JP2003178416A - Magnetic recording medium and magnetic recording device - Google Patents
Magnetic recording medium and magnetic recording deviceInfo
- Publication number
- JP2003178416A JP2003178416A JP2001378879A JP2001378879A JP2003178416A JP 2003178416 A JP2003178416 A JP 2003178416A JP 2001378879 A JP2001378879 A JP 2001378879A JP 2001378879 A JP2001378879 A JP 2001378879A JP 2003178416 A JP2003178416 A JP 2003178416A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- magnetic
- magnetic recording
- soft magnetic
- recording medium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 251
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 75
- 239000000758 substrate Substances 0.000 claims abstract description 37
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 36
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 10
- 230000005415 magnetization Effects 0.000 claims description 14
- 239000000203 mixture Substances 0.000 claims description 9
- 238000012545 processing Methods 0.000 claims description 3
- 239000010410 layer Substances 0.000 description 156
- 239000010408 film Substances 0.000 description 28
- 238000000034 method Methods 0.000 description 16
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 14
- 238000004544 sputter deposition Methods 0.000 description 11
- 239000007789 gas Substances 0.000 description 9
- 239000011241 protective layer Substances 0.000 description 8
- 229910045601 alloy Inorganic materials 0.000 description 7
- 239000000956 alloy Substances 0.000 description 7
- 229910052786 argon Inorganic materials 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 6
- 230000008878 coupling Effects 0.000 description 6
- 238000010168 coupling process Methods 0.000 description 6
- 238000005859 coupling reaction Methods 0.000 description 6
- 239000013078 crystal Substances 0.000 description 6
- 239000011521 glass Substances 0.000 description 6
- 239000000314 lubricant Substances 0.000 description 6
- 230000005381 magnetic domain Effects 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000001228 spectrum Methods 0.000 description 5
- 239000010936 titanium Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 229910052731 fluorine Inorganic materials 0.000 description 4
- 230000004907 flux Effects 0.000 description 4
- 230000001050 lubricating effect Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 229910052715 tantalum Inorganic materials 0.000 description 4
- 229910000684 Cobalt-chrome Inorganic materials 0.000 description 3
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 3
- 239000010952 cobalt-chrome Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 229910001873 dinitrogen Inorganic materials 0.000 description 3
- 239000011737 fluorine Substances 0.000 description 3
- 239000000696 magnetic material Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 238000005546 reactive sputtering Methods 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 239000011247 coating layer Substances 0.000 description 2
- 238000009713 electroplating Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- 229910018134 Al-Mg Inorganic materials 0.000 description 1
- 229910018467 Al—Mg Inorganic materials 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 229910019586 CoZrTa Inorganic materials 0.000 description 1
- 229910002555 FeNi Inorganic materials 0.000 description 1
- 229910002836 PtFe Inorganic materials 0.000 description 1
- -1 S i Inorganic materials 0.000 description 1
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000006061 abrasive grain Substances 0.000 description 1
- 239000005354 aluminosilicate glass Substances 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000002902 ferrimagnetic material Substances 0.000 description 1
- 239000003302 ferromagnetic material Substances 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
- 238000000682 scanning probe acoustic microscopy Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 238000005477 sputtering target Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Landscapes
- Magnetic Record Carriers (AREA)
- Thin Magnetic Films (AREA)
Abstract
(57)【要約】
【課題】 磁気記録媒体において、基板と磁気記録層の
間に設けられた軟磁性層からのノイズを小さくし、低ノ
イズの磁気記録媒体、および該磁気記録媒体を用いた磁
気記録装置を得る。
【解決手段】基板上に少なくとも軟磁性層および磁気記
録層を形成した磁気記録媒体であって、該軟磁性層がC
o、Zrおよび窒素を含有する磁気記録媒体、および該
磁気記録媒体を用いた磁気記録装置。(57) Abstract: In a magnetic recording medium, noise from a soft magnetic layer provided between a substrate and a magnetic recording layer is reduced, and a low-noise magnetic recording medium and the magnetic recording medium are used. Obtain a magnetic recording device. A magnetic recording medium having at least a soft magnetic layer and a magnetic recording layer formed on a substrate, wherein the soft magnetic layer has
A magnetic recording medium containing o, Zr and nitrogen, and a magnetic recording device using the magnetic recording medium.
Description
【0001】[0001]
【発明の属する技術分野】本発明は磁気記録媒体及び磁
気記録装置に存する。特にノイズの低い垂直磁気記録媒
体および垂直磁気記録装置の提供に有用である。TECHNICAL FIELD The present invention resides in a magnetic recording medium and a magnetic recording apparatus. Particularly, it is useful for providing a perpendicular magnetic recording medium and a perpendicular magnetic recording device with low noise.
【0002】[0002]
【従来の技術】近年、磁気ディスク装置、フロッピー
(登録商標)ディスク装置、磁気テープ装置等の磁気記
録装置の適用範囲は著しく増大され、その重要性が増す
と共に、これらの装置や、これに用いられる磁気記録媒
体について、高記録密度への対応が図られきた。例えば
磁気記録媒体の高記録密度化に伴い、記録、再生ヘッド
としてMRヘッドやGMRヘッドの使用やデジタル信号
エラー修正技術としてPRML(Partial Re
sponse Most Likelyhood)技術
の導入以来、記録密度の増加はさらに激しさを増し、近
年では1年に100%ものペースで増加を続けている。2. Description of the Related Art In recent years, the range of application of magnetic recording devices such as magnetic disk devices, floppy (registered trademark) disk devices, magnetic tape devices, etc. has been remarkably increased and the importance thereof is increasing. With respect to the magnetic recording media used, it has been attempted to cope with high recording density. For example, with the increase in recording density of magnetic recording media, use of MR heads and GMR heads as recording / reproducing heads and PRML (Partial Re) as digital signal error correction technology.
Since the introduction of the sponse most like hood technology, the increase in recording density has become more severe, and in recent years, it has continued to increase at a rate of 100% per year.
【0003】しかし従来より用いられている磁化が基板
面に平行に向く、いわゆる「面内磁気記録媒体」では、
記録密度が上がるにつれ隣接する記録磁区同士の反発が
起きるため、磁気記録層の厚みを薄くしていく必要があ
る。この薄膜化と記録磁区長、幅の減少とがあいまっ
て、高密度記録における記録磁区の一つあたりの体積は
著しく小さくなってしまい、この結果「熱磁気緩和現
象」と呼ばれる磁化方向の熱的な不安定性が増大してし
まう。記録密度を上げると、磁化の不安定性が急速に増
していくため、面内磁気記録媒体では記録密度に限界が
来ることが予想されている。However, in the so-called "in-plane magnetic recording medium" in which the conventionally used magnetization is parallel to the substrate surface,
As the recording density increases, the repulsion between the adjacent recording magnetic domains occurs, so it is necessary to reduce the thickness of the magnetic recording layer. Due to this thinning and the decrease in recording magnetic domain length and width, the volume per recording magnetic domain in high density recording becomes extremely small. As a result, the thermal direction in the magnetization direction called "thermomagnetic relaxation phenomenon" is generated. Instability increases. Since the instability of magnetization rapidly increases as the recording density is increased, it is expected that the recording density will be limited in the longitudinal magnetic recording medium.
【0004】この問題を解決するために多くの検討がな
されているが、その一つに垂直磁気記録媒体が挙げられ
る。垂直磁気記録媒体では磁化が基板面に垂直方向に向
くのが特徴であり、高密度記録を行った際に、隣接する
磁区同士が反発しないので、面内磁気記録媒体に比べて
より高密度記録に向くとされている。Many studies have been made to solve this problem, one of which is a perpendicular magnetic recording medium. The perpendicular magnetic recording medium is characterized in that the magnetization is oriented in the direction perpendicular to the substrate surface, and when high density recording is performed, adjacent magnetic domains do not repel each other, so higher density recording than in-plane magnetic recording media is possible. It is said to be suitable for.
【0005】[0005]
【発明が解決しようとする課題】垂直磁気記録媒体で
は、通常基板と磁気記録層の間に裏打ち層として軟磁性
層が設けられる。この軟磁性層の目的は、記録時にヘッ
ドの記録部からの記録磁束を有効に記録層方向へ集中さ
せることである。特に単磁極ヘッドの場合、軟磁性層が
対向磁極の役割を果たすので、軟磁性層が無い場合は記
録が困難となる。In the perpendicular magnetic recording medium, a soft magnetic layer is usually provided as a backing layer between the substrate and the magnetic recording layer. The purpose of this soft magnetic layer is to effectively concentrate the recording magnetic flux from the recording portion of the head in the recording layer direction during recording. Particularly in the case of a single-pole head, the soft magnetic layer plays the role of the opposing magnetic pole, and thus recording becomes difficult without the soft magnetic layer.
【0006】ここで軟磁性層とは、磁性材料の分野で一
般的に定義される軟磁性材料、すなわち強磁性材料およ
びフェリ磁性材料等(外部磁場印加時に該外部磁場と同
じ方向に自発磁化を持つ磁性材料)のうち保磁力が零か
比較的小さいものを薄膜状に形成したものである。再生
時は面内磁気記録と同様のヘッド、例えばGMRヘッド
により磁気記録媒体から発生する磁束が検出されるが、
軟磁性層を設けた場合、長い記録磁区では内部での反磁
界が打ち消され、再生波形が良好な方形形状となるとい
った効果もある。Here, the soft magnetic layer is a soft magnetic material generally defined in the field of magnetic materials, that is, a ferromagnetic material, a ferrimagnetic material, etc. (when an external magnetic field is applied, spontaneous magnetization is generated in the same direction as the external magnetic field). It has a coercive force of zero or relatively small among the magnetic materials it has, and is formed into a thin film. During reproduction, the magnetic flux generated from the magnetic recording medium is detected by a head similar to in-plane magnetic recording, for example, a GMR head.
When the soft magnetic layer is provided, the internal demagnetizing field is canceled out in a long recording magnetic domain, and there is an effect that the reproduced waveform becomes a good square shape.
【0007】軟磁性層には、従来FeNi、FeAlS
i、CoZrTa、CoZrNb等が用いられ、かつ求
められる特性は、高透磁率、高磁化、かつ再生信号が低
ノイズであるといった点である。ところが、一般に磁化
が高い軟磁性層では再生した場合のノイズが高くなると
いう問題があった。ノイズの発生原因は軟磁性層表面の
荒れ等様々であるが、その一つは軟磁性層中に垂直磁気
異方性が発生することである。垂直磁気異方性が発生す
ると、軟磁性層中にはいわゆる「縞状磁区」が形成さ
れ、磁化方向が波状にうねることで、再生時にノイズを
発生してしまう。軟磁性層中の垂直磁気異方性は膜厚が
厚いとき発生する傾向があるが、垂直磁気記録に用いら
れる軟磁性層は一般的に200nm以上と厚いので、こ
の垂直磁気異方性が大きな問題となっている。FeNi, FeAlS are conventionally used for the soft magnetic layer.
i, CoZrTa, CoZrNb, and the like are used and required characteristics are high magnetic permeability, high magnetization, and low reproduction signal noise. However, in general, there is a problem that the noise when reproducing is increased in the soft magnetic layer having high magnetization. There are various causes of noise generation, such as roughening of the surface of the soft magnetic layer, and one of them is generation of perpendicular magnetic anisotropy in the soft magnetic layer. When the perpendicular magnetic anisotropy occurs, a so-called "striped magnetic domain" is formed in the soft magnetic layer, and the magnetization direction undulates to generate noise during reproduction. The perpendicular magnetic anisotropy in the soft magnetic layer tends to occur when the film thickness is large, but since the soft magnetic layer used for perpendicular magnetic recording is generally as thick as 200 nm or more, this perpendicular magnetic anisotropy is large. It's a problem.
【0008】厚膜化に伴う垂直磁気異方性の発生を防ぐ
ため、軟磁性層を非磁性層等で膜厚方向に分断して一層
あたりを薄くするという手法も提案されている。しか
し、この方法では必要な層数が著しく増え、プロセス的
に複雑化するという欠点がある。例えば400nmの軟
磁性層を100nm毎に区切って作成すると、軟磁性層
が4層、途中に挟む非磁性層が3層の計7層が必要にな
る。一つのチャンバーで一層を形成するような通常の量
産成膜機では軟磁性層だけで7チャンバー必要になり、
コスト的に非常に不利である。In order to prevent the occurrence of perpendicular magnetic anisotropy associated with the increase in film thickness, a method has also been proposed in which the soft magnetic layer is divided in the film thickness direction by a nonmagnetic layer or the like to reduce the thickness of each layer. However, this method has a drawback that the number of layers required is significantly increased and the process becomes complicated. For example, when a 400 nm soft magnetic layer is divided into 100 nm layers, four soft magnetic layers and three nonmagnetic layers sandwiched in between are required for a total of seven layers. In a normal mass-production film forming machine that forms one layer in one chamber, 7 chambers are required only for the soft magnetic layer,
It is very costly.
【0009】厚い軟磁性層中に垂直磁気異方性が発生す
る原因は完全に明確にはされていないが以下の様な事が
推察される。軟磁性層の膜厚が厚くなってくると、反磁
界の減少に伴いその中の磁壁はネール磁壁からブロッホ
磁壁に移行する。ブロッホ磁壁では磁化が膜面に対して
垂直方向を通過して回転するので、磁化の垂直成分が発
生する。この垂直成分がその上に堆積する軟磁性層に影
響を与えて垂直磁気異方性が発生するものと推測され
る。The cause of the perpendicular magnetic anisotropy in the thick soft magnetic layer has not been completely clarified, but the following is presumed. As the thickness of the soft magnetic layer becomes thicker, the domain wall therein shifts from the Neel domain wall to the Bloch domain wall as the demagnetizing field decreases. In the Bloch domain wall, the magnetization passes through a direction perpendicular to the film surface and rotates, so that a perpendicular component of the magnetization is generated. It is presumed that this perpendicular component affects the soft magnetic layer deposited on the perpendicular magnetic component to generate perpendicular magnetic anisotropy.
【0010】[0010]
【課題を解決するための手段】本発明は、特定の軟磁性
層を作成する際に窒素を軟磁性層中に含有させること
で、磁気異方性の発生を抑制して低ノイズの軟磁性層を
実現するものである。すなわち本発明の要旨は、基板上
に少なくとも軟磁性層および磁気記録層を形成した磁気
記録媒体であって、該軟磁性層がCo、Zrおよび窒素
を含有することを特徴とする磁気記録媒体、及び磁気記
録装置に存する。The present invention suppresses the occurrence of magnetic anisotropy by containing nitrogen in the soft magnetic layer when forming a specific soft magnetic layer, and thus soft magnetic layer with low noise is obtained. It realizes the layers. That is, the gist of the present invention is a magnetic recording medium having at least a soft magnetic layer and a magnetic recording layer formed on a substrate, wherein the soft magnetic layer contains Co, Zr and nitrogen. And a magnetic recording device.
【0011】[0011]
【発明の実施の形態】垂直磁気異方性が発生してノイズ
の増加が起こる理由は、先に述べた様に厚膜化に伴って
磁壁がネール磁壁からブロッホ磁壁へ移行するためであ
ると考えられる。本発明者等は鋭意検討の結果、Coお
よびZrからなる軟磁性層に窒素を含有させることで厚
い軟磁性層でもネール磁壁を保ち、垂直磁気異方性の発
生を抑制することができることを見いだした。BEST MODE FOR CARRYING OUT THE INVENTION The reason why perpendicular magnetic anisotropy occurs and noise increases is that the domain wall shifts from the Neel domain wall to the Bloch domain wall as the film becomes thicker as described above. Conceivable. As a result of diligent studies, the present inventors have found that by incorporating nitrogen into the soft magnetic layer made of Co and Zr, the Neel domain wall can be maintained even in a thick soft magnetic layer and the occurrence of perpendicular magnetic anisotropy can be suppressed. It was
【0012】この理由は完全に明かではないが次の様に
説明できる。ネール磁壁とブロッホ磁壁のいずれができ
るかは、反磁界と交換結合エネルギーのバランスによっ
て決定される。ブロッホ磁壁は反磁界が大きく交換結合
エネルギーが小さい。膜厚を厚くしていき反磁界が低下
すると、ある膜厚を境にしてそれより厚い領域ではブロ
ッホ磁壁が支配的になる。一方それより薄い領域ではネ
ール磁壁が支配的になる。軟磁性層中に窒素を導入する
ことにより、軟磁性層中の粒子間の交換結合力は低下す
る。このためネール磁壁は安定化し、ブロッホ磁壁への
移行膜厚をより厚い方にシフトさせることができるので
ある。The reason for this is not completely clear, but it can be explained as follows. Whether the Neel domain wall or the Bloch domain wall is formed is determined by the balance between the demagnetizing field and the exchange coupling energy. The Bloch domain wall has a large demagnetizing field and a small exchange coupling energy. As the film thickness increases and the demagnetizing field decreases, the Bloch domain wall becomes dominant in a region thicker than a certain film thickness. On the other hand, the Neel domain wall becomes dominant in the region thinner than that. By introducing nitrogen into the soft magnetic layer, the exchange coupling force between particles in the soft magnetic layer decreases. Therefore, the Neel domain wall is stabilized and the film thickness transferred to the Bloch domain wall can be shifted to a thicker side.
【0013】先に述べた軟磁性層を分断する手法は反磁
界を大きく保つことで軟磁性層の膜厚を厚くする手法で
あるが、本発明では、反磁界を大きくするのではなく、
交換結合エネルギーを小さくすることで軟磁性層の膜厚
が厚い領域でもブロッホ磁壁の形成を妨げるものであ
る。ここで用いられる軟磁性層は、Co、Zrおよび窒
素からなり、一般にアモルファスであることが好まし
い。さらに、軟磁性層は、特にCo、Zr、Mおよび窒
素からなることが好ましい。ここで、MはNb、Ta、
Y、Ti、Hfから選ばれる一種以上の元素であること
が、低ノイズを達成する上で好ましい。さらに好ましく
は上記MはNb、Taより選ばれる一種以上の元素であ
ることが好ましい。The above-described method of dividing the soft magnetic layer is a method of increasing the film thickness of the soft magnetic layer by keeping the demagnetizing field large. However, in the present invention, the demagnetizing field is not increased, but
By making the exchange coupling energy small, the Bloch domain wall is prevented from being formed even in a region where the soft magnetic layer is thick. The soft magnetic layer used here is composed of Co, Zr and nitrogen, and is generally preferably amorphous. Further, the soft magnetic layer is preferably made of Co, Zr, M and nitrogen. Here, M is Nb, Ta,
One or more elements selected from Y, Ti, and Hf are preferable for achieving low noise. More preferably, M is one or more elements selected from Nb and Ta.
【0014】軟磁性層が磁気異方性が小さく、アモルフ
ァスとなるためには、軟磁性層中のCo、Zr、Mの組
成が以下の式で表される関係にあることが好ましい。C
o(100-x-y)ZrxMy、(3≦x≦10、3≦y≦12)軟
磁性層中の窒素量は、軟磁性層中の全組成に対して0.
5原子%以上であることが好ましい。さらに好ましくは
1原子%以上である。軟磁性層中の窒素量が少なすぎる
場合、軟磁性層の垂直磁気異方性を抑制する効果が小さ
くなることがある。また、軟磁性層中の窒素量は、軟磁
性層中の全組成に対して6原子%以下であることが好ま
しい。さらに好ましくは5原子%以下である。窒素量が
多すぎる場合、軟磁性層の磁気特性が劣化することがあ
る。In order for the soft magnetic layer to have a small magnetic anisotropy and become amorphous, it is preferable that the composition of Co, Zr and M in the soft magnetic layer have the relationship represented by the following formula. C
o (100-xy) Zr x M y, (3 ≦ x ≦ 10,3 ≦ y ≦ 12) the nitrogen content of the soft magnetic layer is 0 for all compositions in the soft magnetic layer.
It is preferably 5 atomic% or more. More preferably, it is 1 atomic% or more. If the amount of nitrogen in the soft magnetic layer is too small, the effect of suppressing the perpendicular magnetic anisotropy of the soft magnetic layer may be reduced. The amount of nitrogen in the soft magnetic layer is preferably 6 atom% or less with respect to the total composition in the soft magnetic layer. More preferably, it is 5 atomic% or less. If the amount of nitrogen is too large, the magnetic properties of the soft magnetic layer may deteriorate.
【0015】一般に結晶性の軟磁性層に窒素を含有させ
た場合、軟磁性層の結晶形状の変化により、軟磁性層の
磁気特性の劣化やばらつき等が起こることがある。しか
しながら、CoおよびZrからなる合金は、通常アモル
ファスである場合が多く、磁気記録媒体に用いたとき非
常に低ノイズの特性を発現できるのみでなく、窒素を含
有させても、結晶性の軟磁性層とは異なり、磁気特性の
劣化やばらつきが起こることが少ないという特徴があ
る。In general, when nitrogen is contained in the crystalline soft magnetic layer, the magnetic characteristics of the soft magnetic layer may be deteriorated or varied due to changes in the crystal shape of the soft magnetic layer. However, alloys composed of Co and Zr are usually amorphous in many cases, and not only can exhibit very low noise characteristics when used for magnetic recording media, but also contain crystalline soft magnetic properties even when nitrogen is contained. Unlike the layer, it is characterized in that deterioration or variation in magnetic characteristics rarely occurs.
【0016】また、軟磁性層は上記の元素以外の元素、
例えば、B、Mn、Cu、Ag、Pt、Pd等を含有し
ていてもよい。軟磁性層の製造方法は、スパッタリング
法、真空蒸着法、電解メッキ法等を用いることができる
が、膜質が緻密で良好なことからスパッタリング法が好
ましい。軟磁性層に窒素を含有させる方法としては、ア
ルゴンガス等の不活性スパッタリングガスに窒素ガスを
混合させる反応性スパッタリングや、スパッタリングタ
ーゲット自体に予め窒素を含有させておく方法がある。
窒素量の制御が容易であり、かつ経時的な窒素量の安定
性が優れた反応性スパッタリングを用いることが好まし
い。Further, the soft magnetic layer contains an element other than the above elements,
For example, B, Mn, Cu, Ag, Pt, Pd, etc. may be contained. As the method for producing the soft magnetic layer, a sputtering method, a vacuum deposition method, an electrolytic plating method, or the like can be used, but the sputtering method is preferable because the film quality is fine and good. Examples of the method of containing nitrogen in the soft magnetic layer include reactive sputtering in which an inert gas such as argon gas is mixed with nitrogen gas, or a method in which the sputtering target itself contains nitrogen in advance.
It is preferable to use reactive sputtering because the nitrogen amount is easily controlled and the nitrogen amount is stable over time.
【0017】軟磁性層の保磁力は理想的には零であるこ
とが望ましいが、現実的には多少の保磁力を示していて
も良い。しかしながら、軟磁性層の外部磁界に対する応
答性を良好になものとするために、10Oe以下である
ことが好ましく、より好ましくは6Oe以下である。軟
磁性層が十分に記録磁界を収束できるためには、軟磁性
層の膜厚がある程度厚いことが好ましい。軟磁性層の膜
厚は50nm以上であることが好ましい。さらに好まし
くは80nm以上であり、特に好ましくは100nm以
上である。また、軟磁性層の膜厚は、600nm以下で
あることが好ましく、さらに好ましくは500nm以下
である。軟磁性層の膜厚が厚すぎる場合、軟磁性層の表
面の荒れが大きくなり、磁気ヘッドの浮上特性の問題が
生じたり、軟磁性層の成膜時の生産性が悪くなることが
ある。The coercive force of the soft magnetic layer is ideally zero, but in reality it may exhibit some coercive force. However, in order to improve the response of the soft magnetic layer to an external magnetic field, it is preferably 10 Oe or less, more preferably 6 Oe or less. In order for the soft magnetic layer to sufficiently converge the recording magnetic field, it is preferable that the soft magnetic layer is thick to some extent. The thickness of the soft magnetic layer is preferably 50 nm or more. The thickness is more preferably 80 nm or more, and particularly preferably 100 nm or more. The thickness of the soft magnetic layer is preferably 600 nm or less, more preferably 500 nm or less. If the film thickness of the soft magnetic layer is too large, the surface of the soft magnetic layer may be roughened, which may cause a problem of the floating characteristics of the magnetic head, or the productivity during film formation of the soft magnetic layer may be deteriorated.
【0018】軟磁性層の飽和磁束密度Bsは、大きい方
が記録磁界の効率が上がるため、好ましくは0.7T
(テスラ)以上であり、さらに好ましくは1T以上であ
り、特に好ましくは1.2T以上である。一般に磁化
(ないし磁束密度)が高い軟磁性層ほどノイズが高くな
る傾向にあり、これは先に述べた理由で説明できる。こ
のため磁化のより高い軟磁性層に用いることで、本発明
によるノイズ低減効果が顕著になる。しかし、Bsがあ
まりに高過ぎるとノイズを低減しきれなくなることがあ
り、そのため、軟磁性層のBsは2T以下であることが
好ましい。さらに好ましくは1.8T以下である。The larger the saturation magnetic flux density Bs of the soft magnetic layer, the higher the efficiency of the recording magnetic field.
(Tesla) or more, more preferably 1 T or more, and particularly preferably 1.2 T or more. Generally, the higher the magnetization (or the magnetic flux density), the higher the noise tends to be in the soft magnetic layer, which can be explained by the reason described above. Therefore, the noise reduction effect according to the present invention becomes remarkable by using the soft magnetic layer having higher magnetization. However, if Bs is too high, it may not be possible to reduce the noise. Therefore, Bs of the soft magnetic layer is preferably 2T or less. More preferably, it is 1.8 T or less.
【0019】本発明による軟磁性層は、先に述べた様に
垂直磁気記録媒体の裏打ち層として用いられることが好
ましい。このとき磁気記録層としては垂直磁気異方性を
有するものが用いられる。例えばCoを主成分とする合
金、例えばCoCrにPt、B、Ta等を添加したもの
が挙げられる。あるいはPdないしPtとCoないしF
eを0.1〜0.5nm程度の周期で10〜50周期程
度積層した多層膜、あるいはPtFe合金、TbFeC
o等の希土類と遷移金属の合金等が挙げられる。また、
これらの異なる種類の磁気記録層を積層しても良い。The soft magnetic layer according to the present invention is preferably used as a backing layer of a perpendicular magnetic recording medium as described above. At this time, a magnetic recording layer having perpendicular magnetic anisotropy is used. For example, an alloy containing Co as a main component, such as CoCr to which Pt, B, Ta or the like is added, can be given. Or Pd or Pt and Co or F
A multilayer film in which e is stacked for about 10 to 50 cycles at a cycle of about 0.1 to 0.5 nm, or PtFe alloy, TbFeC
Examples thereof include alloys of rare earths such as o and transition metals. Also,
These different types of magnetic recording layers may be laminated.
【0020】磁気記録層の膜厚は50nm以下が好まし
く、より好ましくは40nm、さらに好ましくは35n
m以下である。磁気記録層の膜厚が厚すぎる場合、記録
磁界と軟磁性層の磁気的結合が不十分になり、記録磁界
の軟磁性層への収束が不十分となることがある。また、
磁気記録層の膜厚は、10nm以上が好ましく、より好
ましくは12nm以上、さらに好ましくは15nm以上
である。磁気記録層の膜厚が薄すぎる場合、信号が小さ
くなったり、垂直磁気異方性が低下することがある。The thickness of the magnetic recording layer is preferably 50 nm or less, more preferably 40 nm, further preferably 35 n.
m or less. If the thickness of the magnetic recording layer is too large, the magnetic coupling between the recording magnetic field and the soft magnetic layer may be insufficient, and the recording magnetic field may not be sufficiently converged on the soft magnetic layer. Also,
The thickness of the magnetic recording layer is preferably 10 nm or more, more preferably 12 nm or more, still more preferably 15 nm or more. If the film thickness of the magnetic recording layer is too thin, the signal may be reduced or the perpendicular magnetic anisotropy may be reduced.
【0021】軟磁性層と前記磁気記録層の間には中間層
を設けることが好ましい。中間層の目的はその種類によ
っても異なるが、軟磁性層と磁気記録層の交換結合を遮
断することで磁気記録層の垂直磁気異方性を向上させる
こと、結晶性の磁気記録層の結晶成長の粒径を制御する
こと、磁気記録層の結晶配向を制御すること等である。An intermediate layer is preferably provided between the soft magnetic layer and the magnetic recording layer. The purpose of the intermediate layer depends on its type, but it improves perpendicular magnetic anisotropy of the magnetic recording layer by blocking exchange coupling between the soft magnetic layer and the magnetic recording layer, and crystal growth of the crystalline magnetic recording layer. And the crystal orientation of the magnetic recording layer.
【0022】CoCr合金を磁気記録層とする場合、中
間層としてTiを設けることでC軸が基板に垂直方向に
向いて成長し易くなる。また中間層として非磁性のCo
Crを設けることも結晶成長の上からは好ましい。同様
の目的でCoRu、CoCrRu等を用いることも考え
られる。結晶粒径を小さくする目的ではカーボン、S
i、SiO2等を用いることもある。これらを組み合わ
せた複数の中間層を用いても良い。中間層の膜厚が薄す
ぎる場合、先に述べた中間層としての役割が不十分にな
ることがあり、一方厚すぎた場合はヘッドの記録部と軟
磁性層との距離が離れ過ぎることがあるので、1nm以
上かつ20nm以下であることが好ましい。When a CoCr alloy is used as the magnetic recording layer, by providing Ti as the intermediate layer, the C axis is oriented in the direction perpendicular to the substrate, and the growth is facilitated. In addition, non-magnetic Co is used as an intermediate layer.
Providing Cr is also preferable from the viewpoint of crystal growth. It is also possible to use CoRu, CoCrRu, or the like for the same purpose. For the purpose of reducing the crystal grain size, carbon, S
i, SiO 2 or the like may be used. You may use the some intermediate | middle layer which combined these. If the thickness of the intermediate layer is too thin, the role as the intermediate layer described above may be insufficient, while if it is too thick, the distance between the recording portion of the head and the soft magnetic layer may be too large. Therefore, it is preferably 1 nm or more and 20 nm or less.
【0023】なお、ヘッド記録部と軟磁性層表面との距
離は80nm以下であることが好ましく、さらに好まし
くは60nm以下である。本発明の磁気記録媒体におけ
る基板としては、Alを主成分とした例えばAl−Mg
合金等のAl合金基板や、通常のソーダガラス、アルミ
ノシリケート系ガラス、結晶化ガラス類、シリコン、チ
タン、セラミクス、各種樹脂からなる基板など、任意の
ものを用いることができる。中でもAl合金基板や結晶
化ガラス等のガラス基板を用いることが好ましい。The distance between the head recording portion and the surface of the soft magnetic layer is preferably 80 nm or less, more preferably 60 nm or less. The substrate in the magnetic recording medium of the present invention is, for example, Al-Mg containing Al as a main component.
Any material such as an Al alloy substrate such as an alloy, a normal soda glass, an aluminosilicate glass, a crystallized glass, a substrate made of silicon, titanium, ceramics, or various resins can be used. Above all, it is preferable to use a glass substrate such as an Al alloy substrate or crystallized glass.
【0024】磁気記録媒体の製造工程においては、従来
公知の方法を適宜用いればよい。一般的には、まず基板
の洗浄・乾燥が行われるのが通常であり、本発明におい
て各層の密着性を確保する見地からもその形成前に洗
浄、乾燥を行うことが望ましい。本発明の磁気記録媒体
の製造に際しては、基板表面にNiP等の金属被覆層を
形成することが好ましい場合もある。導電性の材料から
なる基板の場合であれば、電解メッキを使用することが
可能である。In the manufacturing process of the magnetic recording medium, a conventionally known method may be appropriately used. Generally, the substrate is usually washed and dried first, and from the viewpoint of ensuring the adhesiveness of each layer in the present invention, it is desirable that the substrate be washed and dried before its formation. In manufacturing the magnetic recording medium of the present invention, it may be preferable to form a metal coating layer such as NiP on the surface of the substrate. In the case of a substrate made of a conductive material, electrolytic plating can be used.
【0025】本発明において、成膜時に直流バイアスス
パッタリング方法を用いる場合は、ガラス基板等の不導
体基板に対してはそのままでは使用できない。この場合
には、基板上にあらかじめ金属等による導電層を設けて
おき、この導電層に対してバイアス電圧を加えることが
好ましい。導電層の例としてはTi、Ta、Cr、Ni
Al等が挙げられる。このように、ガラス基板に導電層
を設けたものを基板とみなす場合もある。In the present invention, when the DC bias sputtering method is used for film formation, it cannot be used as it is for a non-conductive substrate such as a glass substrate. In this case, it is preferable to provide a conductive layer made of metal or the like on the substrate in advance and apply a bias voltage to the conductive layer. Examples of conductive layers include Ti, Ta, Cr, Ni
Examples thereof include Al. In this way, a glass substrate provided with a conductive layer may be regarded as a substrate.
【0026】さらにヘッドの浮上特性を向上するため
に、基板表面、又は金属被覆層が形成された基板表面に
は同心円状にテキスチャリングを施すのが好ましい。本
発明において同心円状テキスチャリングとは、例えば遊
離砥粒とテキスチャーテープを使用した機械式テキスチ
ャリングやレーザー光線などを利用したテキスチャリン
グ加工、又はこれらを併用することによって、円周方向
に研磨することによって基板円周方向に微小溝を多数形
成した状態を指称する。Further, in order to improve the flying characteristics of the head, it is preferable that the substrate surface or the substrate surface on which the metal coating layer is formed is concentrically textured. In the present invention, the concentric circular texturing is, for example, mechanical texturing using free abrasive grains and a texture tape, texturing using a laser beam, or the like, or by using them in combination, by polishing in the circumferential direction. The state in which a large number of minute grooves are formed in the circumferential direction of the substrate is referred to.
【0027】基板の表面は、表面粗さ(Ra)がどのよ
うな値をとっても本発明の効果には基本的には影響はな
いが、ヘッド浮上量ができるだけ小さいことが高密度磁
気記録の実現には有効であり、またこれら基板の特徴の
ひとつが優れた表面平滑性にあることから、基板表面の
Raは1nm以下、さらには0.5nm以下であること
が好ましく、中でも0.3nm以下であることが好まし
い。ただし、ここでRaの決定は、触針式表面粗さ計を
用いて測定した場合を想定している。このとき測定用の
針の先端は半径0.2μm程度の大きさのものが使用さ
れる。The surface of the substrate has basically no effect on the effect of the present invention regardless of the surface roughness (Ra), but the head flying height is as small as possible to realize high density magnetic recording. Is effective, and since one of the characteristics of these substrates is excellent surface smoothness, Ra on the substrate surface is preferably 1 nm or less, more preferably 0.5 nm or less, and especially 0.3 nm or less. Preferably there is. However, here, Ra is assumed to be measured using a stylus type surface roughness meter. At this time, the tip of the measuring needle has a radius of about 0.2 μm.
【0028】一般的には磁気記録層上には、任意の保護
層を形成し、次いで潤滑層を形成する。保護層として
は、炭素(C)、水素化C、窒素化C、アモルファス
C、SiC等の炭素質層やSiO2、Zr2O3、TiN
など通常用いられる保護層材料を用いることができる。
また、保護層が2層以上の層から構成されていてもよ
い。保護層の層厚は1〜50nm、特に1〜10nmで
あり、耐久性を確保できる範囲で、できるだけ薄く設定
することが好ましい。潤滑層に用いられる潤滑剤として
は、フッ素系潤滑剤、炭化水素系潤滑剤及びこれらの混
合物等が挙げられ、通常0.1〜5nm、好ましくは1
〜3nmの層厚で潤滑層を形成する。Generally, an optional protective layer is formed on the magnetic recording layer, and then a lubricating layer is formed. As the protective layer, carbonaceous layers such as carbon (C), hydrogenated C, nitrogenated C, amorphous C and SiC, SiO 2 , Zr 2 O 3 and TiN are used.
A commonly used protective layer material can be used.
Further, the protective layer may be composed of two or more layers. The layer thickness of the protective layer is 1 to 50 nm, particularly 1 to 10 nm, and it is preferable to set it as thin as possible within a range where durability can be secured. Examples of the lubricant used in the lubricating layer include a fluorine-based lubricant, a hydrocarbon-based lubricant and a mixture thereof, and the like, usually 0.1 to 5 nm, preferably 1
A lubricating layer is formed with a layer thickness of ˜3 nm.
【0029】磁気記録層を形成する成膜方法としては任
意であるが、例えば直流(マグネトロン)スパッタリン
グ法、高周波(マグネトロン)スパッタリング法、EC
R(電子サイクロトロン共鳴)スパッタリング法、真空
蒸着法などの物理的蒸着法が挙げられる。磁気記録層の
密着性、強度が高くヘッド浮上特性が良好であることか
ら、特にスパッタリング法を用いることが好ましい。The film forming method for forming the magnetic recording layer is arbitrary, but for example, direct current (magnetron) sputtering method, high frequency (magnetron) sputtering method, EC
Physical vapor deposition methods such as R (electron cyclotron resonance) sputtering method and vacuum vapor deposition method can be used. It is particularly preferable to use the sputtering method because the magnetic recording layer has high adhesion and strength and good head flying characteristics.
【0030】スパッタリング成膜では、通常の場合、到
達真空度は2×10-5Pa以下、スパッタリングガス圧
は0.1〜2Paが好ましい。磁気記録層がCoCr合
金である場合、磁気記録層の成膜に当たっては、磁気記
録層の結晶成長を促進し、かつ磁気記録層のCrの偏析
を促進するために、一般に基板を100〜400℃程度
に加熱することが好ましい。In the sputtering film formation, it is usually preferable that the ultimate vacuum is 2 × 10 −5 Pa or less and the sputtering gas pressure is 0.1 to 2 Pa. When the magnetic recording layer is a CoCr alloy, when the magnetic recording layer is formed, the substrate is generally 100 to 400 ° C. in order to promote crystal growth of the magnetic recording layer and promote Cr segregation of the magnetic recording layer. It is preferable to heat to some extent.
【0031】本発明の磁気記録装置は、少なくとも上述
してきた磁気記録媒体と、磁気記録媒体を記録方向に駆
動する駆動部と、記録部と再生部からなる磁気ヘッド
と、磁気ヘッドを磁気記録媒体に対して相対移動させる
手段と、磁気ヘッドの記録信号入力と磁気ヘッドからの
再生信号出力を行うための記録信号処理手段を有する磁
気記録装置である。The magnetic recording apparatus of the present invention includes at least the above-described magnetic recording medium, a drive unit for driving the magnetic recording medium in the recording direction, a magnetic head including a recording unit and a reproducing unit, and a magnetic head for the magnetic recording medium. And a recording signal processing means for inputting a recording signal of the magnetic head and outputting a reproduction signal from the magnetic head.
【0032】上述の磁気ヘッドの再生部をMRヘッドで
構成することにより、高記録密度を持った磁気記録装置
を実現することができる。また、記録部は従来面内磁気
記録で用いられてきたリングヘッド、あるいは単独の磁
極のみを有する単磁極ヘッド(SPTヘッド)を用いる
ことが可能であるが、軟磁性層との組み合わせで急峻な
磁界分布が得られるSPTヘッドを用いることが好まし
い。この磁気ヘッドを0.01μm以上、0.03μm
未満程度に浮上させることで高いS/N比が得られ、大
容量で高信頼性のある磁気記録装置を提供することがで
きる。また、PRML(Partial Respon
se Most Likelyhood)による信号処
理回路を組み合わせるとさらに記録密度を向上でき、例
えば、トラック密度90kFTPI以上、線記録密度7
00kFTPI以上、1平方インチ当たり60Gビット
以上の記録密度で記録・再生する場合にも十分なS/N
比、および記録の熱安定性が得られる。A magnetic recording device having a high recording density can be realized by forming the reproducing portion of the above magnetic head by an MR head. Further, the recording portion may be a ring head which has been used in the conventional longitudinal magnetic recording, or a single magnetic pole head (SPT head) having only a single magnetic pole, but it is sharp when combined with a soft magnetic layer. It is preferable to use an SPT head that can obtain a magnetic field distribution. This magnetic head is 0.01 μm or more, 0.03 μm
A high S / N ratio can be obtained by levitating the magnetic recording medium to less than about 100 μm, and a magnetic recording device having a large capacity and high reliability can be provided. In addition, PRML (Partial Response)
The recording density can be further improved by combining a signal processing circuit according to SE Most Likehood), for example, a track density of 90 kFTPI or more and a linear recording density of 7
S / N sufficient for recording / reproducing at a recording density of at least 00 kFTPI and at least 60 Gbits per square inch
The ratio and thermal stability of the recording are obtained.
【0033】[0033]
【実施例】以下に実施例を示し、本発明をさらに具体的
に説明する。但し、本発明はその要旨を超えない限り、
以下の実施例に限定されるものではない。
(実験例1〜12)ハードディスク用アルミニウム基板
をセットした真空チャンバをあらかじめ1.0×10-5
Pa以下に真空排気した。アルミニウム基板は表面にN
iPメッキが施されているものを使用した。基板はRa
約0.5nm、外径65mm、内径20mmであった。EXAMPLES The present invention will be described more concretely with reference to the following examples. However, as long as the present invention does not exceed its gist,
The present invention is not limited to the following examples. (Experimental Examples 1 to 12) A vacuum chamber in which an aluminum substrate for a hard disk was set was previously set to 1.0 × 10 −5.
It was evacuated to Pa or less. Aluminum substrate has N on the surface
An iP-plated product was used. The substrate is Ra
The diameter was about 0.5 nm, the outer diameter was 65 mm, and the inner diameter was 20 mm.
【0034】基板上に(Co86Zr8Nb6)100-aN
a(aは軟磁性層中の窒素の原子%)、または(Co86
Zr8Ta6)100-aNaよりなる軟磁性層(膜厚200n
m)をアルゴンガスと窒素ガスの混合ガスを用いた反応
性スパッタリング法により成膜した。アルゴンガス圧
は、約7.0×10-1Paに設定し、基板温度は室温で
行った。 アルゴンガスと窒素ガスの混合比率を変化さ
せることにより、軟磁性層中の窒素量(a)の異なる軟
磁性層を何種類か作製した。軟磁性層中の窒素量(a)
はオージェ電子分光法により測定した。On the substrate (Co86Zr8Nb6) 100-a N
a (a is atomic% of nitrogen in the soft magnetic layer) or (Co86
Zr8Ta6) 100-a N a soft magnetic layer (film thickness 200 n
m) was formed into a film by a reactive sputtering method using a mixed gas of argon gas and nitrogen gas. The argon gas pressure was set to about 7.0 × 10 −1 Pa, and the substrate temperature was room temperature. Several kinds of soft magnetic layers having different nitrogen contents (a) in the soft magnetic layer were prepared by changing the mixing ratio of argon gas and nitrogen gas. Amount of nitrogen in soft magnetic layer (a)
Was measured by Auger electron spectroscopy.
【0035】上記のように作製した軟磁性層の上に、カ
ーボン保護層(膜厚5nm)を、アルゴンガスを用いた
DC(直流)スパッタリング法を用いて成膜した。成膜
時のアルゴンガス分圧は約7.0×10-1Paに設定
し、基板温度は350℃に設定した。上記カーボン保護
層の上にフッ素系潤滑剤(Fomblin Z−Dol
2000:アウジモント社製)の潤滑剤層を形成し
た。On the soft magnetic layer produced as described above, a carbon protective layer (film thickness 5 nm) was formed by a DC (direct current) sputtering method using argon gas. The argon gas partial pressure during film formation was set to about 7.0 × 10 −1 Pa and the substrate temperature was set to 350 ° C. A fluorine-based lubricant (Fomblin Z-Dol) is formed on the carbon protective layer.
2000: manufactured by Ausimont Co., Ltd.).
【0036】軟磁性層の保磁力はいずれも5Oe以下で
あった。作製した積層体(基板上に軟磁性層、カーボン
保護層および潤滑層を形成したもの)のノイズ特性を、
スピンスタンドを用いて以下の通り評価した。ヘッドと
してアルプス電気社製のGMRヘッドを用い、上記積層
体を回転速度4200rpmで回転し、ノイズ特性を測
定した。ノイズスペクトルは、1〜100MHzまでの
ものを取り込んだ。そして、ノイズスペクトルの積分強
度を周波数平均化し、そのrms値(自乗平均値)を取
ることによりノイズを求めた。表1および表2に各実験
例における軟磁性層の組成、窒素量(a)およびノイズ
をまとめて示した。The coercive force of each soft magnetic layer was 5 Oe or less. The noise characteristics of the produced laminated body (those having a soft magnetic layer, a carbon protective layer and a lubricating layer formed on a substrate)
It evaluated as follows using the spin stand. A GMR head manufactured by Alps Electric Co., Ltd. was used as a head, and the laminated body was rotated at a rotation speed of 4,200 rpm to measure noise characteristics. The noise spectrum was taken from 1 to 100 MHz. Then, the integrated intensity of the noise spectrum was frequency averaged, and the rms value (root mean square value) was taken to obtain the noise. Tables 1 and 2 collectively show the composition, nitrogen content (a) and noise of the soft magnetic layer in each experimental example.
【0037】[0037]
【表1】 軟磁性層組成:(Co86Zr8Nb6)100-aNa [Table 1] Soft magnetic layer composition: (Co86Zr8Nb6) 100-a N a
【0038】[0038]
【表2】
軟磁性層組成:(Co86Zr8Ta6)100-aNa
図1に軟磁性層中の窒素量(a)が0原子%の場合(実
験例1)と1.6原子%の場合(実験例4)のノイズス
ペクトルを示した。また、実験例1〜12について、軟
磁性層中の窒素量(a)とノイズの関係を図2に示し
た。
(実験例13、14)実験例1と同様の方法で組成が
(Co86Zr8Nb6)100-aNaよりなる軟磁性層(膜厚
400nm)を設けた積層体を作成した。[Table 2] Soft magnetic layer composition: (Co86Zr8Ta6) 100-a N a In FIG. 1, the nitrogen content (a) in the soft magnetic layer is 0 atom% (Experimental Example 1) and 1.6 atom% (Experimental Example 4). The noise spectrum of 2 shows the relationship between the amount of nitrogen (a) in the soft magnetic layer and noise in Experimental Examples 1 to 12. It was prepared a laminate having a (Experimental Examples 13 and 14) the composition in the same manner as in Experimental Example 1 (Co86Zr8Nb6) soft magnetic layer made of 100-a N a (film thickness 400 nm).
【0039】軟磁性層中の窒素量(a)が0原子%(実
験例13)と1.6原子%(実験例14)の2種類作成
した。VSM(振動型磁力計)で、作製した積層体のM
−Hループ(積層体に外部磁場Hを印加したときの、外
部磁場Hと積層体の磁化Mの関係を示すループ)を測定
した結果を図3(実験例13)および図4(実験例1
4)に示す。軟磁性層中の窒素量(a)が0原子%(実
験例13)は、垂直磁気異方性を起源とした典型的な縞
状磁区構造のループを示しているが、軟磁性層中の窒素
量(a)が1.6原子%のもの(実験例14)は垂直磁
気異方性を示さないM−Hループを示している。
(実施例1および比較例1)実験例1と同様の方法で組
成が(Co84Zr8Nb6)100-aNaよりなる軟磁性層
(膜厚200nm)を成膜した。軟磁性層中の窒素量
(a)が0原子%(比較例1)と1.6原子%(実施例
1)の2種類を作製した。Two kinds of nitrogen (a) in the soft magnetic layer were prepared, 0 atomic% (Experimental Example 13) and 1.6 atomic% (Experimental Example 14). M of VSM (vibrating magnetometer)
3 (Experimental Example 13) and FIG. 4 (Experimental Example 1) show the results of measurement of the −H loop (a loop showing the relationship between the external magnetic field H and the magnetization M of the laminated body when the external magnetic field H is applied to the laminated body).
4). When the nitrogen content (a) in the soft magnetic layer is 0 atom% (Experimental Example 13), a loop having a typical striped domain structure originating from perpendicular magnetic anisotropy is shown. The nitrogen content (a) of 1.6 atomic% (Experimental Example 14) shows an MH loop that does not exhibit perpendicular magnetic anisotropy. (Example 1 and Comparative Example 1) By the same method as in Experimental Example 1, a soft magnetic layer (film thickness 200 nm) composed of (Co84Zr8Nb6) 100- aNa was formed. Two types were prepared in which the nitrogen content (a) in the soft magnetic layer was 0 atom% (Comparative Example 1) and 1.6 atom% (Example 1).
【0040】上記軟磁性層の上にTiよりなる第1中間
層(膜厚10nm)、Co63Cr37よりなる第2中間層
(膜厚5nm)、Co66Cr19Pt12B3よりなる磁気
記録層(膜厚20nm)、カーボン保護層(膜厚5n
m)を順次、DC(直流)スパッタリング法を用いて積
層した。この時のアルゴンガス圧は約7.0×10-1P
a、基板温度は350℃で行った。On the soft magnetic layer, a first intermediate layer made of Ti (film thickness 10 nm), a second intermediate layer made of Co63Cr37 (film thickness 5 nm), a magnetic recording layer made of Co66Cr19Pt12B3 (film thickness 20 nm), carbon protection. Layer (film thickness 5n
m) were sequentially laminated using a DC (direct current) sputtering method. The argon gas pressure at this time is about 7.0 × 10 -1 P
a, the substrate temperature was 350 ° C.
【0041】カーボン保護層の上にフッ素系潤滑剤(F
omblin Z−Dol 2000:アウジモント社
製)の潤滑剤層を形成し、磁気記録媒体を作製した。こ
のとき磁気記録媒体の保磁力は3300Oe、角形比は
0.78であり、軟磁性層中の窒素量(a)により違い
は見られなかった。作製した磁気記録媒体のS/N比
を、スピンスタンド、GMRヘッドを用い、磁気記録媒
体を4200rpmの回転数で回転し、ヘッド位置が磁
気記録媒体の半径位置22.55mmにおいて、以下の
方法で測定した。Fluorine-based lubricant (F
mblin Z-Dol 2000: manufactured by Ausimont Co., Ltd.) was formed as a lubricant layer to prepare a magnetic recording medium. At this time, the coercive force of the magnetic recording medium was 3300 Oe and the squareness ratio was 0.78, and no difference was observed depending on the amount of nitrogen (a) in the soft magnetic layer. The S / N ratio of the manufactured magnetic recording medium was measured by using a spin stand and a GMR head, rotating the magnetic recording medium at a rotation speed of 4200 rpm, and the head position at a radial position of 22.55 mm of the magnetic recording medium by the following method. It was measured.
【0042】記録周波数83.83MHz、記録電流4
0mAで信号を記録した時に得られるノイズスペクトル
の1〜100MHzの積分強度を周波数平均化してノイ
ズ電圧を求めた。このノイズ電圧のrms値(自乗平均
値)をノイズ出力とした。次に記録周波数15.72M
Hz、記録電流40mAで信号を記録した。この時得ら
れる再生信号の記録周波数(15.72MHz)におけ
る電圧をパワーに変換したものを記録信号とした。Recording frequency 83.83 MHz, recording current 4
The noise voltage was obtained by frequency averaging the integrated intensity of 1 to 100 MHz of the noise spectrum obtained when the signal was recorded at 0 mA. The rms value (root mean square value) of this noise voltage was used as the noise output. Next recording frequency 15.72M
The signal was recorded at Hz and a recording current of 40 mA. The recording signal was obtained by converting the voltage at the recording frequency (15.72 MHz) of the reproduced signal obtained at this time into power.
【0043】上記のようにして求めた、記録信号出力を
ノイズ出力で割ることによりS/N比を求めた。この結
果、軟磁性層中の窒素量(a)が0原子%の磁気記録媒
体(比較例1)のS/N比は17.2dB、軟磁性層中
の窒素量(a)が1.6原子%の磁気記録媒体(実施例
1)のS/N比は19.8dBであった。The S / N ratio was obtained by dividing the recording signal output obtained as described above by the noise output. As a result, the S / N ratio of the magnetic recording medium (Comparative Example 1) in which the amount of nitrogen (a) in the soft magnetic layer was 0 atom% was 17.2 dB, and the amount of nitrogen (a) in the soft magnetic layer was 1.6. The S / N ratio of the magnetic recording medium of atomic% (Example 1) was 19.8 dB.
【0044】[0044]
【発明の効果】上記結果から明らかなように、軟磁性層
としてCo、Zrおよび窒素を含有した軟磁性層を用い
ることで低ノイズの磁気記録媒体が得られ、高いS/N
比を実現することが可能である。従って、本発明の磁気
記録媒体を用いた磁気記録装置は低ノイズでS/N比の
高い優れた記録再生を行うことができる。As is clear from the above results, by using a soft magnetic layer containing Co, Zr and nitrogen as the soft magnetic layer, a low noise magnetic recording medium can be obtained and a high S / N ratio can be obtained.
It is possible to achieve a ratio. Therefore, the magnetic recording apparatus using the magnetic recording medium of the present invention can perform excellent recording / reproduction with low noise and high S / N ratio.
【図1】実験例1および2におけるノイズスペクトルを
示した図FIG. 1 is a diagram showing a noise spectrum in Experimental Examples 1 and 2.
【図2】実験例1〜12において軟磁性層中の窒素量と
ノイズの関係を示した図FIG. 2 is a diagram showing the relationship between the amount of nitrogen in the soft magnetic layer and noise in Experimental Examples 1 to 12.
【図3】実験例13における軟磁性層のM−Hループを
示した図FIG. 3 is a diagram showing an MH loop of a soft magnetic layer in Experimental Example 13.
【図4】実験例14における軟磁性層のM−Hループを
示した図FIG. 4 is a diagram showing an MH loop of a soft magnetic layer in Experimental Example 14.
Claims (7)
記録層を形成した磁気記録媒体であって、該軟磁性層が
Co、Zrおよび窒素を含有することを特徴とする磁気
記録媒体。1. A magnetic recording medium in which at least a soft magnetic layer and a magnetic recording layer are formed on a substrate, wherein the soft magnetic layer contains Co, Zr and nitrogen.
aより選ばれる一種以上の元素)および窒素を含有する
ことを特徴とする請求項1に記載の磁気記録媒体。2. The soft magnetic layer comprises Co, Zr, M (M is Nb, T
The magnetic recording medium according to claim 1, which contains one or more elements selected from a) and nitrogen.
x≦10、3≦y≦12)で表される組成からなり、且つ
窒素を含有することを特徴とする請求項2に記載の磁気
記録媒体。Wherein the soft magnetic layer is Co (100-xy) Zr x M y (3 ≦
The magnetic recording medium according to claim 2, wherein the magnetic recording medium has a composition represented by x ≦ 10, 3 ≦ y ≦ 12) and contains nitrogen.
求項1乃至3のいずれかに記載の磁気記録媒体。4. The magnetic recording medium according to claim 1, wherein the soft magnetic layer has a coercive force of 10 Oe or less.
6原子%以下である請求項1乃至4のいずれかに記載の
磁気記録媒体。5. The amount of nitrogen in the soft magnetic layer is 0.5 atomic% or more,
The magnetic recording medium according to claim 1, which is 6 atomic% or less.
至5のいずれかに記載の磁気記録媒体。6. The magnetic recording medium according to claim 1, wherein the magnetic recording layer is a perpendicular magnetization film.
録媒体と、磁気記録媒体を記録方向に駆動する駆動部
と、記録部と再生部からなる磁気ヘッドと、磁気ヘッド
を磁気記録媒体に対して相対移動させる手段と、磁気ヘ
ッドの記録信号入力と磁気ヘッドからの再生信号出力を
行うための記録信号処理手段を有することを特徴とする
磁気記録装置。7. A magnetic recording medium according to claim 1, a drive section for driving the magnetic recording medium in the recording direction, a magnetic head comprising a recording section and a reproducing section, and a magnetic recording for the magnetic head. A magnetic recording apparatus comprising: a means for relatively moving the medium, and a recording signal processing means for inputting a recording signal of a magnetic head and outputting a reproduction signal from the magnetic head.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001378879A JP2003178416A (en) | 2001-12-12 | 2001-12-12 | Magnetic recording medium and magnetic recording device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001378879A JP2003178416A (en) | 2001-12-12 | 2001-12-12 | Magnetic recording medium and magnetic recording device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003178416A true JP2003178416A (en) | 2003-06-27 |
JP2003178416A5 JP2003178416A5 (en) | 2005-07-07 |
Family
ID=19186474
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001378879A Pending JP2003178416A (en) | 2001-12-12 | 2001-12-12 | Magnetic recording medium and magnetic recording device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003178416A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8034470B2 (en) | 2007-03-16 | 2011-10-11 | Fuji Electric Co., Ltd. | Perpendicular magnetic recording medium and method of manufacturing the medium |
US8691402B2 (en) | 2004-01-09 | 2014-04-08 | Fuji Electric Co., Ltd. | Perpendicular magnetic recording medium |
-
2001
- 2001-12-12 JP JP2001378879A patent/JP2003178416A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8691402B2 (en) | 2004-01-09 | 2014-04-08 | Fuji Electric Co., Ltd. | Perpendicular magnetic recording medium |
US8034470B2 (en) | 2007-03-16 | 2011-10-11 | Fuji Electric Co., Ltd. | Perpendicular magnetic recording medium and method of manufacturing the medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3143611B2 (en) | Ultrathin nucleation layer for magnetic thin film media and method of making the layer | |
CN100440325C (en) | Perpendicular magnetic recording medium, manufacturing method thereof, and magnetic storage device | |
EP0531035B1 (en) | Magnetic recording medium | |
US6844046B2 (en) | Magnetic recording medium, production process thereof, magnetic recording and reproducing apparatus, and sputtering target | |
JP3423907B2 (en) | Magnetic recording medium, method of manufacturing the same, and magnetic recording device | |
JPH05274644A (en) | Magnetic recording medium and its production | |
JP2003203330A (en) | Magnetic recording media | |
JPH11219511A (en) | Magnetic recording medium and magnetic recording device | |
JP2003178416A (en) | Magnetic recording medium and magnetic recording device | |
JP3588039B2 (en) | Magnetic recording medium and magnetic recording / reproducing device | |
JP2003151128A (en) | Method of manufacturing substrate having soft magnetic layer formed thereon, substrate having soft magnetic layer formed thereon, magnetic recording medium, and magnetic recording device | |
US20030228495A1 (en) | Magnetic recording medium and manufacturing method thereof | |
JPH11213371A (en) | Magnetic recording media | |
JP3663289B2 (en) | Magnetic recording medium and magnetic storage device | |
JP2000150233A (en) | Magnetic film and manufacturing method thereof | |
JP2001189006A (en) | Magnetic recording medium, method of producing the same and magnetic recording reproducing device | |
JP2002222517A (en) | Magnetic recording medium | |
JPH0268716A (en) | Production of magnetic disk medium | |
JP2001250223A (en) | Magnetic recording medium and magnetic recording device | |
JPH10233014A (en) | Magnetic recording media | |
JP2001283427A (en) | Magnetic recording medium, its manufacture method, sputtering target and magnetic recording and reproducing device | |
US20080166597A1 (en) | Magnetic Recording Medium, Production Process Thereof, and Magnetic Recording and Reproducing Apparatus | |
JP2003168209A (en) | Magnetic recording medium and magnetic recording device | |
JP2002092841A (en) | Magnetic recording medium and magnetic recording device using the same | |
JP2001134929A (en) | Magnetic recording medium and magnetic recording device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Effective date: 20041108 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041108 |
|
RD02 | Notification of acceptance of power of attorney |
Effective date: 20041108 Free format text: JAPANESE INTERMEDIATE CODE: A7422 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050830 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051004 |
|
A521 | Written amendment |
Effective date: 20051202 Free format text: JAPANESE INTERMEDIATE CODE: A523 Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20051202 |
|
RD02 | Notification of acceptance of power of attorney |
Effective date: 20051202 Free format text: JAPANESE INTERMEDIATE CODE: A7422 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20070313 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070511 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Effective date: 20070606 Free format text: JAPANESE INTERMEDIATE CODE: A911 |
|
A912 | Removal of reconsideration by examiner before appeal (zenchi) |
Effective date: 20080425 Free format text: JAPANESE INTERMEDIATE CODE: A912 |