JP2003181262A - Porous silica membrane for membrane emulsification - Google Patents
Porous silica membrane for membrane emulsificationInfo
- Publication number
- JP2003181262A JP2003181262A JP2001387390A JP2001387390A JP2003181262A JP 2003181262 A JP2003181262 A JP 2003181262A JP 2001387390 A JP2001387390 A JP 2001387390A JP 2001387390 A JP2001387390 A JP 2001387390A JP 2003181262 A JP2003181262 A JP 2003181262A
- Authority
- JP
- Japan
- Prior art keywords
- membrane
- emulsification
- porous silica
- pores
- gel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 title claims abstract description 54
- 239000012528 membrane Substances 0.000 title claims abstract description 53
- 238000004945 emulsification Methods 0.000 title claims abstract description 31
- 239000000377 silicon dioxide Substances 0.000 title claims abstract description 21
- 239000011148 porous material Substances 0.000 claims abstract description 33
- 238000007385 chemical modification Methods 0.000 claims abstract description 8
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 5
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 238000005191 phase separation Methods 0.000 abstract description 7
- 238000003980 solgel method Methods 0.000 abstract description 2
- 239000000499 gel Substances 0.000 description 17
- 239000012071 phase Substances 0.000 description 17
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 15
- 239000000243 solution Substances 0.000 description 14
- 239000007864 aqueous solution Substances 0.000 description 10
- 238000010438 heat treatment Methods 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 10
- 239000002184 metal Substances 0.000 description 10
- 238000000034 method Methods 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 9
- 150000001875 compounds Chemical class 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- 239000007788 liquid Substances 0.000 description 8
- 239000002904 solvent Substances 0.000 description 8
- 239000002612 dispersion medium Substances 0.000 description 7
- 238000009826 distribution Methods 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- 125000000524 functional group Chemical group 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 239000000839 emulsion Substances 0.000 description 5
- 230000002209 hydrophobic effect Effects 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- -1 polyoxyethylene Polymers 0.000 description 5
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 4
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 4
- 230000002378 acidificating effect Effects 0.000 description 4
- 150000004703 alkoxides Chemical class 0.000 description 4
- 239000004202 carbamide Substances 0.000 description 4
- 229910001873 dinitrogen Inorganic materials 0.000 description 4
- FFUAGWLWBBFQJT-UHFFFAOYSA-N hexamethyldisilazane Chemical compound C[Si](C)(C)N[Si](C)(C)C FFUAGWLWBBFQJT-UHFFFAOYSA-N 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 150000002736 metal compounds Chemical class 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 125000005372 silanol group Chemical group 0.000 description 4
- 238000005979 thermal decomposition reaction Methods 0.000 description 4
- 229920003169 water-soluble polymer Polymers 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 238000001879 gelation Methods 0.000 description 3
- 238000006460 hydrolysis reaction Methods 0.000 description 3
- 239000003350 kerosene Substances 0.000 description 3
- 239000003607 modifier Substances 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 3
- 239000004094 surface-active agent Substances 0.000 description 3
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 2
- XZIIFPSPUDAGJM-UHFFFAOYSA-N 6-chloro-2-n,2-n-diethylpyrimidine-2,4-diamine Chemical compound CCN(CC)C1=NC(N)=CC(Cl)=N1 XZIIFPSPUDAGJM-UHFFFAOYSA-N 0.000 description 2
- DLFVBJFMPXGRIB-UHFFFAOYSA-N Acetamide Chemical compound CC(N)=O DLFVBJFMPXGRIB-UHFFFAOYSA-N 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- ATHHXGZTWNVVOU-UHFFFAOYSA-N N-methylformamide Chemical compound CNC=O ATHHXGZTWNVVOU-UHFFFAOYSA-N 0.000 description 2
- QYKIQEUNHZKYBP-UHFFFAOYSA-N Vinyl ether Chemical compound C=COC=C QYKIQEUNHZKYBP-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 235000019270 ammonium chloride Nutrition 0.000 description 2
- IJOOHPMOJXWVHK-UHFFFAOYSA-N chlorotrimethylsilane Chemical compound C[Si](C)(C)Cl IJOOHPMOJXWVHK-UHFFFAOYSA-N 0.000 description 2
- 238000000921 elemental analysis Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- VKYKSIONXSXAKP-UHFFFAOYSA-N hexamethylenetetramine Chemical compound C1N(C2)CN3CN1CN2C3 VKYKSIONXSXAKP-UHFFFAOYSA-N 0.000 description 2
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 2
- 229910052753 mercury Inorganic materials 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- AYPHWGQEEGAAKW-UHFFFAOYSA-N n-[dimethyl(octadecyl)silyl]-n-ethylethanamine Chemical compound CCCCCCCCCCCCCCCCCC[Si](C)(C)N(CC)CC AYPHWGQEEGAAKW-UHFFFAOYSA-N 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 229920000620 organic polymer Polymers 0.000 description 2
- 239000005373 porous glass Substances 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 229940035044 sorbitan monolaurate Drugs 0.000 description 2
- 150000005846 sugar alcohols Polymers 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical class CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 1
- OHLUUHNLEMFGTQ-UHFFFAOYSA-N N-methylacetamide Chemical compound CNC(C)=O OHLUUHNLEMFGTQ-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 229920002873 Polyethylenimine Polymers 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000005215 alkyl ethers Chemical class 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 150000003857 carboxamides Chemical class 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 1
- ZXFNVHQEUQDKSZ-UHFFFAOYSA-N dimethyl(octadecyl)silane Chemical compound CCCCCCCCCCCCCCCCCC[SiH](C)C ZXFNVHQEUQDKSZ-UHFFFAOYSA-N 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- NKSJNEHGWDZZQF-UHFFFAOYSA-N ethenyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)C=C NKSJNEHGWDZZQF-UHFFFAOYSA-N 0.000 description 1
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- NEXSMEBSBIABKL-UHFFFAOYSA-N hexamethyldisilane Chemical compound C[Si](C)(C)[Si](C)(C)C NEXSMEBSBIABKL-UHFFFAOYSA-N 0.000 description 1
- 239000004312 hexamethylene tetramine Substances 0.000 description 1
- 235000010299 hexamethylene tetramine Nutrition 0.000 description 1
- 239000012456 homogeneous solution Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000010297 mechanical methods and process Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- BFXIKLCIZHOAAZ-UHFFFAOYSA-N methyltrimethoxysilane Chemical compound CO[Si](C)(OC)OC BFXIKLCIZHOAAZ-UHFFFAOYSA-N 0.000 description 1
- 239000012982 microporous membrane Substances 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229920000083 poly(allylamine) Polymers 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920000172 poly(styrenesulfonic acid) Polymers 0.000 description 1
- 229920000447 polyanionic polymer Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229940005642 polystyrene sulfonic acid Drugs 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 125000002572 propoxy group Chemical group [*]OC([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 1
- 238000001226 reprecipitation Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 150000003440 styrenes Chemical class 0.000 description 1
- 238000010557 suspension polymerization reaction Methods 0.000 description 1
- LFQCEHFDDXELDD-UHFFFAOYSA-N tetramethyl orthosilicate Chemical compound CO[Si](OC)(OC)OC LFQCEHFDDXELDD-UHFFFAOYSA-N 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 239000005051 trimethylchlorosilane Substances 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000011240 wet gel Substances 0.000 description 1
Landscapes
- Silicon Compounds (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、混ざり合わない液
体同士の一方の液体を、多孔質膜を介して他方の液体中
に分散させてエマルションを製造する、いわゆる膜乳化
法に用いる多孔質膜に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a porous membrane used in a so-called membrane emulsification method in which one liquid of immiscible liquids is dispersed in the other liquid through a porous membrane to produce an emulsion. Regarding
【0002】[0002]
【従来の技術】従来より、各種の産業分野において、性
質の異なる流体を混合することが行われており、その一
例として、性質の異なる流体である水と油との混合があ
り、油を水中に微細な粒子として分散しエマルション化
する混合、いわゆる乳化がある。このエマルションの製
造法としては、連続相となるべき液体に分散相となるべ
き液体と界面活性剤などの乳化剤とを添加し、得られる
混合液を攪拌機などの機械によりかきまぜて製造する機
械的方法と、分散相となるべき液体をミクロ多孔質膜を
通して連続相となるべき液体中に圧入する膜乳化法があ
る。前者の方法は、懸濁重合によるポリマーの性能に大
きく影響するエマルション粒子の粒径を自由に変化させ
ることが難しく、後者の方法が一般的に利用されてい
る。従来、後者の膜乳化法に使用する多孔質膜として挙
げられているものには、CaO-B2O3-SiO2-Al2O3系多孔質
ガラス、CaO-B2O3−SiO2‐Al2O3-Na2O-MgO系多孔質ガラ
スがある。いずれも多成分系ガラスの分相を利用して製
造されているものである。2. Description of the Related Art Conventionally, fluids having different properties have been mixed in various industrial fields, and one example thereof is mixing fluids having different properties, water and oil. There is so-called emulsification, which is a mixture in which fine particles are dispersed and emulsified. As a method for producing this emulsion, a mechanical method in which a liquid to be a continuous phase and a liquid to be a dispersed phase and an emulsifier such as a surfactant are added, and the resulting mixed liquid is stirred by a machine such as a stirrer Then, there is a membrane emulsification method in which a liquid to be a dispersed phase is pressed into a liquid to be a continuous phase through a microporous membrane. In the former method, it is difficult to freely change the particle size of emulsion particles, which greatly affects the performance of the polymer by suspension polymerization, and the latter method is generally used. Heretofore, those listed as a porous membrane for use in the latter membrane emulsification method, CaO-B 2 O 3 -SiO 2 -Al 2 O 3 based porous glass, CaO-B 2 O 3 -SiO 2 -Al 2 O 3 -Na 2 O-MgO based porous glass is available. Both are manufactured by utilizing the phase separation of multi-component glass.
【0003】[0003]
【発明が解決しようとする課題】多様な分散相と分散媒
との組み合わせに対して膜乳化を適応させるには、多孔
質膜の表面はそれぞれの乳化系に応じた性質を持つ必要
がある。そしてそれには、膜の表面を化学修飾によって
改質する手法が、非常に有効となる。一方SiO2ゲルの表
面にはシラノール基が存在することができ、そのシラノ
ール基は、表面化学修飾の際に反応サイトとなる官能基
の役割を担う。ところが従来の膜乳化用多孔質膜は原料
が多成分系ガラスであり、シリカ以外の成分を多量に含
んでいるため表面官能基が不足し、十分な表面化学修飾
が達成できないという問題点があった。In order to adapt the film emulsification to various combinations of the disperse phase and the dispersion medium, the surface of the porous film needs to have a property corresponding to each emulsification system. For that purpose, a method of modifying the surface of the film by chemical modification is very effective. On the other hand, a silanol group can be present on the surface of the SiO 2 gel, and the silanol group plays a role of a functional group which becomes a reaction site during surface chemical modification. However, the conventional porous membrane for membrane emulsification has a problem that the raw material is multi-component glass and contains a large amount of components other than silica, so that the surface functional groups are insufficient and sufficient surface chemical modification cannot be achieved. It was
【0004】[0004]
【課題を解決するための手段】本発明は、上記課題を解
決するため、SiO2を主成分とし、0.3〜50ミクロ
ン、及び50ナノメートル以下の細孔を有する膜乳化用
多孔質シリカ膜を提供する。本発明の多孔質シリカ膜
は、相分離を利用したゾル―ゲル法によって調製するこ
とが好ましい。ゾル−ゲル反応に用いられるゲル形成を
起こす網目成分の前駆体としては、金属アルコキシド、
錯体、金属塩、有機修飾金属アルコキシド、有機架橋金
属アルコキシド、およびこれらの部分加水分解生成物、
部分重合生成物である多量体を用いることができる。水
ガラスほかケイ酸塩水溶液のpHを変化させることによ
るゾル−ゲル転移も、同様に利用することができる。さ
らに具体的には、上記目的達成の手段は、水溶性高分
子、熱分解する化合物を酸性水溶液に溶かし、それに加
水分解性の官能基を有する金属化合物を添加して加水分
解反応を行い、板状部材の溝内において生成物が固化し
た後、次いで湿潤状態のゲルを加熱することにより、ゲ
ル調製時にあらかじめ溶解させておいた低分子化合物を
熱分解させ、次いで乾燥し加熱して製造することが好ま
しい。[Means for Solving the Problems] In order to solve the above-mentioned problems, the present invention comprises a porous silica for membrane emulsification containing SiO 2 as a main component and having pores of 0.3 to 50 μm and 50 nm or less. Provide a membrane. The porous silica membrane of the present invention is preferably prepared by a sol-gel method utilizing phase separation. As the precursor of the network component that causes gel formation used in the sol-gel reaction, metal alkoxide,
Complexes, metal salts, organic modified metal alkoxides, organic crosslinked metal alkoxides, and partial hydrolysis products thereof,
A multimer which is a partial polymerization product can be used. The sol-gel transition by changing the pH of water glass as well as the aqueous silicate solution can be utilized in the same manner. More specifically, the means for achieving the above-mentioned object is to dissolve a water-soluble polymer and a thermally decomposable compound in an acidic aqueous solution, and then add a metal compound having a hydrolyzable functional group to carry out a hydrolysis reaction. After the product is solidified in the groove of the strip-shaped member, the wet gel is then heated to thermally decompose the low-molecular weight compound that was dissolved in advance when the gel was prepared, and then dried and heated to produce the product. Is preferred.
【0005】ここで、水溶性高分子は、理論的には適当
な濃度の水溶液と成し得る水溶性有機高分子であって、
加水分解性の官能基を有する金属化合物によって生成す
るアルコールを含む反応系中に均一に溶解し得るもので
あれば良いが、具体的には高分子金属塩であるポリスチ
レンスルホン酸のナトリウム塩またはカリウム塩、高分
子酸であって解離してポリアニオンとなるポリアクリル
酸、高分子塩基であって水溶液中でポリカチオンを生ず
るポリアリルアミンおよびポリエチレンイミン、あるい
は中性高分子であって主鎖にエーテル結合を持つポリエ
チレンオキシド、側鎖にカルボニル基を有するポリビニ
ルピロリドン等が好適である。また、有機高分子に代え
てホルムアミド、多価アルコール、界面活性剤を用いて
もよく、その場合多価アルコールとしてはグリセリン
が、界面活性剤としてはポリオキシエチレンアルキルエ
ーテル類が最適である。Here, the water-soluble polymer is theoretically a water-soluble organic polymer which can be formed into an aqueous solution having an appropriate concentration.
Any compound that can be uniformly dissolved in a reaction system containing an alcohol formed by a metal compound having a hydrolyzable functional group may be used, and specifically, a sodium salt or potassium salt of polystyrenesulfonic acid, which is a polymer metal salt, may be used. Salts, polyacrylic acids that are polymeric acids that dissociate into polyanions, polyallylamine and polyethyleneimine that are polymeric bases that produce polycations in aqueous solution, or neutral polymers that are ether-bonded to the main chain Polyethylene oxide having, and polyvinylpyrrolidone having a carbonyl group in the side chain are preferable. Further, formamide, polyhydric alcohol, or a surfactant may be used in place of the organic polymer, in which case glycerin is optimal as the polyhydric alcohol and polyoxyethylene alkyl ethers are optimal as the surfactant.
【0006】加水分解性の官能基を有する金属化合物と
しては、金属アルコキシド又はそのオリゴマーを用いる
ことができ、これらのものは例えば、メトキシ基、エト
キシ基、プロポキシ基等の炭素数の少ないものが好まし
い。また、その金属としては、最終的に形成される酸化
物の金属、例えばSi、Ti、Zr、Alが使用される
が、Siが好ましい。この金属としては1種又は2種以上
であっても良い。一方オリゴマーとしてはアルコールに
均一に溶解分散できるものであればよく、具体的には1
0量体程度まで使用できる。As the metal compound having a hydrolyzable functional group, a metal alkoxide or an oligomer thereof can be used, and those having a small number of carbon atoms such as methoxy group, ethoxy group and propoxy group are preferable. . Further, as the metal, a metal of an oxide finally formed, for example, Si, Ti, Zr, Al is used, and Si is preferable. The metal may be one kind or two or more kinds. On the other hand, the oligomer may be any oligomer that can be uniformly dissolved and dispersed in alcohol, and specifically, 1
It can be used up to about 0 mer.
【0007】また、酸性水溶液としては、通常塩酸、硝
酸等の鉱酸0.001モル濃度以上のもの、あるいは酢
酸、ギ酸等の有機酸0.01モル濃度以上のものが好ま
しい。The acidic aqueous solution is usually preferably a mineral acid such as hydrochloric acid or nitric acid having a concentration of 0.001 mol or more, or an organic acid such as acetic acid or formic acid having a concentration of 0.01 mol or more.
【0008】相分離・ゲル化にあたっては、溶液を室温
40〜80℃で0.5〜5時間保存することにより達成
できる。相分離・ゲル化は、当初透明な溶液が白濁して
シリカ相と水相との相分離を生じついにゲル化する過程
を経る。この相分離・ゲル化で水溶性高分子は分散状態
にありそれらの沈殿は実質的に生じない。Phase separation / gelation can be achieved by storing the solution at room temperature of 40 to 80 ° C. for 0.5 to 5 hours. Phase separation / gelation involves a process in which an initially transparent solution becomes cloudy to cause phase separation between a silica phase and an aqueous phase and finally gelate. Due to this phase separation / gelation, the water-soluble polymer is in a dispersed state and their precipitation is substantially not caused.
【0009】あらかじめ共存させる熱分解性の化合物の
具体的な例としては、尿素あるいはヘキサメチレンテト
ラミン、ホルムアミド、N−メチルホルムアミド、N,
N−ジメチルホルムアミド、アセトアミド、N−メチル
アセトアミド、N,N−ジメチルアセトアミド等の有機
アミド類を利用できるが、加熱後の溶媒のpH値が重要
な条件であるので、熱分解後に溶媒を塩基性にする化合
物であれば特に制限はない。共存させる熱分解性化合物
は、化合物の種類にもよるが、例えば尿素の場合には、
反応溶液10gに対し、0.05〜0.8g、好ましく
は0.1〜0.7gである。また、加熱温度は、例えば
尿素の場合には40〜200℃で、加熱後の溶媒のpH
値は、6.0〜12.0が好ましい。また、熱分解によ
ってフッ化水素酸のようにシリカを溶解する性質のある
化合物を生じるものも、同様に利用できる。Specific examples of the thermally decomposable compound to be coexisted in advance include urea or hexamethylenetetramine, formamide, N-methylformamide, N,
Organic amides such as N-dimethylformamide, acetamide, N-methylacetamide, and N, N-dimethylacetamide can be used, but since the pH value of the solvent after heating is an important condition, the solvent should be basic after thermal decomposition. There is no particular limitation as long as it is a compound. The thermally decomposable compound to coexist depends on the type of compound, but in the case of urea, for example,
The amount is 0.05 to 0.8 g, preferably 0.1 to 0.7 g per 10 g of the reaction solution. The heating temperature is, for example, 40 to 200 ° C. in the case of urea, and the pH of the solvent after heating.
The value is preferably 6.0 to 12.0. Further, a compound which produces a compound having a property of dissolving silica, such as hydrofluoric acid, by thermal decomposition can be similarly used.
【0010】上記方法では、水溶性高分子を酸性水溶液
に溶かし、それに加水分解性の官能基を有する金属化合
物を添加して加水分解反応を行うと、溝内において、溶
媒リッチ相と骨格相とに分離したゲルが生成する。生成
物(ゲル)が固化した後、適当な熟成時間を経た後、湿
潤状態のゲルを加熱することによって、反応溶液にあら
かじめ溶解させておいたアミド系化合物が熱分解し、骨
格相の内壁面に接触している溶媒のpHが上昇する。そ
して、溶媒がその内壁面を浸食し、内壁面の凹凸状態を
変えることによって細孔径を徐々に拡大する。シリカを
主成分とするゲルの場合には、酸性あるいは中性領域に
おいては変化の度合は非常に小さいが、熱分解が盛んに
なり水溶液の塩基性が増すにつれて、細孔を構成する部
分が溶解し、より平坦な部分に再析出することによっ
て、平均細孔径が大きくなる反応が顕著に起こるように
なる。In the above method, when a water-soluble polymer is dissolved in an acidic aqueous solution and a metal compound having a hydrolyzable functional group is added to carry out a hydrolysis reaction, a solvent-rich phase and a skeletal phase are formed in the groove. A gel that separates is produced. After the product (gel) has solidified and after an appropriate aging time, by heating the gel in a wet state, the amide compound previously dissolved in the reaction solution is thermally decomposed, and the inner wall surface of the skeletal phase The pH of the solvent in contact with is increased. Then, the solvent erodes the inner wall surface and changes the concave-convex state of the inner wall surface to gradually increase the pore diameter. In the case of a gel containing silica as the main component, the degree of change is very small in the acidic or neutral region, but as thermal decomposition becomes more active and the basicity of the aqueous solution increases, the part that constitutes the pores dissolves. Then, by re-precipitating in a flatter portion, the reaction in which the average pore diameter becomes large becomes remarkable.
【0011】巨大空孔を持たず3次元的に束縛された細
孔のみを持つゲルでは、平衡条件としては溶解し得る部
分でも、溶出物質が外部の溶液にまで拡散できないため
に、元の細孔構造が相当な割合で残る。これに対して巨
大空孔となる溶媒リッチ相を持つゲルにおいては、2次
元的にしか束縛されていない細孔が多く、外部の水溶液
との物質のやり取りが十分頻繁に起こるため、大きい細
孔の発達に並行して小さい細孔は消滅し、全体の細孔径
分布は顕著に広がることがない。In a gel having only three-dimensionally bound pores without giant pores, even if it is a soluble portion under equilibrium conditions, the eluting substance cannot diffuse to the external solution, so Pore structure remains in a considerable proportion. On the other hand, in a gel with a solvent-rich phase that becomes giant pores, many pores are bound only in two dimensions, and the exchange of substances with the external aqueous solution occurs frequently enough. The small pores disappear in parallel with the development of the, and the entire pore size distribution does not significantly expand.
【0012】なお、加熱過程においては、ゲルを密閉条
件下に置き、熱分解生成物の蒸気圧が飽和して溶媒のp
Hが速やかに定常値をとるようにすることが有効であ
る。In the heating process, the gel is placed under a closed condition, the vapor pressure of the thermal decomposition product is saturated, and the p
It is effective to set H to a steady value promptly.
【0013】溶解・再析出反応が定常状態に達し、これ
に対応する細孔構造を得るために要する、加熱処理時間
は、巨大空孔の大きさや試料の体積によって変化するの
で、それぞれの処理条件において実質的に細孔構造が変
化しなくなる、最短処理時間を決定することが必要であ
る。The heat treatment time required for the dissolution / reprecipitation reaction to reach a steady state and to obtain a pore structure corresponding to the steady state changes depending on the size of the giant pores and the volume of the sample. It is necessary to determine the shortest treatment time at which the pore structure does not substantially change.
【0014】加熱処理を終えたゲルは、溶媒を気化させ
ることによって、乾燥ゲルとなる。この乾燥ゲル中に
は、出発溶液中の共存物質が残存する可能性があるの
で、適当な温度で熱処理を行い、有機物等を熱分解する
ことによって、目的の無機系多孔質体を得ることができ
る。なお、乾燥は、30〜80℃で数時間〜数十時間放
置して行い、熱処理は、200〜1200℃程度で加熱する。The gel that has undergone the heat treatment becomes a dry gel by evaporating the solvent. Since the coexisting substances in the starting solution may remain in this dried gel, it is possible to obtain the desired inorganic porous body by thermally decomposing organic substances and the like by performing heat treatment at an appropriate temperature. it can. The drying is performed by leaving it at 30 to 80 ° C for several hours to several tens of hours, and the heat treatment is performed at about 200 to 1200 ° C.
【0015】上記の方法で得られる本発明の膜乳化用多
孔質シリカ膜は、主成分がSiO2であり、0.3〜50ミ
クロン、及び50ナノメートル以下の細孔を有する。こ
こで、「主成分」とは、成分の大部分がSiO2であるとい
う意味で、99.0%以上のSiO2を含む場合が最も好ま
しいが、これには限定されない。細孔の制御は、上記し
た製造法の加熱時間、温度などを変えることにより行う
ことができる。好ましい細孔は、スルーポア(貫通孔)
が0.6〜20ミクロンであり、メソポアは、50ナノ
メートル以下ならば、0を含みいずれの細孔でもよい。
50ナノメートル以上になると強度が不足するからであ
る。The porous silica membrane for membrane emulsification of the present invention obtained by the above method contains SiO2 as a main component and has pores of 0.3 to 50 microns and 50 nanometers or less. Here, the term “main component” means that most of the components are SiO 2 , and it is most preferable that the content of SiO 2 is 99.0% or more, but the present invention is not limited to this. The pores can be controlled by changing the heating time, temperature, etc. of the above-mentioned manufacturing method. Preferred pores are through pores
Is 0.6 to 20 microns, and the mesopores may be any pores including 0 as long as they are 50 nanometers or less.
This is because the strength becomes insufficient at 50 nm or more.
【0016】本発明では、主成分がSiO2であるので、活
性シラノ−ル基を多量に含み十分な表面化学修飾を達成
できる。表面化学修飾剤は、特に限定されず、例えばメ
チルトリメトキシシラン、ヘキサメチルジシラン、ビニ
ルトリメトキシシラン、トリメチルクロロシラン、オク
タデシルジメチルシランなどのシランカップリング剤、
ジハイドロジェンへキサメチルシクロシロキサン等の環
状シリコーン化合物、ジメチルポリシロキサンなどの熱
硬化性シリコーンオイルなどを用いることができる。こ
れら化学修飾剤のなかでも炭素鎖による化学修飾剤が好
ましい。これにより、いろんな粒を長時間安定に製造で
きる。修飾により導入される炭素量は、安定性の観点か
ら3重量%以上、好ましくは、10重量%以上である。
なお、ここでの重量%は、シリカゲルと修飾基をたした
全重量に対する割合である。In the present invention, since the main component is SiO 2 , a large amount of active silanol groups are contained and sufficient surface chemical modification can be achieved. The surface chemical modifier is not particularly limited, for example, methyltrimethoxysilane, hexamethyldisilane, vinyltrimethoxysilane, trimethylchlorosilane, silane coupling agents such as octadecyldimethylsilane,
Cyclic silicone compounds such as dihydrogenhexamethylcyclosiloxane and thermosetting silicone oils such as dimethylpolysiloxane can be used. Among these chemical modifiers, a chemical modifier having a carbon chain is preferable. As a result, various particles can be manufactured stably for a long time. The amount of carbon introduced by the modification is 3% by weight or more, preferably 10% by weight or more, from the viewpoint of stability.
The weight% here is the ratio to the total weight of silica gel and the modifying group.
【0017】本発明の多孔質シリカ膜を介して、粒子原
料を有する分散相を分散媒中に分散することにより無機
質微小球体を製造できる。分散相としては、シリカゾル
等の金属酸化物ゾルの水またはアルコール分散液、金
属、その他ポリマー原料を用いることができる。ポリマ
ー原料としては、スチレン類、ジビニルベンゼン、(メ
タ)アクリル酸エステル類、ヒドロキシアルキル(メ
タ)アクリレート類等のビニルモノマーを挙げることが
でき、また縮合系モノマーとしてジカルボン酸ジオール
類、ジカルボン酸ジアミン類、ビニルエーテルとして1
官能性から4官能性まで望ましくは2官能以下のビニル
エーテルを用いることができる。また分散媒としては、
親水性の低い有機溶媒なら何でもよく、アルコール類、
炭化水素類などを用いることができる。具体的には、へ
キサン、シクロへキサン、トルエン、ケロシン、クロロ
フォルム、大豆、油などを用いることができる。Inorganic microspheres can be produced by dispersing the dispersed phase containing the particle raw material in the dispersion medium through the porous silica membrane of the present invention. As the dispersed phase, water or alcohol dispersion of metal oxide sol such as silica sol, metal, or other polymer raw material can be used. Examples of the polymer raw material include vinyl monomers such as styrenes, divinylbenzene, (meth) acrylic acid esters, and hydroxyalkyl (meth) acrylates, and condensation-type monomers such as dicarboxylic acid diols and dicarboxylic acid diamines. , As vinyl ether 1
It is possible to use vinyl ethers having a functionality of 4 to 4 and preferably a functionality of 2 or less. As the dispersion medium,
Any organic solvent with low hydrophilicity, such as alcohols,
Hydrocarbons and the like can be used. Specifically, hexane, cyclohexane, toluene, kerosene, chloroform, soybean, oil and the like can be used.
【発明の実施の形態】<実施例1>
(膜製造)ポリエチレンオキサイド(分子量10,00
0)4.2gを0.01M酢酸水溶液50mlに溶解
し、氷冷下でテトラメトキシシラン24.7mlを添加
後撹拌して均一溶液とした。該均一溶液を密閉溶液中、
40℃で3日間反応させ、得られたゲルを0.5M尿素
水溶液中、110℃で4時間処理した。得られたゲルを
乾燥後、1050℃、または950℃で5時間、熱処理し、研
磨紙で25mmφ、厚さ1mmのディスク状に成形し
た。膜のSEM写真を図1に、水銀圧入測定による細孔分
布を図2に示す。図2より、本発明の膜は、1.2μmの
細孔を有し、細孔径が均一であることが分かる。BEST MODE FOR CARRYING OUT THE INVENTION <Example 1> (Membrane production) Polyethylene oxide (molecular weight: 10,000)
0) 4.2 g was dissolved in 0.01 M acetic acid aqueous solution 50 ml, and tetramethoxysilane 24.7 ml was added under ice cooling and then stirred to obtain a uniform solution. The homogeneous solution in a closed solution,
The reaction was carried out at 40 ° C for 3 days, and the obtained gel was treated in a 0.5M aqueous urea solution at 110 ° C for 4 hours. After drying the obtained gel, it was heat-treated at 1050 ° C. or 950 ° C. for 5 hours, and formed into a disc shape having a diameter of 25 mm and a thickness of 1 mm with abrasive paper. The SEM photograph of the film is shown in Fig. 1, and the pore distribution measured by mercury intrusion measurement is shown in Fig. 2. From FIG. 2, it can be seen that the membrane of the present invention has pores of 1.2 μm and has a uniform pore diameter.
【0018】(疎水化処理)得られた膜を、ジエチルア
ミノ−オクタデシルジメチルシラン2mlのトルエン溶
液10mlに浸漬し、80℃で10時間反応させた。さ
らにヘキサメチルジシラザン2mlのトルエン溶液10
ml中、80℃で2時間反応させ、洗浄後乾燥した。得
られた疎水化膜の元素分析結果を表1に示した。(Hydrophobic treatment) The obtained film was immersed in 10 ml of a toluene solution of 2 ml of diethylamino-octadecyldimethylsilane and reacted at 80 ° C. for 10 hours. Hexamethyldisilazane 2 ml toluene solution 10
The mixture was reacted in 80 ml at 80 ° C. for 2 hours, washed and dried. Table 1 shows the results of elemental analysis of the obtained hydrophobic film.
【表1】
表1の1、3は上記製造法で疎水化処理をしなかった
膜、2、4は上記疎水化処理を施した膜である。[Table 1] In Table 1, 1 and 3 are membranes not subjected to the hydrophobizing treatment by the above manufacturing method, and 2 and 4 are membranes subjected to the hydrophobizing treatment.
【0019】該疎水化膜(多孔質膜)を図3の膜乳化シ
ステムに装着した。図3中(3)は、筒状のシリカハウ
ジングであって、該ハウジング(3)は、分散媒(1)
の入った容器(6)に収容されている。ハウジング
(3)の先端には、本発明の多孔質膜(4)が装着され
ている。なお、ハウジング(3)は図示しない支持体で
容器(6)に固定されている。(7)は分散相(2)の
入った密閉円筒容器であり、該容器の上端には開口が2
個あいてあり、1つは配管により前記ハウジング(3)
と連結し、もう一つは窒素ガスボンベ(5)からの配管
と接続される。したがって、密閉円筒容器(7)内の分
散相(2)は窒素ガス加圧により、ハウジング(3)に
供給される。The hydrophobized membrane (porous membrane) was attached to the membrane emulsification system shown in FIG. In FIG. 3, (3) is a cylindrical silica housing, and the housing (3) is a dispersion medium (1).
It is housed in a container (6) containing. The porous membrane (4) of the present invention is attached to the tip of the housing (3). The housing (3) is fixed to the container (6) by a support (not shown). (7) is a closed cylindrical container containing the dispersed phase (2), and the upper end of the container has 2 openings.
Individually, one is the housing by piping (3)
The other is connected to the pipe from the nitrogen gas cylinder (5). Therefore, the dispersed phase (2) in the closed cylindrical container (7) is supplied to the housing (3) by pressurizing nitrogen gas.
【0020】図3の膜乳化システムを用い、次の方法で
シリカ粒子を製造した。先ず、多孔質膜(4)をシリカ
ハウジング(3)に取り付け、これをソルビタンモノラ
ウレート5gをケロシン500mlに溶解した分散媒
(1)中に設置した。ハウジング内にシリカゾル(日産
化学:スノーテックスN)を満たして分散相(2)と
し、これを窒素ガスで加圧して乳化を行った。得られた
エマルション分散液に、0.5M塩化アンモニウム水溶
液を5ml添加し、30分撹拌後1晩放置した。沈殿物
をろ取し、乾燥後600℃で5時間熱処理した。得られ
たシリカ粒子のSEM写真を図4に示した。図4-1は合成膜
の膜乳化60〜120分で得られたシリカ粒子、図4-2は合成
膜の膜乳化120〜180分で得られたシリカ粒子を示す。本
発明の多孔質膜を使用すれば、乳化時間にかかわらず均
一な径を有するシリカ粒子を製造することができる。Silica particles were produced by the following method using the membrane emulsification system of FIG. First, the porous membrane (4) was attached to a silica housing (3), and this was placed in a dispersion medium (1) in which 5 g of sorbitan monolaurate was dissolved in 500 ml of kerosene. The housing was filled with silica sol (Nissan Chemical: Snowtex N) to form a dispersed phase (2), and this was pressurized with nitrogen gas for emulsification. To the obtained emulsion dispersion, 5 ml of a 0.5 M ammonium chloride aqueous solution was added, and the mixture was stirred for 30 minutes and allowed to stand overnight. The precipitate was collected by filtration, dried and then heat-treated at 600 ° C. for 5 hours. The SEM photograph of the obtained silica particles is shown in FIG. Fig. 4-1 shows the silica particles obtained by the membrane emulsification of the synthetic membrane at 60 to 120 minutes, and Fig. 4-2 shows the silica particles obtained at the membrane emulsification of the synthetic membrane at 120 to 180 minutes. By using the porous membrane of the present invention, silica particles having a uniform diameter can be produced regardless of the emulsification time.
【0021】<比較例1>市販のSPG膜を購入した。
膜のSEM写真を図5に、水銀圧入測定による細孔分布を
図6に示す。膜細孔径は1.6μm、細孔径は均一であ
る。SPG膜を、ジエチルアミノ−オクタデシルジメチ
ルシラン2mlのトルエン溶液10mlに浸漬し、80
℃で10時間反応させた。さらにヘキサメチルジシラザ
ン2mlのトルエン溶液10ml中、80℃で2時間反
応させ、洗浄後乾燥した。得られた疎水化SPG膜の元
素分析結果を前述の表1に示した。表1の5のSPGは
疎水化処理をしないもの(図5のSEM写真の膜)、6は
上記疎水化処理をした膜である。Comparative Example 1 A commercially available SPG film was purchased.
The SEM photograph of the film is shown in FIG. 5, and the pore distribution measured by mercury intrusion measurement is shown in FIG. The membrane pore diameter is 1.6 μm, and the pore diameter is uniform. The SPG film was immersed in 10 ml of a toluene solution of 2 ml of diethylamino-octadecyldimethylsilane,
The reaction was carried out at 0 ° C for 10 hours. Further, it was reacted in 80 ml of a toluene solution of 2 ml of hexamethyldisilazane at 80 ° C. for 2 hours, washed and dried. The results of elemental analysis of the obtained hydrophobic SPG film are shown in Table 1 above. SPG 5 in Table 1 is not subjected to the hydrophobic treatment (membrane of SEM photograph of FIG. 5), and 6 is the membrane subjected to the above hydrophobic treatment.
【0022】該疎水化SPG膜を前述した図3のハウジ
ング(3)に取り付け、これをソルビタンモノラウレー
ト5gをケロシン500mlに溶解した分散媒(1)中
に設置した。ハウジング内にシリカゾル(日産化学:ス
ノーテックスN)を満たして分散相(2)とし、これを
窒素ガスで加圧して乳化を行った。得られたエマルショ
ン分散液に、0.5M塩化アンモニウム水溶液を5ml
添加し、30分撹拌後1晩放置した。沈殿物をろ取し、
乾燥後600℃で5時間熱処理した。得られたシリカ粒
子のSEM写真を図7に示した。図7-1はSPG膜の膜乳化60
〜120分で得られたシリカ粒子、図7-2はSPG膜の膜乳化1
20〜180分で得られたシリカ粒子を示す。図4との対比
で分かるように、SPG膜を用いた膜乳化では、乳化初期
はほぼ均一なシリカ粒子が製造できるが、乳化時間が長
くなると、次第に粒径分布が広がることが分かる。これ
は膜の導入炭素量が少ないため、すなわち、疎水化が十
分でないため、乳化時間につれて膜の濡れが起こり、粒
径の均一性がくずれるためと考えられる。The hydrophobized SPG film was attached to the above-mentioned housing (3) of FIG. 3, and this was placed in a dispersion medium (1) in which 5 g of sorbitan monolaurate was dissolved in 500 ml of kerosene. The housing was filled with silica sol (Nissan Chemical: Snowtex N) to form a dispersed phase (2), and this was pressurized with nitrogen gas for emulsification. To the obtained emulsion dispersion, add 5 ml of 0.5 M ammonium chloride aqueous solution.
The mixture was added, stirred for 30 minutes and then left overnight. The precipitate is collected by filtration,
After drying, it was heat-treated at 600 ° C. for 5 hours. The SEM photograph of the obtained silica particles is shown in FIG. Figure 7-1 shows the film emulsification of SPG 60
Silica particles obtained in ~ 120 minutes, Figure 7-2 shows SPG membrane emulsification 1
The silica particles obtained in 20 to 180 minutes are shown. As can be seen from the comparison with FIG. 4, in the film emulsification using the SPG film, almost uniform silica particles can be produced in the initial stage of the emulsification, but as the emulsification time increases, the particle size distribution gradually widens. It is considered that this is because the amount of introduced carbon in the film is small, that is, the hydrophobicity is not sufficient, so that the film becomes wet with the emulsification time and the uniformity of the particle size is deteriorated.
【0023】[0023]
【発明の効果】本発明の多孔質シリカ膜は、主成分がSi
O2であるため、表面化学修飾に必要な活性シラノール基
を、従来の多孔質膜と比較して多く含むことができる。
それと同時に本多孔質シリカ膜は、膜乳化に適した貫通
孔からなり、さらにその細孔分布は従来の膜乳化用膜と
同等以上の均一性を有する。また細孔の中心サイズは、
0.3?50ミクロンの範囲でコントロールでき、併せ
て50ナノメートル以下の細孔を有することもできる。The porous silica film of the present invention is mainly composed of Si.
Since it is O 2 , it can contain a large amount of active silanol groups necessary for surface chemical modification as compared with the conventional porous membrane.
At the same time, the present porous silica membrane is composed of through-holes suitable for membrane emulsification, and its pore distribution is as uniform as or higher than that of conventional membrane emulsification membranes. The center size of the pores is
It can be controlled in the range of 0.3 to 50 microns, and can also have pores of 50 nanometers or less.
【図1】合成した膜のSEM像[Figure 1] SEM image of the synthesized film
【図2】合成した膜の細孔分布FIG. 2 Pore distribution of synthesized membrane
【図3】膜乳化システム[Fig. 3] Membrane emulsification system
【図4】合成膜の膜乳化で得られたシリカ粒子FIG. 4 Silica particles obtained by membrane emulsification of synthetic membrane
【図5】SPG膜のSEM像FIG. 5: SEM image of SPG film
【図6】SPG膜の細孔分布FIG. 6 Pore distribution of SPG membrane
【図7】SPG膜の膜乳化で得られたシリカ粒子FIG. 7: Silica particles obtained by film emulsification of SPG film
1:分散媒 2:分散相 3:ハウジング 4:多孔質膜 1: Dispersion medium 2: Dispersed phase 3: Housing 4: Porous membrane
フロントページの続き (72)発明者 中西 和樹 京都市左京区下鴨蓼倉町64−10 (72)発明者 細矢 憲 京都市伏見区桃山町松平筑前1番地1ユニ ハイム桃山御陵109 (72)発明者 水口 博義 京都市北区大宮釈迦谷3番地59 (72)発明者 渕上 智子 京都市左京区松ヶ崎壱町田町12番地1 Fターム(参考) 4G035 AB40 AC26 4G072 AA28 AA41 BB02 BB15 HH30 JJ47 KK01 KK17 LL17 MM01 MM31 MM36 QQ06 QQ07 QQ09 TT08 Continued front page (72) Inventor Kazuki Nakanishi 64-10 Shimogamo Tatekura-machi, Sakyo-ku, Kyoto (72) Inventor Ken Hosoya 1 Uni, 1 Matsuchidai Chikuzen, Momoyama-cho, Fushimi-ku, Kyoto-shi Heim Momoyama Goryoku 109 (72) Inventor Hiroyoshi Mizuguchi 59, Shakadani, Omiya, Kita-ku, Kyoto-shi (72) Inventor Tomoko Fuchigami 12-1 Tamachi, Matsugasaki Ichimachi, Sakyo-ku, Kyoto F-term (reference) 4G035 AB40 AC26 4G072 AA28 AA41 BB02 BB15 HH30 JJ47 KK01 KK17 LL17 MM01 MM31 MM36 QQ06 QQ07 QQ09 TT08
Claims (4)
ンと50ナノメートル以下の細孔を有する膜乳化用多孔
質シリカ膜。1. A porous silica membrane containing SiO 2 as a main component and having a pore size of 0.3 to 50 microns and 50 nanometers or less for emulsification.
孔質シリカ膜。2. The porous silica film according to claim 1, wherein the surface is chemically modified.
求項2記載の多孔質シリカ膜。3. The porous silica membrane according to claim 2, wherein the chemical modification is a chemical modification with a carbon chain.
請求項3記載の多孔質シリカ膜。4. The porous silica film according to claim 3, wherein the amount of carbon introduced is 3% by weight or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001387390A JP3876433B2 (en) | 2001-12-20 | 2001-12-20 | Porous silica membrane for membrane emulsification |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001387390A JP3876433B2 (en) | 2001-12-20 | 2001-12-20 | Porous silica membrane for membrane emulsification |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003181262A true JP2003181262A (en) | 2003-07-02 |
JP3876433B2 JP3876433B2 (en) | 2007-01-31 |
Family
ID=27596236
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001387390A Expired - Fee Related JP3876433B2 (en) | 2001-12-20 | 2001-12-20 | Porous silica membrane for membrane emulsification |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3876433B2 (en) |
-
2001
- 2001-12-20 JP JP2001387390A patent/JP3876433B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP3876433B2 (en) | 2007-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5624875A (en) | Inorganic porous material and process for making same | |
JP2555475B2 (en) | Method for producing inorganic microspheres | |
US6207098B1 (en) | Method for producing porous inorganic materials | |
Chen et al. | Fabrication of novel superhydrophilic and underwater superoleophobic hierarchically structured ceramic membrane and its separation performance of oily wastewater | |
WO2022163832A1 (en) | Columnar body, adsorbing material including said columnar body, and method for removing metals and/or metal ions using said adsorbing material | |
JPH082416B2 (en) | Method of producing emulsion | |
US20200338528A1 (en) | Superficially porous particles and methods for forming superficially porous particles | |
JP2019521198A (en) | Metal-organic gels and metal-organic airgels prepared from coordination polymer nanofibers | |
Shi et al. | Preparation of silica aerogel and its adsorption performance to organic molecule | |
Shen et al. | Adsorption of Rhodamine B dye by biomimetic mesoporous SiO2 nanosheets | |
Fuchigami et al. | Membrane emulsification using sol-gel derived macroporous silica glass | |
JP2021075431A (en) | Method for continuously producing hydrophilic and hydrophobic bipolar composite core shell aerogel powder | |
KR910005122B1 (en) | Method for preparing uniform size porous silica spheres | |
JP4538785B2 (en) | Method for producing organic-inorganic hybrid porous material | |
Zhou et al. | Toward Scalable Fabrication of Hierarchical Silica Capsules with Integrated Micro‐, Meso‐, and Macropores | |
JP2003181262A (en) | Porous silica membrane for membrane emulsification | |
JP4362752B2 (en) | Manufacturing method of integrated porous material | |
Philipse | Particulate colloids: aspects of preparation and characterization | |
JP2008508505A (en) | Monolithic objects for purification and separation of biopolymers | |
Kalaparthi et al. | Self-assembly of multi-hierarchically structured spongy mesoporous silica particles and mechanism of their formation | |
Smitha et al. | Synthesis of mesoporous hydrophobic silica microspheres through a modified sol–emulsion–gel process | |
JPH10316414A (en) | Production of aerogel | |
Wang et al. | Rational synthesis of monodisperse hollow mesoporous silica nanospheres for selective adsorption | |
CN112156730B (en) | Preparation method of high-purity monodisperse porous silicon oxide spheres | |
JP2018134624A (en) | Monolith filter, solid state separation device using the same, and method for manufacturing the monolith filter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041216 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050113 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060511 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060530 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060727 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060822 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20061003 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061020 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121110 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151110 Year of fee payment: 9 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |