JP2003176185A - Ceramic porous body and ceramic filter - Google Patents
Ceramic porous body and ceramic filterInfo
- Publication number
- JP2003176185A JP2003176185A JP2001372574A JP2001372574A JP2003176185A JP 2003176185 A JP2003176185 A JP 2003176185A JP 2001372574 A JP2001372574 A JP 2001372574A JP 2001372574 A JP2001372574 A JP 2001372574A JP 2003176185 A JP2003176185 A JP 2003176185A
- Authority
- JP
- Japan
- Prior art keywords
- aggregate
- porous body
- ceramic
- ceramic porous
- mass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 108
- 239000000463 material Substances 0.000 claims abstract description 70
- 238000001914 filtration Methods 0.000 claims abstract description 64
- 239000012528 membrane Substances 0.000 claims abstract description 41
- 239000011148 porous material Substances 0.000 claims abstract description 33
- 238000005245 sintering Methods 0.000 claims abstract description 26
- 239000002994 raw material Substances 0.000 claims abstract description 16
- 239000002245 particle Substances 0.000 claims description 23
- 239000000758 substrate Substances 0.000 claims description 23
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 10
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 8
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 8
- 239000007787 solid Substances 0.000 claims description 7
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 6
- 229910052878 cordierite Inorganic materials 0.000 claims description 6
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 claims description 6
- 239000000377 silicon dioxide Substances 0.000 claims description 5
- 239000011734 sodium Substances 0.000 claims description 5
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 claims description 4
- 229910021193 La 2 O 3 Inorganic materials 0.000 claims description 4
- 239000000292 calcium oxide Substances 0.000 claims description 4
- 235000012255 calcium oxide Nutrition 0.000 claims description 4
- 239000000395 magnesium oxide Substances 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 229910052760 oxygen Inorganic materials 0.000 claims description 4
- 239000005995 Aluminium silicate Substances 0.000 claims description 3
- 229910018068 Li 2 O Inorganic materials 0.000 claims description 3
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 3
- 235000012211 aluminium silicate Nutrition 0.000 claims description 3
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims description 3
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 claims description 3
- 239000010433 feldspar Substances 0.000 claims description 3
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 claims description 3
- 229910052863 mullite Inorganic materials 0.000 claims description 3
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 3
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 3
- 230000001747 exhibiting effect Effects 0.000 abstract 1
- 239000002585 base Substances 0.000 description 40
- 239000012530 fluid Substances 0.000 description 24
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 20
- 230000000052 comparative effect Effects 0.000 description 15
- 239000000126 substance Substances 0.000 description 14
- 238000011282 treatment Methods 0.000 description 14
- 210000004027 cell Anatomy 0.000 description 9
- 238000000034 method Methods 0.000 description 9
- 238000005406 washing Methods 0.000 description 8
- 238000011001 backwashing Methods 0.000 description 7
- 230000035699 permeability Effects 0.000 description 6
- 239000011230 binding agent Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 238000005259 measurement Methods 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 238000013001 point bending Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 230000001154 acute effect Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 2
- 229910052753 mercury Inorganic materials 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 1
- 239000005708 Sodium hypochlorite Substances 0.000 description 1
- 238000007545 Vickers hardness test Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005111 flow chemistry technique Methods 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 239000003002 pH adjusting agent Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000565 sealant Substances 0.000 description 1
- 235000011121 sodium hydroxide Nutrition 0.000 description 1
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000001132 ultrasonic dispersion Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Porous Artificial Stone Or Porous Ceramic Products (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】 本発明は、セラミック多孔
質体、及び、これを用いたセラミックフィルタに関する
ものである。より詳しくは、骨材の結合材として微粒骨
材及びフリットを添加した原料を用い、成形の後に焼結
することにより得られる、強度向上が図られれたセラミ
ック多孔質体と、これを用いたセラミックフィルタに関
する。TECHNICAL FIELD The present invention relates to a ceramic porous body and a ceramic filter using the same. More specifically, a ceramic porous body having improved strength, which is obtained by using a raw material to which fine aggregate and frit are added as a binder of aggregate, and obtained by sintering after molding, and a ceramic using the same. Regarding filters.
【0002】[0002]
【従来の技術】 セラミック多孔質体は、例えば、固液
分離あるいは気固分離用のフィルタとして用いられてい
る。セラミック多孔質体を主な構成部材とするセラミッ
クフィルタは、同様の用途に用いられる有機高分子膜等
と比較して、物理的強度、耐久性、耐蝕性等に優れるた
め、水処理や排ガス処理、あるいは医薬・食品分野等の
広範な分野において、液体やガス中の懸濁物質、細菌、
粉塵等の除去に好適に用いられている。2. Description of the Related Art Porous ceramic bodies are used, for example, as filters for solid-liquid separation or gas-solid separation. Ceramic filters, whose main component is a ceramic porous body, are superior in physical strength, durability, corrosion resistance, etc. compared to organic polymer membranes used for similar applications, and therefore water treatment and exhaust gas treatment. , Or in a wide range of fields such as pharmaceutical and food fields, suspended solids in liquids and gases, bacteria,
It is preferably used for removing dust and the like.
【0003】 セラミックフィルタにおいては、セラミ
ック多孔質体をそのまま濾材として用いる場合もある
が、濾過性能、流体透過性の双方を向上させるため、平
均気孔径の異なる基材と濾過膜とから構成されることが
一般的である。例えば、濾過膜の平均気孔径を0.01
〜1.0μm程度と小さく構成して濾過性能を確保する
一方、基材の平均気孔径を1〜数100μm程度に大き
く構成して、基材内部の流動抵抗を低下させ、流体透過
量を向上させることが行われている。In a ceramic filter, a ceramic porous body may be used as it is as a filter medium, but in order to improve both filtration performance and fluid permeability, it is composed of a base material having a different average pore diameter and a filtration membrane. Is common. For example, the average pore diameter of the filtration membrane is 0.01
While it is configured to be as small as about 1.0 μm to ensure filtration performance, the average pore diameter of the substrate is configured to be large at about 1 to several 100 μm to reduce the flow resistance inside the substrate and improve the fluid permeation amount. Is being done.
【0004】 又、セラミックフィルタは、クロスフロ
ー処理用のフィルタとして利用されることが多い。例え
ば、特開昭61−8106号公報には、図3に示される
ように、シール部3により、基材1端部及び基材1端部
近傍の濾過膜2を被覆し、O−リング11とともにシー
ル漏れを防止したクロスフロー処理に好適なフィルタが
示されている。Further, a ceramic filter is often used as a filter for crossflow processing. For example, in Japanese Unexamined Patent Publication No. 61-8106, as shown in FIG. 3, a seal portion 3 covers the end of the base material 1 and the filter membrane 2 near the end of the base material 1, and an O-ring 11 is formed. In addition, a filter suitable for cross-flow processing in which seal leakage is prevented is shown.
【0005】 クロスフロー処理とは、1パスの全濾過
に比べて多い循環被処理流体が供給され、そのうち一定
量が濾過され得る濾過処理であり、濾過膜近傍の流速が
大きくなることから、全濾過処理に比べて、詰まりを生
じ難いという長所を備える。クロスフロー処理におい
て、被処理流体は、基材の一方の端面から流通路内に供
給され、流通路内面の濾過膜を透過した濾過流体が、基
材外周面側から回収される一方、濾過されなかった被処
理流体については、基材の他方の端面側から回収され、
循環する。又、図2に示されるように、濾過膜2と基材
1との間に中間層5を備えるセラミックフィルタも知ら
れている。The cross-flow treatment is a filtration treatment in which a larger amount of circulating fluid to be treated is supplied than in the case of one-pass full filtration, and a fixed amount of it can be filtered, and since the flow velocity in the vicinity of the filtration membrane increases, It has the advantage that clogging is less likely to occur as compared with filtration. In the cross-flow treatment, the fluid to be treated is supplied into the flow passage from one end surface of the base material, and the filtered fluid that has passed through the filtration membrane on the inner surface of the flow passage is recovered from the outer peripheral surface side of the base material while being filtered. For the fluid to be treated, which was not collected, it was recovered from the other end surface side of the base material,
Circulate. Further, as shown in FIG. 2, a ceramic filter including an intermediate layer 5 between the filtration membrane 2 and the base material 1 is also known.
【0006】 これらのセラミックフィルタは、信頼性
が高いこと、耐食性が高いため酸アルカリ等による洗浄
を行っても劣化が少ないこと、更には、濾過能力を決定
する気孔径の精密な制御が可能であること、において優
位性を有する。[0006] These ceramic filters have high reliability, have little corrosion even if they are washed with acid / alkali or the like due to their high corrosion resistance, and can precisely control the pore diameter that determines the filtering capacity. It has an advantage in being.
【0007】 しかしながら、このようなセラミックフ
ィルタを、流体の濾過に長期間使用すると、例えクロス
フロー処理で濾過を行う場合であっても、延べ濾過処理
量が増えるに従い、被処理流体中に含まれる懸濁物質、
特に有機質懸濁物質が、フィルタの気孔中に詰まり、透
過性が著しく損なわれることは避けようがない。However, if such a ceramic filter is used for a long period of time for filtering a fluid, it will be contained in the fluid to be treated as the total filtration treatment amount increases, even if the filtration is carried out by a cross-flow treatment. Suspended matter,
In particular, it is unavoidable that organic suspended solids clogging the pores of the filter and impairing the permeability significantly.
【0008】 そこで、この懸濁物質を取り除き詰まり
を解消するために、一般に、以下のことが行われてい
る。
(1)逆洗
通常の濾過処理とは逆に、フィルタの流体透過側(図3
における基材1側)から被処理流体供給側(図3におけ
る濾過膜2側)へ圧力をかける洗浄処理である。その結
果、流体が、流体透過側から被処理流体供給側に流れる
ことも好ましい。この逆洗は、限定されないが、一般
に、短時間で蓄積した懸濁物質を除去するために行わ
れ、数分乃至数時間毎に、濾過処理の合間に行われるこ
とが多い。懸濁物質は、例えば、被処理流体供給側に戻
され、系外に排出される。
(2)薬洗
懸濁物質を溶解するに適した薬品、例えば、苛性ソーダ
等のアルカリ性溶液や、クエン酸あるいは次亜塩素酸ソ
ーダ等、を使用した薬液洗浄処理であり、限定されない
が、一般に、長時間の間に気孔中に蓄積した懸濁物質を
溶解させて取り除くために行われることが多い。Therefore, in order to remove the suspended matter and eliminate the clogging, the following is generally performed. (1) Backwash Contrary to the normal filtration process, the fluid permeation side of the filter (see FIG.
This is a cleaning process in which pressure is applied from the base material 1 side in (1) to the processed fluid supply side (filter membrane 2 side in FIG. 3). As a result, it is also preferable that the fluid flows from the fluid permeation side to the treated fluid supply side. This backwashing is generally, but not limited to, carried out to remove accumulated suspended substances in a short time, and is often carried out every several minutes to several hours between the filtration treatments. The suspended substance is returned to, for example, the treated fluid supply side and discharged to the outside of the system. (2) A chemical washing treatment using a chemical suitable for dissolving a chemical washing suspended substance, for example, an alkaline solution such as caustic soda, citric acid or sodium hypochlorite, and the like, but not limited to Often done to dissolve and remove suspended solids that have accumulated in the pores over time.
【0009】 従来、このような逆洗、薬洗を繰り返し
行うと、徐々にセラミックフィルタの濾過精度が低下す
る傾向がみられるという問題があった。これは、薬洗に
よりセラミック多孔質体の結合部が侵食され、その結合
強度が低下したところに、濾過処理より高い圧力で逆洗
が行われることが多いため、その圧力でセラミックフィ
ルタを構成するセラミック多孔質体が破損し、結果、そ
のセラミック多孔質体の孔径が大きくなってしまうため
と推定された。Conventionally, there has been a problem that when such backwashing and chemical washing are repeated, the filtration accuracy of the ceramic filter tends to gradually decrease. This is because the backwashing is often performed at a pressure higher than the filtration treatment when the bonding portion of the ceramic porous body is eroded by the chemical washing and the bonding strength is lowered, and thus the ceramic filter is formed by the pressure. It was presumed that the ceramic porous body was damaged, and as a result, the pore diameter of the ceramic porous body was increased.
【0010】 従って、セラミックフィルタを構成する
セラミック多孔質体の強度を向上させれば、上記問題は
解決され、逆洗及び薬洗を、より高い圧力で繰り返し施
しながら、長期間、濾過精度の安定した濾過処理を行う
ことが出来る。逆洗及び薬洗の回数を減らす必要がな
く、差圧上昇等の状況を踏まえ、緊急に、逆洗又は薬洗
を行うにも難がないことから、長期にわたり、基準濾過
量(基準温度、基準圧力における濾過量)も低下し難
い。このように、優れた強度を有するセラミック多孔質
体から構成されるセラミックフィルタは、安定した性能
を長期間発揮し得る。Therefore, if the strength of the ceramic porous body constituting the ceramic filter is improved, the above problem is solved, and the backwashing and the chemical washing are repeatedly performed at a higher pressure, and the filtration accuracy is stable for a long period of time. The filtered treatment can be performed. There is no need to reduce the number of backwash and chemical washes, and it is easy to perform backwash or chemical wash urgently in consideration of situations such as an increase in differential pressure. The filtration amount at the reference pressure) is also unlikely to decrease. As described above, the ceramic filter composed of the ceramic porous body having excellent strength can exhibit stable performance for a long period of time.
【0011】 又、逆洗時又は薬洗時の問題によらず、
濾過処理時においても、被処理流体供給側の懸濁物質濃
度が高い場合や、懸濁物質が硬く鋭角を有するものであ
る場合には、セラミック多孔質体が損傷してしまい、長
期間、濾過精度の安定した濾過処理を行うことが出来な
い問題も生じ得たが、セラミックフィルタを構成するセ
ラミック多孔質体の強度を向上させれば、この問題も解
決され得る。Also, regardless of the problem of backwashing or chemical washing,
Even during the filtration process, if the concentration of suspended solids on the side of the fluid to be processed is high or if the suspended solids are hard and have an acute angle, the ceramic porous body will be damaged, and filtration for a long period of time will occur. Although a problem that the filtration process with stable accuracy cannot be performed may occur, this problem can be solved by improving the strength of the ceramic porous body forming the ceramic filter.
【0012】[0012]
【発明が解決しようとする課題】 本発明は、上記事情
に鑑みてなされたものである。そして、目的とするとこ
ろは、従来と概ね同等の気孔率、気孔径を有しながら、
より優れた強度を備えるセラミック多孔質体を提供する
ことにあり、更に、そのセラミック多孔質体を基材、あ
るいは、濾過膜、中間層等に適用し構成してなり、従来
と概ね同等の性能、即ち、濾過精度(透過阻止性能)、
基準濾過量を有しながら、より長い安定運転期間を実現
し得るセラミックフィルタを提供することにある。従来
の課題を解決するべく、セラミック多孔質体について研
究が重ねられ、様々な検討がなされた結果、原料構成の
工夫によって、上記目的が達成されることが見出され
た。より詳細には、以下に示す通りである。SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances. And, the place to aim is, while having a porosity and a pore diameter almost the same as the conventional one,
It is to provide a ceramic porous body having more excellent strength, and further, the ceramic porous body is applied to a substrate, a filtration membrane, an intermediate layer, or the like to have a performance substantially equivalent to that of a conventional one. , That is, filtration accuracy (permeation blocking performance),
It is an object of the present invention to provide a ceramic filter which can realize a longer stable operation period while having a reference filtration amount. In order to solve the conventional problems, studies have been repeated on the porous ceramic body, and as a result of various studies, it has been found that the above object can be achieved by devising the raw material composition. More specifically, it is as shown below.
【0013】[0013]
【課題を解決するための手段】 即ち、本発明によれ
ば、少なくとも骨材及びフリットを含む原料を焼結して
なるセラミック多孔質体であって、原料に微粒骨材を含
むことを特徴とするセラミック多孔質体が提供される。[Means for Solving the Problems] That is, according to the present invention, there is provided a ceramic porous body obtained by sintering a raw material containing at least an aggregate and a frit, wherein the raw material contains fine aggregate. A porous ceramic body is provided.
【0014】 本発明においては、微粒骨材の粒度が、
骨材の粒度の1/2〜1/20であることが好ましく、
微粒骨材の含有量は、骨材に対して3質量%以上100
質量%以下であることが好ましい。又、その微粒骨材
は、アルミナ、ムライト、コージェライト、炭化珪素、
窒化珪素、窒化アルミニウムからなる材料群に含まれる
少なくとも1種以上のセラミックスからなることが好ま
しい。In the present invention, the particle size of the fine aggregate is
It is preferably 1/2 to 1/20 of the particle size of the aggregate,
The content of the fine aggregate is 3% by mass or more and 100 with respect to the aggregate.
It is preferably not more than mass%. The fine aggregate is alumina, mullite, cordierite, silicon carbide,
It is preferably made of at least one ceramic contained in the material group consisting of silicon nitride and aluminum nitride.
【0015】 更に、フリットの粒度が、骨材の粒度の
1/2〜1/20であることが好ましく、フリットの含
有量は、骨材に対して3質量%以上40質量%以下であ
ることが好ましい。フリットは、長石、カオリン、アル
ミナ、シリカ、ジルコニア、チタニア、コージェライ
ト、カルシア、マグネシア、Na2O、La2O3、Li2
O、K2Oからなる材料群に含まれる1種の材料若しく
は2種以上の混合材料からなることが好ましい。Further, the particle size of the frit is preferably 1/2 to 1/20 of the particle size of the aggregate, and the content of the frit is 3% by mass or more and 40% by mass or less with respect to the aggregate. Is preferred. The frit includes feldspar, kaolin, alumina, silica, zirconia, titania, cordierite, calcia, magnesia, Na 2 O, La 2 O 3 and Li 2.
It is preferable to use one kind of material or a mixed material of two or more kinds included in the material group consisting of O and K 2 O.
【0016】 又、本発明によれば、少なくとも基材と
濾過膜とを備えたセラミックフィルタであって、基材及
び濾過膜のうち少なくとも何れか一方が、上記したセラ
ミック多孔質体からなるセラミックフィルタが提供され
る。本発明により、セラミックフィルタを構成する、上
記したセラミック多孔質体からなる基材、濾過膜、中間
層も提供される。その基材の平均気孔径は1〜500μ
mであることが好ましく、その濾過膜の平均気孔径は
0.01〜1μmであることが好ましく、その中間層の
平均気孔径は0.1〜5μmであることが好ましい。Further, according to the present invention, there is provided a ceramic filter comprising at least a base material and a filtration membrane, wherein at least one of the base material and the filtration membrane comprises the above-mentioned ceramic porous body. Will be provided. The present invention also provides a substrate, a filtration membrane, and an intermediate layer, which are included in the ceramic filter and are made of the above-mentioned ceramic porous body. The average pore diameter of the base material is 1 to 500 μ.
The average pore diameter of the filtration membrane is preferably 0.01 to 1 μm, and the average pore diameter of the intermediate layer is preferably 0.1 to 5 μm.
【0017】 更には、本発明によれば、骨材に、粒度
が骨材の1/2〜1/20である微量骨材を、骨材の最
小3質量%最大100質量%となるように混合し、粒度
が骨材の1/2〜1/20であるフリットを、骨材の最
小3質量%最大40質量%となるように混合し混合物を
得た後、混合物を成形して成形体を得て、900〜15
50℃で成形体を焼結することを特徴とするセラミック
多孔質体の製造方法が提供される。Furthermore, according to the present invention, a small amount of aggregate having a particle size of 1/2 to 1/20 of the aggregate is used as the aggregate so that the minimum amount is 3% by mass and the maximum amount is 100% by mass. A frit having a particle size of 1/2 to 1/20 of that of the aggregate is mixed so as to be a minimum of 3% by mass and a maximum of 40% by mass of the aggregate to obtain a mixture, and then the mixture is molded to obtain a molded body. To get 900 ~ 15
Provided is a method for producing a ceramic porous body, which comprises sintering a molded body at 50 ° C.
【0018】[0018]
【発明の実施の形態】 本発明に係るセラミック多孔質
体は、少なくとも骨材及びフリットを含む原料を焼結し
て得られるものであり、骨材及びフリットに加えて、粒
径の小さい微粒骨材を含むことに特徴がある。BEST MODE FOR CARRYING OUT THE INVENTION The ceramic porous body according to the present invention is obtained by sintering a raw material containing at least an aggregate and a frit, and in addition to the aggregate and the frit, fine-grained bone having a small particle size. It is characterized by including wood.
【0019】 従来から、骨材にフリットを加え混合し
た原料は、フリットが結合材として働き、骨材のみの場
合には必要であった骨材の焼結温度以上での焼結ではな
く、より低温での焼結により骨材の結合強度を発現させ
得ることは知られているが、骨材にフリットを加えた原
料に、更に、微粒骨材を加えて混合した原料は、フリッ
トが結合材として働き、尚且つ、微粒骨材が、骨材間の
フリットの中に入り骨材間を埋めるように存在するた
め、同じ製造条件下において、更に強度が増し、劣化し
難くなる。Conventionally, the raw material obtained by adding the frit to the aggregate and mixing it does not have the frit functioning as a binder, and the sintering is not performed at the sintering temperature of the aggregate or higher, which is necessary in the case of the aggregate alone. It is known that the binding strength of aggregate can be expressed by sintering at low temperature, but in the raw material in which frit is added to the aggregate and fine aggregate is further mixed, the frit is the binder. In addition, since the fine aggregates exist so as to enter the frit between the aggregates and fill the gaps between the aggregates, the strength is further increased under the same manufacturing conditions, and deterioration is less likely to occur.
【0020】 このような特徴を有し平均気孔径が異な
る種々のセラミック多孔質体を用いて構成されるセラミ
ックフィルタは、優れた強度を有することから、濾過さ
れる供給流体の懸濁物質濃度が高くても、又、懸濁物質
に硬く鋭角を有するものが含まれていても、濾過精度を
低下させることなく、処理することが可能である。又、
セラミック多孔質体にとって、より厳しい状態におかれ
る逆洗時又は薬洗時においても、劣化し難いことから、
状況に応じ逆洗及び薬洗の回数を増やすことが可能であ
る。従って、本発明に係るセラミックフィルタによれ
ば、供給流体を選ばず、且つ、長期間、濾過された流体
の品質が低下せず、安定した濾過処理を実現することが
出来る。A ceramic filter having such characteristics and configured by using various ceramic porous bodies having different average pore diameters has excellent strength, so that the concentration of suspended matter in the feed fluid to be filtered is high. Even if it is high or if the suspended matter contains a material having a hard and acute angle, it is possible to carry out the treatment without lowering the filtration accuracy. or,
For a ceramic porous body, it does not easily deteriorate even during backwashing or chemical washing, which is more severe,
It is possible to increase the frequency of backwashing and chemical washing depending on the situation. Therefore, according to the ceramic filter of the present invention, it is possible to realize a stable filtration treatment regardless of the supply fluid and without deterioration of the quality of the filtered fluid for a long period of time.
【0021】 本明細書において粒度とは、所定の制御
された粒径分布のメジアン径を意味する。メジアン径と
は粒径の中央値を指す。測定には、レーザー回折/散乱
式粒度分布測定装置LA−920型(株式会社堀場製作
所製)を用い、溶媒を水とした湿式方式を採用し、相対
屈折率1.30、超音波分散を1分間(超音波強度は最
大目盛の7)の条件下で測定した。以下、本発明につい
て詳細に説明する。In the present specification, the particle size means the median diameter of a predetermined controlled particle size distribution. The median diameter refers to the median value of particle diameters. For the measurement, a laser diffraction / scattering particle size distribution measuring device LA-920 (manufactured by Horiba Ltd.) was used, a wet method using water as a solvent was adopted, and a relative refractive index of 1.30 and an ultrasonic dispersion of 1 were used. The measurement was performed under the condition of a minute (ultrasonic intensity was 7 on the maximum scale). Hereinafter, the present invention will be described in detail.
【0022】 先ず、セラミック多孔質体について記載
する。本発明のセラミック多孔質体において、微粒骨材
の粒度は骨材の粒度の1/2〜1/20であることが好
ましい。1/2より大きいと微粒骨材が骨材と骨材の間
に入って存在し難く、フリットの結合力を高め難くなる
ので好ましくない。1/20より小さいと強度が低下す
るので好ましくない。First, the ceramic porous body will be described. In the ceramic porous body of the present invention, the particle size of the fine aggregate is preferably 1/2 to 1/20 of the particle size of the aggregate. If it is larger than 1/2, it is difficult for the fine aggregate to exist between the aggregates and to exist, and it is difficult to increase the binding force of the frit, which is not preferable. If it is less than 1/20, the strength is lowered, which is not preferable.
【0023】 本発明のセラミック多孔質体において、
微粒骨材の含有量は、骨材に対して3質量%以上100
質量%以下であることが好ましい。尚、例えば、微粒骨
材の含有量が骨材に対して3質量%とは、質量比で、骨
材と微粒骨材とが100:3であることを指す。3質量
%より小さい場合には強度が低下するので好ましくな
い。100質量%より大きい場合には、フリット含有量
を一定にすると気孔率が低下し、骨材含有量を一定にす
ると強度が低下するので、好ましくない。In the ceramic porous body of the present invention,
The content of the fine aggregate is 3% by mass or more and 100 with respect to the aggregate.
It is preferably not more than mass%. In addition, for example, the content of the fine aggregate is 3 mass% with respect to the aggregate, which means that the mass ratio of the aggregate and the fine aggregate is 100: 3. If it is less than 3% by mass, the strength is lowered, which is not preferable. When it is more than 100% by mass, the porosity decreases when the frit content is constant, and the strength decreases when the aggregate content is constant, which is not preferable.
【0024】 本発明のセラミック多孔質体において、
微粒骨材は、アルミナ、ムライト、コージェライト、炭
化珪素、窒化珪素、窒化アルミニウムからなる材料群に
含まれる少なくとも1種以上のセラミックスからなるこ
とが好ましい。1種でも複数種の混合でもよく、接触す
る被処理流体や濾過の目的に合わせて、適宜選択すれば
よい。微粒骨材は、これらのセラミックスからなる例え
ば陶磁器屑を粉砕したものも好適に用いることが出来、
より安価なものを採用すればよい。In the ceramic porous body of the present invention,
The fine aggregate is preferably made of at least one ceramic contained in the material group consisting of alumina, mullite, cordierite, silicon carbide, silicon nitride, and aluminum nitride. One kind or a mixture of plural kinds may be used and may be appropriately selected depending on the fluid to be contacted and the purpose of filtration. As the fine aggregate, it is also possible to suitably use, for example, crushed ceramic waste made of these ceramics,
A cheaper one may be adopted.
【0025】 本発明のセラミック多孔質体において、
フリットの粒度は骨材の粒度の1/2〜1/20である
ことが好ましい。1/2より大きいとフリットが骨材あ
るいは微粒骨材の間に入ってそれらの結合力を高め難く
なるので好ましくなく、1/20より小さい場合には、
強度向上が得難いので好ましくない。In the ceramic porous body of the present invention,
The particle size of the frit is preferably 1/2 to 1/20 of the particle size of the aggregate. If it is larger than 1/2, it is difficult for the frit to enter between the aggregates or the fine aggregates to enhance the bonding force between them, which is not preferable, and if it is smaller than 1/20,
This is not preferable because it is difficult to improve strength.
【0026】 本発明のセラミック多孔質体において、
フリットの含有量は、骨材に対して3質量%以上40質
量%以下であることが好ましい。3質量%より小さい場
合には強度が低下するので好ましくない。40質量%よ
り大きい場合には、フリットが骨材あるいは微量骨材の
気孔を埋めてしまい、気孔率が低下するので好ましくな
い。In the ceramic porous body of the present invention,
The content of the frit is preferably 3% by mass or more and 40% by mass or less with respect to the aggregate. If it is less than 3% by mass, the strength is lowered, which is not preferable. When it is more than 40% by mass, the frit fills the pores of the aggregate or the minute amount of aggregate, and the porosity decreases, which is not preferable.
【0027】 本発明のセラミック多孔質体において、
フリットは、長石、カオリン、アルミナ、シリカ、ジル
コニア、チタニア、コージェライト、カルシア、マグネ
シア、Na2O、La2O3、Li2O、K2Oからなる材
料群に含まれる1種の材料若しくは2種以上の混合材料
からなることが好ましい。1種でも複数種の混合でもよ
く、接触する被処理流体や濾過の目的に合わせて、適宜
選択すればよい。尚、フリットとは、骨材を結合架橋す
るもの、あるいは骨材の焼結助剤となり、骨材間に残留
するものを指し、セラミックスが溶融均一化された後に
冷却、粉砕されたものをいう。フリットと、骨材及び微
粒骨材とは、同じセラミックス材料でもよく、異なって
いても構わない。In the ceramic porous body of the present invention,
The frit is one of the materials included in the material group consisting of feldspar, kaolin, alumina, silica, zirconia, titania, cordierite, calcia, magnesia, Na 2 O, La 2 O 3 , Li 2 O, and K 2 O, or It is preferably composed of a mixed material of two or more kinds. One kind or a mixture of plural kinds may be used and may be appropriately selected depending on the fluid to be contacted and the purpose of filtration. The frit refers to a material that bonds and cross-links the aggregate, or a material that acts as a sintering aid for the aggregate and remains between the aggregates, and is obtained by melting and homogenizing the ceramics, then cooling and crushing. . The frit and the aggregate and the fine aggregate may be the same ceramic material or may be different.
【0028】 次いで、セラミックフィルタについて、
製造方法を含め記載する。本発明におけるセラミックフ
ィルタは、図2及び図3に例示されるように、少なくと
も基材1と濾過膜2とシール部3とを構成部材として備
える。Next, regarding the ceramic filter,
It describes including the manufacturing method. As illustrated in FIGS. 2 and 3, the ceramic filter according to the present invention includes at least the base material 1, the filtration membrane 2, and the seal portion 3 as constituent members.
【0029】 基材1は、濾過膜2の支持体としての機
能を有する部材であって、セラミックス多孔質体からな
り、好ましくは1〜500μmの平均気孔径を有する。
より好ましくはセラミック多孔質体の平均気孔径は5〜
30μmである。基材1の好ましい形状は、単一の流通
路を有するチューブ状、あるいは、並行する多数の流通
路を有するハニカム状又はモノリス状である。The substrate 1 is a member having a function as a support of the filtration membrane 2, is made of a ceramic porous body, and preferably has an average pore diameter of 1 to 500 μm.
More preferably, the average pore diameter of the ceramic porous body is 5 to
It is 30 μm. The preferable shape of the base material 1 is a tube shape having a single flow passage, or a honeycomb shape or a monolith shape having a plurality of parallel flow passages.
【0030】 基材1は、少なくとも骨材と微粒骨材と
フリットとを含む原料が焼結されることにより形成さ
れ、例えば骨材と微粒骨材とフリットに、更に有機結合
材などの成形助剤と、必要により界面活性剤等が添加さ
れ混練されてなる坏土を得て、それをハ二カム形状等に
押し出し成形し乾燥した後に、焼結して得ることが出来
る。焼結温度は、好ましくは1200〜1550℃であ
り、最高温度での焼結時間は、好ましくは1〜2時間で
ある。The base material 1 is formed by sintering a raw material containing at least an aggregate, a fine aggregate and a frit. For example, the aggregate, the fine aggregate and the frit, and a molding aid such as an organic binder are formed. It can be obtained by obtaining a kneaded material obtained by kneading the agent and, if necessary, a surfactant and the like, extruding the kneaded material into a honeycomb shape or the like, drying and then sintering. The sintering temperature is preferably 1200 to 1550 ° C, and the sintering time at the maximum temperature is preferably 1 to 2 hours.
【0031】 濾過膜2はセラミックフィルタの濾過機
能を担う部材であって、基材1上に形成されるセラミッ
ク多孔質体であり、基材1の平均気孔径よりも小さい平
均気孔径を有する。好ましくは0.01〜1μmの平均
気孔径を有する。より好ましくはセラミック多孔質体の
平均気孔径は0.1〜0.5μmである。The filtration membrane 2 is a member having a filtering function of the ceramic filter, is a ceramic porous body formed on the substrate 1, and has an average pore diameter smaller than the average pore diameter of the substrate 1. It preferably has an average pore diameter of 0.01 to 1 μm. More preferably, the average pore diameter of the ceramic porous body is 0.1 to 0.5 μm.
【0032】 濾過膜2は、少なくとも骨材と微粒骨材
とフリットとを含む原料が焼結されることにより形成さ
れ、例えば骨材と微粒骨材とフリットが、水等の分散媒
中に分散され、必要に応じて有機結合材、pH調整剤、
界面活性剤、消泡剤等を添加してなる製膜用スラリー
を、基材1上、好ましくは被処理流体の流通路内面に施
し、乾燥した後に、焼結して得ることが出来る。焼結温
度は、好ましくは900〜1100℃であり、最高温度
の焼結時間は好ましくは1時間である。本発明におい
て、基材上に施され焼結されてなる濾過膜とは、図3に
示されるように濾過膜2が基材1表面に直接施与される
場合と、図2に示されるように、濾過膜2が中間層5を
介して基材1上に施与される場合の両方を含む。The filtration membrane 2 is formed by sintering a raw material containing at least an aggregate, a fine aggregate and a frit. For example, the aggregate, the fine aggregate and the frit are dispersed in a dispersion medium such as water. If necessary, organic binder, pH adjuster,
It can be obtained by applying a film-forming slurry containing a surfactant, a defoaming agent and the like on the base material 1, preferably on the inner surface of the flow passage of the fluid to be treated, drying and sintering. The sintering temperature is preferably 900 to 1100 ° C., and the maximum temperature sintering time is preferably 1 hour. In the present invention, the filtration membrane formed on the base material and sintered includes the case where the filtration membrane 2 is directly applied to the surface of the base material 1 as shown in FIG. 3 and the case where it is shown in FIG. In both cases, the case where the filtration membrane 2 is applied to the base material 1 via the intermediate layer 5 is included.
【0033】 図2に示されるように、セラミックフィ
ルタが濾過膜2と基材1の間に中間層5を備える場合に
は、中間層5は、好ましくはセラミック多孔質体であ
り、濾過膜2と同様の材料を用いて濾過膜2と同様の方
法により形成することが出来る。この場合において、中
間層5の平均気孔径は、好ましくは濾過膜2の平均気孔
径よりも大きくなるように形成される。中間層5を形成
するために用いられるセラミック多孔質体の好ましい粒
度は0.1〜5μm程度であり、更に好ましくは、粒度
は1〜3μm程度である。As shown in FIG. 2, when the ceramic filter comprises the intermediate layer 5 between the filtration membrane 2 and the substrate 1, the intermediate layer 5 is preferably a ceramic porous body, and the filtration membrane 2 It can be formed by the same method as the filtration membrane 2 using the same material as. In this case, the average pore diameter of the intermediate layer 5 is preferably formed so as to be larger than the average pore diameter of the filtration membrane 2. The ceramic porous body used for forming the intermediate layer 5 preferably has a particle size of about 0.1 to 5 μm, more preferably about 1 to 3 μm.
【0034】 そして、好ましくは基材1に用いられる
セラミック多孔質体の粒度よりも小さな粒度のセラミッ
ク多孔質体とする。即ち、平均気孔径を、基材1、中間
層5、濾過膜2の順に小さくすることにより、濾過性能
と処理能力のバランスを良好に保つことが可能となる。
又、中間層を2層以上から構成することも可能であり、
このとき、好ましくは基材1側から濾過膜2側に向かっ
て、順次、平均気孔径が小さくなるように形成する。Then, the ceramic porous body preferably has a particle size smaller than that of the ceramic porous body used for the base material 1. That is, by decreasing the average pore diameter in the order of the base material 1, the intermediate layer 5, and the filtration membrane 2, it becomes possible to maintain a good balance between the filtration performance and the treatment capacity.
It is also possible to configure the intermediate layer from two or more layers,
At this time, it is preferable that the average pore diameter be gradually decreased from the side of the substrate 1 toward the side of the filtration membrane 2.
【0035】 シール部3は、被処理流体が基材1表面
から基材1内部に侵入することを防止するための部材で
あり、基材1と被処理流体が接触する可能性のある部分
と、その近傍の濾過膜2の一部を被覆する。図2及び図
3の態様においては、基材1端部及び基材1端部近傍の
濾過膜2が、シール部3により被覆されることが好まし
い。シール部3は、例えばシールされることが必要な部
分、例えば基材1端部とその近傍に、シール剤を施し乾
燥した後に、焼結して形成される。焼結温度は、好まし
くは900〜1100℃であり、最高温度での焼結時間
は好ましくは1時間である。The seal portion 3 is a member for preventing the fluid to be processed from entering the inside of the substrate 1 from the surface of the substrate 1, and a portion where the substrate 1 and the fluid to be processed may come into contact with each other. , Covering a part of the filtration membrane 2 in the vicinity thereof. In the embodiment of FIGS. 2 and 3, it is preferable that the end portion of the base material 1 and the filtration membrane 2 near the end portion of the base material 1 are covered with the seal portion 3. The seal portion 3 is formed by, for example, applying a sealant to a portion that needs to be sealed, for example, the end portion of the base material 1 and the vicinity thereof, and then sintering the seal material. The sintering temperature is preferably 900 to 1100 ° C., and the sintering time at the maximum temperature is preferably 1 hour.
【0036】[0036]
【実施例】 以下、本発明を、実施例を挙げて、より詳
細に説明するが、本発明は、これらの実施例により限定
されるものではない。
基材の作製
アルミナからなる骨材、シリカ72%、アルミナ17
%、K2O4.7%、マグネシア3.0%、カルシア
2.0%、Na2O1.3%からなるフリット、アルミ
ナからなる微粒骨材が混合された原料を用意した。そし
て、その原料を混練して得た坏土を口金に通して、押し
出し成形し成形体を得た。その成形体を、乾燥させた
後、所定の温度でで2時間焼結し、基材1(実施例
1)、基材2(実施例2)、基材3(比較例1)、基材
4(比較例2)基材5(比較例3)、基材6(比較例
4)、基材7(比較例5)、基材8(比較例6)、基材
9(比較例7)を得た。尚、それぞれの基材の組成、骨
材、微粒骨材及びフリットの粒度、及び、それぞれの基
材の焼結温度については、表1に示す通りである。基材
1〜9の形状は、図1(a)に示すように薄い直方体と
し、長さLが100mmである。断面は、縦Hが8m
m、横Wが25mmの長方形である。基材1〜9は、長
さL方向に、セル10を13個形成してなる。セル10
は、図1(b)に示すように、断面が正六角形をなし、
その1辺Sの長さは1.5mmである。セル表面積は9
00mm2であった。EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. Preparation of base material Aggregate made of alumina, silica 72%, alumina 17
%, K 2 O 4.7%, magnesia 3.0%, calcia 2.0%, Na 2 O 1.3% frit, and a raw material in which a fine aggregate of alumina was mixed was prepared. Then, the kneaded material obtained by kneading the raw material was passed through a die and extrusion-molded to obtain a molded body. The molded body is dried and then sintered at a predetermined temperature for 2 hours to form a base material 1 (Example 1), a base material 2 (Example 2), a base material 3 (Comparative Example 1), and a base material. 4 (Comparative Example 2) Substrate 5 (Comparative Example 3), Substrate 6 (Comparative Example 4), Substrate 7 (Comparative Example 5), Substrate 8 (Comparative Example 6), Substrate 9 (Comparative Example 7) Got The composition of each base material, the aggregate, the particle size of the fine aggregate and the frit, and the sintering temperature of each base material are as shown in Table 1. The shapes of the base materials 1 to 9 are thin rectangular parallelepipeds as shown in FIG. 1A, and the length L is 100 mm. The cross section has a vertical H of 8 m.
It is a rectangle with m and width W of 25 mm. The base materials 1 to 9 are formed by forming 13 cells 10 in the length L direction. Cell 10
Has a regular hexagonal cross section, as shown in FIG.
The length of one side S is 1.5 mm. Cell surface area is 9
It was 00 mm 2 .
【0037】基材の仕様
表1に、基材1〜9の気孔径(水銀圧入法)、気孔率
(水銀圧入法)、強度を示す。尚、強度(3点曲げ強
さ)は、図5に示す方法で測定した。図5は基材の側面
図であり、試験片である基材に対して、長さL方向の中
心部を荷重点PF、中心部から長さL方向に、左右それ
ぞれ40mmのところに支持点PSを置いて、3点曲げ
試験を行い、試験片(基材)破断時の荷重Fで評価し
た。Substrate Specifications Table 1 shows the pore diameters (mercury intrusion method), porosity (mercury intrusion method), and strength of the first to ninth substrates. The strength (three-point bending strength) was measured by the method shown in FIG. FIG. 5 is a side view of the base material. The center part of the length L direction is the load point PF, and the support points are 40 mm on the left and right sides from the center part in the length L direction. The PS was placed, a three-point bending test was performed, and the load F when the test piece (base material) was broken was evaluated.
【0038】基材の評価
基材1〜9の基準透水量を表1に示す。基準透水量は、
蒸留水を原水として圧力98[kPa]で給水し、透過
水量を測定した結果を、25℃、1気圧換算して求め
た。Evaluation of Base Materials Table 1 shows the standard water permeation rates of the base materials 1 to 9. The standard water permeability is
Distilled water was supplied as raw water at a pressure of 98 [kPa] and the amount of permeated water was measured, and the result was calculated at 25 ° C. under 1 atm.
【0039】濾過膜の作製
アルミナからなる骨材と、アルミナからなる微粒骨材と
を、攪拌混合した後、シリカ69%、ジルコニア16
%、Na2O8%、K2O3.2%、La2O32.6%、
Li2O1.2%からなるフリットと混合し、水に懸濁
して、スラリーを得た。得られたスラリーを用いて、別
途用意した上記基材1と同じ材質からなり形状が異なる
基材10〜15の上に、厚さ150〜200μmの膜を
製膜し、2時間焼結し、多孔質膜として、フィルタ1
(実施例3)、フィルタ2(実施例4)、フィルタ3
(比較例8)、フィルタ4(比較例9)、フィルタ5
(比較例10)、フィルタ6(比較例11)を得た。
尚、それぞれのスラリーの組成、骨材、微粒骨材及びフ
リットの粒度、及び、膜の焼結温度については、表2に
示す通りである。製膜したフィルタ1〜6は、形状が図
4(a)に示されるような円柱体をなし、その外形が直
径D1がφ30mm、長さLが1000mmとなるよう
に作製した。フィルタ1〜6は、長さL方向に、セル2
0を55個形成してなる。セル20は、図4(b)に示
すように、断面が円形をなし、その直径D2はφ2.3
mmである。Preparation of Filter Membrane Aggregate made of alumina and fine aggregate made of alumina were stirred and mixed, and then 69% silica, 16 zirconia
%, Na 2 O8%, K 2 O3.2%, La 2 O 3 2.6%,
It was mixed with a frit consisting of 1.2% Li 2 O and suspended in water to obtain a slurry. Using the obtained slurry, a film having a thickness of 150 to 200 μm is formed on substrates 10 to 15 made of the same material as the above-described substrate 1 and having different shapes, and sintered for 2 hours, Filter 1 as a porous membrane
(Example 3), Filter 2 (Example 4), Filter 3
(Comparative Example 8), Filter 4 (Comparative Example 9), Filter 5
(Comparative Example 10) and Filter 6 (Comparative Example 11) were obtained.
The composition of each slurry, the particle size of the aggregate, the fine aggregate and the frit, and the sintering temperature of the film are as shown in Table 2. The film-formed filters 1 to 6 were formed so as to have a columnar shape as shown in FIG. 4A, and the outer shape thereof was made to have a diameter D1 of 30 mm and a length L of 1000 mm. The filters 1 to 6 have cells 2 in the length L direction.
55 0s are formed. As shown in FIG. 4B, the cell 20 has a circular cross section, and its diameter D2 is φ2.3.
mm.
【0040】濾過膜の仕様
表2に、フィルタ1〜6の気孔径(ASTM F306
記載のエアーフロー法)、強度を示す。尚、強度は、ビ
ッカース硬度で示した。ビッカース硬度は、JIS Z
2244「ビッカース硬さ試験方法」に準拠して測定
した。測定条件は、室温で行い、荷重100g、荷重保
持時間10Secとした。The specifications of the filtration membrane are shown in Table 2 and the pore diameters of the filters 1 to 6 (ASTM F306
The air flow method described) and strength are shown. The strength is represented by Vickers hardness. Vickers hardness is JIS Z
2244 "Vickers hardness test method" was used for measurement. The measurement conditions were room temperature, a load of 100 g, and a load holding time of 10 Sec.
【0041】フィルタの評価
得られたフィルタ1〜6の基準透水量を表2に示す。基
準透水量は、蒸留水を原水として圧力49[kPa]で
給水し、透過水量を測定した結果を、25℃、1気圧換
算して求めた。Evaluation of Filters Table 2 shows the standard water permeation rates of the obtained filters 1 to 6. The standard water permeation amount was obtained by converting the permeated water amount by supplying distilled water as raw water at a pressure of 49 [kPa] and converting the permeated water amount at 25 ° C. and 1 atm.
【0042】[0042]
【表1】 [Table 1]
【0043】[0043]
【表2】 [Table 2]
【0044】 実施例1、2によれば、本発明による好
ましい微量骨材の添加により、比較例1,2,6,7と
ほぼ同じ気孔率、気孔径、及び、基準透水量でありなが
ら、より高い強度を有する基材が得られ、比較例3〜5
より高い基準透水量である基材が得られることがわか
る。又、実施例3,4によれば、本発明による好ましい
微粒骨材を添加した膜が成膜されたフィルタは、比較例
8〜11と同等の気孔径、基準透水量を示すにも関わら
ず、より強度が高いことがわかる。According to Examples 1 and 2, by adding a preferable amount of the aggregate according to the present invention, the porosity, the pore diameter, and the reference water permeability are almost the same as those of Comparative Examples 1, 2, 6 and 7. A base material having higher strength was obtained, and Comparative Examples 3 to 5
It can be seen that a base material having a higher standard water permeability can be obtained. In addition, according to Examples 3 and 4, the filters formed with the film to which the preferable fine aggregate according to the present invention is added have the same pore diameter and the same standard water permeability as Comparative Examples 8 to 11. , It can be seen that the strength is higher.
【0045】 尚、本発明は、少なくとも骨材及びフリ
ットを含み、更に、微粒骨材を含む原料を焼結して得ら
れるセラミック多孔質体、及び、それを用いたセラミッ
クフィルタに関するものであり、本発明の達成すべき目
的は、従来と概ね同等の気孔率、気孔径を有して、同等
の透水量を示しながら、より優れた強度を備えるセラミ
ック多孔質体の提供にある。The present invention relates to a ceramic porous body containing at least an aggregate and a frit and further obtained by sintering a raw material containing a fine aggregate, and a ceramic filter using the same. An object to be achieved by the present invention is to provide a ceramic porous body having a porosity and a pore diameter that are substantially the same as those of the conventional one, and showing an equivalent amount of water permeation while having more excellent strength.
【0046】 従って、上記の実施例及び比較例におい
ては、骨材、フリット、微粒骨材の配合バランスの条
件、及び焼結温度を、その目的に適うようにしている。
そして、そのように配合されたセラミック多孔質体を用
いたセラミックフィルタの基準濾過量により、その配合
バランスの良否を確認している。Therefore, in the above-mentioned Examples and Comparative Examples, the conditions of the mixing balance of the aggregate, the frit, the fine aggregate and the sintering temperature are adapted to the purpose.
Then, the quality of the blending balance is confirmed by the reference filtration amount of the ceramic filter using the ceramic porous body thus blended.
【0047】[0047]
【発明の効果】 本発明によれば、従来と概ね同等の気
孔率、気孔径を有し、透水量を損なうことなく、より優
れた強度を備えるセラミック多孔質体が提供される。更
に、そのセラミック多孔質体を基材、あるいは、濾過
膜、中間層等に適用し構成してなるセラミックフィルタ
が提供され、このセラミックフィルタは、従来と概ね同
等の濾過性能を有しながら、より厳しい供給流体にも適
応し得るとともに、より長い期間、安定した性能を発揮
し得る。EFFECTS OF THE INVENTION According to the present invention, there is provided a ceramic porous body having a porosity and a pore diameter that are substantially the same as those of the conventional one, and having more excellent strength without impairing the amount of water permeation. Further, there is provided a ceramic filter formed by applying the ceramic porous body to a base material, a filtration membrane, an intermediate layer, or the like. It can be applied to a severe supply fluid and can exhibit stable performance for a longer period.
【図1】 実施例における試料(基材)の形状を示す図
であり、図1(a)は斜視図であり、図1(b)は基材
に形成されるセルの拡大断面図である。FIG. 1 is a diagram showing a shape of a sample (base material) in an example, FIG. 1 (a) is a perspective view, and FIG. 1 (b) is an enlarged cross-sectional view of a cell formed on a base material. .
【図2】 本発明に係るセラミックフィルタの一実施態
様を示す図であり、ハウジングに装着された状態の概略
断面図である。FIG. 2 is a view showing one embodiment of the ceramic filter according to the present invention, and is a schematic cross-sectional view of a state where the ceramic filter is mounted on a housing.
【図3】 本発明に係るセラミックフィルタの別の実施
態様を示す図であり、セラミックフィルタの概略断面図
である。FIG. 3 is a view showing another embodiment of the ceramic filter according to the present invention, and is a schematic sectional view of the ceramic filter.
【図4】 実施例における試料(フィルタ)の形状を示
す図であり、図4(a)は斜視図であり、図4(b)は
フィルタに形成されるセルの拡大断面図である。4A and 4B are diagrams showing a shape of a sample (filter) in an example, FIG. 4A is a perspective view, and FIG. 4B is an enlarged cross-sectional view of a cell formed in the filter.
【図5】 実施例における強度(3点曲げ強さ)の測定
方法を説明する図であり、試験片である基材の側面図で
ある。FIG. 5 is a diagram illustrating a method of measuring strength (three-point bending strength) in Examples, and is a side view of a base material that is a test piece.
1…基材、2…濾過膜、3…シール、5…中間層、10
…セル、11…O−リング、12…ハウジング、20…
セル。1 ... Substrate, 2 ... Filtration membrane, 3 ... Seal, 5 ... Intermediate layer, 10
... cell, 11 ... O-ring, 12 ... housing, 20 ...
cell.
Claims (12)
を焼結してなるセラミック多孔質体であって、 前記原料に、微粒骨材を含むことを特徴とするセラミッ
ク多孔質体。1. A ceramic porous body obtained by sintering a raw material containing at least an aggregate and a frit, wherein the raw material contains fine aggregate.
の1/2乃至1/20である請求項1に記載のセラミッ
ク多孔質体。2. The ceramic porous body according to claim 1, wherein the fine aggregate has a grain size of 1/2 to 1/20 of the grain size of the aggregate.
して3質量%以上100質量%以下である請求項1又は
2に記載のセラミック多孔質体。3. The ceramic porous body according to claim 1, wherein the content of the fine aggregate is 3% by mass or more and 100% by mass or less with respect to the aggregate.
コージェライト、炭化珪素、窒化珪素、窒化アルミニウ
ムからなる材料群に含まれる少なくとも1種以上のセラ
ミックスからなる請求項1〜3の何れか一項に記載のセ
ラミック多孔質体。4. The fine aggregate is alumina, mullite,
The ceramic porous body according to any one of claims 1 to 3, comprising at least one kind of ceramics contained in a material group consisting of cordierite, silicon carbide, silicon nitride, and aluminum nitride.
の1/2乃至1/20である請求項1〜4の何れか一項
に記載のセラミック多孔質体。5. The ceramic porous body according to any one of claims 1 to 4, wherein the particle size of the frit is 1/2 to 1/20 of the particle size of the aggregate.
して3質量%以上40質量%以下である請求項1〜5の
何れか一項に記載のセラミック多孔質体。6. The ceramic porous body according to claim 1, wherein the content of the frit is 3% by mass or more and 40% by mass or less with respect to the aggregate.
ミナ、シリカ、ジルコニア、チタニア、コージェライ
ト、カルシア、マグネシア、Na2O、La2O3、Li2
O、K2Oからなる材料群に含まれる1種の材料若しく
は2種以上の混合材料からなる請求項1〜6の何れか一
項に記載のセラミック多孔質体。7. The frit is feldspar, kaolin, alumina, silica, zirconia, titania, cordierite, calcia, magnesia, Na 2 O, La 2 O 3 , Li 2
O, ceramic porous body according to any one of claims 1-6 made of one material or a mixture of two or more materials included in the group of materials consisting of K 2 O.
ミックフィルタであって、前記基材及び濾過膜のうち少
なくとも何れか一方が、請求項1〜7の何れか一項に記
載のセラミック多孔質体からなるセラミックフィルタ。8. A ceramic filter comprising at least a base material and a filtration membrane, wherein at least one of the base material and the filtration membrane is ceramic porous according to any one of claims 1 to 7. Ceramic filter consisting of a solid body.
ミック多孔質体を用いてなり、少なくとも基材と濾過膜
とを備えたセラミックフィルタ用の基材であって、平均
気孔径が1乃至500μmであるセラミックフィルタ用
の基材。9. A base material for a ceramic filter, comprising the ceramic porous body according to claim 1, comprising at least a base material and a filtration membrane, and having an average pore diameter. A substrate for a ceramic filter having a thickness of 1 to 500 μm.
ラミック多孔質体を用いてなり、少なくとも基材と濾過
膜とを備えたセラミックフィルタ用の濾過膜であって、
平均気孔径が0.01乃至1μmであるセラミックフィ
ルタ用の濾過膜。10. A filtration membrane for a ceramic filter, comprising the ceramic porous body according to claim 1 and comprising at least a base material and a filtration membrane.
A filtration membrane for a ceramic filter having an average pore diameter of 0.01 to 1 μm.
ラミック多孔質体を用いてなり、少なくとも基材と濾過
膜と中間層とを備えたセラミックフィルタ用の中間層で
あって、平均気孔径が0.1乃至5μmであるセラミッ
クフィルタ用の中間層。11. An intermediate layer for a ceramic filter, comprising the ceramic porous body according to claim 1 and comprising at least a base material, a filtration membrane and an intermediate layer, An intermediate layer for a ceramic filter having an average pore diameter of 0.1 to 5 μm.
1/20である微量骨材を、前記骨材の最小3質量%最
大100質量%となるように混合し、粒度が前記骨材の
1/2乃至1/20であるフリットを、前記骨材の最小
3質量%最大40質量%となるように混合し混合物を得
た後、前記混合物を成形して成形体を得て、900〜1
550℃で前記成形体を焼結することを特徴とするセラ
ミック多孔質体の製造方法。12. A small amount of aggregate having a particle size of 1/2 to 1/20 of the aggregate is mixed with the aggregate to a minimum of 3% by mass and a maximum of 100% by mass of the aggregate, and the particle size is A frit that is ½ to 1/20 of the aggregate is mixed so as to be a minimum of 3% by mass and a maximum of 40% by mass of the aggregate to obtain a mixture, and then the mixture is molded to obtain a molded body. 900-1
A method for producing a ceramic porous body, comprising sintering the molded body at 550 ° C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001372574A JP4136365B2 (en) | 2001-12-06 | 2001-12-06 | Ceramic porous body and ceramic filter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001372574A JP4136365B2 (en) | 2001-12-06 | 2001-12-06 | Ceramic porous body and ceramic filter |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003176185A true JP2003176185A (en) | 2003-06-24 |
JP4136365B2 JP4136365B2 (en) | 2008-08-20 |
Family
ID=19181441
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001372574A Expired - Lifetime JP4136365B2 (en) | 2001-12-06 | 2001-12-06 | Ceramic porous body and ceramic filter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4136365B2 (en) |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005270811A (en) * | 2004-03-25 | 2005-10-06 | Ngk Insulators Ltd | Filter |
JP2006255639A (en) * | 2005-03-18 | 2006-09-28 | Ngk Insulators Ltd | Manufacturing method of ceramic filter |
JP2007526819A (en) * | 2003-07-09 | 2007-09-20 | サント−ゴバイン・インドステイ・ケラミク・ロテンタルゲーエムベーハー | Porous ceramic body and method for producing the same |
CN100439282C (en) * | 2006-06-14 | 2008-12-03 | 山东理工大学 | Preparation Technology of Multifunctional Honeycomb Ceramic Filter Element |
JP2010228946A (en) * | 2009-03-26 | 2010-10-14 | Ngk Insulators Ltd | Alumina porous material and production method of the same |
JP2010228949A (en) * | 2009-03-26 | 2010-10-14 | Ngk Insulators Ltd | Ceramic porous body and production method of the same |
CN102688700A (en) * | 2012-06-01 | 2012-09-26 | 清华大学 | Porous ceramic membrane support with flat structure and preparation method thereof |
WO2012128217A1 (en) * | 2011-03-22 | 2012-09-27 | 日本碍子株式会社 | Honeycomb-shaped ceramic separation-membrane structure |
WO2013147271A1 (en) | 2012-03-30 | 2013-10-03 | 日本碍子株式会社 | Honeycomb shaped porous ceramic body, manufacturing method for same, and honeycomb shaped ceramic separation membrane structure |
WO2013147321A1 (en) * | 2012-03-28 | 2013-10-03 | 日本碍子株式会社 | Silicon carbide porous material, honeycomb structure and electric heating-type catalyst carrier |
WO2013146953A1 (en) * | 2012-03-28 | 2013-10-03 | 日本碍子株式会社 | Porous material, honeycomb structure, and production method for porous material |
WO2013146954A1 (en) * | 2012-03-28 | 2013-10-03 | 日本碍子株式会社 | Porous material and honeycomb structure |
JP2013223827A (en) * | 2012-04-20 | 2013-10-31 | Kubota Corp | Membrane element |
US20140116016A1 (en) * | 2012-10-30 | 2014-05-01 | Ngk Insulators, Ltd. | Honeycomb filter |
JP2014189447A (en) * | 2013-03-27 | 2014-10-06 | Ngk Insulators Ltd | Porous material, honeycomb structure, and method for manufacturing porous material |
WO2015083628A1 (en) * | 2013-12-05 | 2015-06-11 | 株式会社明電舎 | Ceramic filter |
CN107001149A (en) * | 2014-05-15 | 2017-08-01 | 博韦尔公开有限公司 | Without boron aluminum alloy ceramic foam filter |
JP2017137238A (en) * | 2017-02-28 | 2017-08-10 | 日本碍子株式会社 | Manufacturing method of porous material |
CN111668148A (en) * | 2019-03-05 | 2020-09-15 | Toto株式会社 | Electrostatic chuck and processing apparatus |
CN114080269A (en) * | 2019-07-18 | 2022-02-22 | 欧洲技术研究圣戈班中心 | Filters Containing Silicon Carbide Separation Layers |
TWI771656B (en) * | 2019-03-05 | 2022-07-21 | 日商Toto股份有限公司 | Electrostatic chuck and processing device |
CN115894072A (en) * | 2022-12-29 | 2023-04-04 | 江苏省宜兴非金属化工机械厂有限公司 | Corrosion-resistant ceramic filter plate and preparation method thereof |
CN117567141A (en) * | 2023-11-10 | 2024-02-20 | 合肥工业大学 | A multi-layer co-fired alumina ceramic flat support body and its preparation method and application |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5231304B2 (en) | 2009-03-26 | 2013-07-10 | 日本碍子株式会社 | Alumina porous body and method for producing the same |
-
2001
- 2001-12-06 JP JP2001372574A patent/JP4136365B2/en not_active Expired - Lifetime
Cited By (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007526819A (en) * | 2003-07-09 | 2007-09-20 | サント−ゴバイン・インドステイ・ケラミク・ロテンタルゲーエムベーハー | Porous ceramic body and method for producing the same |
JP2005270811A (en) * | 2004-03-25 | 2005-10-06 | Ngk Insulators Ltd | Filter |
JP2006255639A (en) * | 2005-03-18 | 2006-09-28 | Ngk Insulators Ltd | Manufacturing method of ceramic filter |
CN100439282C (en) * | 2006-06-14 | 2008-12-03 | 山东理工大学 | Preparation Technology of Multifunctional Honeycomb Ceramic Filter Element |
JP2010228946A (en) * | 2009-03-26 | 2010-10-14 | Ngk Insulators Ltd | Alumina porous material and production method of the same |
JP2010228949A (en) * | 2009-03-26 | 2010-10-14 | Ngk Insulators Ltd | Ceramic porous body and production method of the same |
JPWO2012128217A1 (en) * | 2011-03-22 | 2014-07-24 | 日本碍子株式会社 | Separation membrane structure made of honeycomb-shaped ceramic |
US9327246B2 (en) | 2011-03-22 | 2016-05-03 | Ngk Insulators, Ltd. | Honeycomb-shaped ceramic separation-membrane structure |
WO2012128217A1 (en) * | 2011-03-22 | 2012-09-27 | 日本碍子株式会社 | Honeycomb-shaped ceramic separation-membrane structure |
JPWO2013146953A1 (en) * | 2012-03-28 | 2015-12-14 | 日本碍子株式会社 | Porous material, honeycomb structure, and method for producing porous material |
US9346714B2 (en) | 2012-03-28 | 2016-05-24 | Ngk Insulators, Ltd. | Porous material and honeycomb structure |
WO2013146954A1 (en) * | 2012-03-28 | 2013-10-03 | 日本碍子株式会社 | Porous material and honeycomb structure |
US9457345B2 (en) | 2012-03-28 | 2016-10-04 | Ngk Insulators, Ltd. | Silicon carbide porous material, honeycomb structure and electric heating-type catalyst carrier |
US9358529B2 (en) | 2012-03-28 | 2016-06-07 | Ngk Insulators, Ltd. | Porous material, honeycomb structure, and production method for porous material |
WO2013147321A1 (en) * | 2012-03-28 | 2013-10-03 | 日本碍子株式会社 | Silicon carbide porous material, honeycomb structure and electric heating-type catalyst carrier |
WO2013146953A1 (en) * | 2012-03-28 | 2013-10-03 | 日本碍子株式会社 | Porous material, honeycomb structure, and production method for porous material |
US20140370232A1 (en) * | 2012-03-28 | 2014-12-18 | Ngk Insulators, Ltd. | Porous material, honeycomb structure, and production method for porous material |
US20140370233A1 (en) * | 2012-03-28 | 2014-12-18 | Ngk Insulators, Ltd. | Porous material and honeycomb structure |
JPWO2013147321A1 (en) * | 2012-03-28 | 2015-12-14 | 日本碍子株式会社 | Silicon carbide based porous body, honeycomb structure, and electrically heated catalyst carrier |
JPWO2013146954A1 (en) * | 2012-03-28 | 2015-12-14 | 日本碍子株式会社 | Porous material and honeycomb structure |
US11278848B2 (en) | 2012-03-30 | 2022-03-22 | Ngk Insulators, Ltd. | Honeycomb shaped porous ceramic body, manufacturing method for same, and honeycomb shaped ceramic separation membrane structure |
WO2013147271A1 (en) | 2012-03-30 | 2013-10-03 | 日本碍子株式会社 | Honeycomb shaped porous ceramic body, manufacturing method for same, and honeycomb shaped ceramic separation membrane structure |
JP2013223827A (en) * | 2012-04-20 | 2013-10-31 | Kubota Corp | Membrane element |
CN102688700A (en) * | 2012-06-01 | 2012-09-26 | 清华大学 | Porous ceramic membrane support with flat structure and preparation method thereof |
US9217344B2 (en) * | 2012-10-30 | 2015-12-22 | Ngk Insulators, Ltd. | Honeycomb filter |
US20140116016A1 (en) * | 2012-10-30 | 2014-05-01 | Ngk Insulators, Ltd. | Honeycomb filter |
JP2014189447A (en) * | 2013-03-27 | 2014-10-06 | Ngk Insulators Ltd | Porous material, honeycomb structure, and method for manufacturing porous material |
WO2015083628A1 (en) * | 2013-12-05 | 2015-06-11 | 株式会社明電舎 | Ceramic filter |
JPWO2015083628A1 (en) * | 2013-12-05 | 2017-03-16 | 株式会社明電舎 | Ceramic filter |
CN107001149A (en) * | 2014-05-15 | 2017-08-01 | 博韦尔公开有限公司 | Without boron aluminum alloy ceramic foam filter |
CN107001149B (en) * | 2014-05-15 | 2021-07-13 | 博韦尔公开有限公司 | Boron-free aluminum alloy ceramic foam filter |
JP2017137238A (en) * | 2017-02-28 | 2017-08-10 | 日本碍子株式会社 | Manufacturing method of porous material |
CN111668148A (en) * | 2019-03-05 | 2020-09-15 | Toto株式会社 | Electrostatic chuck and processing apparatus |
TWI771656B (en) * | 2019-03-05 | 2022-07-21 | 日商Toto股份有限公司 | Electrostatic chuck and processing device |
CN111668148B (en) * | 2019-03-05 | 2024-09-03 | Toto株式会社 | Electrostatic chuck and handling device |
US12198964B2 (en) | 2019-03-05 | 2025-01-14 | Toto Ltd. | Electrostatic chuck and processing apparatus |
CN114080269A (en) * | 2019-07-18 | 2022-02-22 | 欧洲技术研究圣戈班中心 | Filters Containing Silicon Carbide Separation Layers |
CN115894072A (en) * | 2022-12-29 | 2023-04-04 | 江苏省宜兴非金属化工机械厂有限公司 | Corrosion-resistant ceramic filter plate and preparation method thereof |
CN115894072B (en) * | 2022-12-29 | 2024-03-08 | 江苏省宜兴非金属化工机械厂有限公司 | Corrosion-resistant ceramic filter plate and preparation method thereof |
CN117567141A (en) * | 2023-11-10 | 2024-02-20 | 合肥工业大学 | A multi-layer co-fired alumina ceramic flat support body and its preparation method and application |
Also Published As
Publication number | Publication date |
---|---|
JP4136365B2 (en) | 2008-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4136365B2 (en) | Ceramic porous body and ceramic filter | |
US20190202747A1 (en) | Inorganic membrane filter and methods thereof | |
EP2274066B9 (en) | A ceramic dead-end filter, a filter system and method of filtering | |
KR100707227B1 (en) | Base for honeycomb filter, method for producing same and honeycomb filter | |
US20070125704A1 (en) | Ceramic filter and method for purifying water | |
JP2018505771A (en) | Filter containing SiC membrane incorporating nitrogen | |
CN114080269A (en) | Filters Containing Silicon Carbide Separation Layers | |
US11085342B2 (en) | Honeycomb filter | |
JP4800646B2 (en) | Ceramic filter and manufacturing method thereof | |
KR20170005817A (en) | Tangential filter with a supporting element including a set of channels | |
JP2002210314A (en) | Ceramic filter | |
JP2000153117A (en) | Ceramic filter | |
JP2006006998A (en) | Ceramic filter | |
JP4398105B2 (en) | Ceramic membrane filter | |
US20180015426A1 (en) | SiC-NITRIDE OR SiC-OXYNITRIDE COMPOSITE MEMBRANE FILTERS | |
CN100473443C (en) | Ceramic filter | |
CN108349813B (en) | Inorganic membrane filtration articles and methods thereof | |
CN100563781C (en) | ceramic filter | |
JP6579281B2 (en) | Adsorbing member and manufacturing method thereof | |
JP2007237053A (en) | Filter and its backwashing method | |
JP2000342920A (en) | Ceramic filter | |
JP4040427B2 (en) | Manufacturing method of filter element | |
JP4933740B2 (en) | Manufacturing method of ceramic filter | |
JP2003080041A (en) | Porous filter, water purifying device equipped with the filter and method for manufacturing the filter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040723 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20061127 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080122 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080321 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080520 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080603 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4136365 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110613 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120613 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130613 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140613 Year of fee payment: 6 |
|
EXPY | Cancellation because of completion of term |