲気に晒しながら加
熱する工程及び弱還元性雰囲気に晒しながら加熱する工
程において、雰囲気ガスを0.1リットル/分以上10
リットル/分以下の流量で流通させることを特徴とする
前記1〜10の何れか1項に記載の無機蛍光体の製造方
法。11. In the step of heating while exposing to an atmosphere containing oxygen and the step of heating while exposing to a weakly reducing atmosphere, the atmosphere gas is 0.1 liter / min or more 10
11. The method for producing an inorganic phosphor according to any one of 1 to 10 above, wherein the inorganic phosphor is circulated at a flow rate of liter / minute or less.
【0021】12.酸素を有する雰囲気に晒しながら加
熱する工程の後、1.33×103Pa以下の真空状態
にしてから弱還元性雰囲気に置換することを特徴とする
前記1〜11の何れか1項に記載の無機蛍光体の製造方
法。12. After the step of heating while exposing to an atmosphere containing oxygen, a vacuum state of 1.33 × 10 3 Pa or less is applied, and then the atmosphere is replaced with a weak reducing atmosphere. Of the method for producing an inorganic phosphor.
【0022】13.無機蛍光体がBa、Mg、Al及び
賦活剤を含有することを特徴とする前記1〜12の何れ
か1項に記載の無機蛍光体の製造方法。13. 13. The method for producing an inorganic phosphor according to any one of 1 to 12 above, wherein the inorganic phosphor contains Ba, Mg, Al and an activator.
【0023】14.無機蛍光体がBa、Si及び賦活剤
を含有することを特徴とする前記1〜12の何れか1項
に記載の無機蛍光体の製造方法。14. 13. The method for producing an inorganic phosphor according to any one of 1 to 12 above, wherein the inorganic phosphor contains Ba, Si and an activator.
【0024】15.無機蛍光体がY、V及び賦活剤を含
有することを特徴とする前記1〜12の何れか1項に記
載の無機蛍光体の製造方法。15. 13. The method for producing an inorganic phosphor according to any one of 1 to 12 above, wherein the inorganic phosphor contains Y, V and an activator.
【0025】16.無機蛍光体がSr、P、Cl及び賦
活剤を含有することを特徴とする前記1〜12の何れか
1項に記載の無機蛍光体の製造方法。16. 13. The method for producing an inorganic phosphor according to any one of 1 to 12 above, wherein the inorganic phosphor contains Sr, P, Cl and an activator.
【0026】17.無機蛍光体がBa、Ca、Mg、
P、Cl及び賦活剤を含有することを特徴とする前記1
〜12の何れか1項に記載の無機蛍光体の製造方法。17. The inorganic phosphor is Ba, Ca, Mg,
1 characterized by containing P, Cl and an activator
13. The method for producing an inorganic phosphor according to any one of 1 to 12.
【0027】18.無機蛍光体がSr、Mg、P及び賦
活剤を含有することを特徴とする前記1〜12の何れか
1項に記載の無機蛍光体の製造方法。18. 13. The method for producing an inorganic phosphor according to any one of 1 to 12 above, wherein the inorganic phosphor contains Sr, Mg, P and an activator.
【0028】19.前記1〜18の何れか1項に記載の
無機蛍光体の製造方法によって得られたことを特徴とす
る無機蛍光体。19. An inorganic phosphor obtained by the method for producing an inorganic phosphor according to any one of 1 to 18 above.
【0029】以下、本発明について詳細に説明する。
《無機蛍光体》本発明の「平均粒径が1.0μm以下の
無機蛍光体(本発明の無機蛍光体ともいう)」について
説明する。The present invention will be described in detail below. << Inorganic Phosphor >> The “inorganic phosphor having an average particle diameter of 1.0 μm or less (also referred to as the inorganic phosphor of the present invention)” of the present invention will be described.
【0030】請求項1に記載の本発明の無機蛍光体の製
造方法では、平均粒径が1.0μm以下と小さな粒径で
ありながら、発光強度の高い無機蛍光体を製造すること
が特徴である。The method for producing an inorganic phosphor of the present invention according to claim 1 is characterized by producing an inorganic phosphor having a high emission intensity while having a small average particle size of 1.0 μm or less. is there.
【0031】ここで、前記無機蛍光体の平均粒径として
は0.8μm以下であることが好ましく、更に好ましく
は0.1〜0.6μmである。The average particle diameter of the inorganic phosphor is preferably 0.8 μm or less, more preferably 0.1 to 0.6 μm.
【0032】上記の「平均粒径」は球換算粒径であり、
球換算粒径とは粒子の体積と同体積の球を想定し、該球
の粒径をもって表した粒径である。ここで、本発明の無
機蛍光体の粒径は、透過型電子顕微鏡(TEM)又は走
査型電子顕微鏡(SEM)を用いて測定できる。The above "average particle size" is the sphere-converted particle size,
The sphere-converted particle size is a particle size represented by the particle size of the sphere, assuming a sphere having the same volume as the volume of the particle. Here, the particle size of the inorganic phosphor of the present invention can be measured using a transmission electron microscope (TEM) or a scanning electron microscope (SEM).
【0033】又、粒径が1.0μm以下の粒子が質量で
全粒子の50%以上を占めることが好ましく、最も好ま
しくは全粒子の70%以上を占めることである。It is preferable that particles having a particle diameter of 1.0 μm or less account for 50% or more of the total particles by mass, and most preferably 70% or more of the total particles.
【0034】更に、平均粒径が1.0μm以下の粒子の
粒径分布の変動係数が50%以下であることが好まし
く、変動係数が30%以下であることが最も好ましい。Further, the variation coefficient of the particle size distribution of particles having an average particle diameter of 1.0 μm or less is preferably 50% or less, and most preferably 30% or less.
【0035】ここで粒径分布の変動係数(粒子分布の広
さ)とは、下式によって定義される値である。The coefficient of variation of particle size distribution (width of particle distribution) is a value defined by the following equation.
【0036】粒径分布の変動係数(粒子分布の広さ)
[%]=(粒径の標準偏差/平均粒径)×100本発明
の「250nm以上430nm以下に励起波長を有する
無機蛍光体」について説明する。Coefficient of variation of particle size distribution (width of particle distribution)
[%] = (Standard deviation of particle diameter / average particle diameter) × 100 The “inorganic phosphor having an excitation wavelength of 250 nm or more and 430 nm or less” of the present invention will be described.
【0037】請求項2に記載の無機蛍光体は250nm
〜430nmに励起波長を有するが、励起波長域は紫外
領域から短波長の可視領域にあることが好ましく、より
好ましくは300nm〜400nmである。励起波長の
測定は、励起波長及び蛍光波長をそれぞれ走査させるこ
とのできる、通常市販されている分光蛍光光度計によっ
て容易に測定することができる。The inorganic phosphor according to claim 2 has a thickness of 250 nm.
Although it has an excitation wavelength of ˜430 nm, the excitation wavelength range is preferably from the ultraviolet region to the visible region of short wavelength, more preferably 300 nm to 400 nm. The measurement of the excitation wavelength can be easily measured by a commercially available spectrofluorometer capable of scanning the excitation wavelength and the fluorescence wavelength, respectively.
【0038】本発明に係る無機蛍光体としては、請求項
13〜18に記載の無機蛍光体が好ましく用いられる。The inorganic phosphors according to claims 13 to 18 are preferably used as the inorganic phosphor according to the present invention.
【0039】本発明のBa、Mg、Al及び賦活剤を含
有する無機蛍光体について説明する。本発明のBa、M
g、Al及び賦活剤を含有する無機蛍光体の組成はB
a、Mg、Al以外、特に制限はないが、結晶母体であ
るBaMgAl10O17等に代表される金属酸化物にC
e、Pr、Nd、Pm、Sm、Eu、Gd、Tb、D
y、Ho、Er、Tm、Yb等の希土類金属のイオンや
Ag、Al、Mn、Sb、Sn等の金属のイオンを賦活
剤又は共賦活剤として組み合わせたものが好ましい。The inorganic phosphor containing Ba, Mg, Al and the activator of the present invention will be described. Ba, M of the present invention
The composition of the inorganic phosphor containing g, Al and an activator is B
Other than a, Mg, and Al, there is no particular limitation, but the metal oxide represented by BaMgAl 10 O 17 which is a crystal matrix is C
e, Pr, Nd, Pm, Sm, Eu, Gd, Tb, D
A combination of rare earth metal ions such as y, Ho, Er, Tm, and Yb and metal ions such as Ag, Al, Mn, Sb, and Sn as an activator or coactivator is preferable.
【0040】本発明のBa、Si及び賦活剤を含有する
無機蛍光体について説明する。本発明のBa、Si及び
賦活剤を含有する無機蛍光体の組成はBa、Si以外、
特に制限はないが、結晶母体であるBa2SiO4等に代
表される金属酸化物にCe、Pr、Nd、Pm、Sm、
Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb等の
希土類金属のイオンやAg、Al、Mn、Sb、Sn等
の金属のイオンを賦活剤又は共賦活剤として組み合わせ
たものが好ましい。The inorganic phosphor containing Ba, Si and the activator of the present invention will be described. The composition of the inorganic phosphor containing Ba, Si and the activator of the present invention is other than Ba and Si,
Although not particularly limited, metal oxides represented by Ba 2 SiO 4 , which is a crystal matrix, include Ce, Pr, Nd, Pm, and Sm.
A combination of rare earth metal ions such as Eu, Gd, Tb, Dy, Ho, Er, Tm, and Yb and metal ions such as Ag, Al, Mn, Sb, and Sn as an activator or coactivator is preferable.
【0041】本発明のY、V及び賦活剤を含有する無機
蛍光体について説明する。本発明のY、V及び賦活剤を
含有する無機蛍光体の組成はY、V以外、特に制限はな
いが、結晶母体であるYVO4等に代表される金属酸化
物にCe、Pr、Nd、Pm、Sm、Eu、Gd、T
b、Dy、Ho、Er、Tm、Yb等の希土類金属のイ
オンやAg、Al、Mn、Sb、Sn等の金属のイオン
を賦活剤又は共賦活剤として組み合わせたものが好まし
い。The inorganic phosphor containing Y, V and the activator of the present invention will be described. The composition of the inorganic phosphor containing Y, V and an activator of the present invention is not particularly limited except Y and V, but the metal oxides represented by YVO 4 which is a crystal matrix are Ce, Pr, Nd, Pm, Sm, Eu, Gd, T
A combination of rare earth metal ions such as b, Dy, Ho, Er, Tm, and Yb and metal ions such as Ag, Al, Mn, Sb, and Sn as an activator or coactivator is preferable.
【0042】本発明のSr、P、Cl及び賦活剤を含有
する無機蛍光体について説明する。本発明のSr、P、
Cl及び賦活剤を含有する無機蛍光体の組成はSr、
P、Cl以外、特に制限はないが、結晶母体であるSr
10(PO4)6Cl2等に代表されるハロリン酸化合物に
Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、D
y、Ho、Er、Tm、Yb等の希土類金属のイオンや
Ag、Al、Mn、Sb、Sn等の金属のイオンを賦活
剤又は共賦活剤として組み合わせたものが好ましい。The inorganic phosphor containing Sr, P, Cl and the activator of the present invention will be described. Sr, P of the present invention,
The composition of the inorganic phosphor containing Cl and the activator is Sr,
Other than P and Cl, there is no particular limitation, but Sr which is a crystal matrix
Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, and D are included in halophosphate compounds represented by 10 (PO 4 ) 6 Cl 2 and the like.
A combination of rare earth metal ions such as y, Ho, Er, Tm, and Yb and metal ions such as Ag, Al, Mn, Sb, and Sn as an activator or coactivator is preferable.
【0043】本発明のBa、Ca、Mg、P、Cl及び
賦活剤を含有する無機蛍光体について説明する。本発明
のBa、Ca、Mg、P、Cl及び賦活剤を含有する無
機蛍光体の組成はBa、Ca、Mg、P、Cl以外、特
に制限はないが、結晶母体である(Ba,Ca,Mg)
10(PO4)6Cl2等に代表されるハロリン酸化合物に
Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、D
y、Ho、Er、Tm、Yb等の希土類金属のイオンや
Ag、Al、Mn、Sb、Sn等の金属のイオンを賦活
剤又は共賦活剤として組み合わせたものが好ましい。The inorganic phosphor containing Ba, Ca, Mg, P, Cl and the activator of the present invention will be described. The composition of the inorganic phosphor containing Ba, Ca, Mg, P, Cl and the activator of the present invention is not particularly limited except Ba, Ca, Mg, P, Cl, but it is a crystal matrix (Ba, Ca, Mg)
Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, and D are included in halophosphate compounds represented by 10 (PO 4 ) 6 Cl 2 and the like.
A combination of rare earth metal ions such as y, Ho, Er, Tm, and Yb and metal ions such as Ag, Al, Mn, Sb, and Sn as an activator or coactivator is preferable.
【0044】本発明のSr、Mg、P及び賦活剤を含有
する無機蛍光体について説明する。本発明のSr、M
g、P及び賦活剤を含有する無機蛍光体の組成はSr、
Mg、P以外、特に制限はないが、結晶母体である(S
r,Mg)3(PO4)2等に代表されるリン酸化合物に
Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、D
y、Ho、Er、Tm、Yb等の希土類金属のイオンや
Ag、Al、Mn、Sb、Sn等の金属のイオンを賦活
剤又は共賦活剤として組み合わせたものが好ましい。
《無機蛍光体の製造方法》本発明の無機蛍光体の製造方
法について説明する。The inorganic phosphor containing Sr, Mg, P and the activator of the present invention will be described. Sr, M of the present invention
The composition of the inorganic phosphor containing g, P and an activator is Sr,
Other than Mg and P, there is no particular limitation, but it is a crystal matrix (S
Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, D are included in phosphoric acid compounds represented by r, Mg) 3 (PO 4 ) 2 and the like.
A combination of rare earth metal ions such as y, Ho, Er, Tm, and Yb and metal ions such as Ag, Al, Mn, Sb, and Sn as an activator or coactivator is preferable.
<< Method of Manufacturing Inorganic Phosphor >> The method of manufacturing the inorganic phosphor of the present invention will be described.
【0045】本発明の無機蛍光体の製造方法は、請求項
1又は2に記載のように、少なくとも下記に示す3工程
を有する。
工程(1)無機蛍光体の前駆体を液相法により製造する
工程。
工程(2)無機蛍光体前駆体を酸素を有する雰囲気に晒
しながら加熱する工程。
工程(3)工程(2)の後、加熱された前記無機蛍光体
前駆体を弱還元性雰囲気に晒しながら加熱する工程。The method for producing an inorganic phosphor of the present invention has at least the following three steps as described in claim 1 or 2. Step (1) A step of producing a precursor of an inorganic phosphor by a liquid phase method. Step (2) A step of heating the inorganic phosphor precursor while exposing it to an atmosphere containing oxygen. Step (3) A step of heating the heated inorganic phosphor precursor while exposing it to a weak reducing atmosphere after the step (3).
【0046】上記の工程(1)において、無機蛍光体前
駆体とは焼成処理前の無機蛍光体原料混合物であり、本
発明の製造方法の特徴の一つは、前記無機蛍光体前駆体
を液相法により調製することである。
(液相法)本発明の無機蛍光体の前駆体を液相法により
製造することついて説明する。In the above step (1), the inorganic phosphor precursor is an inorganic phosphor raw material mixture before firing, and one of the features of the manufacturing method of the present invention is that the inorganic phosphor precursor is liquid. It is prepared by the phase method. (Liquid phase method) The production of the precursor of the inorganic phosphor of the present invention by the liquid phase method will be described.
【0047】本発明でいう液相法は、ゾルゲル法、晶析
法等の一般的な方法を用いることができる。As the liquid phase method in the present invention, a general method such as a sol-gel method or a crystallization method can be used.
【0048】ゾルゲル法による無機蛍光体前駆体の製造
方法とは、一般的には母体、賦活剤又は共賦活剤に用い
る元素(金属)を、例えば、Si(OCH3)4やEu3+
(CH3COCHCOCH3)3等の金属アルコキシドや
金属錯体又はそれらの有機溶媒溶液に金属単体を加えて
作るダブルアルコキシド(例えば、Al(OC4H9) 3
の2−ブタノール溶液に金属マグネシウムを加えて作る
Mg[Al(OC4H9)3]2等)、金属ハロゲン化物、
有機酸の金属塩、金属単体として必要量混合し、熱的又
は化学的に重縮合することによる製造方法を意味する。Production of Inorganic Phosphor Precursor by Sol-Gel Method
The method generally refers to the matrix, activator or co-activator
Element (metal), for example, Si (OCH3)FourAnd Eu3+
(CH3COCHCOCH3)3Metal alkoxides such as
Add simple metal to metal complex or their organic solvent solution
Make double alkoxide (eg Al (OCFourH9) 3
Made by adding metallic magnesium to 2-butanol solution
Mg [Al (OCFourH9)3]2Etc.), metal halides,
Mix the required amount of metal salt of organic acid or metal as a simple substance, and
Means a production method by chemical polycondensation.
【0049】晶析法による無機蛍光体前駆体の製造方法
とは、冷却、蒸発、pH調節、濃縮等による物理的又は
化学的な環境の変化、或は化学反応によって混合系の状
態に変化を生じる場合等において液相中から固相が析出
してくることがあり、一般に晶析現象と言われている
が、この様な晶析現象発生の誘因となりえる物理的、化
学的操作による製造方法を意味する。
(焼成工程)本発明における加熱工程(以下、「焼成工
程」ともいう)について説明する。The method of producing an inorganic phosphor precursor by the crystallization method is to change the physical or chemical environment by cooling, evaporation, pH adjustment, concentration, etc., or to change the state of the mixed system by a chemical reaction. When it occurs, a solid phase may precipitate from the liquid phase, and it is generally said to be a crystallization phenomenon, but a production method by physical or chemical operation that can cause such a crystallization phenomenon to occur. Means (Baking Step) The heating step (hereinafter, also referred to as “baking step”) in the present invention will be described.
【0050】本発明の焼成工程は、前記無機蛍光体前駆
体を焼成して焼成物(無機蛍光体)を得る工程である。The firing step of the present invention is a step of firing the inorganic phosphor precursor to obtain a fired product (inorganic phosphor).
【0051】本発明の無機蛍光体の製造方法は、焼成工
程において、焼成炉の炉芯内を酸素を有する雰囲気に置
換した後、600℃以上1000℃以下に加熱を行うこ
とが好ましいが、600℃以上800℃以下がより好ま
しい。又600℃以上1000℃以下で30分間以上9
0分間以下保持することが好ましいが、30分間以上6
0分間以下がより好ましい。In the method for producing an inorganic phosphor of the present invention, it is preferable that, in the firing step, after the furnace core of the firing furnace is replaced with an atmosphere containing oxygen, heating is performed at 600 ° C. or higher and 1000 ° C. or lower. More preferably, the temperature is not lower than 800 ° C and not higher than 800 ° C. Also, at 600 ° C or higher and 1000 ° C or lower for 30 minutes or longer 9
It is preferable to hold for 0 minutes or less, but for 30 minutes or more 6
It is more preferably 0 minutes or less.
【0052】前記、酸素を有する雰囲気としては、酸素
濃度が1%以上50%以下であることが好ましいが、酸
素濃度が10%以上30%以下であることがより好まし
い。このように酸素を有する雰囲気下で加熱することに
より、無機蛍光体前駆体中に残る、有機物、副生成物等
の不純物を除くことができ、蛍光体の変色が防げるとも
に良好な発光特性を得ることができる。The oxygen-containing atmosphere preferably has an oxygen concentration of 1% or more and 50% or less, more preferably 10% or more and 30% or less. By heating in an atmosphere containing oxygen in this way, impurities such as organic substances and byproducts remaining in the inorganic phosphor precursor can be removed, and discoloration of the phosphor can be prevented and good emission characteristics can be obtained. be able to.
【0053】加熱開始以降、炉芯内の雰囲気ガスは0.
1リットル/min以上10リットル/min以下の流
量で流通させることが好ましいが、0.5リットル/m
in以上2.0リットル/min以下がより好ましい。
これにより、炉芯内の雰囲気が置換されると共に、炉芯
内から無機蛍光体以外の不純物、副生成物等を排出する
ことができる。After the heating was started, the atmospheric gas in the furnace core was 0.
It is preferable to flow at a flow rate of 1 liter / min or more and 10 liter / min or less, but 0.5 liter / m
It is more preferably in or more and 2.0 liters / min or less.
As a result, the atmosphere in the furnace core is replaced, and impurities, by-products, etc. other than the inorganic phosphor can be discharged from the furnace core.
【0054】酸素を有する雰囲気で加熱した状態を保持
した後、弱還元性雰囲気に置換した後、1000℃以上
1800℃以下に加熱することが好ましいが、1000
℃以上1600℃以下における一定温度とすることがよ
り好ましい。前記加熱時間としては0.5〜6時間が好
ましく、1〜3時間がより好ましい。After maintaining the state of being heated in an atmosphere containing oxygen, substituting the atmosphere with a weak reducing atmosphere, it is preferable to heat to 1000 ° C. or higher and 1800 ° C. or lower.
It is more preferable to set the temperature to a constant temperature in the range from ℃ to 1600 ℃. The heating time is preferably 0.5 to 6 hours, more preferably 1 to 3 hours.
【0055】前記弱還元性雰囲気としては、酸素濃度が
100ppm以下であることが好ましいが、酸素濃度が
10ppm以下であることがより好ましい。The weak reducing atmosphere preferably has an oxygen concentration of 100 ppm or less, more preferably 10 ppm or less.
【0056】又水素濃度が0.1%以上10%以下で残
りの成分が窒素である混合ガスが好ましく、水素濃度が
0.1%以上5%以下で残りの成分が窒素である混合ガ
スがより好ましい。水素濃度を0.1%以上とすること
で発光特性を向上させることができ、5%以下とするこ
とで取り扱い上好ましい。A mixed gas having a hydrogen concentration of 0.1% or more and 10% or less and the remaining component being nitrogen is preferable, and a mixed gas having a hydrogen concentration of 0.1% or more and 5% or less and the remaining component being nitrogen. More preferable. When the hydrogen concentration is 0.1% or more, the emission characteristics can be improved, and when it is 5% or less, it is preferable in handling.
【0057】炉芯内の雰囲気を酸素を有する雰囲気から
弱還元性雰囲気に置換する際には、炉芯内部を1.33
×103Pa以下の真空にするのが好ましい。真空吸引
には回転式ポンプ等が利用できる。炉芯内部を真空にし
た場合は雰囲気の置換効率が高くなるという利点があ
る。真空を経由せずに雰囲気を置換するいわゆる追い出
し置換の場合は、炉芯の容量の少なくとも3倍の体積の
雰囲気を注入する必要がある。When the atmosphere in the furnace core is replaced with an atmosphere containing oxygen by a weak reducing atmosphere, the inside of the furnace core is 1.33%.
It is preferable to apply a vacuum of 10 3 Pa or less. A rotary pump or the like can be used for vacuum suction. When the inside of the furnace core is evacuated, there is an advantage that the efficiency of atmosphere replacement is increased. In the case of so-called purge replacement in which the atmosphere is replaced without passing through a vacuum, it is necessary to inject an atmosphere having a volume of at least 3 times the volume of the furnace core.
【0058】[0058]
【実施例】以下に本発明を実施例により具体的に説明す
るが、本発明はこれらの実施例によって限定されるもの
ではない。EXAMPLES The present invention will now be described in detail with reference to examples, but the present invention is not limited to these examples.
【0059】実施例1 1.無機蛍光体(蛍光体1−1)の製造 組成式:Ba2SiO4:Eu2+ 下記、ソルゲル法にて無機蛍光体前駆体を製造した。Example 1 1. Production Formula of Inorganic Phosphor (Phosphor 1-1) Composition formula: Ba 2 SiO 4 : Eu 2+ An inorganic phosphor precursor was produced by the following sol-gel method.
【0060】4×10-2モルのSi(OC2H5)4と2
×10-4モルのEu(CH3COCHCOCH3)3・2
H2Oをエタノール150mlに溶解し、これをアンモ
ニア1.6×10-2モルを加えた水(150ml)−エ
タノール(150ml)中に約1ml/分の速度で撹拌
しながら滴下し、ゾルを調整した。得られたゾルをエバ
ポレーターで約15倍の濃度になるように濃縮し、0.
3mol/Lの硝酸バリウム水溶液を295ml添加し
ゲル化させ、湿潤ゲルを得た。得られた湿潤ゲルを密閉
容器中、60℃で15時間熟成させた。4 × 10 -2 mol of Si (OC 2 H 5 ) 4 and 2
× 10 -4 mol of Eu (CH 3 COCHCOCH 3) 3 · 2
H 2 O was dissolved in 150 ml of ethanol, and this was added dropwise to water (150 ml) -ethanol (150 ml) to which 1.6 × 10 −2 mol of ammonia was added at a rate of about 1 ml / min with stirring to obtain a sol. It was adjusted. The obtained sol was concentrated with an evaporator so that the concentration was about 15 times, and
295 ml of a 3 mol / L barium nitrate aqueous solution was added to cause gelation to obtain a wet gel. The obtained wet gel was aged at 60 ° C. for 15 hours in a closed container.
【0061】その後、撹拌を行っているエタノール(3
00ml)中に、1ml/minの添加速度で添加し、
析出した無機蛍光体前駆体を濾過分取し、50℃で10
時間乾燥した。Then, the ethanol (3
00 ml) at an addition rate of 1 ml / min,
The deposited inorganic phosphor precursor is filtered and separated, and the mixture is heated at 50 ° C. for 10 minutes.
Dried for hours.
【0062】無機蛍光体前駆体は、焼成容器である石英
ガラス製ボートに充填し、1.0リットル/minの流
量で酸素を有する雰囲気(酸素濃度20%)ガスが流通
している焼成炉中、600℃で30分間加熱(有酸素雰
囲気での加熱工程)後、雰囲気を6.65×102Pa
の真空状態としてから、1.0リットル/minの流量
で5%H2−95%N2ガスが流通している雰囲気(酸素
濃度100ppm以下)に置換して、1050℃で3時
間の熱処理を施した。焼成後、200℃以下まで冷却し
た後、焼成物を大気中に取り出し、組成式:Ba2Si
O4:Eu2+の無機蛍光体を得た(蛍光体1−1)。The inorganic phosphor precursor is filled in a quartz glass boat which is a firing container, and in a firing furnace in which an atmosphere containing oxygen (oxygen concentration 20%) flows at a flow rate of 1.0 liter / min. After heating at 600 ° C. for 30 minutes (heating step in an aerobic atmosphere), the atmosphere is changed to 6.65 × 10 2 Pa
Then, the atmosphere was replaced with an atmosphere (oxygen concentration of 100 ppm or less) in which 5% H 2 -95% N 2 gas was flowing at a flow rate of 1.0 liter / min, and heat treatment was performed at 1050 ° C. for 3 hours. gave. After firing, after cooling to 200 ° C. or lower, the fired product was taken out into the atmosphere, and the composition formula: Ba 2 Si was used.
An inorganic phosphor of O 4 : Eu 2+ was obtained (phosphor 1-1).
【0063】得られた蛍光体の平均粒径は0.78μ
m、極大励起波長350nm、極大発光波長501nm
であった。尚、蛍光体粒子の大きさは、透過型電子顕微
鏡及び走査型電子顕微鏡により測定した。
2.無機蛍光体(比較蛍光体1−2)の製造
組成式:Ba2SiO4:Eu2+
蛍光体1−1の製造において、無機蛍光体前駆体を有酸
素雰囲気での加熱工程を経ることなく、1.0リットル
/minの流量で5%H2−95%N2ガスが流通してい
る雰囲気中(酸素濃度100ppm以下)、室温から1
050℃まで加熱し、同温度で3時間の熱処理を施した
以外は蛍光体1−1と同様にして、組成式:Ba2Si
O4:Eu2+の無機蛍光体を得た(比較蛍光体1−
2)。The average particle size of the obtained phosphor is 0.78 μm.
m, maximum excitation wavelength 350 nm, maximum emission wavelength 501 nm
Met. The size of the phosphor particles was measured by a transmission electron microscope and a scanning electron microscope. 2. Manufacturing method of inorganic phosphor (comparative phosphor 1-2): In manufacturing Ba 2 SiO 4 : Eu 2+ phosphor 1-1, the inorganic phosphor precursor is not subjected to a heating step in an oxygen-containing atmosphere. , In an atmosphere in which 5% H 2 -95% N 2 gas is flowing at a flow rate of 1.0 liter / min (oxygen concentration 100 ppm or less), from room temperature to 1
A composition formula: Ba 2 Si was used in the same manner as the phosphor 1-1 except that the phosphor was heated to 050 ° C. and heat-treated at the same temperature for 3 hours.
An inorganic phosphor of O 4 : Eu 2+ was obtained (comparative phosphor 1-
2).
【0064】得られた蛍光体の平均粒径は1.12μ
m、極大励起波長350nm、極大発光波長501nm
であった。The average particle size of the obtained phosphor is 1.12 μm.
m, maximum excitation wavelength 350 nm, maximum emission wavelength 501 nm
Met.
【0065】得られた蛍光体1−1、比較蛍光体1−2
に励起波長350nmの紫外線を照射し、発光強度を測
定した。得られた結果を蛍光体1−1の発光強度を10
0とした相対強度で表1に示し、又蛍光体の外観色も表
1に示す。The obtained phosphor 1-1 and comparative phosphor 1-2
The sample was irradiated with ultraviolet rays having an excitation wavelength of 350 nm, and the emission intensity was measured. The obtained result is the emission intensity of the phosphor 1-1 of 10
The relative intensity is set to 0 and shown in Table 1, and the appearance color of the phosphor is also shown in Table 1.
【0066】[0066]
【表1】 [Table 1]
【0067】表1から明らかなように、得られた蛍光体
1−1は比較蛍光体1−2と比べて平均粒径が約30%
も小さいにも係わらず、発光強度が極めて高く、蛍光体
の変色もないことが判る。しかしながら有酸素雰囲気で
の加熱工程を経ないで得られた比較蛍光体1−2は発光
強度が十分でないだけでなく茶色に変色しているなど、
実用に適していないことが判る。この変色は有酸素雰囲
気での加熱を行わなかったため、蛍光体中に有機物が残
存したことによる故障である。As is clear from Table 1, the obtained phosphor 1-1 has an average particle size of about 30% as compared with the comparative phosphor 1-2.
It can be seen that the emission intensity is extremely high and there is no discoloration of the phosphor even though it is small. However, the comparative phosphor 1-2 obtained without passing through the heating step in an aerobic atmosphere not only has insufficient emission intensity but also changes its color to brown.
It turns out that it is not suitable for practical use. This discoloration is a failure due to organic substances remaining in the phosphor because heating was not performed in an oxygen-containing atmosphere.
【0068】実施例2 1.無機蛍光体(蛍光体2−1)の製造 組成式:BaMgAl10O17:Eu2+ 下記、ソルゲル法にて無機蛍光体前駆体を製造した。Example 2 1. Production Formula of Inorganic Phosphor (Phosphor 2-1) Composition formula: BaMgAl 10 O 17 : Eu 2+ An inorganic phosphor precursor was produced by the following sol-gel method.
【0069】2.8×10-2モルのAl(OC4H9)4
と8.3×10-3モルのMg(NO3)2・6H2Oをエ
タノール333mlに溶解した溶液、2.8×10-2モ
ルのAl(OC4H9)4と1.5×10-3モルのEu
(CH3COCHCOCH3)3・2H2Oをエタノール3
33mlに溶解した溶液及び2.8×10-2モルのAl
(OC4H9)4と8.3×10-3モルのBaをエタノー
ル333mlに溶解した溶液を70℃で混合し30分撹
拌後、水250mlを添加しゲル化させ、湿潤ゲルを得
た。得られた湿潤ゲルを密閉容器中、60℃で15時間
熟成させた。その後、析出した無機蛍光体前駆体を濾過
分取し、50℃で10時間乾燥した。2.8 × 10 -2 mol of Al (OC 4 H 9 ) 4
When 8.3 × 10 -3 mol of Mg (NO 3) solution of 2 · 6H 2 O was dissolved in ethanol 333ml, 2.8 × 10 -2 mol of Al (OC 4 H 9) 4 and 1.5 × 10 -3 mol of Eu
(CH 3 COCHCOCH 3) 3 · 2H 2 O in ethanol 3
Solution dissolved in 33 ml and 2.8 × 10 -2 mol of Al
A solution of (OC 4 H 9 ) 4 and 8.3 × 10 −3 mol of Ba dissolved in 333 ml of ethanol was mixed at 70 ° C. and stirred for 30 minutes, and 250 ml of water was added to cause gelation to obtain a wet gel. . The obtained wet gel was aged at 60 ° C. for 15 hours in a closed container. Then, the deposited inorganic phosphor precursor was collected by filtration and dried at 50 ° C. for 10 hours.
【0070】無機蛍光体前駆体は、焼成容器であるアル
ミナ製ボートに充填し、2.0リットル/minの流量
で酸素を有する雰囲気ガスが流通している焼成炉中、8
00℃で60分間加熱(有酸素雰囲気での加熱工程)
後、雰囲気を1.33×102Paの真空状態としてか
ら、1.0リットル/minの流量で5%H2−95%
N2ガスが流通している雰囲気に置換して、1400℃
で3時間の熱処理を施した。焼成後、200℃以下まで
冷却した後、焼成物を大気中に取り出し、組成式:Ba
MgAl10O17:Eu2+の無機蛍光体を得た(蛍光体2
−1)。The inorganic phosphor precursor was filled in a boat made of alumina, which is a firing container, and was placed in a firing furnace in which an atmosphere gas containing oxygen was passed at a flow rate of 2.0 liter / min.
Heating at 00 ° C for 60 minutes (heating process in aerobic atmosphere)
After that, the atmosphere was set to a vacuum state of 1.33 × 10 2 Pa, and then 5% H 2 -95% at a flow rate of 1.0 liter / min.
Replaced with an atmosphere in which N 2 gas is flowing, 1400 ° C.
Was heat-treated for 3 hours. After firing, after cooling to 200 ° C. or lower, the fired product was taken out into the air, and the composition formula: Ba
An inorganic phosphor of MgAl 10 O 17 : Eu 2+ was obtained (phosphor 2
-1).
【0071】得られた蛍光体の平均粒径は0.91μ
m、極大励起波長233nm、極大発光波長447nm
であった。
2.無機蛍光体(比較蛍光体2−2)の製造
組成式:BaMgAl10O17:Eu2+
蛍光体2−1の製造において、無機蛍光体前駆体を有酸
素雰囲気での加熱工程を経ることなく、1.0リットル
/minの流量で5%H2−95%N2ガスが流通してい
る雰囲気中、室温から1400℃まで加熱し、同温度で
3時間の熱処理を施した以外は蛍光体2−1と同様にし
て、組成式:BaMgAl10O17:Eu 2+の無機蛍光体
を得た(比較蛍光体2−2)。The average particle size of the obtained phosphor is 0.91 μm.
m, maximum excitation wavelength 233 nm, maximum emission wavelength 447 nm
Met.
2. Production of Inorganic Phosphor (Comparative Phosphor 2-2)
Composition formula: BaMgAlTenO17: Eu2+
In the production of the phosphor 2-1, the inorganic phosphor precursor is acidified.
1.0 liter without going through the heating process in an elementary atmosphere
5% H at a flow rate of / min2-95% N2Gas is in circulation
In an atmosphere that heats from room temperature to 1400 ° C at the same temperature
Same as Phosphor 2-1 except heat treated for 3 hours.
And composition formula: BaMgAlTenO17: Eu 2+Inorganic phosphor
Was obtained (Comparative Phosphor 2-2).
【0072】得られた蛍光体の平均粒径は1.36μ
m、極大励起波長233nm、極大発光波長447nm
であった。The average particle size of the obtained phosphor is 1.36 μ.
m, maximum excitation wavelength 233 nm, maximum emission wavelength 447 nm
Met.
【0073】得られた蛍光体2−1、比較蛍光体2−2
に励起波長233nmの紫外線を照射し、発光強度を測
定した。得られた結果を蛍光体2−1の発光強度を10
0とした相対強度で表2に示し、又蛍光体の外観色も表
2に示す。Obtained phosphor 2-1 and comparative phosphor 2-2
Was irradiated with ultraviolet rays having an excitation wavelength of 233 nm, and the emission intensity was measured. The obtained result is the emission intensity of the phosphor 2-1 of 10
The relative intensity is set to 0 and is shown in Table 2, and the appearance color of the phosphor is also shown in Table 2.
【0074】[0074]
【表2】 [Table 2]
【0075】表2から明らかなように、蛍光体2−1は
比較蛍光体2−2と比べて平均粒径が約33%も小さい
にも係わらず、高い発光強度を示し、蛍光体の変色もな
いことが判る。しかしながら有酸素雰囲気での加熱工程
を経ないで得られた比較蛍光体2−2は発光強度が低下
しているだけでなく薄茶色に変色しているなど、実用に
適していないことが判る。この変色は有酸素雰囲気での
加熱を行わなかったため、蛍光体中に有機物が残存した
ことによる故障である。As is clear from Table 2, the phosphor 2-1 shows high emission intensity and discolors the phosphor, even though the average particle size is about 33% smaller than that of the comparative phosphor 2-2. It turns out that there is nothing. However, it can be seen that the comparative phosphor 2-2 obtained without the heating step in the aerobic atmosphere is not suitable for practical use because it not only has a reduced emission intensity but also has a light brown discoloration. This discoloration is a failure due to organic substances remaining in the phosphor because heating was not performed in an oxygen-containing atmosphere.
【0076】実施例3 1.無機蛍光体(蛍光体3−1)の製造 組成式:YVO4:Eu3+ 下記、ソルゲル法にて無機蛍光体前駆体を製造した。Example 3 1. Inorganic phosphor (phosphor 3-1) of manufacturing the composition formula: YVO 4: Eu 3+ below, were prepared inorganic phosphor precursor by sol gel method.
【0077】1.6×10-2モルのY(CH3COCH
COCH3)3・3H2Oと8.7×10-4モルのEu
(CH3COCHCOCH3)3・2H2Oをエタノール1
40mlに溶解した溶液及び1.8×10-2モルのVO
(CH3COCHCOCH3)2をメタノール175ml
に溶解した溶液を60℃で混合し30分撹拌後、水14
7mlを5ml/分の添加速度で添加しゲル化させ、湿
潤ゲルを得た。1.6 × 10 -2 mol of Y (CH 3 COCH
COCH 3) 3 · 3H 2 O and 8.7 × 10 -4 mol of Eu
(CH 3 COCHCOCH 3) 3 · 2H 2 O in ethanol 1
Solution dissolved in 40 ml and 1.8 × 10 -2 mol VO
(CH 3 COCHCOCH 3 ) 2 in 175 ml of methanol
The solution dissolved in was mixed at 60 ° C and stirred for 30 minutes, then water 14
7 ml was added at a rate of 5 ml / min for gelation to obtain a wet gel.
【0078】得られた湿潤ゲルを密閉容器中、60℃で
15時間熟成させた。その後、析出した無機蛍光体前駆
体を濾過分取し、50℃で10時間乾燥した。The obtained wet gel was aged at 60 ° C. for 15 hours in a closed container. Then, the deposited inorganic phosphor precursor was collected by filtration and dried at 50 ° C. for 10 hours.
【0079】無機蛍光体前駆体は、焼成容器である石英
ガラス製ボートに充填し、1.0リットル/minの流
量で酸素を有する雰囲気ガスが流通している焼成炉中、
700℃で40分間加熱(有酸素雰囲気での加熱工程)
後、0.1リットル/minの流量で0.1%H2−9
9.9%N2ガスが流通している雰囲気に置換して、1
050℃で3時間の熱処理を施した。焼成後、200℃
以下まで冷却した後、焼成物を大気中に取り出し、組成
式:YVO4:Eu3+の無機蛍光体を得た(蛍光体3−
1)。The inorganic phosphor precursor was filled in a quartz glass boat, which is a firing container, and the atmosphere gas containing oxygen was passed at a flow rate of 1.0 liter / min in a firing furnace.
Heating at 700 ° C for 40 minutes (heating process in an aerobic atmosphere)
Then, 0.1% H 2 -9 at a flow rate of 0.1 liter / min.
Replace with an atmosphere in which 9.9% N 2 gas is flowing and
Heat treatment was performed at 050 ° C. for 3 hours. After firing, 200 ℃
After cooling to below, the fired product was taken out into the atmosphere, the composition formula: YVO 4: to obtain an inorganic phosphor Eu 3+ (phosphor 3
1).
【0080】得られた蛍光体の平均粒径は0.68μ
m、極大励起波長310nm、極大発光波長619nm
であった。
2.無機蛍光体(比較蛍光体3−2)の製造
組成式:YVO4:Eu3+
蛍光体3−1の製造において、無機蛍光体前駆体を有酸
素雰囲気での加熱工程を経ることなく、0.1リットル
/minの流量で0.1%H2−99.9%N2ガスが流
通している雰囲気中、室温から1050℃まで加熱し、
同温度で3時間の熱処理を施した以外は蛍光体3−1と
同様にして、組成式:YVO4:Eu3+の無機蛍光体を
得た(比較蛍光体3−2)。The average particle size of the obtained phosphor is 0.68 μm.
m, maximum excitation wavelength 310 nm, maximum emission wavelength 619 nm
Met. 2. Production of Inorganic Phosphor (Comparative Phosphor 3-2) Compositional formula: YVO 4 : Eu 3+ In the production of the phosphor 3-1, the inorganic phosphor precursor is not subjected to a heating step in an aerobic atmosphere, Heating from room temperature to 1050 ° C. in an atmosphere in which 0.1% H 2 -99.9% N 2 gas is flowing at a flow rate of 1 liter / min,
An inorganic phosphor of the composition formula: YVO 4 : Eu 3+ was obtained in the same manner as phosphor 3-1 except that heat treatment was performed at the same temperature for 3 hours (comparative phosphor 3-2).
【0081】得られた蛍光体の平均粒径は1.02μ
m、極大励起波長310nm、極大発光波長619nm
であった。The average particle size of the obtained phosphor is 1.02 μm.
m, maximum excitation wavelength 310 nm, maximum emission wavelength 619 nm
Met.
【0082】得られた蛍光体3−1、比較蛍光体3−2
に励起波長310nmの紫外線を照射し、発光強度を測
定した。得られた結果を蛍光体3−1の発光強度を10
0とした相対強度で表3に示し、又蛍光体の外観色も表
3に示す。Obtained phosphor 3-1 and comparative phosphor 3-2
The sample was irradiated with ultraviolet light having an excitation wavelength of 310 nm and the emission intensity was measured. The obtained result is the emission intensity of the phosphor 3-1 of 10
The relative intensity is set to 0 and shown in Table 3, and the appearance color of the phosphor is also shown in Table 3.
【0083】[0083]
【表3】 [Table 3]
【0084】表3から明らかなように、蛍光体3−1は
比較蛍光体3−2と比べて、平均粒径が約33%も小さ
いにも係わらず、高い発光強度を示し、蛍光体の変色も
ないことが判る。しかしながら有酸素雰囲気での加熱工
程を経ないで得られた比較蛍光体3−2は発光強度が充
分でないだけでなく薄茶色に変色しているなど、実用に
適していないことが判る。この変色は有酸素雰囲気での
加熱を行わなかったため、蛍光体中に有機物が残存した
ことによる故障である。As is clear from Table 3, the phosphor 3-1 shows a high emission intensity and has a high emission intensity even though the average particle size is smaller by about 33% than the comparative phosphor 3-2. It turns out that there is no discoloration. However, it can be seen that the comparative phosphor 3-2 obtained without the heating step in the aerobic atmosphere is not suitable for practical use because it not only has insufficient emission intensity but also changes its color to light brown. This discoloration is a failure due to organic substances remaining in the phosphor because heating was not performed in an oxygen-containing atmosphere.
【0085】実施例4
1.無機蛍光体(蛍光体4−1)の製造
組成式:(Ba,Ca,Mg)10(PO4)6Cl2:E
u2+
下記、晶析法にて無機蛍光体前駆体を製造した。Example 4 1. Composition formula of inorganic phosphor (phosphor 4-1): (Ba, Ca, Mg) 10 (PO 4 ) 6 Cl 2 : E
u 2+ An inorganic phosphor precursor was manufactured by the following crystallization method.
【0086】0.38モルのBaCl2、0.17モル
のCaCl2、5.6×10-2モルのMgNO3・6H2
O、5.6×10-3モルのEu(NO3)3・6H2O、
0.34モルのKH2(PO)4を各々純水500mlに
溶解し、60℃で混合した。その際、混合液のpH9を
保つようにアンモニア水を添加した。混合と同時に沈殿
が生じ、得られた沈殿を濾過分取し、50℃で10時間
で乾燥し、結晶状の無機蛍光体前駆体を製造した。0.38 mol of BaCl 2 , 0.17 mol of CaCl 2 , 5.6 × 10 -2 mol of MgNO 3 .6H 2
O, 5.6 × 10 -3 mol of Eu (NO 3) 3 · 6H 2 O,
0.34 mol of KH 2 (PO) 4 was dissolved in 500 ml of pure water and mixed at 60 ° C. At that time, aqueous ammonia was added so as to maintain pH 9 of the mixed solution. A precipitate was formed simultaneously with the mixing, and the obtained precipitate was collected by filtration and dried at 50 ° C. for 10 hours to produce a crystalline inorganic phosphor precursor.
【0087】無機蛍光体前駆体は、焼成容器である石英
ガラス製ボートに充填し、1.0リットル/minの流
量で酸素を有する雰囲気ガスが流通している焼成炉中、
600℃で30分間加熱(有酸素雰囲気での加熱工程)
後、雰囲気を6.65×10 2Paの真空状態としてか
ら、1.0リットル/minの流量で5%H2−95%
N2ガスが流通している雰囲気に置換して、1050℃
で3時間の熱処理を施した。焼成後、200℃以下まで
冷却した後、焼成物を大気中に取り出し、組成式:(B
a,Ca,Mg)10(PO4)6Cl2:Eu2+の無機蛍
光体を得た(蛍光体4−1)。The inorganic phosphor precursor is quartz, which is a firing container.
Fill a glass boat with a flow of 1.0 liter / min
In a firing furnace in which an atmospheric gas containing oxygen in a quantity is flowing,
Heating at 600 ℃ for 30 minutes (heating process in an aerobic atmosphere)
After that, change the atmosphere to 6.65 × 10 2As a vacuum state of Pa
5% H at a flow rate of 1.0 liter / min2-95%
N2Replace with atmosphere in which gas is flowing and 1050 ℃
Was heat-treated for 3 hours. After firing, up to 200 ℃
After cooling, the fired product was taken out into the atmosphere and the composition formula: (B
a, Ca, Mg)Ten(POFour)6Cl2: Eu2+Inorganic firefly
A light body was obtained (phosphor 4-1).
【0088】得られた蛍光体の平均粒径は0.43μ
m、極大励起波長360nm、極大発光波長495nm
であった。
2.無機蛍光体(比較蛍光体4−2)の製造
組成式:(Ba,Ca,Mg)10(PO4)6Cl2:E
u2+
蛍光体4−1の製造において、無機蛍光体前駆体を有酸
素雰囲気での加熱工程を経ることなく、1.0リットル
/minの流量で5%H2−95%N2ガスが流通してい
る雰囲気中、室温から1050℃まで加熱し、同温度で
3時間の熱処理を施した以外、蛍光体4−1と同様にし
て、組成式:(Ba,Ca,Mg)10(PO4)6C
l2:Eu2+の無機蛍光体を得た(比較蛍光体4−
2)。The average particle size of the obtained phosphor is 0.43 μm.
m, maximum excitation wavelength 360 nm, maximum emission wavelength 495 nm
Met. 2. Composition formula of inorganic phosphor (comparative phosphor 4-2): (Ba, Ca, Mg) 10 (PO 4 ) 6 Cl 2 : E
In the production of the u 2+ phosphor 4-1, 5% H 2 -95% N 2 gas is supplied at a flow rate of 1.0 liter / min without going through the heating step of the inorganic phosphor precursor in an oxygen-containing atmosphere. In the flowing atmosphere, the composition formula: (Ba, Ca, Mg) 10 (PO 4) was used in the same manner as the phosphor 4-1 except that it was heated from room temperature to 1050 ° C. and heat-treated at the same temperature for 3 hours. 4 ) 6 C
An inorganic phosphor of l 2 : Eu 2+ was obtained (comparative phosphor 4-
2).
【0089】得られた蛍光体の平均粒径は1.01μ
m、極大励起波長360nm、極大発光波長495nm
であった。The average particle size of the obtained phosphor is 1.01 μm.
m, maximum excitation wavelength 360 nm, maximum emission wavelength 495 nm
Met.
【0090】得られた蛍光体4−1、比較蛍光体4−2
に励起波長360nmの紫外線を照射し、発光強度を測
定した。得られた結果を蛍光体4−1の発光強度を10
0とした相対強度で表4に示し、又蛍光体の外観色も表
4に示す。Obtained phosphor 4-1 and comparative phosphor 4-2
Was irradiated with ultraviolet rays having an excitation wavelength of 360 nm, and the emission intensity was measured. The obtained result is the emission intensity of phosphor 4-1 of 10
Table 4 shows the relative intensity as 0, and Table 4 also shows the appearance color of the phosphor.
【0091】[0091]
【表4】 [Table 4]
【0092】表4から明らかなように、蛍光体4−1は
比較蛍光体4−2と比べて平均粒径が約57%も小さい
にも係わらず高い発光強度を示し、蛍光体の変色もない
ことが判る。しかしながら有酸素雰囲気での加熱工程を
経ないで得られた比較蛍光体4−2は発光強度が低下し
ているだけでなく薄黄色に変色しているなど、実用に適
していないことが判る。As is clear from Table 4, the phosphor 4-1 exhibits high emission intensity even though the average particle size is about 57% smaller than that of the comparative phosphor 4-2, and the discoloration of the phosphor also occurs. I know there isn't. However, it is understood that the comparative phosphor 4-2 obtained without passing through the heating step in the aerobic atmosphere is not suitable for practical use because not only the emission intensity is lowered but also the color is changed to pale yellow.
【0093】実施例5 1.無機蛍光体(蛍光体5−1)の製造 組成式:Sr10(PO4)6Cl2:Eu2+ 下記、晶析法にて無機蛍光体前駆体を製造した。Example 5 1. Production Formula of Inorganic Phosphor (Phosphor 5-1) Composition Formula: Sr 10 (PO 4 ) 6 Cl 2 : Eu 2+ An inorganic phosphor precursor was produced by the following crystallization method.
【0094】0.56モルのSrCl2・6H2O、5.
6×10-3モルのEu(NO3)3・6H2O、0.34
モルのKH2(PO)4を各々純水500mlに溶解し、
60℃で混合した。その際、混合液のpH9を保つよう
にアンモニア水を添加した。混合と同時に沈殿が生じ、
得られた結晶沈殿を濾過分取し、50℃で10時間で乾
燥し、結晶状の無機蛍光体前駆体を得た。0.56 mol of SrCl 2 .6H 2 O, 5.
6 × 10 −3 mol of Eu (NO 3 ) 3 · 6H 2 O, 0.34
Dissolve each mole of KH 2 (PO) 4 in 500 ml of pure water,
Mixed at 60 ° C. At that time, aqueous ammonia was added so as to maintain pH 9 of the mixed solution. Precipitation occurs at the same time as mixing,
The obtained crystal precipitate was collected by filtration and dried at 50 ° C. for 10 hours to obtain a crystalline inorganic phosphor precursor.
【0095】無機蛍光体前駆体は、焼成容器である石英
ガラス製ボートに充填し、1.0リットル/minの流
量で酸素を有する雰囲気ガスが流通している焼成炉中、
600℃で30分間加熱(有酸素雰囲気での加熱工程)
後、雰囲気を6.65×10 2Paの真空状態としてか
ら、1.0リットル/minの流量で5%H2−95%
N2ガスが流通している雰囲気に置換して、1050℃
で3時間の熱処理を施した。焼成後、200℃以下まで
冷却した後、焼成物を大気中に取り出し、組成式:Sr
10(PO4)6Cl2:Eu2+の無機蛍光体を得た(蛍光
体5−1)。The inorganic phosphor precursor is quartz, which is a firing container.
Fill a glass boat with a flow of 1.0 liter / min
In a firing furnace in which an atmospheric gas containing oxygen in a quantity is flowing,
Heating at 600 ℃ for 30 minutes (heating process in an aerobic atmosphere)
After that, change the atmosphere to 6.65 × 10 2As a vacuum state of Pa
5% H at a flow rate of 1.0 liter / min2-95%
N2Replace with atmosphere in which gas is flowing and 1050 ℃
Was heat-treated for 3 hours. After firing, up to 200 ℃
After cooling, the fired product was taken out into the air, and the composition formula: Sr
Ten(POFour)6Cl2: Eu2+We obtained an inorganic phosphor of
Body 5-1).
【0096】得られた蛍光体の平均粒径は0.47μ
m、極大励起波長283nm、極大発光波長447nm
であった。
2.無機蛍光体(比較蛍光体5−2)の製造
組成式:Sr10(PO4)6Cl2:Eu2+
蛍光体5−1の製造において、無機蛍光体前駆体を有酸
素雰囲気での加熱工程を経ることなく、1.0リットル
/minの流量で5%H2−95%N2ガスが流通してい
る雰囲気中、室温から1050℃まで加熱し、同温度で
3時間の熱処理を施した以外、蛍光体5−1と同様にし
て、組成式:Sr10(PO4)6Cl2:Eu2+の無機蛍
光体を得た(比較蛍光体5−2)。The average particle size of the obtained phosphor is 0.47 μm.
m, maximum excitation wavelength 283 nm, maximum emission wavelength 447 nm
Met. 2. Production Formula of Inorganic Phosphor (Comparative Phosphor 5-2) Composition Formula: Sr 10 (PO 4 ) 6 Cl 2 : Eu 2+ In the production of the phosphor 5-1, the inorganic phosphor precursor is heated in an oxygen-containing atmosphere. Without passing through the steps, heating is performed from room temperature to 1050 ° C. in an atmosphere in which 5% H 2 -95% N 2 gas is flowing at a flow rate of 1.0 liter / min, and heat treatment is performed at the same temperature for 3 hours. An inorganic phosphor of the composition formula: Sr 10 (PO 4 ) 6 Cl 2 : Eu 2+ was obtained in the same manner as phosphor 5-1 except for the above (Comparative phosphor 5-2).
【0097】得られた蛍光体の平均粒径は1.05μ
m、極大励起波長283nm、極大発光波長447nm
であった。The average particle size of the obtained phosphor is 1.05 μm.
m, maximum excitation wavelength 283 nm, maximum emission wavelength 447 nm
Met.
【0098】得られた蛍光体5−1、比較蛍光体5−2
に励起波長283nmの紫外線を照射し、発光強度を測
定した。得られた結果を蛍光体5−1の発光強度を10
0とした相対強度で表5に示し、又蛍光体の外観色も表
5に示す。Obtained phosphor 5-1 and comparative phosphor 5-2
Was irradiated with ultraviolet rays having an excitation wavelength of 283 nm, and the emission intensity was measured. The obtained result is the emission intensity of the phosphor 5-1 of 10
The relative intensity is set to 0 and shown in Table 5, and the appearance color of the phosphor is also shown in Table 5.
【0099】[0099]
【表5】 [Table 5]
【0100】表5から明らかなように、蛍光体5−1は
比較蛍光体5−2と比べて平均粒径が約55%も小さい
にも係わらず高い発光強度を示し、蛍光体の変色もない
ことが判る。しかしながら有酸素雰囲気での加熱工程を
経ないで得られた比較蛍光体5−2は発光強度が低下し
ているだけでなく薄黄色に変色しているなど、実用に適
していないことが判る。As is clear from Table 5, the phosphor 5-1 exhibits a high emission intensity even though the average particle size is about 55% smaller than that of the comparative phosphor 5-2, and the discoloration of the phosphor also occurs. I know there isn't. However, it is understood that the comparative phosphor 5-2 obtained without the heating step in the aerobic atmosphere is not suitable for practical use because the emission intensity is lowered and the color is changed to pale yellow.
【0101】実施例6 1.無機蛍光体(蛍光体6−1)の製造 組成式:(Sr,Mg)3(PO4)2:Sn2+ 下記、晶析法にて無機蛍光体前駆体を製造した。Example 6 1. Inorganic phosphor (phosphor 6-1) of manufacturing formula: (Sr, Mg) 3 ( PO 4) 2: Sn 2+ below, were prepared inorganic phosphor precursor at crystallization.
【0102】0.45モルのSrCl2・6H2O、5.
6×10-2モルのMgNO3・6H2O、8.4×10-3
モルのSnCl2、0.34モルのKH2(PO)4を、
各々純水500mlに溶解し、60℃で混合した。その
際、混合液のpH9を保つようにアンモニア水を添加し
た。混合と同時に沈殿が生じ、得られた沈殿を濾過分取
し、50℃で10時間で乾燥し、結晶状の無機蛍光体前
駆体を得た。0.45 mol of SrCl 2 .6H 2 O, 5.
6 × 10 -2 mol of MgNO 3 .6H 2 O, 8.4 × 10 -3
Mol SnCl 2 , 0.34 mol KH 2 (PO) 4 ,
Each was dissolved in 500 ml of pure water and mixed at 60 ° C. At that time, aqueous ammonia was added so as to maintain pH 9 of the mixed solution. A precipitate was formed simultaneously with the mixing, and the obtained precipitate was collected by filtration and dried at 50 ° C. for 10 hours to obtain a crystalline inorganic phosphor precursor.
【0103】無機蛍光体前駆体は、焼成容器である石英
ガラス製ボートに充填し、1.0リットル/minの流
量で酸素を有する雰囲気ガスが流通している焼成炉中、
600℃で30分間加熱(有酸素雰囲気での加熱工程)
後、雰囲気を6.65×10 2Paの真空状態としてか
ら、1.0リットル/minの流量で2%H2−98%
N2ガスが流通している雰囲気に置換して、1050℃
で3時間の熱処理を施した。焼成後、200℃以下まで
冷却した後、焼成物を大気中に取り出し、組成式:(S
r,Mg)3(PO4)2:Sn2+の無機蛍光体を得た
(蛍光体6−1)。The inorganic phosphor precursor is quartz, which is a firing container.
Fill a glass boat with a flow of 1.0 liter / min
In a firing furnace in which an atmospheric gas containing oxygen in a quantity is flowing,
Heating at 600 ℃ for 30 minutes (heating process in an aerobic atmosphere)
After that, change the atmosphere to 6.65 × 10 2As a vacuum state of Pa
2% H at a flow rate of 1.0 liter / min2-98%
N2Replace with atmosphere in which gas is flowing and 1050 ℃
Was heat-treated for 3 hours. After firing, up to 200 ℃
After cooling, the fired product was taken out into the atmosphere, and the composition formula: (S
r, Mg)3(POFour)2: Sn2+Obtained an inorganic phosphor of
(Phosphor 6-1).
【0104】得られた蛍光体の平均粒径は0.59μ
m、極大励起波長255nm、極大発光波長620nm
であった。
2.無機蛍光体(蛍光体6−2)の製造
組成式:(Sr,Mg)3(PO4)2:Sn2+
蛍光体6−1の製造において、無機蛍光体前駆体を有酸
素雰囲気での加熱工程を経ることなく、1.0リットル
/minの流量で2%H2−98%N2ガスが流通してい
る雰囲気中、室温から1050℃まで加熱し、同温度で
3時間の熱処理を施した以外、蛍光体6−1と同様にし
て、組成式:(Sr,Mg)3(PO4) 2:Sn2+の無
機蛍光体を得た(比較蛍光体6−2)。The average particle size of the obtained phosphor is 0.59 μm.
m, maximum excitation wavelength 255 nm, maximum emission wavelength 620 nm
Met.
2. Production of inorganic phosphor (phosphor 6-2)
Composition formula: (Sr, Mg)3(POFour)2: Sn2+
In the production of the phosphor 6-1, the inorganic phosphor precursor is acidified.
1.0 liter without going through the heating process in an elementary atmosphere
2% H at a flow rate of / min2-98% N2Gas is in circulation
In an atmosphere that heats from room temperature to 1050 ℃, at the same temperature
Same as phosphor 6-1 except heat treatment for 3 hours
And compositional formula: (Sr, Mg)3(POFour) 2: Sn2+Nothing
An organic phosphor was obtained (Comparative phosphor 6-2).
【0105】得られた蛍光体の平均粒径は1.08μ
m、極大励起波長255nm、極大発光波長620nm
であった。The average particle size of the obtained phosphor is 1.08 μm.
m, maximum excitation wavelength 255 nm, maximum emission wavelength 620 nm
Met.
【0106】得られた蛍光体6−1、比較蛍光体6−2
に励起波長255nmの紫外線を照射し、発光強度を測
定した。得られた結果を蛍光体6−1の発光強度を10
0とした相対強度で表6に示し、又蛍光体の外観色も表
6に示す。Obtained phosphor 6-1 and comparative phosphor 6-2
Was irradiated with ultraviolet rays having an excitation wavelength of 255 nm, and the emission intensity was measured. The obtained result is the emission intensity of the phosphor 6-1 of 10
Table 6 shows the relative intensity as 0, and Table 6 also shows the appearance color of the phosphor.
【0107】[0107]
【表6】 [Table 6]
【0108】表6から明らかなように、蛍光体6−1は
比較蛍光体6−2と比べて平均粒径が約45%も小さい
にも係わらず高い発光強度を示し、蛍光体の変色もない
ことが判る。しかしながら有酸素雰囲気での加熱工程を
経ないで得られた比較蛍光体6−2は発光強度が低下し
ているだけでなく茶色に変色しているなど、実用に適し
ていないことが判る。As is clear from Table 6, the phosphor 6-1 exhibits a high emission intensity even though the average particle size is smaller by about 45% than the comparative phosphor 6-2, and the discoloration of the phosphor also occurs. I know there isn't. However, it is understood that the comparative phosphor 6-2 obtained without the heating step in the aerobic atmosphere is not suitable for practical use because the emission intensity is reduced and the color is changed to brown.
【0109】[0109]
【発明の効果】本発明によれば、製造過程で変色、焼成
むら等が発生することなく製造安定性に優れ、十分な発
光特性を有する無機蛍光体が得られるという顕著に優れ
た効果を奏している。EFFECTS OF THE INVENTION According to the present invention, it is possible to obtain a remarkably excellent effect that an inorganic phosphor having excellent emission stability and excellent production stability can be obtained without causing discoloration or firing unevenness in the production process. ing.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C01G 31/00 C01G 31/00 C09K 11/59 CPM C09K 11/59 CPM CPR CPR CPW CPW CPX CPX CQA CQA 11/64 11/64 11/71 11/71 11/73 11/73 11/82 11/82 (72)発明者 岡田 尚大 東京都日野市さくら町1番地コニカ株式会 社内 (72)発明者 星野 秀樹 東京都日野市さくら町1番地コニカ株式会 社内 (72)発明者 星野 徳子 東京都日野市さくら町1番地コニカ株式会 社内 Fターム(参考) 4G048 AA03 AB02 AC08 AD03 AE05 4G073 BA13 BD20 CC20 FC01 FC06 FD12 UB37 4G076 AA02 AA18 AA22 AB07 AB13 BA13 BA14 BA23 CA02 DA15 4H001 CA04 CA06 CF02 XA08 XA12 XA13 XA14 XA15 XA17 XA20 XA23 XA38 XA39 XA56 YA50 YA63 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C01G 31/00 C01G 31/00 C09K 11/59 CPM C09K 11/59 CPM CPR CPR CPW CPW CPX CPX CQA CQA 11 / 64 11/64 11/71 11/71 11/73 11/73 11/82 11/82 (72) Inventor Takahiro Okada In-house (72) Inventor Hideki Hoshino, 1st Sakura-cho, Hino City, Tokyo Konica Stock Company, 1 Sakura-cho, Hino-shi, Tokyo In-house (72) Inventor Tokiko Hoshino Konica Stock Company, 1-sakura-cho, Hino-shi, Tokyo Internal F-term (reference) 4G048 AA03 AB02 AC08 AD03 AE05 4G073 BA13 BD20 CC20 FC01 FC06 FD12 UB37 4G076 AA02 AA18 AA22 AB07 AB13 BA13 BA14 BA23 CA02 DA15 4H001 CA04 CA06 CF02 XA08 XA12 XA13 XA14 XA15 XA17 XA20 XA23 XA38 XA39 XA56 YA50 YA63
Claims (19)
蛍光体の製造方法であって、且つ、得られる無機蛍光体
の平均粒径を1.0μm以下に調整することを特徴とす
る無機蛍光体の製造方法。 工程(1)無機蛍光体の前駆体を液相法により製造する
工程。 工程(2)無機蛍光体前駆体を酸素を有する雰囲気に晒
しながら加熱する工程。 工程(3)工程(2)の後、加熱された前記無機蛍光体
前駆体を弱還元性雰囲気に晒しながら加熱する工程。1. A method for producing an inorganic phosphor comprising the following steps (1) to (3), wherein the average particle size of the obtained inorganic phosphor is adjusted to 1.0 μm or less. A method for producing an inorganic phosphor. Step (1) A step of producing a precursor of an inorganic phosphor by a liquid phase method. Step (2) A step of heating the inorganic phosphor precursor while exposing it to an atmosphere containing oxygen. Step (3) A step of heating the heated inorganic phosphor precursor while exposing it to a weak reducing atmosphere after the step (3).
蛍光体の製造方法であって、且つ、無機蛍光体の励起波
長が250nm〜430nmであることを特徴とする無
機蛍光体の製造方法。 工程(1)無機蛍光体の前駆体を液相法により製造する
工程。 工程(2)無機蛍光体前駆体を酸素を有する雰囲気に晒
しながら加熱する工程。 工程(3)工程(2)の後、加熱された前記無機蛍光体
前駆体を弱還元性雰囲気に晒しながら加熱する工程。2. A method for producing an inorganic phosphor having the following steps (1) to (3), wherein the excitation wavelength of the inorganic phosphor is 250 nm to 430 nm. Production method. Step (1) A step of producing a precursor of an inorganic phosphor by a liquid phase method. Step (2) A step of heating the inorganic phosphor precursor while exposing it to an atmosphere containing oxygen. Step (3) A step of heating the heated inorganic phosphor precursor while exposing it to a weak reducing atmosphere after the step (3).
を特徴とする請求項1又は2に記載の無機蛍光体の製造
方法。3. The method for producing an inorganic phosphor according to claim 1, wherein a sol-gel method is used as the liquid phase method.
徴とする請求項1又は2に記載の無機蛍光体の製造方
法。4. The method for producing an inorganic phosphor according to claim 1, wherein a crystallization method is used as the liquid phase method.
に晒しながら加熱する工程が、600℃以上1000℃
以下であることを特徴とする請求項1〜4の何れか1項
に記載の無機蛍光体の製造方法。5. The step of heating the inorganic phosphor precursor while exposing it to an atmosphere containing oxygen is 600 ° C. or more and 1000 ° C.
It is the following, The manufacturing method of the inorganic fluorescent substance in any one of Claims 1-4 characterized by the following.
に晒しながら加熱する工程が、30分間以上90分間以
下であることを特徴とする請求項1〜5の何れか1項に
記載の無機蛍光体の製造方法。6. The inorganic material according to claim 1, wherein the step of heating the inorganic phosphor precursor while exposing it to an atmosphere containing oxygen is for 30 minutes or more and 90 minutes or less. Method for manufacturing phosphor.
以上50%以下であることを特徴とする請求項1〜6の
何れか1項に記載の無機蛍光体の製造方法。7. The oxygen-containing atmosphere has an oxygen concentration of 1%.
It is 50% or less and 50% or more, The manufacturing method of the inorganic fluorescent substance in any one of Claims 1-6 characterized by the above-mentioned.
しながら加熱する工程が、1000℃以上1800℃以
下であることを特徴とする請求項1〜7の何れか1項に
記載の無機蛍光体の製造方法。8. The inorganic material according to claim 1, wherein the step of heating the inorganic phosphor precursor while exposing it to a weakly reducing atmosphere is 1000 ° C. or more and 1800 ° C. or less. Method for manufacturing phosphor.
00ppm以下であることを特徴とする請求項1〜8の
何れか1項に記載の無機蛍光体の製造方法。9. The weakly reducing atmosphere has an oxygen concentration of 0 or more and 1 or more.
It is below 00 ppm, The manufacturing method of the inorganic fluorescent substance in any one of Claims 1-8 characterized by the above-mentioned.
%以上10%以下であることを特徴とする請求項1〜9
の何れか1項に記載の無機蛍光体の製造方法。10. The weakly reducing atmosphere has a hydrogen concentration of 0.1.
% Or more and 10% or less, It is characterized by the above-mentioned.
The method for producing the inorganic phosphor according to any one of 1.
する工程及び弱還元性雰囲気に晒しながら加熱する工程
において、雰囲気ガスを0.1リットル/分以上10リ
ットル/分以下の流量で流通させることを特徴とする請
求項1〜10の何れか1項に記載の無機蛍光体の製造方
法。11. In the step of heating while exposing to an atmosphere containing oxygen and the step of heating while exposing to a weakly reducing atmosphere, the atmosphere gas is allowed to flow at a flow rate of 0.1 liter / min or more and 10 liter / min or less. The method for producing an inorganic phosphor according to any one of claims 1 to 10, which is characterized in that.
する工程の後、1.33×103Pa以下の真空状態に
してから弱還元性雰囲気に置換することを特徴とする請
求項1〜11の何れか1項に記載の無機蛍光体の製造方
法。12. The method according to claim 1, wherein after the step of heating while exposing to an atmosphere containing oxygen, a vacuum state of 1.33 × 10 3 Pa or less is applied, and then the atmosphere is replaced with a weak reducing atmosphere. The method for producing the inorganic phosphor according to any one of items.
活剤を含有することを特徴とする請求項1〜12の何れ
か1項に記載の無機蛍光体の製造方法。13. The method for producing an inorganic phosphor according to claim 1, wherein the inorganic phosphor contains Ba, Mg, Al and an activator.
含有することを特徴とする請求項1〜12の何れか1項
に記載の無機蛍光体の製造方法。14. The method for producing an inorganic phosphor according to claim 1, wherein the inorganic phosphor contains Ba, Si and an activator.
することを特徴とする請求項1〜12の何れか1項に記
載の無機蛍光体の製造方法。15. The method for producing an inorganic phosphor according to claim 1, wherein the inorganic phosphor contains Y, V and an activator.
剤を含有することを特徴とする請求項1〜12の何れか
1項に記載の無機蛍光体の製造方法。16. The method for producing an inorganic phosphor according to claim 1, wherein the inorganic phosphor contains Sr, P, Cl and an activator.
Cl及び賦活剤を含有することを特徴とする請求項1〜
12の何れか1項に記載の無機蛍光体の製造方法。17. The inorganic phosphor is Ba, Ca, Mg, P,
Cl and an activator are contained, It is characterized by the above-mentioned.
13. The method for producing an inorganic phosphor according to any one of 12.
剤を含有することを特徴とする請求項1〜12の何れか
1項に記載の無機蛍光体の製造方法。18. The method for producing an inorganic phosphor according to claim 1, wherein the inorganic phosphor contains Sr, Mg, P and an activator.
無機蛍光体の製造方法によって得られたことを特徴とす
る無機蛍光体。19. An inorganic phosphor obtained by the method for producing an inorganic phosphor according to any one of claims 1 to 18.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001381440A JP2003183643A (en) | 2001-12-14 | 2001-12-14 | Method of production for inorganic-fluorescent substance and inorganic-fluorescent substance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001381440A JP2003183643A (en) | 2001-12-14 | 2001-12-14 | Method of production for inorganic-fluorescent substance and inorganic-fluorescent substance |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003183643A true JP2003183643A (en) | 2003-07-03 |
Family
ID=27592116
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001381440A Pending JP2003183643A (en) | 2001-12-14 | 2001-12-14 | Method of production for inorganic-fluorescent substance and inorganic-fluorescent substance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003183643A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004065521A1 (en) * | 2003-01-20 | 2004-08-05 | Daiden Co.,Ltd. | Method for preparing high brightness luminescent material and high brightness luminescent material |
JP2006077079A (en) * | 2004-09-08 | 2006-03-23 | Konica Minolta Medical & Graphic Inc | Preparation process of phosphor, phosphor and primer display panel |
CN116947059A (en) * | 2023-04-14 | 2023-10-27 | 江南大学 | X-ray dark green response color-changing barium silicate-based material and preparation method and application thereof |
-
2001
- 2001-12-14 JP JP2001381440A patent/JP2003183643A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004065521A1 (en) * | 2003-01-20 | 2004-08-05 | Daiden Co.,Ltd. | Method for preparing high brightness luminescent material and high brightness luminescent material |
JP2006077079A (en) * | 2004-09-08 | 2006-03-23 | Konica Minolta Medical & Graphic Inc | Preparation process of phosphor, phosphor and primer display panel |
CN116947059A (en) * | 2023-04-14 | 2023-10-27 | 江南大学 | X-ray dark green response color-changing barium silicate-based material and preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8021575B2 (en) | Metal hydroxy carbonate nanoparticle coated phosphor and method for preparing the same | |
JP4594426B2 (en) | Phosphor | |
JP5461752B2 (en) | Phosphor containing alkaline earth metal and Group 13 metal oxide and light source incorporating the phosphor | |
JP2001172627A (en) | Rare earth phosphate, method for producing the same, and rare earth phosphate phosphor | |
JP4796774B2 (en) | Phosphor containing boron and rare earth metal, and light source incorporating the phosphor | |
CN107699238A (en) | A kind of terbium ion Tb3+The niobates green emitting phosphor of activation, preparation method and application | |
JP2002212553A (en) | Lanthanum phosphate phosphor for vacuum ultraviolet and rare gas discharge lamp | |
JP4199530B2 (en) | Fluorescent substance for mercury vapor discharge lamp and mercury vapor discharge lamp | |
JP7017150B2 (en) | Fluorescent powder, light emitting device, and method for manufacturing fluorescent powder | |
JP2003183643A (en) | Method of production for inorganic-fluorescent substance and inorganic-fluorescent substance | |
KR100351635B1 (en) | Process for preparing spherical blue phosphor based on aluminates | |
JP3515737B2 (en) | Phosphor and fluorescent lamp using the same | |
KR100893098B1 (en) | Phosphor and fluorescent lamp | |
JP4329651B2 (en) | Fluorescent lamp | |
CN101020823B (en) | Terbium calcium potassium phosphate green fluorescent powder and its preparation method and application | |
JP2003277747A (en) | Method for manufacturing phosphor and phosphor | |
CN107109217A (en) | The manufacture method of fluorophor and light-emitting device and fluorophor | |
KR100447936B1 (en) | Green emitting phosphor by VUV excitiation and its preparation method | |
JP3360901B2 (en) | Phosphors and fluorescent lamps | |
JPH10298548A (en) | Light-emitting fluorescent material when subjected to vacuum ultraviolet excitation and its production | |
JP2003003166A (en) | Phosphor for vacuum ultraviolet ray excited light emitting device and method of manufacturing the same | |
JP4147915B2 (en) | Blue phosphor for vacuum ultraviolet light-emitting device | |
JP2003138255A (en) | Method for producing inorganic fluorescent substance and inorganic fluorescent substance | |
JPH07258631A (en) | Fluorescent substance and fluorescent lamp in which the same is used | |
JPH04372689A (en) | Manufacture of phosphor powder |