JP2003179196A - Power module and protection system thereof - Google Patents
Power module and protection system thereofInfo
- Publication number
- JP2003179196A JP2003179196A JP2001379232A JP2001379232A JP2003179196A JP 2003179196 A JP2003179196 A JP 2003179196A JP 2001379232 A JP2001379232 A JP 2001379232A JP 2001379232 A JP2001379232 A JP 2001379232A JP 2003179196 A JP2003179196 A JP 2003179196A
- Authority
- JP
- Japan
- Prior art keywords
- power
- thermoelectric
- module
- thermoelectric module
- circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 claims abstract description 43
- 239000002184 metal Substances 0.000 claims abstract description 10
- 238000006243 chemical reaction Methods 0.000 claims abstract description 6
- 239000000758 substrate Substances 0.000 claims description 59
- 230000017525 heat dissipation Effects 0.000 claims description 29
- 239000003566 sealing material Substances 0.000 claims description 4
- 238000013021 overheating Methods 0.000 abstract description 12
- 230000001681 protective effect Effects 0.000 abstract 2
- 230000005611 electricity Effects 0.000 abstract 1
- 229910000679 solder Inorganic materials 0.000 description 17
- 238000001816 cooling Methods 0.000 description 7
- 238000001514 detection method Methods 0.000 description 6
- 230000020169 heat generation Effects 0.000 description 5
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 5
- 230000005678 Seebeck effect Effects 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 238000005476 soldering Methods 0.000 description 3
- 230000005679 Peltier effect Effects 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 241000255777 Lepidoptera Species 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48135—Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
- H01L2224/48137—Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48135—Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
- H01L2224/48137—Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
- H01L2224/48139—Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate with an intermediate bond, e.g. continuous wire daisy chain
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/49—Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
- H01L2224/491—Disposition
- H01L2224/4911—Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
- H01L2224/49111—Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting two common bonding areas, e.g. Litz or braid wires
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73265—Layer and wire connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/13—Discrete devices, e.g. 3 terminal devices
- H01L2924/1304—Transistor
- H01L2924/1305—Bipolar Junction Transistor [BJT]
- H01L2924/13055—Insulated gate bipolar transistor [IGBT]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/13—Discrete devices, e.g. 3 terminal devices
- H01L2924/1304—Transistor
- H01L2924/1306—Field-effect transistor [FET]
- H01L2924/13091—Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/161—Cap
- H01L2924/1615—Shape
- H01L2924/16195—Flat cap [not enclosing an internal cavity]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/181—Encapsulation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/19—Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
- H01L2924/191—Disposition
- H01L2924/19101—Disposition of discrete passive components
- H01L2924/19107—Disposition of discrete passive components off-chip wires
Landscapes
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、パワー変換回路の
スイッチとして使用されるパワーエレクトロニクス回路
用パワーモジュールおよびこのパワーモジュールの保護
システムに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power module for a power electronic circuit used as a switch of a power conversion circuit and a protection system for this power module.
【0002】[0002]
【従来の技術】従来のパワーモジュールの外観の斜視図
を図6に、上部から見た内部構成図を図7に、そのA−
A断面図を図8に、その回路図を図9にそれぞれ示す。
図6〜図9において、1はCu等からなる金属製の放熱
板であり、下面にヒートシンクが固着されて冷却され
る。2はセラミクス等からなる絶縁基板であり、両面に
放熱板1と同じ材質の金属をロー付けしてあり、半田付
け等により放熱板1に固着してある。3は絶縁基板2の
上面に設けた回路配線である。4は半田で、5は半田4
を介して回路配線3上に固着された、スイッチングを行
うIGBT等の半導体からなるパワー素子である。パワ
ー素子5には、図示しない外部の負荷に対して図示しな
い外部の電源の正極を接続/遮断するP側パワー素子5
aと負極を接続/遮断するN側パワー素子5bがある。
6はパワー素子5のスイッチングによって生じる還流電
流を通電するための還流ダイオードである。還流ダイオ
ード6は、パワー素子5と同様に半田4を介して回路配
線3上に固着されており、正極へ電流を還流するP側還
流ダイオード6aと負極から電流を還流するN側還流ダ
イオード6bとがある。7はパワー素子5の温度に近い
絶縁基板2の温度を検出するサーミスタであり、その両
端を半田4により回路配線3に固着されている。8は図
示しない外部の電源と負荷を接続するための電極であ
り、電源の正極に接続されるP側電極8a、負極に接続
されるN側電極8b、負荷に接続される負荷側電極8c
がある。9は図示しない外部の制御回路と接続される信
号電極であり、パワー素子5にスイッチング信号を伝え
るためにパワー素子5のゲートとエミッタに接続される
ゲート電極9aとエミッタ電極9b、サーミスタ7から
の過熱信号を外部の制御回路へ伝達するための温度検出
電極9cがある。10はAl等からなる配線用のワイヤ
であり、ボンディングによってその端部をパワー素子5
や還流ダイオード6に固着されており、パワー素子5と
還流ダイオード6、パワー素子5と信号電極9、回路配
線3と電極8、サーミスタ7と温度検出電極9c等を電
気的に接続している。11は樹脂からなるケースであり
内面側と上面側に端部が突出するように電極8と信号電
極9を内部に埋め込んであり、下面を放熱板1に接着剤
等で固着してある。12はケース11内部に充填される
シリコーン等からなる絶縁性の充填材であり、ケース1
1内部の絶縁性保持およびワイヤ10の機械的保持を行
っている。13は蓋であり、ケース11に接着剤等で固
着されている。2. Description of the Related Art FIG. 6 shows a perspective view of the appearance of a conventional power module, FIG. 7 shows an internal configuration view from above, and FIG.
FIG. 8 shows a sectional view taken along line A, and FIG. 9 shows a circuit diagram thereof.
6 to 9, reference numeral 1 denotes a metal heat radiating plate made of Cu or the like, and a heat sink is fixed to the lower surface to cool it. Reference numeral 2 denotes an insulating substrate made of ceramics or the like, and a metal of the same material as that of the heat dissipation plate 1 is brazed on both sides, and fixed to the heat dissipation plate 1 by soldering or the like. Reference numeral 3 is a circuit wiring provided on the upper surface of the insulating substrate 2. 4 is solder and 5 is solder 4
It is a power element fixed on the circuit wiring 3 via a semiconductor element such as an IGBT for switching. The power element 5 is a P-side power element 5 for connecting / disconnecting a positive electrode of an external power source (not shown) to an external load (not shown).
There is an N-side power element 5b that connects / blocks a and the negative electrode.
Reference numeral 6 is a return diode for supplying a return current generated by switching of the power element 5. Similar to the power element 5, the freewheeling diode 6 is fixed on the circuit wiring 3 via the solder 4, and has a P-side freewheeling diode 6a that returns a current to the positive electrode and an N-side freewheeling diode 6b that returns a current from the negative electrode. There is. Reference numeral 7 is a thermistor for detecting the temperature of the insulating substrate 2 close to the temperature of the power element 5, and both ends thereof are fixed to the circuit wiring 3 by the solder 4. Reference numeral 8 denotes an electrode for connecting a load to an external power source (not shown), a P-side electrode 8a connected to the positive electrode of the power source, an N-side electrode 8b connected to the negative electrode, and a load-side electrode 8c connected to the load.
There is. Reference numeral 9 is a signal electrode connected to an external control circuit (not shown), and a gate electrode 9a and an emitter electrode 9b connected to the gate and emitter of the power element 5 for transmitting a switching signal to the power element 5 and a thermistor 7 There is a temperature detection electrode 9c for transmitting the overheat signal to an external control circuit. Reference numeral 10 is a wiring wire made of Al or the like, the end of which is bonded to the power element 5 by bonding.
The power element 5 and the free wheel diode 6 are electrically connected to each other, and the power element 5 and the free wheel diode 6 are electrically connected to each other, the power element 5 and the signal electrode 9, the circuit wiring 3 and the electrode 8, and the thermistor 7 and the temperature detection electrode 9c. Reference numeral 11 denotes a case made of resin, in which the electrode 8 and the signal electrode 9 are embedded so that the end portions project to the inner surface side and the upper surface side, and the lower surface is fixed to the heat dissipation plate 1 with an adhesive or the like. Reference numeral 12 is an insulative filler made of silicone or the like filled in the case 11.
1 holds the insulation inside and holds the wire 10 mechanically. Reference numeral 13 denotes a lid, which is fixed to the case 11 with an adhesive or the like.
【0003】次に、このような従来のパワーモジュール
の電気的動作を図6〜図9を用いて説明する。図示しな
い外部の制御回路から入力される制御信号は、信号電極
9、ワイヤ10を介してパワー素子5に伝えられ、P側
パワー素子5aとN側パワー素子5bが交互にON/O
FFのスイッチ動作を行う。その結果、図示しない外部
の電源がパワー素子5によって負荷と接続/遮断されて
負荷に電力が供給される。この時、P側パワー素子5a
とN側パワー素子5bが同時にONすると電源短絡とな
るため、これを避けるため制御信号にはスイッチONを
遅らせるオンディレイ時間が設けてある。オンディレイ
期間中パワー素子5はどちらもOFFとなっている。そ
のため、オンディレイ期間中は電源から負荷への電流は
N側還流ダイオード6bを介して流れ、負荷から電源へ
の電流はP側還流ダイオード6aを介して流れる。ここ
で、パワー素子5および還流ダイオード6にはオン電圧
があるため、電流を通電すると素子自身に通電ロスを生
じるとともに、ON/OFFのスイッチング時にはスイ
ッチングロスが生じる結果、パワー素子5と還流ダイオ
ード6が発熱する。その熱は、絶縁基板2を介して放熱
板1へ伝わり外部へ放熱されると同時にサーミスタ7を
温めるため、外部の制御回路においてサーミスタの抵抗
値の変化を監視することでパワー素子5の温度を検出す
ることができる。これにより、パワー素子5が過熱した
場合はP側パワー素子5aとN側パワー素子5bを両方
ともOFFしてパワー素子5の過熱による破壊から保護
している。Next, the electrical operation of such a conventional power module will be described with reference to FIGS. A control signal input from an external control circuit (not shown) is transmitted to the power element 5 via the signal electrode 9 and the wire 10, and the P-side power element 5a and the N-side power element 5b are alternately turned ON / O.
Performs FF switch operation. As a result, an external power source (not shown) is connected to / disconnected from the load by the power element 5 to supply power to the load. At this time, the P-side power element 5a
When both the N-side power element 5b and the N-side power element 5b are turned on at the same time, a power supply short circuit occurs. Therefore, in order to avoid this, an on-delay time for delaying the switch on is provided in the control signal. Both of the power elements 5 are off during the on-delay period. Therefore, during the on-delay period, the current from the power supply to the load flows through the N-side freewheeling diode 6b, and the current from the load to the power supply flows through the P-side freewheeling diode 6a. Here, since the power element 5 and the free wheeling diode 6 have an ON voltage, when a current is applied, an energization loss occurs in the element itself and a switching loss occurs at the time of ON / OFF switching. Heats up. The heat is transmitted to the heat sink 1 through the insulating substrate 2 and is radiated to the outside, and at the same time heats the thermistor 7, so that the temperature of the power element 5 can be controlled by monitoring the change in the resistance value of the thermistor in an external control circuit. Can be detected. As a result, when the power element 5 is overheated, both the P-side power element 5a and the N-side power element 5b are turned off to protect the power element 5 from damage due to overheating.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、従来の
パワーモジュールでは、パワー素子5の温度検出を行う
サーミスタ7を回路配線や絶縁上の制約からパワー素子
5から離れた絶縁基板2の端部にしか配置できない。こ
のため、パワー素子5の正確な温度を検出できない上、
パワー素子5が過熱してからサーミスタ7で検出するま
でに時間がかかり、パワー素子5の温度が急に上昇した
場合過熱検出が遅れてパワー素子5が熱暴走して破壊し
てしまうという問題があった。また、パワー素子5と半
田4と絶縁基板3はそれぞれ熱膨張率が異なるため、通
電の発熱によるパワー素子5の寸法変化量と絶縁基板3
の寸法変化量とは異なる。このため、半田3は絶縁基板
3側の寸法はほとんど変化しないのに対し、パワー素子
5側では横方向への引っ張られて応力が加わる。その結
果、パワー素子5の間欠通電による発熱と放熱が繰り返
されることで、半田3には繰り返し応力が加わって、半
田3内部に亀裂が入ったりパワー素子5または絶縁基板
3との接合面に剥離を生じたりする。この結果、パワー
素子5と絶縁基板3間の熱伝達率が悪化してパワー素子
5の放熱ができなくなり、パワー素子5が熱暴走して破
壊してしまうという問題があった。したがって本発明の
目的は、パワー素子の過熱を即座に正確に検出し、さら
にパワー素子5を冷却して温度調節することでパワー素
子を破壊させない、信頼性の高いパワーモジュールおよ
びその保護システムを提供することである。However, in the conventional power module, the thermistor 7 for detecting the temperature of the power element 5 is provided only at the end of the insulating substrate 2 which is distant from the power element 5 due to restrictions on circuit wiring and insulation. Cannot be placed. Therefore, the accurate temperature of the power element 5 cannot be detected, and
It takes time until the thermistor 7 detects after the power element 5 overheats, and when the temperature of the power element 5 suddenly rises, the overheat detection is delayed and the power element 5 is thermally runaway and destroyed. there were. Since the power element 5, the solder 4, and the insulating substrate 3 have different thermal expansion coefficients, the amount of dimensional change of the power element 5 due to heat generated by energization and the insulating substrate 3 are different.
Is different from the dimensional change. Therefore, the dimensions of the solder 3 on the insulating substrate 3 side hardly change, but on the power element 5 side, stress is applied by being pulled in the lateral direction. As a result, the heat generation and the heat radiation due to the intermittent energization of the power element 5 are repeated, so that stress is repeatedly applied to the solder 3, and cracks are generated inside the solder 3 or peeled off on the joint surface with the power element 5 or the insulating substrate 3. May occur. As a result, there is a problem that the heat transfer coefficient between the power element 5 and the insulating substrate 3 is deteriorated and the power element 5 cannot be radiated, and the power element 5 is thermally runaway and destroyed. Therefore, an object of the present invention is to provide a highly reliable power module and a protection system thereof, which immediately and accurately detect overheating of a power element and further prevent the power element from being destroyed by cooling the power element 5 to adjust its temperature. It is to be.
【0005】[0005]
【課題を解決するための手段】上記課題を解決するた
め、請求項1記載のパワーモジュールの発明は、金属製
の放熱板と、前記放熱板上に固着された絶縁基板と、前
記絶縁基板に固着されたパワー素子と、を備えたパワー
エレクトロニクス回路用パワーモジュールにおいて、熱
電変換する熱電半導体素子の両面に絶縁基板を設けた熱
電モジュールを前記パワー素子に密着若しくは近接した
位置に配置し、前記熱電モジュールの出力値を判定する
判定回路および前記熱電モジュールへ電力を供給する保
護回路に接続するための外部端子を前記熱電モジュール
に設けたことを特徴とする。請求項2記載の発明は、請
求項1記載のパワーモジュールにおいて、前記熱電モジ
ュールの外周にシール材を設けたことを特徴とする。請
求項3記載の発明は、請求項1記載のパワーモジュール
において、前記熱電モジュールを前記放熱板の外側面に
設けたことを特徴とする。請求項4記載の発明は、請求
項3記載のパワーモジュールにおいて、前記放熱板の外
側面に凹部を設け、その凹部に前記熱電モジュールを取
り付けたことを特徴とする。In order to solve the above-mentioned problems, the invention of a power module according to claim 1 is characterized in that a heat sink made of metal, an insulating substrate fixed on the heat sink, and the insulating substrate are provided. In a power module for a power electronics circuit including a fixed power element, a thermoelectric module in which insulating substrates are provided on both surfaces of a thermoelectric semiconductor element for thermoelectric conversion is placed at a position close to or close to the power element, The thermoelectric module is provided with an external terminal for connecting to a determination circuit for determining an output value of the module and a protection circuit for supplying electric power to the thermoelectric module. According to a second aspect of the present invention, in the power module according to the first aspect, a sealing material is provided on the outer periphery of the thermoelectric module. According to a third aspect of the present invention, in the power module according to the first aspect, the thermoelectric module is provided on an outer surface of the heat dissipation plate. According to a fourth aspect of the present invention, in the power module according to the third aspect, a recess is provided on the outer surface of the heat dissipation plate, and the thermoelectric module is attached to the recess.
【0006】請求項5記載のパワーモジュールの発明
は、金属製の放熱板と、前記放熱板上に固着された絶縁
基板と、前記絶縁基板に固着されたパワー素子と、を備
えたパワーエレクトロニクス回路用パワーモジュールに
おいて、熱電変換する熱電半導体素子の両面に絶縁基板
を設けた熱電モジュールを、その熱電半導体素子の一部
を他の前記熱電半導体素子から電気的に切り離して2組
の熱電モジュール構成として、いずれも前記パワー素子
に密着若しくは近接した位置に配置し、前記熱電モジュ
ールの出力値を判定する判定回路に接続するための外部
端子を前記2組の熱電モジュールの一方に、および前記
熱電モジュールへ電力を供給する保護回路に接続するた
めの外部端子を前記2組の熱電モジュールの他方に、そ
れぞれ設けたことを特徴とする。請求項6記載の発明
は、請求項5記載のパワーモジュールにおいて、前記熱
電モジュールを前記放熱板の外側面に設けたことを特徴
とする。請求項7記載のパワーモジュールの発明は、金
属製の放熱板と、前記放熱板上に固着された絶縁基板
と、前記絶縁基板に固着されたパワー素子と、を備えた
パワーエレクトロニクス回路用パワーモジュールにおい
て、熱電変換する熱電半導体素子の両面に絶縁基板を設
けた熱電モジュールを、その熱電半導体素子の一部を他
の前記熱電半導体素子から電気的に切り離して2組の熱
電モジュール構成として、いずれも前記放熱板の外側面
に配置し、前記熱電モジュールの出力値を判定する判定
回路に接続するための外部端子を前記2組の熱電モジュ
ールの一方に、および前記熱電モジュールへ電力を供給
する保護回路に接続するための外部端子を前記2組の熱
電モジュールの他方に、それぞれ設けたことを特徴とす
る。請求項8記載の発明は、請求項6又は7記載のパワ
ーモジュールにおいて、前記放熱板の外側面に凹部を設
け、その凹部に前記熱電モジュールを取り付けたことを
特徴とする。請求項9記載のパワーモジュール用保護シ
ステムの発明は、請求項1〜8のいずれか1項記載のパ
ワーモジュールと、前記パワーモジュール内の前記熱電
モジュールの出力値を判定する判定回路および前記熱電
モジュールへ電力を供給する保護回路とからなる保護シ
ステム部と、を備え、前記熱電モジュールの前記外部端
子を前記判定回路および前記保護回路に接続して成るパ
ワーモジュール用保護システムにおいて、前記判定回路
で前記出力値の大小判定を行い、前記出力値があらかじ
め設定した判定基準値よりも大きい場合前記保護回路を
導通することを特徴とする。請求項10記載の発明は、
請求項9記載のパワーモジュール用保護システムにおい
て、前記出力値があらかじめ設定した判定基準値よりも
大きい場合前記保護回路を導通し、導通開始後あらかじ
め設定した時間が経過すると前記保護回路を前記熱電モ
ジュールから切り離すことを特徴とする。According to a fifth aspect of the present invention, there is provided a power electronic circuit including a heat sink made of metal, an insulating substrate fixed to the heat sink, and a power element fixed to the insulating substrate. In a power module for use in a thermoelectric module, a thermoelectric module in which insulating substrates are provided on both surfaces of a thermoelectric semiconductor element for thermoelectric conversion is partially separated from the other thermoelectric semiconductor elements to form two sets of thermoelectric module configurations. , Both of which are arranged close to or close to the power element, and external terminals for connecting to a determination circuit for determining the output value of the thermoelectric module are provided on one of the two thermoelectric modules and to the thermoelectric module. External terminals for connecting to a protection circuit for supplying electric power are provided on the other side of the two sets of thermoelectric modules, respectively. And butterflies. According to a sixth aspect of the present invention, in the power module according to the fifth aspect, the thermoelectric module is provided on an outer surface of the heat dissipation plate. The invention of a power module according to claim 7 is a power module for a power electronics circuit, comprising: a metal heat sink, an insulating substrate fixed to the heat sink, and a power element fixed to the insulating substrate. In a thermoelectric module in which insulating substrates are provided on both surfaces of a thermoelectric semiconductor element for thermoelectric conversion, a part of the thermoelectric semiconductor element is electrically separated from the other thermoelectric semiconductor elements to form two sets of thermoelectric module configurations. An external terminal that is arranged on the outer surface of the heat dissipation plate and that is connected to a determination circuit that determines the output value of the thermoelectric module is connected to one of the two sets of thermoelectric modules, and a protection circuit that supplies power to the thermoelectric module. External terminals for connection to the other of the two sets of thermoelectric modules are respectively provided. The invention according to claim 8 is the power module according to claim 6 or 7, characterized in that a concave portion is provided on an outer surface of the heat dissipation plate, and the thermoelectric module is attached to the concave portion. The invention of a protection system for a power module according to claim 9 is the power module according to any one of claims 1 to 8, a determination circuit for determining an output value of the thermoelectric module in the power module, and the thermoelectric module. A protection system section comprising a protection circuit supplying power to the power module protection system, wherein the external terminal of the thermoelectric module is connected to the determination circuit and the protection circuit. It is characterized in that the magnitude of the output value is judged and the protection circuit is turned on when the output value is larger than a preset judgment reference value. The invention according to claim 10 is
The protection system for a power module according to claim 9, wherein when the output value is larger than a preset judgment reference value, the protection circuit is turned on, and when the preset time has elapsed after the start of conduction, the protection circuit is turned on. It is characterized by being separated from.
【0007】以上のような構成によれば、パワー素子の
直下または放熱板にパワー素子の温度を検出する熱電モ
ジュールを設けたので、パワー素子の温度を即座に精度
よく検出できるとともに、パワー素子の過熱時には熱電
モジュールによりパワー素子を冷却することができる。
したがって、パワー素子を破壊させずに保護することが
できる。According to the above structure, since the thermoelectric module for detecting the temperature of the power element is provided directly below the power element or on the heat dissipation plate, the temperature of the power element can be detected immediately and accurately and at the same time When overheated, the power element can be cooled by the thermoelectric module.
Therefore, the power element can be protected without being destroyed.
【0008】[0008]
【発明の実施の形態】以下、本発明の第1の実施の形態
を図1に基づいて説明する。図1は本発明の第1実施例
を示すパワーモジュールの側断面図である。同図におい
て、3は回路配線、4は半田で、5は半田4を介して回
路配線3上に固着された、スイッチングを行うIGBT
等の半導体からなるパワー素子である。1はCu等から
なる金属製の放熱板であり、下面にヒートシンクが固着
されて冷却される。8aは図示しない外部電源の正極に
接続されるP側電極8aである。9cは図示しない外部
の制御回路へ伝達するための温度検出電極である。10
は配線用のワイヤであり、ボンディングによってその端
部をパワー素子5に固着されており、パワー素子5と電
極等を電気的に接続している。11は樹脂からなるケー
スであり内面側と上面側に端部が突出するように電極8
aと信号電極9cを内部に埋め込んであり、下面を放熱
板1に接着剤等で固着してある。12はケース11内部
に充填されるシリコーン等からなる絶縁性の充填材であ
り、ケース11内部の絶縁性保持およびワイヤ10の機
械的保持を行っている。13は蓋であり、ケース11に
接着剤等で固着されている。BEST MODE FOR CARRYING OUT THE INVENTION A first embodiment of the present invention will be described below with reference to FIG. FIG. 1 is a side sectional view of a power module showing a first embodiment of the present invention. In the figure, 3 is a circuit wiring, 4 is a solder, and 5 is an IGBT that is fixed on the circuit wiring 3 via the solder 4 and performs switching.
Is a power device made of semiconductor such as. Reference numeral 1 denotes a metal heat radiating plate made of Cu or the like, and a heat sink is fixed to the lower surface of the heat radiating plate for cooling. Reference numeral 8a is a P-side electrode 8a connected to the positive electrode of an external power source (not shown). Reference numeral 9c is a temperature detection electrode for transmitting to an external control circuit (not shown). 10
Is a wire for wiring, the end portion of which is fixed to the power element 5 by bonding, and electrically connects the power element 5 to an electrode or the like. Reference numeral 11 is a case made of resin, and the electrode 8 is formed so that the end portions protrude toward the inner surface and the upper surface.
a and the signal electrode 9c are embedded inside, and the lower surface is fixed to the heat dissipation plate 1 with an adhesive or the like. An insulating filler 12 made of silicone or the like fills the inside of the case 11, and holds the inside of the case 11 as an insulating material and the wire 10 as a mechanical holding material. Reference numeral 13 denotes a lid, which is fixed to the case 11 with an adhesive or the like.
【0009】14は本発明で採用する熱電モジュールで
あり、熱電半導体素子14a、絶縁基板14b、絶縁基
板14c、リード線14d、端子14fからなる。この
熱電モジュール14は、N型およびP型の熱電半導体素
子14aを順番に並べて絶縁基板14b、絶縁基板14
cで挟み込んでいる。熱電半導体素子14a側となる絶
縁基板14bの下面、および絶縁基板14cの上面には
熱電半導体素子14aが各々直列に接続されるように回
路配線が施してあり、熱電半導体素子14aと絶縁基板
14b、絶縁基板14cは半田等によって固着されてい
る。リード線14dは、一方の端部が絶縁基板14c上
の熱電半導体素子14aが接続された回路配線の始点と
終点に接続され、他端をケース11に設けた端子14f
に接続されている。絶縁基板14bの上面には、パワー
素子5を介して電源と負荷が接続されるように回路配線
3が施してあり、パワー素子5、およびワイヤ10が固
着されている。絶縁基板14cは、半田等によって放熱
板1に固着されている。また、14kは絶縁性のリボン
または樹脂板等からなるシール材であり、熱電モジュー
ル14の外周を覆って充填材12の熱電モジュール14
内部の隙間への浸入を防いでいる。15は判定回路16
と保護回路17からなる保護システム部である。判定回
路16は熱電モジュール14の出力電圧をデジタル値へ
変換するADコンバータ16aとデジタル値へ変換され
た出力電圧の大小を判定するCPU16bからなる。保
護回路17は熱電モジュール14のパワー素子5側が低
温側で放熱板1側が高温側となるように電流を流す直流
電源17c、直流電源17cと熱電モジュール14を電
気的に接続/遮断する半導体スイッチ17b、CPU1
6bの判定結果に応じてトランジスタ、またはMOSF
ET、またはIGBTの半導体スイッチ17bをON/
OFFするゲートドライブ回路17aからなる。Reference numeral 14 denotes a thermoelectric module used in the present invention, which comprises a thermoelectric semiconductor element 14a, an insulating substrate 14b, an insulating substrate 14c, a lead wire 14d, and a terminal 14f. In this thermoelectric module 14, N-type and P-type thermoelectric semiconductor elements 14a are arranged in order, and an insulating substrate 14b and an insulating substrate 14 are provided.
It is sandwiched by c. Circuit wiring is provided on the lower surface of the insulating substrate 14b on the thermoelectric semiconductor element 14a side and the upper surface of the insulating substrate 14c so that the thermoelectric semiconductor elements 14a are connected in series, and the thermoelectric semiconductor element 14a and the insulating substrate 14b are connected. The insulating substrate 14c is fixed by solder or the like. One end of the lead wire 14d is connected to the start point and the end point of the circuit wiring to which the thermoelectric semiconductor element 14a on the insulating substrate 14c is connected, and the other end is a terminal 14f provided on the case 11.
It is connected to the. The circuit wiring 3 is provided on the upper surface of the insulating substrate 14b so that the power source and the load are connected via the power element 5, and the power element 5 and the wire 10 are fixed. The insulating substrate 14c is fixed to the heat dissipation plate 1 by soldering or the like. Further, 14k is a sealing material made of an insulating ribbon or a resin plate, and covers the outer circumference of the thermoelectric module 14 and the thermoelectric module 14 of the filling material 12.
Prevents penetration into internal gaps. 15 is a determination circuit 16
And the protection circuit 17 is a protection system unit. The determination circuit 16 includes an AD converter 16a that converts the output voltage of the thermoelectric module 14 into a digital value and a CPU 16b that determines the magnitude of the output voltage converted into a digital value. The protection circuit 17 includes a DC power supply 17c for supplying a current so that the power element 5 side of the thermoelectric module 14 is on the low temperature side and the heat radiating plate 1 side is on the high temperature side, and a semiconductor switch 17b for electrically connecting / disconnecting the DC power supply 17c and the thermoelectric module 14 to each other. , CPU1
Depending on the judgment result of 6b, a transistor or a MOSF
Turn on / off the semiconductor switch 17b of ET or IGBT
The gate drive circuit 17a is turned off.
【0010】次に、本発明の第1の実施の形態の電気的
動作を説明する。図示しない外部の制御回路から入力さ
れる制御信号によってパワー素子5がON/OFFのス
イッチ動作を行い、還流ダイオード6に電流が流れるこ
とで、パワー素子5および還流ダイオード6(図9参
考)が発熱する。その熱は、熱電モジュール14を介し
て放熱板1へ伝わり外部へ放熱される。この時、熱電モ
ジュール14には、熱源であるパワー素子5側と放熱板
1側とで温度勾配が生じ、熱電モジュール14のゼーベ
ック効果によってパワー素子5側の発熱に応じた電圧を
端子14e間に生じる。端子14e間に生じた電圧は保
護システム部15の判定回路16へ入るようになってお
り、判定回路16ではADコンバータ16aで端子14
f間の電圧をデジタル値へ変換してCPU16bに取り
込む。ここで、CPU16bには予め電圧値の大小を判
定するプログラムとパワー素子5が過熱により破壊する
温度よりも低い温度で生じる電圧値が判定の境界値とし
て入力されており、デジタル値へ変換された電圧値の大
小判定を行うようになっている。パワー素子5の発熱に
よって熱電モジュール14の端子14fに生じる電圧が
大きくなり予め設定しておいた境界値を越すと、CPU
16bはパワー素子5が過熱したと判断して保護回路1
7へ信号を出す。保護回路17へ出された信号はゲート
ドライブ回路17aに入り、ゲート信号に変換されて通
常はOFFしている半導体スイッチ17bをONする。
半導体スイッチ17bがONすると、直流電源17cが
熱電モジュール14の端子14fに接続される。直流電
源17cは、熱電モジュール14のパワー素子5側が低
温側で放熱板1側が高温側とするように接続されている
ので、パワー素子5が熱電モジュール14のペルチェ効
果によって冷却される。ここで、CPU16bから保護
回路17への信号は予め一定時間持続するように設定し
てある。このため、半導体スイッチ17bがONして一
定時間経過すると、今度は半導体スイッチ17bへOF
F信号が送られて、直流電源17cは端子14fから遮
断される。この時パワー素子5がまだ過熱状態にあると
端子14f間の電圧が判定値よりも大きくなるため、C
PU16bで再度過熱と判断されてパワー素子5は再び
冷却される。このように、熱電モジュール14をパワー
素子5の直下に配置しているので、パワー素子5の過熱
をリアルタイムに精度よく検出することができるととも
に、パワー素子5を冷却して熱暴走による破壊から保護
することができる。Next, the electrical operation of the first embodiment of the present invention will be described. The power element 5 performs ON / OFF switching operation according to a control signal input from an external control circuit (not shown), and a current flows through the return diode 6, so that the power element 5 and the return diode 6 (see FIG. 9) generate heat. To do. The heat is transmitted to the radiator plate 1 via the thermoelectric module 14 and is radiated to the outside. At this time, in the thermoelectric module 14, a temperature gradient occurs between the power element 5 side which is a heat source and the heat radiating plate 1 side, and the Seebeck effect of the thermoelectric module 14 causes a voltage corresponding to heat generation on the power element 5 side between the terminals 14e. Occurs. The voltage generated between the terminals 14e is adapted to enter the determination circuit 16 of the protection system unit 15, and in the determination circuit 16, the AD converter 16a is used for the terminal 14e.
The voltage between f is converted into a digital value and taken into the CPU 16b. Here, a program for determining the magnitude of the voltage value and a voltage value generated at a temperature lower than the temperature at which the power element 5 is destroyed by overheating are input to the CPU 16b in advance as a determination boundary value and converted into a digital value. The magnitude of the voltage value is judged. When the voltage generated at the terminal 14f of the thermoelectric module 14 increases due to heat generation of the power element 5 and exceeds a preset boundary value, the CPU
16b judges that the power element 5 has overheated, and the protection circuit 1
Signal to 7. The signal output to the protection circuit 17 enters the gate drive circuit 17a, is converted into a gate signal, and turns on the semiconductor switch 17b which is normally off.
When the semiconductor switch 17b is turned on, the DC power supply 17c is connected to the terminal 14f of the thermoelectric module 14. The DC power supply 17c is connected such that the power element 5 side of the thermoelectric module 14 is the low temperature side and the heat sink 1 side is the high temperature side, so that the power element 5 is cooled by the Peltier effect of the thermoelectric module 14. Here, the signal from the CPU 16b to the protection circuit 17 is set in advance so as to last for a fixed time. Therefore, when the semiconductor switch 17b is turned on and a certain period of time elapses, the semiconductor switch 17b is turned off.
The F signal is sent and the DC power supply 17c is cut off from the terminal 14f. At this time, if the power element 5 is still in the overheated state, the voltage between the terminals 14f becomes larger than the judgment value, so that C
The PU 16b determines that the power element 5 is overheated again, and the power element 5 is cooled again. As described above, since the thermoelectric module 14 is arranged immediately below the power element 5, overheating of the power element 5 can be detected accurately in real time, and the power element 5 is cooled to protect it from damage due to thermal runaway. can do.
【0011】図2は、本発明の第2の実施の形態を示す
パワーモジュールの側断面図である。 本実施の形態の
特徴は、放熱板の外側面に凹部1aを設けた構造にあ
る。凹部1aは、絶縁基板14cの下面が放熱板1の下
面と同一となる深さになっており、凹部1aの上面に絶
縁基板14bが固着してある。通電によって生じたパワ
ー素子5と還流ダイオード6(図9参考)の熱は、絶縁
基板2、放熱板1を伝わって来るため熱電モジュール1
4の上面が高温側となり、放熱板1および絶縁基板14
cの下面は図示しないヒートシンクに固着されて冷却さ
れるので熱電モジュールの下面が低温側となって温度勾
配が生じる。この結果、熱電モジュール14のゼーベッ
ク効果によってパワー素子5側の発熱に応じた電圧を端
子14f間に生じ、パワー素子5の過熱検出および熱電
モジュール14によるパワー素子5の冷却を行うことが
できる。ここで、放熱板1はCu等の良伝熱体なので、
パワー素子5の過熱をリアルタイムに精度よく検出する
ことができるとともに、パワー素子5を冷却して熱暴走
による破壊から保護することができる。FIG. 2 is a side sectional view of a power module showing a second embodiment of the present invention. The feature of this embodiment is the structure in which the concave portion 1a is provided on the outer surface of the heat dissipation plate. The recess 1a has a depth such that the lower surface of the insulating substrate 14c is the same as the lower surface of the heat dissipation plate 1, and the insulating substrate 14b is fixed to the upper surface of the recess 1a. The heat of the power element 5 and the free wheeling diode 6 (see FIG. 9) generated by the energization is transmitted to the insulating substrate 2 and the heat dissipation plate 1, so that the thermoelectric module 1
The upper surface of 4 becomes the high temperature side, and the heat sink 1 and the insulating substrate 14
Since the lower surface of c is fixed to a heat sink (not shown) and cooled, the lower surface of the thermoelectric module becomes a low temperature side and a temperature gradient occurs. As a result, due to the Seebeck effect of the thermoelectric module 14, a voltage corresponding to the heat generated on the power element 5 side is generated between the terminals 14f, and it is possible to detect overheating of the power element 5 and cool the power element 5 by the thermoelectric module 14. Here, since the heat sink 1 is a good heat conductor such as Cu,
Overheating of the power element 5 can be detected in real time with high accuracy, and the power element 5 can be cooled to protect it from damage due to thermal runaway.
【0012】図3は、本発明の第3の実施の形態を示す
パワーモジュールの側断面図であり、図4は本発明の熱
電モジュールの構成を示す断面図である。図3におい
て、14は熱電モジュールであり、熱電半導体素子14
a、絶縁基板14b、絶縁基板14c、リード線14d
1、14d2、配線14e、配線14g、端子14f、
端子14hからなる。そして、図4から分かるように、
配線14e、配線14gはそれぞれ熱電半導体素子14
aが直列に接続されるよう施してあり、配線14eはエ
リアA1内に敷設され、配線14gはエリアA2内に敷
設され、配線14eと14gはされぞれ電気的に分離さ
れている。熱電モジュール14は、N型およびP型の熱
電半導体素子14aを順番に配線14eと配線14g上
に並べて絶縁基板14b、絶縁基板14cで挟み込み、
半田等によって固着されている。リード線14dは、一
方の端部が絶縁基板14c上の熱電半導体素子14aが
接続された配線14e、配線14gのそれぞれの始点と
終点に接続され、他端をケース11に設けた端子14f
と端子14hに接続されている。絶縁基板14bの上面
には、パワー素子5を介して電源と負荷が接続されるよ
うに回路配線3が施してあり、パワー素子5、およびワ
イヤ10が固着されている。絶縁基板14cは、半田等
によって放熱板1に固着されている。15は判定回路1
6と保護回路17からなる保護システム部である。判定
回路16は端子14hの出力電圧をデジタル値へ変換す
るADコンバータ16aとデジタル値へ変換された出力
電圧の大小を判定するCPU16bからなる。保護回路
17は端子14fに接続された熱電半導体素子14aの
パワー素子5側が低温側で放熱板1側が高温側となるよ
うに電流を流す直流電源17c、直流電源17cと熱電
モジュール14を電気的に接続/遮断する半導体スイッ
チ17b、CPU16bの判定結果に応じてトランジス
タ、またはMOSFET、またはIGBTの半導体スイ
ッチ17bをON/OFFするゲートドライブ回路17
aからなる。FIG. 3 is a side sectional view of a power module showing a third embodiment of the present invention, and FIG. 4 is a sectional view showing a constitution of a thermoelectric module of the present invention. In FIG. 3, reference numeral 14 denotes a thermoelectric module, which is a thermoelectric semiconductor element 14
a, insulating substrate 14b, insulating substrate 14c, lead wire 14d
1, 14d2, wiring 14e, wiring 14g, terminal 14f,
It consists of a terminal 14h. And, as can be seen from FIG.
The wiring 14e and the wiring 14g are the thermoelectric semiconductor element 14 respectively.
a is connected in series, the wiring 14e is laid in the area A1, the wiring 14g is laid in the area A2, and the wirings 14e and 14g are electrically separated from each other. In the thermoelectric module 14, N-type and P-type thermoelectric semiconductor elements 14a are sequentially arranged on the wiring 14e and the wiring 14g, and sandwiched between the insulating substrate 14b and the insulating substrate 14c.
It is fixed by solder or the like. One end of the lead wire 14d is connected to the start point and the end point of each of the wiring 14e and the wiring 14g to which the thermoelectric semiconductor element 14a on the insulating substrate 14c is connected, and the other end is a terminal 14f provided on the case 11.
And terminal 14h. Circuit wiring 3 is provided on the upper surface of the insulating substrate 14b so that a power source and a load are connected via the power element 5, and the power element 5 and the wire 10 are fixed. The insulating substrate 14c is fixed to the heat dissipation plate 1 by soldering or the like. 15 is a determination circuit 1
6 is a protection system unit including a protection circuit 17. The determination circuit 16 includes an AD converter 16a that converts the output voltage of the terminal 14h into a digital value and a CPU 16b that determines the magnitude of the output voltage converted into a digital value. The protection circuit 17 electrically connects the DC power supply 17c, the DC power supply 17c, and the thermoelectric module 14 so that a current flows so that the power element 5 side of the thermoelectric semiconductor element 14a connected to the terminal 14f is the low temperature side and the heat sink 1 side is the high temperature side. A gate drive circuit 17 for turning on / off the semiconductor switch 17b for connecting / disconnecting, and turning on / off the semiconductor switch 17b of a transistor, a MOSFET, or an IGBT according to the determination result of the CPU 16b.
It consists of a.
【0013】次に、本発明の第3の実施の形態の電気的
動作について説明する。図示しない外部の制御回路から
入力される制御信号によってパワー素子5がON/OF
Fのスイッチ動作を行い、還流ダイオード6(図9参
考)に電流が流れることで、パワー素子5および還流ダ
イオード6が発熱する。その熱は、熱電モジュール14
を介して放熱板1へ伝わり外部へ放熱される。この時熱
電モジュール14には、熱源であるパワー素子5側と放
熱板1側とで温度勾配が生じ、配線14g部の熱電半導
体素子14aのゼーベック効果によってパワー素子5側
の発熱に応じた電圧を端子14h間に生じる。端子14
h間に生じた電圧は保護システム部15の判定回路16
へ入るようになっており、判定回路16ではADコンバ
ータ16aで端子14h間の電圧をデジタル値へ変換し
てCPU16bに取り込む。ここで、CPU16bには
予め電圧値の大小を判定するプログラムと判定の境界値
が入力されており、デジタル値へ変換された電圧値の大
小判定を行うようになっている。パワー素子5の発熱に
よって熱電モジュール14の端子14hに生じる電圧が
大きくなり予め設定しておいた境界値を越すと、CPU
16bはパワー素子5の温度が上昇したと判断して保護
回路17へON信号を出す。保護回路17へ出されたO
N信号はゲートドライブ回路17aに入り、ゲート信号
に変換されて通常はOFFしている半導体スイッチ17
bをONする。半導体スイッチ17bがONすると、直
流電源17cが熱電モジュール14の端子14fに接続
される。直流電源17cは、配線14e部の熱電半導体
素子14aのパワー素子5側が低温側で放熱板1側が高
温側とするように接続されているので、パワー素子5が
熱電モジュール14のペルチェ効果によって冷却され
る。次に、パワー素子5が冷却されて温度が下がると端
子14hの電圧が低下して境界値より小さくなり、CP
U16bはパワー素子5の温度が低下したと判断して保
護回路17へOFF信号を出す。保護回路17へ出され
たOFF信号はゲートドライブ回路17aに入り、ゲー
ト信号に変換されてONしている半導体スイッチ17b
をOFFして直流電源17cを端子14fから切り離
す。ここで、配線14gは熱電モジュール14の中央部
に図示したが、熱電モジュール14の端部でもよく、同
様の効果がある。このように、熱電モジュール14の配
線をエリアA1とエリアA2とに分割して温度検出部と
冷却部とに構成しパワー素子5の直下に配置しているの
で、パワー素子5の過熱をリアルタイムに精度よく検出
することができるとともに、パワー素子5を冷却して熱
暴走による破壊から保護することができる。また、精度
よく温度上昇を検出して冷却を繰り返すことでパワー素
子5、半田4、絶縁基板3を一定の温度範囲に保つこと
できるので、半田4に加わる繰返し応力をなくして亀裂
や剥離の発生を防止することができる。Next, the electrical operation of the third embodiment of the present invention will be described. The power element 5 is turned on / off by a control signal input from an external control circuit (not shown).
The power element 5 and the free wheeling diode 6 generate heat by performing the switching operation of F and flowing the current through the free wheeling diode 6 (see FIG. 9). The heat is generated by the thermoelectric module 14
The heat is dissipated to the outside through the heat dissipation plate 1. At this time, in the thermoelectric module 14, a temperature gradient occurs between the power element 5 side which is a heat source and the heat radiating plate 1 side, and a voltage corresponding to heat generation on the power element 5 side is generated by the Seebeck effect of the thermoelectric semiconductor element 14a in the wiring 14g. It occurs between terminals 14h. Terminal 14
The voltage generated during h is determined by the determination circuit 16 of the protection system unit 15.
In the determination circuit 16, the AD converter 16a converts the voltage between the terminals 14h into a digital value and takes it into the CPU 16b. Here, a program for determining the magnitude of the voltage value and a boundary value for the determination are input to the CPU 16b in advance, and the magnitude of the voltage value converted into the digital value is determined. When the voltage generated at the terminal 14h of the thermoelectric module 14 increases due to heat generation of the power element 5 and exceeds a preset boundary value, the CPU
16b determines that the temperature of the power element 5 has risen and outputs an ON signal to the protection circuit 17. O issued to the protection circuit 17
The N signal enters the gate drive circuit 17a, is converted into a gate signal, and is normally turned off.
Turn on b. When the semiconductor switch 17b is turned on, the DC power supply 17c is connected to the terminal 14f of the thermoelectric module 14. Since the DC power supply 17c is connected so that the power element 5 side of the thermoelectric semiconductor element 14a in the wiring 14e part is the low temperature side and the heat sink 1 side is the high temperature side, the power element 5 is cooled by the Peltier effect of the thermoelectric module 14. It Next, when the power element 5 is cooled and the temperature thereof is lowered, the voltage of the terminal 14h is lowered and becomes smaller than the boundary value.
U16b determines that the temperature of the power element 5 has dropped, and outputs an OFF signal to the protection circuit 17. The OFF signal output to the protection circuit 17 enters the gate drive circuit 17a, is converted into a gate signal, and is turned on to the semiconductor switch 17b.
Is turned off to disconnect the DC power supply 17c from the terminal 14f. Here, although the wiring 14g is illustrated in the central portion of the thermoelectric module 14, it may be provided at the end portion of the thermoelectric module 14 and has the same effect. As described above, the wiring of the thermoelectric module 14 is divided into the area A1 and the area A2, and the wiring is configured as the temperature detecting portion and the cooling portion and is arranged immediately below the power element 5, so that the overheating of the power element 5 is performed in real time. It is possible to detect with high accuracy and to cool the power element 5 to protect it from damage due to thermal runaway. Further, since the power element 5, the solder 4, and the insulating substrate 3 can be kept in a constant temperature range by accurately detecting the temperature rise and repeating the cooling, the repeated stress applied to the solder 4 is eliminated and cracks or peeling occur. Can be prevented.
【0014】図5は、本発明の第4実施の形態を示すパ
ワーモジュールの側断面図である。本実施の形態の特徴
は、放熱板の外側面に凹部1aを設けた構造にある。凹
部1aは、絶縁基板14cの下面が放熱板1の下面と同
一となる深さになっており、凹部1aの上面に絶縁基板
14bが固着してある。通電によって生じたパワー素子
5と還流ダイオード6の熱は、絶縁基板2、放熱板1を
伝わって来るため熱電モジュール14の上面が高温側と
なり、放熱板1および絶縁基板14cの下面は図示しな
いヒートシンクに固着されて冷却されるので熱電モジュ
ールの下面が低温側となって温度勾配が生じる。この結
果、配線14g部の熱電半導体素子14aのゼーベック
効果によってパワー素子5側の発熱に応じた電圧を配線
14d2間に生じ、パワー素子5の過熱検出および配線
14e部の熱電半導体素子14aによるパワー素子5の
冷却を行うことができる。ここで、放熱板1はCu等の
良伝熱体なので、パワー素子5の過熱をリアルタイムに
精度よく検出することができるとともに、パワー素子5
を冷却して熱暴走による破壊から保護することができ
る。ここで、熱電モジュール14は温度検出用と冷却用
の2組の熱電モジュールで構成してもよく、同様の効果
を得ることができる。FIG. 5 is a side sectional view of a power module showing a fourth embodiment of the present invention. The feature of this embodiment is the structure in which the concave portion 1a is provided on the outer surface of the heat dissipation plate. The recess 1a has a depth such that the lower surface of the insulating substrate 14c is the same as the lower surface of the heat dissipation plate 1, and the insulating substrate 14b is fixed to the upper surface of the recess 1a. The heat of the power element 5 and the free wheeling diode 6 generated by energization is transmitted to the insulating substrate 2 and the heat radiating plate 1, so that the upper surface of the thermoelectric module 14 becomes the high temperature side, and the heat radiating plate 1 and the lower surface of the insulating substrate 14c are not shown in the heat sink. Since the lower surface of the thermoelectric module becomes a low temperature side because of being fixed to and cooled by the temperature gradient, a temperature gradient occurs. As a result, the Seebeck effect of the thermoelectric semiconductor element 14a in the wiring 14g causes a voltage corresponding to the heat generated on the power element 5 side between the wirings 14d2 to detect overheating of the power element 5 and the thermoelectric semiconductor element 14a in the wiring 14e. Cooling of 5 can be performed. Here, since the heat dissipation plate 1 is a good heat conductor such as Cu, overheating of the power element 5 can be accurately detected in real time, and at the same time, the power element 5 can be detected.
Can be cooled and protected from damage due to thermal runaway. Here, the thermoelectric module 14 may be composed of two sets of thermoelectric modules for temperature detection and cooling, and similar effects can be obtained.
【0015】[0015]
【発明の効果】以上述べたように、本発明によればパワ
ー素子の直下または放熱板に熱電モジュールを設け、保
護システム部によってパワー素子の過熱検出および冷却
を行うようにしたので、パワー素子の過熱をリアルタイ
ムに精度よく検出するとともに冷却することができる。
この結果、パワー素子の過熱による破壊を防止して信頼
性の高いパワーモジュールとすることができる。また、
熱電モジュールの配線を分割して温度検出部と冷却部と
に構成しパワー素子5の直下または放熱板に熱電モジュ
ールを設け、保護システム部によってパワー素子の温度
検出および冷却を行うようにしたので、パワー素子の温
度上昇をリアルタイムに精度よく検出するとともに冷却
することができる。この結果、パワー素子の過熱による
破壊を防止するとともに、パワー素子、半田、絶縁基板
を一定の温度範囲に保ち半田に加わる繰返し応力をなく
して亀裂や剥離の発生を防止することができ、パワー素
子の破壊することの無い信頼性の高いパワーモジュール
とすることができる。As described above, according to the present invention, the thermoelectric module is provided directly below the power element or on the heat dissipation plate, and the protection system section is used to detect and cool the power element. It is possible to accurately detect overheat in real time and to cool.
As a result, it is possible to prevent the power element from being destroyed by overheating and to obtain a highly reliable power module. Also,
Since the wiring of the thermoelectric module is divided into a temperature detecting section and a cooling section and the thermoelectric module is provided directly below the power element 5 or on the heat dissipation plate, the protection system section detects the temperature and cools the power element. The temperature rise of the power element can be accurately detected in real time and the power element can be cooled. As a result, it is possible to prevent damage to the power element due to overheating, and to prevent the occurrence of cracks or peeling by keeping the power element, the solder, and the insulating substrate within a certain temperature range, eliminating the repeated stress applied to the solder, It is possible to obtain a highly reliable power module that is not destroyed.
【図1】本発明の第1の実施の形態を示すパワーモジュ
ールの側断面図である。FIG. 1 is a side sectional view of a power module showing a first embodiment of the present invention.
【図2】本発明の第2の実施の形態を示すパワーモジュ
ールの側断面図である。FIG. 2 is a side sectional view of a power module showing a second embodiment of the present invention.
【図3】本発明の第3の実施の形態を示すパワーモジュ
ールの側断面図である。FIG. 3 is a side sectional view of a power module showing a third embodiment of the present invention.
【図4】第3の実施の形態に係る2分割熱電モジュール
の構成を示す平面断面図である。FIG. 4 is a plan sectional view showing a configuration of a two-divided thermoelectric module according to a third embodiment.
【図5】本発明の第4の実施の形態を示すパワーモジュ
ールの側断面図である。FIG. 5 is a side sectional view of a power module showing a fourth embodiment of the present invention.
【図6】従来のパワーモジュールを示す斜視図である。FIG. 6 is a perspective view showing a conventional power module.
【図7】従来のパワーモジュールを示す内部構成図であ
る。FIG. 7 is an internal configuration diagram showing a conventional power module.
【図8】従来のパワーモジュールを示す側断面図であ
る。FIG. 8 is a side sectional view showing a conventional power module.
【図9】従来のパワーモジュールを示す回路図である。FIG. 9 is a circuit diagram showing a conventional power module.
1 放熱板 1a 凹部 2 絶縁基板 3 回路配線 4 半田 5 パワー素子 5a P側パワー素子 5b N側パワー素子 6 還流ダイオード 6a P側還流ダイオード 6b N側還流ダイオード 7 サーミスタ 8 電極 8a P側電極 8b N側電極 8c 負荷側電極 9 信号電極 9a ゲート電極 9b エミッタ電極 9c 温度検出電極 10 ワイヤ 11 ケース 12 充填材 13 蓋 14 熱電モジュール 14a 熱電半導体素子 14b 絶縁基板 14c 絶縁基板 14d、14d1、14d2 リード線 14e 配線 14f 端子 14g 配線 14h 端子 14k シール材 15 保護システム部 16 判定回路 16a ADコンバータ 16b CPU 17 保護回路 17a ゲートドライブ回路 17b 半導体スイッチ 17c 直流電源 1 heat sink 1a recess 2 insulating substrate 3 circuit wiring 4 solder 5 power elements 5a P side power element 5b N side power element 6 Free wheeling diode 6a P side free wheeling diode 6b N side free wheeling diode 7 Thermistor 8 electrodes 8a P side electrode 8b N side electrode 8c Load side electrode 9 signal electrodes 9a Gate electrode 9b Emitter electrode 9c Temperature detection electrode 10 wires 11 cases 12 Filling material 13 lid 14 thermoelectric module 14a Thermoelectric semiconductor element 14b insulating substrate 14c insulating substrate 14d, 14d1, 14d2 lead wire 14e wiring 14f terminal 14g wiring 14h terminal 14k sealing material 15 Protection system department 16 Judgment circuit 16a AD converter 16b CPU 17 Protection circuit 17a Gate drive circuit 17b Semiconductor switch 17c DC power supply
フロントページの続き (72)発明者 石田 雄二 福岡県北九州市八幡西区黒崎城石2番1号 株式会社安川電機内Continued front page (72) Inventor Yuji Ishida 2-1, Kurosaki Shiroishi, Hachiman Nishi-ku, Kitakyushu City, Fukuoka Prefecture Yasukawa Electric Co., Ltd.
Claims (10)
された絶縁基板と、前記絶縁基板に固着されたパワー素
子と、を備えたパワーエレクトロニクス回路用パワーモ
ジュールにおいて、 熱電変換する熱電半導体素子の両面に絶縁基板を設けた
熱電モジュールを前記パワー素子に密着若しくは近接し
た位置に配置し、前記熱電モジュールの出力値を判定す
る判定回路および前記熱電モジュールへ電力を供給する
保護回路に接続するための外部端子を前記熱電モジュー
ルに設けたことを特徴とするパワーモジュール。1. A power module for a power electronic circuit, comprising a metal heat sink, an insulating substrate fixed to the heat sink, and a power element fixed to the insulating substrate, wherein thermoelectric conversion is performed. A thermoelectric module provided with insulating substrates on both sides of a semiconductor element is arranged at a position in close contact with or close to the power element, and connected to a determination circuit for determining an output value of the thermoelectric module and a protection circuit for supplying power to the thermoelectric module. A power module, wherein the thermoelectric module is provided with an external terminal for performing the operation.
設けたことを特徴とする請求項1記載のパワーモジュー
ル。2. The power module according to claim 1, wherein a sealing material is provided on the outer periphery of the thermoelectric module.
面に設けたことを特徴とする請求項1記載のパワーモジ
ュール。3. The power module according to claim 1, wherein the thermoelectric module is provided on an outer surface of the heat dissipation plate.
凹部に前記熱電モジュールを取り付けたことを特徴とす
る請求項3記載のパワーモジュール。4. The power module according to claim 3, wherein a concave portion is provided on an outer surface of the heat dissipation plate, and the thermoelectric module is attached to the concave portion.
された絶縁基板と、前記絶縁基板に固着されたパワー素
子と、を備えたパワーエレクトロニクス回路用パワーモ
ジュールにおいて、 熱電変換する熱電半導体素子の両面に絶縁基板を設けた
熱電モジュールを、その熱電半導体素子の一部を他の前
記熱電半導体素子から電気的に切り離して2組の熱電モ
ジュール構成として、いずれも前記パワー素子に密着若
しくは近接した位置に配置し、 前記熱電モジュールの出力値を判定する判定回路に接続
するための外部端子を前記2組の熱電モジュールの一方
に、および前記熱電モジュールへ電力を供給する保護回
路に接続するための外部端子を前記2組の熱電モジュー
ルの他方に、それぞれ設けたことを特徴とするパワーモ
ジュール。5. A power module for a power electronics circuit, comprising a metal heat dissipation plate, an insulating substrate fixed to the heat dissipation plate, and a power element fixed to the insulating substrate. A thermoelectric module in which insulating substrates are provided on both sides of a semiconductor element is electrically separated from other thermoelectric semiconductor elements in a part of the thermoelectric semiconductor element to form two sets of thermoelectric module configurations, both of which are in close contact with the power element or External terminals for connecting to a determination circuit that determines the output value of the thermoelectric module are arranged in close proximity, and are connected to one of the two sets of thermoelectric modules and to a protection circuit that supplies power to the thermoelectric module. A power module, characterized in that external terminals are provided on the other side of the two sets of thermoelectric modules.
面に設けたことを特徴とする請求項5記載のパワーモジ
ュール。6. The power module according to claim 5, wherein the thermoelectric module is provided on an outer surface of the heat dissipation plate.
された絶縁基板と、前記絶縁基板に固着されたパワー素
子と、を備えたパワーエレクトロニクス回路用パワーモ
ジュールにおいて、 熱電変換する熱電半導体素子の両面に絶縁基板を設けた
熱電モジュールを、その熱電半導体素子の一部を他の前
記熱電半導体素子から電気的に切り離して2組の熱電モ
ジュール構成として、いずれも前記放熱板の外側面に配
置し、 前記熱電モジュールの出力値を判定する判定回路に接続
するための外部端子を前記2組の熱電モジュールの一方
に、および前記熱電モジュールへ電力を供給する保護回
路に接続するための外部端子を前記2組の熱電モジュー
ルの他方に、それぞれ設けたことを特徴とするパワーモ
ジュール。7. A power module for a power electronic circuit, comprising a metal heat dissipation plate, an insulating substrate fixed to the heat dissipation plate, and a power element fixed to the insulating substrate. A thermoelectric module in which insulating substrates are provided on both sides of a semiconductor element is electrically separated from other thermoelectric semiconductor elements in a part of the thermoelectric semiconductor element to form two sets of thermoelectric module configurations. And an external terminal for connecting to a determination circuit for determining an output value of the thermoelectric module to one of the two sets of thermoelectric modules, and an external terminal for connecting to a protection circuit that supplies power to the thermoelectric module. A power module, wherein terminals are provided on the other side of the two sets of thermoelectric modules, respectively.
凹部に前記熱電モジュールを取り付けたことを特徴とす
る請求項6又は7記載のパワーモジュール。8. The power module according to claim 6, wherein a concave portion is provided on an outer surface of the heat dissipation plate, and the thermoelectric module is attached to the concave portion.
ーモジュールと、 前記パワーモジュール内の前記熱電モジュールの出力値
を判定する判定回路および前記熱電モジュールへ電力を
供給する保護回路とからなる保護システム部と、を備
え、前記熱電モジュールの前記外部端子を前記判定回路
および前記保護回路に接続して成るパワーモジュール用
保護システムにおいて、 前記判定回路で前記出力値の大小判定を行い、前記出力
値があらかじめ設定した判定基準値よりも大きい場合前
記保護回路を導通することを特徴とする保護システム。9. A power module according to claim 1, a determination circuit for determining an output value of the thermoelectric module in the power module, and a protection circuit for supplying power to the thermoelectric module. In the protection system for a power module, which comprises a protection system unit comprising: a thermoelectric module, the external terminal of the thermoelectric module being connected to the determination circuit and the protection circuit, wherein the determination circuit determines the magnitude of the output value. A protection system which conducts the protection circuit when an output value is larger than a preset judgment reference value.
護システムにおいて、 前記出力値があらかじめ設定した判定基準値よりも大き
い場合前記保護回路を導通し、導通開始後あらかじめ設
定した時間が経過すると前記保護回路を前記熱電モジュ
ールから切り離すことを特徴とする保護システム。10. The power module protection system according to claim 9, wherein the protection circuit is turned on when the output value is larger than a preset judgment reference value, and the protection is performed when a preset time has elapsed after the start of conduction. A protection system, characterized in that the circuit is separated from the thermoelectric module.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001379232A JP4045404B2 (en) | 2001-12-12 | 2001-12-12 | Power module and its protection system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001379232A JP4045404B2 (en) | 2001-12-12 | 2001-12-12 | Power module and its protection system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003179196A true JP2003179196A (en) | 2003-06-27 |
JP4045404B2 JP4045404B2 (en) | 2008-02-13 |
Family
ID=19186688
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001379232A Expired - Fee Related JP4045404B2 (en) | 2001-12-12 | 2001-12-12 | Power module and its protection system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4045404B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006261581A (en) * | 2005-03-18 | 2006-09-28 | Sony Corp | Multi-chip module device and multi-chip shutdown control method |
JP2008010439A (en) * | 2006-06-27 | 2008-01-17 | Meidensha Corp | Cooling method of substrate and cooling structure thereof |
JP2008061375A (en) * | 2006-08-31 | 2008-03-13 | Daikin Ind Ltd | Power converter |
JP2010056333A (en) * | 2008-08-28 | 2010-03-11 | Toyota Motor Corp | Semiconductor device |
JP2014064378A (en) * | 2012-09-20 | 2014-04-10 | Fuji Electric Co Ltd | Adapter power supply device |
JP2024133724A (en) * | 2020-08-12 | 2024-10-02 | 富士電機株式会社 | Semiconductor Module |
-
2001
- 2001-12-12 JP JP2001379232A patent/JP4045404B2/en not_active Expired - Fee Related
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006261581A (en) * | 2005-03-18 | 2006-09-28 | Sony Corp | Multi-chip module device and multi-chip shutdown control method |
JP2008010439A (en) * | 2006-06-27 | 2008-01-17 | Meidensha Corp | Cooling method of substrate and cooling structure thereof |
JP2008061375A (en) * | 2006-08-31 | 2008-03-13 | Daikin Ind Ltd | Power converter |
JP2010056333A (en) * | 2008-08-28 | 2010-03-11 | Toyota Motor Corp | Semiconductor device |
JP2014064378A (en) * | 2012-09-20 | 2014-04-10 | Fuji Electric Co Ltd | Adapter power supply device |
JP2024133724A (en) * | 2020-08-12 | 2024-10-02 | 富士電機株式会社 | Semiconductor Module |
Also Published As
Publication number | Publication date |
---|---|
JP4045404B2 (en) | 2008-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8057094B2 (en) | Power semiconductor module with temperature measurement | |
US6563211B2 (en) | Semiconductor device for controlling electricity | |
JP5579234B2 (en) | Electronic circuit component cooling structure and inverter device using the same | |
US8324720B2 (en) | Power semiconductor module assembly with heat dissipating element | |
CN100428617C (en) | Semiconductor element temperature detection method and power conversion device | |
KR100536115B1 (en) | Power semiconductor device | |
US11195775B2 (en) | Semiconductor module, semiconductor device, and manufacturing method of semiconductor module | |
WO2022215357A1 (en) | Semiconductor device | |
JP3889562B2 (en) | Semiconductor device | |
JP7313413B2 (en) | semiconductor equipment | |
JP2021068740A (en) | Semiconductor module | |
JP2004031485A (en) | Semiconductor device | |
KR20140130862A (en) | Power module having improved cooling performance | |
JP2003179196A (en) | Power module and protection system thereof | |
JP2000058746A (en) | Module cooling device | |
JP2004221381A (en) | Semiconductor device | |
JP2007049810A (en) | Semiconductor device for power converter and power converter with temperature protection function having the semiconductor device | |
CN112284560A (en) | Method for rapidly detecting temperature of power device | |
JP2004056054A (en) | Semiconductor switch equipment | |
JP2016101071A (en) | Semiconductor device | |
US20240203931A1 (en) | Semiconductor device, drive device for semiconductor device, manufacturing method for semiconductor device | |
JP2003152151A (en) | Power module | |
JP2022114474A (en) | power module | |
JP2022161158A (en) | power module | |
JPH0945864A (en) | Resistance and hybrid integrated circuit device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041118 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20060324 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070501 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070626 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070801 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070925 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20071024 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20071106 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101130 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101130 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111130 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111130 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121130 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121130 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131130 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |