JP2003174416A - Optical signal monitoring device - Google Patents
Optical signal monitoring deviceInfo
- Publication number
- JP2003174416A JP2003174416A JP2001372166A JP2001372166A JP2003174416A JP 2003174416 A JP2003174416 A JP 2003174416A JP 2001372166 A JP2001372166 A JP 2001372166A JP 2001372166 A JP2001372166 A JP 2001372166A JP 2003174416 A JP2003174416 A JP 2003174416A
- Authority
- JP
- Japan
- Prior art keywords
- optical
- optical signal
- signal
- input
- bit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 350
- 238000012806 monitoring device Methods 0.000 title claims abstract description 9
- 238000012544 monitoring process Methods 0.000 claims abstract description 35
- 230000001934 delay Effects 0.000 claims abstract description 3
- 230000003111 delayed effect Effects 0.000 claims description 31
- 239000004065 semiconductor Substances 0.000 claims description 3
- 238000004891 communication Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 9
- 238000000034 method Methods 0.000 description 9
- 238000012545 processing Methods 0.000 description 7
- 239000000835 fiber Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 239000013307 optical fiber Substances 0.000 description 4
- 230000003321 amplification Effects 0.000 description 3
- 238000003199 nucleic acid amplification method Methods 0.000 description 3
- 102100033041 Carbonic anhydrase 13 Human genes 0.000 description 2
- 101000867860 Homo sapiens Carbonic anhydrase 13 Proteins 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 102100033040 Carbonic anhydrase 12 Human genes 0.000 description 1
- 101000867855 Homo sapiens Carbonic anhydrase 12 Proteins 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Landscapes
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
- Optical Communication System (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、光信号が本来のも
のから変化してしまったのか否かを監視する光信号監視
装置に関し、特に、光信号レベルの状態で、その監視を
実行できるようにする光信号監視装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical signal monitoring apparatus for monitoring whether or not an optical signal has changed from the original one, and more particularly to an optical signal monitoring apparatus capable of monitoring the optical signal level. Optical signal monitoring device.
【0002】光通信の高速化を図る技術が進められてい
る。この高速化を実現するためには、光信号が本来のも
のから変化してしまったのか否かを監視する技術につい
ても、その高速化を図る必要がある。Techniques for increasing the speed of optical communication are being advanced. In order to realize this speeding up, it is necessary to speed up the technique for monitoring whether or not the optical signal has changed from the original one.
【0003】[0003]
【従来の技術】送信されてきた光信号が本来のものから
変化してしまったのか否かを監視する方法として、送信
側で、送信する光信号に対してパリティビットを付加す
る構成を採って、受信側で、受信した光信号を電気信号
に変換し、その変換した電気信号の持つ1のビット数を
数えることで、送信されてきた光信号が本来のものから
変化してしまったのか否かを監視するという方法が広く
用いられている。2. Description of the Related Art As a method for monitoring whether or not a transmitted optical signal has changed from the original one, a configuration is adopted in which a parity bit is added to an optical signal to be transmitted on the transmitting side. By converting the received optical signal into an electric signal on the receiving side and counting the number of 1 bits of the converted electric signal, whether or not the transmitted optical signal has changed from the original one The method of monitoring whether or not is widely used.
【0004】すなわち、送信側で、送信する光信号に対
して、1を持つビットの数が奇数(あるいは偶数)とな
るようにとパリティビットを付加する構成を採って、受
信側で、受信した光信号を電気信号に変換し、その変換
した電気信号の持つ1のビット数を数えて、それが奇数
(あるいは偶数)であるのか否かをチェックすること
で、送信されてきた光信号が本来のものから変化してし
まったのか否かを監視するという方法が広く用いられて
いる。That is, on the transmitting side, a parity bit is added to the optical signal to be transmitted so that the number of bits having 1 becomes an odd number (or even number), and the receiving side receives it. By converting the optical signal to an electrical signal, counting the number of 1 bits of the converted electrical signal, and checking whether it is an odd number (or even number), the transmitted optical signal is originally The method of monitoring whether or not the thing has changed is widely used.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、従来技
術では、監視対象となる光信号を一旦電気信号に変換
し、その変換した電気信号の持つ1のビット数を数え
て、それが奇数や偶数であるのか否かをチェックするこ
とで、監視対象となる光信号が本来のものから変化して
しまったのか否かを監視するという方法を採っている。However, in the prior art, the optical signal to be monitored is once converted into an electrical signal, and the number of 1 bits of the converted electrical signal is counted, and if it is an odd number or an even number. By checking whether or not there is any, the method of monitoring whether or not the optical signal to be monitored has changed from the original one is adopted.
【0006】すなわち、従来技術では、監視対象となる
光信号を一旦電気信号に変換することで、監視対象とな
る光信号が本来のものから変化してしまったのか否かを
監視するという方法を採っている。That is, in the prior art, a method of once converting an optical signal to be monitored into an electrical signal to monitor whether or not the optical signal to be monitored has changed from the original one is disclosed. I am collecting.
【0007】これから、従来技術に従っていると、光通
信のさらなる高速化が実現されるときに、そのような高
速な光通信で送信されてくる光信号については監視でき
なくなるという問題がある。According to the prior art, therefore, there is a problem in that, when the speed of the optical communication is further increased, the optical signal transmitted by such high-speed optical communication cannot be monitored.
【0008】本発明はかかる事情に鑑みてなされたもの
であって、光信号レベルの状態で、監視対象の光信号が
本来のものから変化してしまったのか否かを監視できる
ようにする新たな光信号監視装置の提供を目的とする。The present invention has been made in view of the above circumstances, and has a new feature that enables monitoring of whether or not the optical signal to be monitored has changed from the original one in the state of the optical signal level. The purpose of the present invention is to provide a simple optical signal monitoring device.
【0009】[0009]
【課題を解決するための手段】この目的を達成するため
に、本発明の光信号監視装置は、1を持つビットの数が
奇数となるようにとパリティビットが付加された光信号
を監視対象とするときにあって、監視対象の光信号の
ビット長に応じた段数構成(監視対象の光信号のビット
長が2n ビットである場合にはn段)の光演算手段で構
成され、最前段の光演算手段については監視対象の光信
号を入力とし、それ以外の光演算手段については前段の
光演算手段の出力する光信号を入力として、それぞれの
光演算手段が、入力光信号を2つに分岐し、その一方を
入力光信号の1ビット分遅延させるとともに、入力光信
号の“1/2”の周期を持つ光クロック信号に同期させ
て、遅延させた入力光信号と遅延させない入力光信号と
のビット対応のEOR演算を実行して、その演算結果の
光信号を出力することで構成される第1の手段と、最
後段の光演算手段の出力する光信号の信号値を監視する
第2の手段とを備えるように構成する。In order to achieve this object, the optical signal monitoring apparatus of the present invention monitors an optical signal to which a parity bit is added so that the number of bits having 1 is odd. In this case, the number of stages according to the bit length of the optical signal to be monitored (n stages when the bit length of the optical signal to be monitored is 2 n bits) is configured by the optical operation means. The optical signals to be monitored are input to the optical calculation means in the front stage, and the optical signals output from the optical calculation means in the front stage are input to the other optical calculation means. The input is branched into two, one of which is delayed by one bit of the input optical signal, and the input optical signal which is delayed and is not delayed in synchronization with the optical clock signal having a cycle of "1/2" of the input optical signal. EO that supports bits with optical signals A first unit configured to execute a calculation and output an optical signal as a result of the calculation and a second unit to monitor a signal value of the optical signal output from the last-stage optical calculation unit are provided. To configure.
【0010】このように構成される本発明の光信号監視
装置では、例えば、光信号部分が3ビットの光信号(1
ビットのパリティビットが付加される)を監視対象とす
るときには、第1の手段は、監視対象の光信号を入力と
して、監視対象の光信号を2つに分岐し、その一方を監
視対象の光信号の1ビット分遅延させるとともに、監視
対象の光信号の“1/2”の周期を持つ光クロック信号
に同期させて、遅延させた入力光信号と遅延させない入
力光信号とのビット対応のEOR演算を実行して、その
演算結果の光信号(2ビット)を出力する第1の光演算
手段と、第1の光演算手段の出力する光信号を入力とし
て、入力光信号を2つに分岐し、その一方を入力光信号
の1ビット分(監視対象の光信号の2ビット分)遅延さ
せるとともに、入力光信号の“1/2”の周期を持つ光
クロック信号(監視対象の光信号の“1/4”の周期を
持つ光クロック信号)に同期させて、遅延させた入力光
信号と遅延させない入力光信号とのビット対応のEOR
演算を実行して、その演算結果の光信号(1ビット)を
出力する第2の光演算手段とで、構成される。In the optical signal monitoring apparatus of the present invention configured as described above, for example, the optical signal portion has an optical signal (1
(A parity bit of a bit is added) as a monitoring target, the first means receives the optical signal of the monitoring target as an input, branches the optical signal of the monitoring target into two, and outputs one of the optical signals of the monitoring target. A bit-corresponding EOR between the delayed input optical signal and the non-delayed input optical signal in addition to delaying the signal by 1 bit and synchronizing with the optical clock signal having a "1/2" cycle of the monitored optical signal. A first optical operation unit that executes an operation and outputs an optical signal (2 bits) as a result of the operation and an optical signal output from the first optical operation unit are input, and the input optical signal is branched into two. Then, one of them is delayed by 1 bit of the input optical signal (2 bits of the monitored optical signal), and an optical clock signal having a cycle of "1/2" of the input optical signal (the monitored optical signal Optical clock signal with "1/4" period ) To synchronously, the bit corresponding EOR of the input optical signal not delayed and the input optical signal delayed
Second optical operation means for executing an operation and outputting an optical signal (1 bit) as a result of the operation.
【0011】この構成に従って、第1の光演算手段は、
例えば、“1011(最下位ビットはパリティビッ
ト)”という監視対象の光信号を入力すると、図1の上
段に示すように、監視対象の光信号の“1/2”の周期
を持つ光クロック信号に同期させて、“1011”とそ
れを1ビット分遅延させた“1011”とのビット対応
のEOR演算を実行することで、“10”という光信号
を得て、それを出力する。According to this configuration, the first optical calculation means is
For example, when an optical signal to be monitored called "1011 (the least significant bit is a parity bit)" is input, an optical clock signal having a cycle of "1/2" of the optical signal to be monitored as shown in the upper part of FIG. In synchronism with the above, the EOR operation corresponding to the bits of “1011” and “1011” delayed by 1 bit is executed to obtain an optical signal of “10” and output it.
【0012】この第1の光演算手段の出力する光信号を
受けて、第2の光演算手段は、図1の下段に示すよう
に、入力光信号の“1/2”の周期を持つ光クロック信
号に同期させて、“10”とそれを1ビット分遅延させ
た“10”とのビット対応のEOR演算を実行すること
で、“1”という光信号を得て、それを出力する。In response to the optical signal output from the first optical operation means, the second optical operation means, as shown in the lower part of FIG. 1, outputs an optical signal having a cycle of "1/2" of the input optical signal. In synchronization with the clock signal, the EOR operation corresponding to the bit of "10" and "10" delayed by 1 bit is executed to obtain an optical signal of "1" and output it.
【0013】また、この構成に従って、第1の光演算手
段は、例えば、“1110(最下位ビットはパリティビ
ット)”という監視対象の光信号を入力すると、図2の
上段に示すように、監視対象の光信号の“1/2”の周
期を持つ光クロック信号に同期させて、“1110”と
それを1ビット分遅延させた“1110”とのビット対
応のEOR演算を実行することで、“01”という光信
号を得て、それを出力する。Further, according to this configuration, when the optical signal to be monitored, for example, "1110 (the least significant bit is the parity bit)" is input to the first optical operation means, as shown in the upper part of FIG. By performing an EOR operation corresponding to bits of “1110” and “1110” delayed by one bit in synchronization with an optical clock signal having a cycle of “½” of the target optical signal, It obtains an optical signal "01" and outputs it.
【0014】この第1の光演算手段の出力する光信号を
受けて、第2の光演算手段は、図2の下段に示すよう
に、入力光信号の“1/2”の周期を持つ光クロック信
号に同期させて、“01”とそれを1ビット分遅延させ
た“01”とのビット対応のEOR演算を実行すること
で、“1”という光信号を得て、それを出力する。In response to the optical signal output from the first optical operation means, the second optical operation means, as shown in the lower part of FIG. 2, outputs an optical signal having a cycle of "1/2" of the input optical signal. In synchronization with the clock signal, an EOR operation corresponding to a bit of "01" and "01" delayed by 1 bit is executed to obtain an optical signal of "1" and output it.
【0015】このように、第1の手段は、監視対象の光
信号が正規のものである場合には“1”という光信号を
出力するので、第2の手段は、第1の手段が“1”とい
う光信号を出力するのか否かを監視することで、監視対
象の光信号が本来のものから変化してしまったのか否か
を監視する。As described above, the first means outputs the optical signal "1" when the optical signal to be monitored is a regular one, so that the second means has the first means " By monitoring whether or not the optical signal "1" is output, it is monitored whether or not the optical signal to be monitored has changed from the original one.
【0016】このようにして、本発明によれば、光信号
レベルの状態で、監視対象の光信号が本来のものから変
化してしまったのか否かを監視できるようになり、これ
により、高速の光通信システムの構築を実現できるよう
になる。As described above, according to the present invention, it is possible to monitor whether or not the optical signal to be monitored has changed from the original one in the state of the optical signal level. The optical communication system can be constructed.
【0017】[0017]
【発明の実施の形態】以下、実施の形態に従って本発明
を詳細に説明する。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail according to embodiments.
【0018】図3に、本発明の光信号監視装置1を備え
る光通信システムの一例を図示する。FIG. 3 shows an example of an optical communication system including the optical signal monitoring apparatus 1 of the present invention.
【0019】この図に示すように、本発明の光信号監視
装置1は、例えば、光通信ラインを伝送されてくる奇数
パリティビットを持つ光信号(1を持つビットの数が奇
数となるようにとパリティビットが付加された光信号)
を中継する全光学構成中継器2の出力する光信号を監視
対象として、その光信号が本来のものから変化してしま
ったのか否かを監視する処理を行うものである。As shown in this figure, the optical signal monitoring apparatus 1 of the present invention is, for example, an optical signal having an odd parity bit transmitted through an optical communication line (so that the number of bits having 1 becomes an odd number). And optical signal with parity bit added)
The optical signal output from the all-optical configuration repeater 2 that relays the optical signal is monitored, and processing is performed to monitor whether the optical signal has changed from the original one.
【0020】図4に、本発明の光信号監視装置1の一実
施形態例を図示する。ここで、この実施形態例では、1
ビットの奇数パリティビットが付加された8ビットの光
信号を監視対象とすることを想定している。FIG. 4 shows an embodiment of the optical signal monitoring apparatus 1 of the present invention. Here, in this embodiment example, 1
It is assumed that an 8-bit optical signal to which an odd parity bit is added is to be monitored.
【0021】この図に示す本発明の光信号監視装置1
は、全光学構成で構成される第1の光演算機構10-1
と、全光学構成で構成される第2の光演算機構10-2
と、全光学構成で構成される第3の光演算機構10-3
と、受光素子と電子回路とで構成される監視機構20と
を備える。The optical signal monitoring apparatus 1 of the present invention shown in this figure
Is a first optical operation mechanism 10-1 having an all-optical configuration.
And a second optical operation mechanism 10-2 having an all-optical configuration
And the third optical operation mechanism 10-3 having an all-optical configuration
And a monitoring mechanism 20 including a light receiving element and an electronic circuit.
【0022】この第1の光演算機構10-1は、監視対象
の光信号(全光学構成中継器2の出力する光信号)を入
力として、入力光信号を2つに分岐し、その一方を遅延
用光ファイバ30を使って入力光信号の1ビット分遅延
させるとともに、もう一方を遅延させない処理を行う全
光学構成の光分岐遅延機構11-1と、監視対象の光信号
の“1/2”の周期を持つ光クロック信号(図中のに
示すもの)を信号光入力とし、光分岐遅延機構11-1に
より遅延された光信号と遅延されなかった光信号とを制
御光入力とする全光学構成のSMZ−SOA(対称マッ
ハーツェンダー型半導体光増幅器)12-1とで構成され
て、4ビットの光信号を出力する処理を行う。The first optical operation mechanism 10-1 receives an optical signal to be monitored (optical signal output by the all-optical configuration repeater 2) as an input, branches the input optical signal into two, and outputs one of them. An optical branching delay mechanism 11-1 having an all-optical configuration that delays the input optical signal by 1 bit using the delaying optical fiber 30 and does not delay the other optical signal, and "1/2" of the optical signal to be monitored. An optical clock signal having a period of "(shown in the figure) is used as a signal light input, and an optical signal delayed by the optical branch delay mechanism 11-1 and an optical signal not delayed are used as control light inputs. It is composed of an SMZ-SOA (symmetrical Mach-Zehnder type semiconductor optical amplifier) 12-1 having an optical configuration and performs a process of outputting a 4-bit optical signal.
【0023】第2の光演算機構10-2は、第1の光演算
機構10-1の出力する光信号を入力として、入力光信号
を2つに分岐し、その一方を遅延用光ファイバ30を使
って入力光信号の1ビット分(監視対象の光信号の2ビ
ット分)遅延させるとともに、もう一方を遅延させない
処理を行う全光学構成の光分岐遅延機構11-2と、入力
光信号の“1/2”の周期を持つ光クロック信号(図中
のに示すもので、監視対象の光信号の“1/4”の周
期を持つ光クロック信号)を信号光入力とし、光分岐遅
延機構11-2により遅延された光信号と遅延されなかっ
た光信号とを制御光入力とする全光学構成のSMZ−S
OA12-2とで構成されて、2ビットの光信号を出力す
る処理を行う。The second optical operation mechanism 10-2 receives the optical signal output from the first optical operation mechanism 10-1 as an input and branches the input optical signal into two, one of which is the delay optical fiber 30. To delay the input optical signal by 1 bit (2 bits of the monitored optical signal) and not delay the other optical branching delay mechanism 11-2 and the input optical signal An optical branch delay mechanism using an optical clock signal having a cycle of "1/2" (shown in the figure, an optical clock signal having a cycle of "1/4" of an optical signal to be monitored) as a signal light input. 11-2 SMZ-S having an all-optical configuration in which an optical signal delayed by the optical signal and an optical signal not delayed by the optical signal are controlled optical inputs
It is composed of the OA 12-2 and performs a process of outputting a 2-bit optical signal.
【0024】第3の光演算機構10-3は、第2の光演算
機構10-2の出力する光信号を入力として、入力光信号
を2つに分岐し、その一方を遅延用光ファイバ30を使
って入力光信号の1ビット分(監視対象の光信号の4ビ
ット分)遅延させるとともに、もう一方を遅延させない
処理を行う全光学構成の光分岐遅延機構11-3と、入力
光信号の“1/2”の周期を持つ光クロック信号(図中
のに示すもので、監視対象の光信号の“1/8”の周
期を持つ光クロック信号)を信号光入力とし、光分岐遅
延機構11-3により遅延された光信号と遅延されなかっ
た光信号とを制御光入力とする全光学構成のSMZ−S
OA12-3とで構成されて、1ビットの光信号を出力す
る処理を行う。The third optical operation mechanism 10-3 receives the optical signal output from the second optical operation mechanism 10-2 as an input and branches the input optical signal into two, one of which is the delay optical fiber 30. To delay the input optical signal by 1 bit (4 bits of the monitored optical signal) and not delay the other optical branching delay mechanism 11-3 of the optical configuration and the input optical signal An optical branching delay mechanism using an optical clock signal having a cycle of "1/2" (shown in the figure as an optical clock signal having a cycle of "1/8" of the monitored optical signal) as a signal light input. 11-3 SMZ-S having an all-optical configuration in which an optical signal delayed by the optical signal and an optical signal not delayed by the optical signal are controlled optical inputs
It is composed of the OA 12-3 and performs processing for outputting a 1-bit optical signal.
【0025】監視機構20は、第3の光演算機構10-3
の出力する1ビットの光信号を電気信号に変換するとと
もに、第3の光演算機構10-3の使用する光クロック信
号(図中のに示す光クロック信号)を電気信号に変換
して、その光クロック信号の電気変換信号と同期をとり
つつ、第3の光演算機構10-3の出力する光信号の電気
変換信号のレベル値が“1”であるのか否かをチェック
して、そのレベル値が“1”を示すときには監視対象の
光信号が本来のものである旨を出力し、そのレベル値が
“0”を示すときには監視対象の光信号が本来のもので
ないことを出力する処理を行う。The monitoring mechanism 20 is the third optical operation mechanism 10-3.
Converts the 1-bit optical signal output from the optical signal into an electrical signal, and converts the optical clock signal (optical clock signal indicated by in the figure) used by the third optical operation mechanism 10-3 into an electrical signal. While synchronizing with the electrical conversion signal of the optical clock signal, it is checked whether or not the level value of the electrical conversion signal of the optical signal output by the third optical operation mechanism 10-3 is "1", and the level is checked. When the value indicates "1", it outputs that the monitored optical signal is original, and when the level value indicates "0", it outputs that the monitored optical signal is not original. To do.
【0026】ここで、光クロック信号については、例え
ば、注入同期レーザ(レーザ光の発振周波数を設定でき
るレーザ)を複数用意して、それらの注入同期レーザの
発生する光信号を用いることで実現したり、監視対象の
光信号の“1/2”の周期を持つレーザ光を発振するレ
ーザを1つ用意するとともに、光スイッチを多段に接続
することで構成される光分周回路を用意して、それらの
光スイッチにより分周される光信号を用いることで実現
する。Here, the optical clock signal is realized by, for example, preparing a plurality of injection-locked lasers (lasers capable of setting the oscillation frequency of laser light) and using the optical signals generated by those injection-locked lasers. Or, prepare one laser that oscillates a laser beam having a "1/2" period of the optical signal to be monitored, and prepare an optical frequency dividing circuit that is configured by connecting optical switches in multiple stages. , By using an optical signal divided by these optical switches.
【0027】各SMZ−SOA12-1,2,3は、2つのS
OA(半導体光増幅器)50を備える構成を採って、そ
の一方のSOA50に対して、光クロック信号を信号光
として入力するとともに、ファイバアンプ40で増幅さ
れる遅延された方の光信号を制御光として入力し、もう
一方のSOA50に対して、光クロック信号を信号光と
して入力するとともに、ファイバアンプ40で増幅され
る遅延されなかった方の光信号を制御光として入力し
て、マッハーツェンダーの干渉計構成に従って信号光に
干渉を起こさせて、光学フィルタ60(制御光を遮断
し、信号光を透過させるフィルタ特性を持つ)を使って
その干渉光を取り出す処理を行う。Each SMZ-SOA 12-1, 2, 3 has two S
By adopting a configuration including an OA (semiconductor optical amplifier) 50, an optical clock signal is input as signal light to one of the SOAs 50, and the delayed optical signal amplified by the fiber amplifier 40 is used as a control light. , The optical clock signal is input to the other SOA 50 as signal light, and the undelayed optical signal amplified by the fiber amplifier 40 is input as control light to interfere with Mach-Zehnder interference. According to the measurement configuration, a signal light is caused to interfere, and the interference light is extracted using an optical filter 60 (having a filter characteristic of blocking the control light and transmitting the signal light).
【0028】SMZ−SOA12-1,2,3を構成するSO
A50は、図5に示すように、制御光のパワーが大きい
ときには、制御光のパワーが小さいときに比べて、信号
光の出力パワーが小さくなるという増幅特性を持つ。SO constituting SMZ-SOA 12-1, 2, 3
As shown in FIG. 5, A50 has an amplification characteristic that when the power of the control light is large, the output power of the signal light becomes smaller than when the power of the control light is small.
【0029】このSOA50の増幅特性に従って、図6
に示すように、遅延されなかった方の光信号を増幅する
ファイバアンプ40の出力点をA、その光信号を入力と
するSOA50の入力点をα、出力点をγと表し、遅延
された方の光信号を増幅するファイバアンプ40の出力
点をB、その光信号を入力とするSOA50の入力点を
β、出力点をδと表すならば、各SMZ−SOA12-
1,2,3は、図7に示すような出力特性を持つ。According to the amplification characteristic of the SOA 50, FIG.
As shown in, the output point of the fiber amplifier 40 that amplifies the optical signal that has not been delayed is represented by A, the input point of the SOA 50 that receives the optical signal is represented by α, and the output point is represented by γ. If the output point of the fiber amplifier 40 that amplifies the optical signal is B, the input point of the SOA 50 that inputs the optical signal is β, and the output point is δ, each SMZ-SOA12-
1, 2, 3 have output characteristics as shown in FIG.
【0030】すなわち、A点の光信号(制御光)が1
で、B点の光信号(制御光)が1のときには、α点の光
パワー(制御光)が大で、β点の光パワー(制御光)が
大となるので、γ点の光信号(信号光)は0で、δ点の
光信号(信号光)は0となり、これにより干渉は発生せ
ずに、SMZ−SOA12-1,2,3は0を出力する。That is, the optical signal (control light) at the point A is 1
When the optical signal at point B (control light) is 1, the optical power at point α (control light) is large and the optical power at point β (control light) is large, so the optical signal at point γ (control light) The signal light) is 0, and the optical signal at the δ point (signal light) is 0, so that interference does not occur and the SMZ-SOA 12-1, 2 and 3 output 0.
【0031】一方、A点の光信号(制御光)が1で、B
点の光信号(制御光)が0のときには、α点の光パワー
(制御光)が大で、β点の光パワー(制御光)が小とな
るので、γ点の光信号(信号光)は0で、δ点の光信号
(信号光)は1となり、これにより干渉は発生せずに、
SMZ−SOA12-1,2,3は1を出力する。On the other hand, the optical signal (control light) at point A is 1, and B
When the optical signal at the point (control light) is 0, the optical power at the α point (control light) is large and the optical power at the β point (control light) is small, so the optical signal at the γ point (signal light) is Is 0 and the optical signal (signal light) at the δ point is 1, so that interference does not occur,
The SMZ-SOA 12-1, 2 and 3 output 1.
【0032】一方、A点の光信号(制御光)が0で、B
点の光信号(制御光)が1のときには、α点の光パワー
(制御光)が小で、β点の光パワー(制御光)が大とな
るので、γ点の光信号(信号光)は1で、δ点の光信号
(信号光)は0となり、これにより干渉は発生せずに、
SMZ−SOA12-1,2,3は1を出力する。On the other hand, when the optical signal (control light) at point A is 0,
When the optical signal (control light) at the point is 1, the optical power (control light) at the α point is small and the optical power (control light) at the β point is large, so the optical signal (signal light) at the γ point Is 1, and the optical signal (signal light) at the δ point is 0, which causes no interference and
The SMZ-SOA 12-1, 2 and 3 output 1.
【0033】一方、A点の光信号(制御光)が0で、B
点の光信号(制御光)が0のときには、α点の光パワー
(制御光)が小で、β点の光パワー(制御光)が小とな
るので、γ点の光信号(信号光)は1で、δ点の光信号
(信号光)は1となり、これにより干渉が発生して、S
MZ−SOA12-1,2,3は0を出力する。On the other hand, when the optical signal (control light) at point A is 0,
When the optical signal (control light) at the point is 0, the optical power (control light) at the α point is small, and the optical power (control light) at the β point is small, so the optical signal (signal light) at the γ point. Is 1, and the optical signal (signal light) at the δ point becomes 1, which causes interference, and S
The MZ-SOA 12-1, 2, 3 outputs 0.
【0034】このことから分かるように、各SMZ−S
OA12-1,2,3は、遅延されなかった方の光信号と遅延
された方の光信号のビット対応のEOR演算を実行し
て、その演算結果の光信号を出力するように動作するこ
とになる。As can be seen from this, each SMZ-S
The OAs 12, 1, 2, and 3 operate so as to perform an EOR operation corresponding to the bit of the undelayed optical signal and the delayed optical signal and output the optical signal of the operation result. become.
【0035】次に、このように構成される本発明の光信
号監視装置1の実行する光信号の監視処理について説明
する。Next, the optical signal monitoring processing executed by the optical signal monitoring apparatus 1 of the present invention having such a configuration will be described.
【0036】(1)例えば、監視対象の光信号として、
“10011000(最下位ビットはパリティビッ
ト)”という光信号が入力されるとする。(1) For example, as an optical signal to be monitored,
It is assumed that an optical signal "10011000 (the least significant bit is a parity bit)" is input.
【0037】この監視対象の光信号“1001100
0”の入力を受けて、第1の光演算機構10-1は、図8
の上段に示すように、監視対象の光信号の“1/2”の
周期を持つ光クロック信号(図4のに示す光クロック
信号)に同期させて、“10011000”とそれを1
ビット分遅延させた“10011000”とのビット対
応のEOR演算を実行することで、“1110”という
光信号を得て、それを出力する。The optical signal to be monitored "1001100"
In response to the input of "0", the first optical operation mechanism 10-1 operates as shown in FIG.
As shown in the upper part of FIG. 4, “10011000” and 1 are set in synchronization with an optical clock signal (optical clock signal shown in FIG. 4) having a cycle of “1/2” of the monitored optical signal.
By performing an EOR operation corresponding to a bit with "10011000" delayed by a bit, an optical signal "1110" is obtained and output.
【0038】この第1の光演算機構10-1の出力する光
信号“1110”を受けて、第2の光演算機構10-2
は、図8の中段に示すように、入力光信号の“1/2”
の周期を持つ光クロック信号(図4のに示す光クロッ
ク信号)に同期させて、“1110”とそれを1ビット
分遅延させた“1110”とのビット対応のEOR演算
を実行することで、“01”という光信号を得て、それ
を出力する。The second optical operation mechanism 10-2 receives the optical signal "1110" output from the first optical operation mechanism 10-1.
Is "1/2" of the input optical signal, as shown in the middle part of FIG.
By synchronizing with the optical clock signal having the period of (the optical clock signal shown in FIG. 4), the bit-corresponding EOR operation of "1110" and "1110" delayed by 1 bit is executed, It obtains an optical signal "01" and outputs it.
【0039】この第2の光演算機構10-2の出力する光
信号“01”を受けて、第3の光演算機構10-3は、図
8の下段に示すように、入力光信号の“1/2”の周期
を持つ光クロック信号(図4のに示す光クロック信
号)に同期させて、“01”とそれを1ビット分遅延さ
せた“01”とのビット対応のEOR演算を実行するこ
とで、“1”という光信号を得て、それを出力する。Upon receipt of the optical signal "01" output from the second optical operation mechanism 10-2, the third optical operation mechanism 10-3, as shown in the lower part of FIG. An EOR operation corresponding to a bit of "01" and "01" delayed by one bit is executed in synchronization with an optical clock signal having a cycle of 1/2 "(optical clock signal shown in Fig. 4). By doing so, an optical signal "1" is obtained and output.
【0040】この第3の光演算機構10-3の出力する光
信号“1”を受けて、監視機構20は、上述した処理に
従って監視対象の光信号が本来のものであることを検出
して、その旨を出力する。Upon receiving the optical signal "1" output from the third optical operation mechanism 10-3, the monitoring mechanism 20 detects that the optical signal to be monitored is the original one according to the above-mentioned processing. , To that effect is output.
【0041】一方、この監視対象の光信号“10011
000”が通信ライン上で、例えば“1101100
0”というものに化けてしまったとする。On the other hand, this monitored optical signal "10011"
000 ”is on the communication line, for example,“ 1 1 01100
Suppose that it has been transformed into something like "0".
【0042】このときには、第1の光演算機構10-1
は、図9の上段に示すように“0110”という光信号
を出力し、これを受けて、第2の光演算機構10-2は、
図9の中段に示すように“11”という光信号を出力
し、これを受けて、第3の光演算機構10-3は、図9の
下段に示すように“0”という光信号を出力するので、
監視機構20は、上述した処理に従って監視対象の光信
号が本来のものでないことを検出して、その旨を出力す
る。At this time, the first optical operation mechanism 10-1
Outputs an optical signal “0110” as shown in the upper part of FIG. 9, and in response to this, the second optical operation mechanism 10-2
As shown in the middle part of FIG. 9, an optical signal of “11” is output, and in response to this, the third optical operation mechanism 10-3 outputs an optical signal of “0” as shown in the lower part of FIG. Because
The monitoring mechanism 20 detects that the optical signal to be monitored is not the original one according to the above-described processing, and outputs that effect.
【0043】(2)また、例えば、監視対象の光信号と
して、“11010011(最下位ビットはパリティビ
ット)”という光信号が入力されるとする。(2) For example, assume that an optical signal "11010011 (the least significant bit is a parity bit)" is input as the optical signal to be monitored.
【0044】この監視対象の光信号“1101001
1”の入力を受けて、第1の光演算機構10-1は、図1
0の上段に示すように、監視対象の光信号の“1/2”
の周期を持つ光クロック信号(図4のに示す光クロッ
ク信号)に同期させて、“11010011”とそれを
1ビット分遅延させた“11010011”とのビット
対応のEOR演算を実行することで、“0100”とい
う光信号を得て、それを出力する。The optical signal to be monitored "1101001"
1 ", the first optical operation mechanism 10-1 receives the input of FIG.
As shown in the upper part of 0, "1/2" of the optical signal to be monitored
By performing an EOR operation corresponding to a bit of “11010011” and “11010011” delayed by one bit in synchronization with an optical clock signal having a period of (optical clock signal shown in FIG. 4), The optical signal "0100" is obtained and output.
【0045】この第1の光演算機構10-1の出力する光
信号“0100”を受けて、第2の光演算機構10-2
は、図10の中段に示すように、入力光信号の“1/
2”の周期を持つ光クロック信号(図4のに示す光ク
ロック信号)に同期させて、“0100”とそれを1ビ
ット分遅延させた“0100”とのビット対応のEOR
演算を実行することで、“10”という光信号を得て、
それを出力する。The second optical operation mechanism 10-2 receives the optical signal "0100" output from the first optical operation mechanism 10-1.
As shown in the middle part of FIG.
An EOR corresponding to a bit of "0100" and "0100" delayed by one bit in synchronization with an optical clock signal having a cycle of 2 "(optical clock signal shown in FIG. 4).
By performing the calculation, we get an optical signal of "10",
Output it.
【0046】この第2の光演算機構10-2の出力する光
信号“10”を受けて、第3の光演算機構10-3は、図
8の下段に示すように、入力光信号の“1/2”の周期
を持つ光クロック信号(図4のに示す光クロック信
号)に同期させて、“10”とそれを1ビット分遅延さ
せた“10”とのビット対応のEOR演算を実行するこ
とで、“1”という光信号を得て、それを出力する。In response to the optical signal "10" output from the second optical operation mechanism 10-2, the third optical operation mechanism 10-3, as shown in the lower part of FIG. An EOR operation corresponding to a bit of "10" and "10" delayed by 1 bit is executed in synchronization with an optical clock signal having a cycle of 1/2 "(optical clock signal shown in FIG. 4). By doing so, an optical signal "1" is obtained and output.
【0047】この第3の光演算機構10-3の出力する光
信号“1”を受けて、監視機構20は、上述した処理に
従って監視対象の光信号が本来のものであることを検出
して、その旨を出力する。In response to the optical signal "1" output from the third optical operation mechanism 10-3, the monitoring mechanism 20 detects that the optical signal to be monitored is the original one according to the above-mentioned processing. , To that effect is output.
【0048】一方、この監視対象の光信号“11010
011”が通信ライン上で、例えば“1111001
1”というものに化けてしまったとする。On the other hand, the optical signal "11010" to be monitored is
011 ”is on the communication line, for example,“ 11 1 1001
Suppose that it has become a 1 ”.
【0049】このときには、第1の光演算機構10-1
は、図11の上段に示すように“0000”という光信
号を出力し、これを受けて、第2の光演算機構10-2
は、図11の中段に示すように“00”という光信号を
出力し、これを受けて、第3の光演算機構10-3は、図
11の下段に示すように“0”という光信号を出力する
ので、監視機構20は、上述した処理に従って監視対象
の光信号が本来のものでないことを検出して、その旨を
出力する。At this time, the first optical operation mechanism 10-1
11 outputs an optical signal "0000" as shown in the upper part of FIG. 11, and in response to this, the second optical operation mechanism 10-2
11 outputs an optical signal "00" as shown in the middle part of FIG. 11, and in response to this, the third optical operation mechanism 10-3 causes the optical signal "0" as shown in the lower part of FIG. Therefore, the monitoring mechanism 20 detects that the optical signal to be monitored is not the original one according to the above-described processing, and outputs that effect.
【0050】このようにして、本発明の光信号監視装置
1は、光信号レベルの状態で、監視対象の光信号が本来
のものから変化してしまったのか否かを監視できるよう
になる。In this way, the optical signal monitoring device 1 of the present invention can monitor whether or not the optical signal to be monitored has changed from the original one in the state of the optical signal level.
【0051】以上に説明した実施形態例では、最下位ビ
ットにパリティビットの付加された光信号を監視対象と
したが、本発明は、最上位ビットにパリティビットの付
加された光信号に対しても、そのまま適用可能である。In the embodiment described above, the optical signal in which the parity bit is added to the least significant bit is targeted for monitoring. However, the present invention is applied to the optical signal in which the parity bit is added to the most significant bit. Can be applied as is.
【0052】また、実施形態例では、1ビットで構成さ
れるパリティビットの付加された光信号を監視対象とし
たが、本発明は、複数ビットで構成されるパリティビッ
トの付加された光信号に対しても、そのまま適用可能で
ある。In the embodiment, the optical signal to which the parity bit composed of 1 bit is added is to be monitored. However, the present invention is applicable to the optical signal to which the parity bit composed of a plurality of bits is added. Also, it can be applied as it is.
【0053】[0053]
【発明の効果】以上説明したように、本発明によれば、
光信号レベルの状態で、監視対象の光信号が本来のもの
から変化してしまったのか否かを監視できるようにな
り、これにより、高速の光通信システムの構築を実現で
きるようになる。As described above, according to the present invention,
It becomes possible to monitor whether or not the optical signal to be monitored has changed from the original one in the state of the optical signal level, which makes it possible to realize the construction of a high-speed optical communication system.
【図1】本発明の動作説明図である。FIG. 1 is an operation explanatory diagram of the present invention.
【図2】本発明の動作説明図である。FIG. 2 is an operation explanatory diagram of the present invention.
【図3】本発明を備える光通信システムの一例である。FIG. 3 is an example of an optical communication system including the present invention.
【図4】本発明の一実施形態例である。FIG. 4 is an example of an embodiment of the present invention.
【図5】SOAの増幅特性の説明図である。FIG. 5 is an explanatory diagram of an amplification characteristic of SOA.
【図6】SMZ−SOAの動作説明図である。FIG. 6 is an operation explanatory diagram of SMZ-SOA.
【図7】SMZ−SOAの動作説明図である。FIG. 7 is an operation explanatory diagram of SMZ-SOA.
【図8】実施形態例の動作説明図である。FIG. 8 is a diagram illustrating the operation of the embodiment.
【図9】実施形態例の動作説明図である。FIG. 9 is a diagram illustrating the operation of the embodiment.
【図10】実施形態例の動作説明図である。FIG. 10 is a diagram illustrating the operation of the embodiment.
【図11】実施形態例の動作説明図である。FIG. 11 is a diagram illustrating the operation of the embodiment.
1 光信号監視装置 10-1 第1の光演算機構 11-1 光分岐遅延機構 12-1 SMZ−SOA 10-2 第2の光演算機構 11-2 光分岐遅延機構 12-2 SMZ−SOA 10-3 第3の光演算機構 11-3 光分岐遅延機構 12-3 SMZ−SOA 20 監視機構 30 遅延用光ファイバ 40 ファイバアンプ 50 SOA 60 光学フィルタ 1 Optical signal monitoring device 10-1 First optical operation mechanism 11-1 Optical branch delay mechanism 12-1 SMZ-SOA 10-2 Second optical operation mechanism 11-2 Optical branch delay mechanism 12-2 SMZ-SOA 10-3 Third optical operation mechanism 11-3 Optical branch delay mechanism 12-3 SMZ-SOA 20 Monitoring mechanism 30 Optical fiber for delay 40 fiber amplifier 50 SOA 60 Optical filter
───────────────────────────────────────────────────── フロントページの続き (72)発明者 小関 健 東京都小金井市貫井北町4−2−1 独立 行政法人通信総合研究所内 Fターム(参考) 2K002 AA02 AB23 AB40 BA02 CA13 DA08 5K002 CA12 CA13 DA05 EA05 FA01 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Ken Ozeki 4-2-1 Kanaikitamachi, Koganei City, Tokyo Independent Communications Research Institute F term (reference) 2K002 AA02 AB23 AB40 BA02 CA13 DA08 5K002 CA12 CA13 DA05 EA05 FA01
Claims (2)
とパリティビットが付加された光信号を監視する光信号
監視装置であって、 監視対象の光信号のビット長に応じた段数構成の光演算
手段で構成され、最前段の光演算手段については監視対
象の光信号を入力とし、それ以外の光演算手段について
は前段の光演算手段の出力する光信号を入力として、そ
れぞれの光演算手段が、入力光信号を2つに分岐し、そ
の一方を入力光信号の1ビット分遅延させるとともに、
入力光信号の“1/2”の周期を持つ光クロック信号に
同期させて、遅延させた入力光信号と遅延させない入力
光信号とのビット対応のEOR演算を実行して、その演
算結果の光信号を出力することで構成される手段と、 最後段の光演算手段の出力する光信号の信号値を監視す
る手段とを備えることを、 特徴とする光信号監視装置1. An optical signal monitoring device for monitoring an optical signal to which a parity bit is added so that the number of bits having 1 becomes an odd number, and the number of stages is configured according to the bit length of the optical signal to be monitored. The optical operation means of the first stage is used as an input for the optical signal to be monitored, and the other optical operation means is used as an input for the optical signal output by the optical operation means of the previous stage. The calculating means branches the input optical signal into two and delays one of them by one bit of the input optical signal, and
The EOR operation corresponding to the bit of the delayed input optical signal and the non-delayed input optical signal is executed in synchronism with the optical clock signal having the “1/2” cycle of the input optical signal, and the optical result is calculated. An optical signal monitoring apparatus comprising: a unit configured to output a signal; and a unit configured to monitor a signal value of an optical signal output from the last-stage optical calculation unit.
て、 上記光演算手段は、上記光クロック信号を信号光入力と
し、上記遅延させた光信号と上記遅延させない光信号と
を制御光入力とする対称マッハーツェンダー型半導体光
増幅器で構成されることを、 特徴とする光信号監視装置2. The optical signal monitoring device according to claim 1, wherein the optical operation means receives the optical clock signal as a signal optical input, and the delayed optical signal and the non-delayed optical signal are control optical inputs. Optical signal monitoring device characterized by comprising a symmetrical Mach-Zehnder type semiconductor optical amplifier
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001372166A JP3632081B2 (en) | 2001-12-06 | 2001-12-06 | Optical signal monitoring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001372166A JP3632081B2 (en) | 2001-12-06 | 2001-12-06 | Optical signal monitoring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003174416A true JP2003174416A (en) | 2003-06-20 |
JP3632081B2 JP3632081B2 (en) | 2005-03-23 |
Family
ID=19181102
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001372166A Expired - Lifetime JP3632081B2 (en) | 2001-12-06 | 2001-12-06 | Optical signal monitoring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3632081B2 (en) |
-
2001
- 2001-12-06 JP JP2001372166A patent/JP3632081B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP3632081B2 (en) | 2005-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4633664B2 (en) | Optical switch system | |
EP2341643A1 (en) | Method and apparatus for filter locking | |
JP3193220B2 (en) | Optical frequency control device | |
CN106452601A (en) | Multiway time delay-free characteristic laser chaos signal generation device based on heterogeneous time delay coupling ring network | |
CN109376115B (en) | Computing device and computing method based on workload certification | |
JP2882469B2 (en) | Optical network equipment | |
CN111211470A (en) | Combining pulse fiber laser, beam combining method, sub-control unit and timing unit | |
CN211351243U (en) | High-power MOPA beam combination pulse laser, sequence division unit and time sequence unit | |
EP2224625A1 (en) | Optical signal processing device and method of processing optical signal | |
EP2492773A1 (en) | Optical linear feedback circuit | |
JP2003174416A (en) | Optical signal monitoring device | |
CN117178216B (en) | Optical switch with all-optical memory buffer | |
US5822106A (en) | Synchronization of digital systems using optical pulses and mdoulators | |
JP5520209B2 (en) | Optical packet switching system and optical packet transmitter | |
JP2003149697A (en) | Method and apparatus for implementing all-optical half adder using semiconductor optical amplifier | |
JP2002372729A (en) | Optical waveform reproducing circuit | |
JP3496818B2 (en) | Optical clock extraction circuit and optical communication system | |
JPH03103838A (en) | Optical clock delay method using optical signal variable delay device | |
JP2512520B2 (en) | Optical repeater | |
JP2004201327A (en) | Optical pulse stretcher for low jitter nrz transmitter | |
CN106301579B (en) | Burst optical signal amplification control method and device and burst optical signal amplification system | |
WO2024038543A1 (en) | Optically modulated signal generation device and transmission module | |
JP3571673B2 (en) | Signal decompressor and signal decompression method | |
JP5212411B2 (en) | Optical signal reproducing apparatus and optical signal reproducing method | |
JP2686451B2 (en) | Optical clock signal extraction circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040720 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040803 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040825 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20041019 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20041026 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20041124 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3632081 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |