JP2003173820A - Non-aqueous electrolyte secondary battery - Google Patents
Non-aqueous electrolyte secondary batteryInfo
- Publication number
- JP2003173820A JP2003173820A JP2002272046A JP2002272046A JP2003173820A JP 2003173820 A JP2003173820 A JP 2003173820A JP 2002272046 A JP2002272046 A JP 2002272046A JP 2002272046 A JP2002272046 A JP 2002272046A JP 2003173820 A JP2003173820 A JP 2003173820A
- Authority
- JP
- Japan
- Prior art keywords
- aqueous electrolyte
- battery
- group
- secondary battery
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
(57)【要約】
【課題】 過充電時における急激な温度上昇を阻止し、
安全で、かつ高温保存後も電池特性を維持できる非水電
解質二次電池を提供することを目的とする。
【解決手段】 コバルト、ニッケル、およびマンガンか
らなる群より選ばれた少なくとも一種を含むリチウム含
有遷移金属複合酸化物からなる正極と、リチウムの吸
蔵、放出が可能な炭素材料からなる負極とを、セパレー
タを介して積層した電極群ならびに非水電解質を備えた
非水電解質二次電池であって、前記電極群に含まれる水
分量が、50ppm以下であり、前記非水電解質の10
0重量部にジフェニレンオキシドおよびジフェニレンオ
キシド誘導体からなる群より選ばれた少なくとも一種を
0.2〜5重量部添加する。
(57) [Summary] [Problem] To prevent a rapid temperature rise during overcharge,
An object of the present invention is to provide a non-aqueous electrolyte secondary battery that is safe and can maintain battery characteristics even after storage at high temperatures. SOLUTION: A positive electrode composed of a lithium-containing transition metal composite oxide containing at least one selected from the group consisting of cobalt, nickel and manganese, and a negative electrode composed of a carbon material capable of absorbing and releasing lithium are separated by a separator. A non-aqueous electrolyte secondary battery comprising an electrode group and a non-aqueous electrolyte laminated through the intermediary, wherein the amount of water contained in the electrode group is 50 ppm or less;
0.2 to 5 parts by weight of at least one selected from the group consisting of diphenylene oxide and a diphenylene oxide derivative is added to 0 parts by weight.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、非水電解質二次電
池に関し、特にそれに含まれる非水電解質に関するもの
である。TECHNICAL FIELD The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to a non-aqueous electrolyte contained therein.
【0002】[0002]
【従来の技術】近年、パソコンおよび携帯電話等の電子
機器の小型軽量化、コードレス化が急速に進んでいる。
これらの駆動用電源として、高エネルギー密度を有する
二次電池が要求されている。この中で、リチウムを活物
質とする非水電解質二次電池は特に高電圧、高エネルギ
ー密度を有する電池として期待されている。従来、この
電池の負極には金属リチウムが、正極には二硫化モリブ
デン、二酸化マンガン、または五酸化バナジウムなどが
用いられ、3V級の電池が実現されている。2. Description of the Related Art In recent years, electronic devices such as personal computers and mobile phones are rapidly becoming smaller and lighter and cordless.
A secondary battery having a high energy density is required as a power source for driving these. Among them, the non-aqueous electrolyte secondary battery using lithium as an active material is expected as a battery having particularly high voltage and high energy density. Conventionally, metallic lithium is used for the negative electrode of this battery, and molybdenum disulfide, manganese dioxide, or vanadium pentoxide is used for the positive electrode, and a 3V class battery has been realized.
【0003】ところが、負極に金属リチウムを用いた場
合、充電時に負極板上では樹枝状リチウムが析出する。
よって、充放電を繰り返すと負極板上に堆積した樹枝状
リチウムが負極板から分離して電解液中を浮遊し、正極
と接触することにより微小短絡を引き起こしてしまう。
このために、充電効率が低下し、サイクル寿命が短くな
るという問題がある。また、樹枝状リチウムは表面積が
大きく、反応性が高いため、安全性の面でも問題があ
る。However, when metallic lithium is used for the negative electrode, dendritic lithium is deposited on the negative electrode plate during charging.
Therefore, when charging and discharging are repeated, the dendritic lithium deposited on the negative electrode plate separates from the negative electrode plate and floats in the electrolytic solution, and contacts the positive electrode to cause a minute short circuit.
Therefore, there is a problem that the charging efficiency is lowered and the cycle life is shortened. Further, since dendritic lithium has a large surface area and high reactivity, there is a problem in terms of safety.
【0004】そこで、最近では負極に金属リチウムの代
わりに炭素材料を用い、正極にリチウム含有複合酸化物
を用いたリチウムイオン二次電池が盛んに研究され、商
品化されている。この電池の負極では、リチウムイオン
が炭素材料中に吸蔵された状態で存在するため、負極に
金属リチウムを用いた場合にみられる上記のような問題
はなく、安全である。Therefore, recently, a lithium ion secondary battery using a carbon material instead of metallic lithium for the negative electrode and a lithium-containing composite oxide for the positive electrode has been actively studied and commercialized. In the negative electrode of this battery, since lithium ions are present in the carbon material in a state of being occluded in the carbon material, there is no problem as described above when metallic lithium is used for the negative electrode, and it is safe.
【0005】しかし、リチウムイオン二次電池は、過充
電時には、非水電解質の分解によるガス発生、負極板に
おける金属リチウムの析出、および正極におけるリチウ
ム含有遷移金属複合酸化物の層構造の破壊による発熱な
どの問題を生じる。特に、発熱による電池温度の急激な
上昇は、電池の信頼性に関わる重要な問題である。However, the lithium ion secondary battery, when overcharged, generates heat due to decomposition of the non-aqueous electrolyte, deposition of metallic lithium on the negative electrode plate, and destruction of the layer structure of the lithium-containing transition metal composite oxide on the positive electrode, resulting in heat generation. Causes problems such as. In particular, the rapid rise in battery temperature due to heat generation is an important issue related to battery reliability.
【0006】[0006]
【発明が解決しようとする課題】本発明は、過充電時に
おける急激な温度上昇を阻止し、安全で、かつ高温保存
後も電池特性を維持できる非水電解質二次電池を提供す
ることを目的とする。SUMMARY OF THE INVENTION It is an object of the present invention to provide a non-aqueous electrolyte secondary battery which prevents a rapid temperature rise during overcharge, is safe, and can maintain battery characteristics even after storage at high temperature. And
【0007】[0007]
【課題を解決するための手段】上記課題を解決するため
に本発明の非水電解質二次電池は、コバルト、ニッケ
ル、およびマンガンからなる群より選ばれた少なくとも
一種を含むリチウム含有遷移金属複合酸化物からなる正
極と、リチウムの吸蔵、放出が可能な炭素材料からなる
負極とを、セパレータを介して積層した電極群ならびに
非水電解質を備えた非水電解質二次電池であって、前記
電極群に含まれる水分量が、50ppm以下であり、前
記非水電解質の100重量部にジフェニレンオキシドお
よびジフェニレンオキシド誘導体からなる群より選ばれ
た少なくとも一種を0.2〜5重量部添加したことを特
徴とする。In order to solve the above-mentioned problems, a non-aqueous electrolyte secondary battery of the present invention is a lithium-containing transition metal composite oxide containing at least one selected from the group consisting of cobalt, nickel and manganese. A non-aqueous electrolyte secondary battery including a positive electrode made of a material and a negative electrode made of a carbon material capable of absorbing and desorbing lithium, with a separator interposed therebetween, and a non-aqueous electrolyte secondary battery comprising the electrode group. Has a water content of 50 ppm or less, and 0.2 to 5 parts by weight of at least one selected from the group consisting of diphenylene oxide and diphenylene oxide derivatives is added to 100 parts by weight of the non-aqueous electrolyte. Characterize.
【0008】また、前記非水電解質は、炭酸エチレンお
よび鎖状エステルからなる非水溶媒ならびに溶質からな
ることが好ましい。さらに、前記鎖状エステルは、炭酸
ジメチル、炭酸エチルメチル、および炭酸ジエチルから
なる群より選ばれた少なくとも一種であることが好まし
い。The non-aqueous electrolyte preferably comprises a non-aqueous solvent composed of ethylene carbonate and a chain ester and a solute. Further, the chain ester is preferably at least one selected from the group consisting of dimethyl carbonate, ethylmethyl carbonate, and diethyl carbonate.
【0009】[0009]
【発明の実施の形態】本発明は、非水電解質中にジフェ
ニレンオキシドおよびジフェニレンオキシド誘導体から
なる群(以下ジフェニレンオキシド群と略称する。)よ
り選ばれた少なくとも一種を添加することにより、過充
電時における電池の急激な温度上昇を抑えることができ
るという知見に基づくものである。ジフェニレンオキシ
ド群は、電池の過充電時において、非水電解質の分解に
よるガス発生反応を促進して、ガス発生量を増加させる
作用を有する。これにより、電池内圧が上昇し、早い段
階で電流遮断機構が作動し、電池温度が急激に上昇する
前に充電が終了する。BEST MODE FOR CARRYING OUT THE INVENTION According to the present invention, at least one selected from the group consisting of diphenylene oxide and diphenylene oxide derivatives (hereinafter abbreviated as diphenylene oxide group) is added to a non-aqueous electrolyte. It is based on the finding that it is possible to suppress a rapid temperature rise of the battery during overcharge. The diphenylene oxide group has a function of promoting a gas generation reaction due to decomposition of the non-aqueous electrolyte and increasing a gas generation amount when the battery is overcharged. As a result, the internal pressure of the battery rises, the current cutoff mechanism operates at an early stage, and charging ends before the battery temperature rises sharply.
【0010】しかし、ジフェニレンオキシド群の添加量
が非水電解質100重量部あたり5重量部を超えると、
充電状態の非水電解質二次電池を高温下で保存した場
合、ジフェニレンオキシド群自体が分解して副生成物が
生じる。これが障害となり、放電容量が著しく低下す
る。However, if the amount of the diphenylene oxide group added exceeds 5 parts by weight per 100 parts by weight of the non-aqueous electrolyte,
When the charged non-aqueous electrolyte secondary battery is stored at high temperature, the diphenylene oxide group itself is decomposed to generate a by-product. This becomes an obstacle, and the discharge capacity is significantly reduced.
【0011】また、ジフェニレンオキシド群の添加量が
非水電解質100重量部あたり0.2重量部未満となる
と、過充電時に、ガス発生を促進させる効果が充分でな
くなるため、電流遮断機構が充分に作動しない。したが
って、非水電解質100重量部あたりジフェニレンオキ
シド群を0.2〜5重量部添加する。If the amount of the diphenylene oxide group added is less than 0.2 parts by weight per 100 parts by weight of the non-aqueous electrolyte, the effect of accelerating gas generation during overcharging becomes insufficient, so that the current interrupting mechanism is sufficient. Does not work. Therefore, 0.2 to 5 parts by weight of the diphenylene oxide group is added to 100 parts by weight of the non-aqueous electrolyte.
【0012】ジフェニレンオキシド群は、水と反応しや
すいため、電池内に水が存在すると反応を起こし、消費
されてしまう。しかし、本発明の非水電解質二次電池で
は、リチウム含有遷移金属複合酸化物からなる正極と、
リチウムの吸蔵、放出が可能な炭素材料からなる負極と
を、セパレータを介して積層した電極群の水分量を50
ppm以下に制御しているので、そのような問題点は、
回避される。Since the diphenylene oxide group easily reacts with water, it reacts with water in the battery and is consumed. However, in the non-aqueous electrolyte secondary battery of the present invention, a positive electrode composed of a lithium-containing transition metal composite oxide,
A negative electrode made of a carbon material capable of inserting and extracting lithium and a negative electrode made of a carbon material were laminated with a separator interposed between them so that the water content was 50%.
Since it is controlled to be below ppm, such a problem is
Avoided.
【0013】水分量を50ppm以下に低減させた電極
群を用い、ジフェニレンオキシド群を非水電解質100
重量部に対し0.2〜5重量部添加することで、過充電
時に、電流遮断機構を作動させるのに必要な充分量のガ
スが発生するため、電池の急激な温度上昇を阻止するこ
とができる。このように、電極群の水分量を低減するこ
とにより、少量のジフェニレンオキシド群で電池温度の
急激な上昇を抑え、電池の安全性を高めるとともに、ジ
フェニレンオキシド群自体が分解して生じる副生成物に
よる放電容量の低減を抑制できる。したがって、高温保
存後においても電池特性を維持できる。The electrode group whose water content is reduced to 50 ppm or less is used, and the diphenylene oxide group is added to the non-aqueous electrolyte 100.
By adding 0.2 to 5 parts by weight with respect to parts by weight, a sufficient amount of gas necessary for operating the current interruption mechanism is generated at the time of overcharging, so that a rapid temperature rise of the battery can be prevented. it can. In this way, by reducing the amount of water in the electrode group, a small amount of diphenylene oxide group suppresses a rapid rise in battery temperature, enhances battery safety, and decomposes the diphenylene oxide group itself. It is possible to suppress the reduction of the discharge capacity due to the product. Therefore, the battery characteristics can be maintained even after storage at high temperature.
【0014】ジフェニレンオキシドは下記の式に示す構
造式を有する化合物である。Diphenylene oxide is a compound having the structural formula shown below.
【0015】[0015]
【化1】 [Chemical 1]
【0016】また、ジフェニレンオキシドの誘導体とし
ては、例えば下記の式で表される化合物が挙げられる。Examples of the diphenylene oxide derivative include compounds represented by the following formula.
【0017】[0017]
【化2】 [Chemical 2]
【0018】非水電解質に用いられる非水溶媒は、炭酸
エチレンおよび鎖状エステルからなることが好ましい。
鎖状エステルは、炭酸ジメチル、炭酸エチルメチル、ま
たは炭酸ジエチルのような鎖状炭酸エステルであること
が好ましいが、プロピオン酸メチルや酪酸メチルなどの
鎖状エステルを用いてもよい。The non-aqueous solvent used for the non-aqueous electrolyte preferably comprises ethylene carbonate and a chain ester.
The chain ester is preferably a chain carbonate ester such as dimethyl carbonate, ethyl methyl carbonate, or diethyl carbonate, but a chain ester such as methyl propionate or methyl butyrate may be used.
【0019】上記の非水溶媒に溶解させる溶質は、特に
限定されず、非水電解質二次電池で通常用いられるもの
を用いることができる。例えば、LiClO4、LiA
sF6、LiPF6、LiBF4、LiCF3SO3、Li
N(CF3SO2)2などのリチウム塩が挙げられるが、
その中でも特にLiPF6、LiBF4が好ましい。The solute to be dissolved in the above non-aqueous solvent is not particularly limited, and those usually used in non-aqueous electrolyte secondary batteries can be used. For example, LiClO 4 , LiA
sF 6 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , Li
Examples thereof include lithium salts such as N (CF 3 SO 2 ) 2 .
Among them, LiPF 6 and LiBF 4 are particularly preferable.
【0020】電極群を構成する正極には、コバルト、ニ
ッケル、およびマンガンからなる群より選ばれた少なく
とも一種の遷移金属を含むリチウム含有複合酸化物を用
いる。電極群を構成する負極には、リチウムを吸蔵、放
出することが可能な黒鉛などの炭素材料を用いることが
好ましい。正極と負極とを介するセパレータには、ポリ
エチレン、ポリプロピレンなどのポリオレフィン微多孔
性膜を用いることが好ましい。For the positive electrode forming the electrode group, a lithium-containing composite oxide containing at least one transition metal selected from the group consisting of cobalt, nickel and manganese is used. It is preferable to use a carbon material such as graphite capable of inserting and extracting lithium for the negative electrode forming the electrode group. It is preferable to use a polyolefin microporous membrane such as polyethylene or polypropylene for the separator that interposes the positive electrode and the negative electrode.
【0021】電極群内の水分量の制御は、真空乾燥機を
用いて電極群を乾燥させることにより行うことができ
る。電極群内の水分量は、水分量計を用いてカールフィ
ッシャー法により測定することができる。電池は、円筒
型、角型、およびボタン型など、いずれの形状でも構わ
ない。また、正極および負極の態様は、それぞれに応じ
て変更すればよい。The amount of water in the electrode group can be controlled by drying the electrode group using a vacuum dryer. The water content in the electrode group can be measured by the Karl Fischer method using a water content meter. The battery may have any shape such as a cylindrical shape, a square shape, and a button shape. Further, the modes of the positive electrode and the negative electrode may be changed according to each.
【0022】[0022]
【実施例】以下に、本発明の実施例を説明する。
《実施例1》図1に、本実施例で作製した円筒型非水電
解質二次電池の縦断面図を示す。この電池は以下のよう
にして作製した。EXAMPLES Examples of the present invention will be described below. << Example 1 >> FIG. 1 shows a vertical cross-sectional view of a cylindrical nonaqueous electrolyte secondary battery produced in this example. This battery was manufactured as follows.
【0023】(i)正極の作製
活物質としてコバルト酸リチウム(LiCoO2)10
0重量部に、導電剤としてアセチレンブラックを3重量
部混合し、この混合物に結着剤としてポリ4フッ化エチ
レンの水性ディスパージョンを固形分で7重量部加えて
練合し、ペースト状正極合剤を得た。このペースト状正
極合剤をアルミニウム箔からなる集電体の両面に塗着し
た後、乾燥し、圧延して正極12を得た。(I) Preparation of positive electrode Lithium cobalt oxide (LiCoO 2 ) 10 as an active material
3 parts by weight of acetylene black as a conductive agent was mixed with 0 parts by weight, and 7 parts by weight of an aqueous dispersion of polytetrafluoroethylene as a binder was added as a binder to the mixture and kneaded to obtain a paste-like positive electrode mixture. I got an agent. This paste-like positive electrode mixture was applied on both sides of a current collector made of aluminum foil, dried and rolled to obtain a positive electrode 12.
【0024】(ii)負極の作製
活物質として炭素材料100重量部に、結着剤としてス
チレンブタジエンゴムの水性ディスパージョンを固形分
で3重量部加えて練合し、ペースト状負極合剤を得た。
このペースト状負極合剤を、銅箔からなる集電体の両面
に塗着した後、乾燥し、圧延して負極14を得た。(Ii) Production of Negative Electrode To 100 parts by weight of a carbon material as an active material, 3 parts by weight of an aqueous dispersion of styrene-butadiene rubber as a binder in solid content was added and kneaded to obtain a paste-like negative electrode mixture. It was
The paste-form negative electrode mixture was applied on both sides of a current collector made of copper foil, dried, and rolled to obtain a negative electrode 14.
【0025】(iii)電池の作製
正極12と負極14とを、厚みが30μmのポリエチレ
ンからなるセパレータ13を介して渦巻き状に捲回し、
電極群を構成した。そして、電極群内の水分を低減する
ために電極群を真空乾燥機を用いて60℃で12時間乾
燥させて、電極群内の水分量を50ppm以下とした。
なお、電極群内の水分量は、水分量計を用いてカールフ
ィッシャー法により測定し、測定前の電極群の重量をW
A、測定後の電極群の重量をWBとして、水分量(pp
m)=(WA−WB)/WA×106より算出した。(Iii) Preparation of Battery The positive electrode 12 and the negative electrode 14 are spirally wound with a separator 13 made of polyethylene having a thickness of 30 μm interposed therebetween.
An electrode group was constructed. Then, in order to reduce the water content in the electrode group, the electrode group was dried at 60 ° C. for 12 hours using a vacuum dryer, and the water content in the electrode group was set to 50 ppm or less.
The amount of water in the electrode group is measured by the Karl Fischer method using a water content meter, and the weight of the electrode group before measurement is W
A, the weight of the electrode group after measurement as W B, the water content (pp
m) = (W A −W B ) / W A × 10 6 .
【0026】乾燥させた電極群の上下部を温風で加熱
し、セパレータ13を熱収縮させた。そして、電極群の
下側に下部絶縁リング19を配し、電池ケース11に電
極群を収容して負極リード板14aを電池ケース11に
スポット溶接した。また、電極群の上側に、上部絶縁リ
ング18を装着し、電池ケース11の上部に溝入れ加工
をしてガスケット16を受けるための内方へ突出した段
部を形成した。正極12の端部に接続された正極リード
板12aをあらかじめガスケット16が組み込まれた封
口板17の所定の箇所にレーザー溶接した。封口板17
は、正極端子15を備えている。封口板17は電池ケー
ス11に装着し、かしめ封口して電池を組立てた。The upper and lower parts of the dried electrode group were heated with warm air to heat-shrink the separator 13. Then, the lower insulating ring 19 was arranged below the electrode group, the electrode group was housed in the battery case 11, and the negative electrode lead plate 14a was spot-welded to the battery case 11. An upper insulating ring 18 was attached to the upper side of the electrode group, and a groove portion was formed on the upper portion of the battery case 11 to form an inwardly protruding step portion for receiving the gasket 16. The positive electrode lead plate 12a connected to the end portion of the positive electrode 12 was laser-welded to a predetermined portion of the sealing plate 17 in which the gasket 16 was incorporated in advance. Seal plate 17
Has a positive electrode terminal 15. The sealing plate 17 was attached to the battery case 11 and caulked and sealed to assemble the battery.
【0027】非水電解質には、炭酸エチレン(EC)と
炭酸エチルメチル(EMC)とを1:3の体積比で混合
した溶媒中に6フッ化リン酸リチウム(LiPF6)を
1.25mol/l溶解させたものを用いた。そして、
非水電解質100重量部あたりジフェニレンオキシドを
0.2重量部添加した後、非水電解質を電池ケース11
に注液した。得られた電池の寸法は、外径18mm、総
高65mmである。また、電池の設計容量は1700m
Ahである。For the non-aqueous electrolyte, lithium hexafluorophosphate (LiPF 6 ) was added in an amount of 1.25 mol / l in a solvent prepared by mixing ethylene carbonate (EC) and ethyl methyl carbonate (EMC) in a volume ratio of 1: 3. 1 was used after being dissolved. And
After adding 0.2 parts by weight of diphenylene oxide to 100 parts by weight of the non-aqueous electrolyte, the non-aqueous electrolyte was added to the battery case 11
Was poured into. The obtained battery has an outer diameter of 18 mm and a total height of 65 mm. The design capacity of the battery is 1700m.
It is Ah.
【0028】この電池は、以下のような機構を有してい
る。この電池では、正極端子15と封口板17との間に
上部金属板20および下部金属板21が備えられてい
る。下部金属板21は、その外周縁部が封口板17と絶
縁板との間に挟まれ、さらにその絶縁板を介して上部金
属板20が配されている。そして、これらの金属板20
および21の中央部は溶接により接合されて接触し、電
気的に導通可能となっている。しかし、電池反応で発生
したガスにより電池内圧が設定値を超えると、下部金属
板21における上部金属板20との接合部分が破断し、
そこから上部金属板20と下部金属板21との隙間にガ
スが入り込み、上部金属板20が上方に押し上げられ
る。こうして、上部金属板20と下部金属板21との接
触が断たれるため、電流が遮断される。そして、上記の
電流が遮断された状態で、さらに電池内圧が上昇して設
定値に達すると、上部金属板20が破断し、ガスが上部
金属板20の破断部分から正極端子のガス排出孔より外
部へ放出される構成となっている。This battery has the following mechanism. In this battery, an upper metal plate 20 and a lower metal plate 21 are provided between the positive electrode terminal 15 and the sealing plate 17. The outer peripheral portion of the lower metal plate 21 is sandwiched between the sealing plate 17 and the insulating plate, and the upper metal plate 20 is further disposed via the insulating plate. And these metal plates 20
The central portions of and 21 are joined by welding and are in contact with each other so that they can be electrically conducted. However, when the internal pressure of the battery exceeds the set value due to the gas generated by the battery reaction, the joint portion of the lower metal plate 21 with the upper metal plate 20 is broken,
From there, gas enters the gap between the upper metal plate 20 and the lower metal plate 21, and the upper metal plate 20 is pushed upward. Thus, the contact between the upper metal plate 20 and the lower metal plate 21 is cut off, and the current is cut off. Then, when the battery internal pressure further rises and reaches the set value in the state where the current is cut off, the upper metal plate 20 is broken, and gas is discharged from the broken portion of the upper metal plate 20 through the gas discharge hole of the positive electrode terminal. It is configured to be released to the outside.
【0029】この電池を周囲温度20℃において、充電
電流0.34Aで、4.1Vまで定電流充電を行い、2
0分間休止した後、放電電流0.34A、終止電圧3.
0Vで放電を行う充放電を繰り返し行った。その後、充
電電流0.34Aで、4.1Vまで充電した。この電池
を実施例1の電池とした。This battery was subjected to constant current charging up to 4.1 V at an ambient temperature of 20 ° C. and a charging current of 0.34 A.
After resting for 0 minutes, discharge current 0.34 A, final voltage 3.
Charging and discharging for discharging at 0 V were repeated. After that, the battery was charged to 4.1V with a charging current of 0.34A. This battery was used as the battery of Example 1.
【0030】《実施例2》ジフェニレンオキシドの代わ
りにジフェニレンオキシド誘導体として上記の化合物2
を用いた以外は実施例1と同様の方法で電池を作製し
た。この電池を実施例2の電池とした。Example 2 The above compound 2 was used as a diphenylene oxide derivative instead of diphenylene oxide.
A battery was prepared in the same manner as in Example 1 except that This battery was used as the battery of Example 2.
【0031】《実施例3》非水電解質100重量部あた
りジフェニレンオキシドを2.0重量部添加した以外は
実施例1と同様の方法で電池を作製した。この電池を実
施例3の電池とした。Example 3 A battery was manufactured in the same manner as in Example 1 except that 2.0 parts by weight of diphenylene oxide was added to 100 parts by weight of the non-aqueous electrolyte. This battery was used as the battery of Example 3.
【0032】《実施例4》ジフェニレンオキシドの代わ
りにジフェニレンオキシド誘導体として上記の化合物2
を用いた以外は実施例3と同様の方法で電池を作製し
た。この電池を実施例4の電池とした。Example 4 The above compound 2 was used as a diphenylene oxide derivative instead of diphenylene oxide.
A battery was produced in the same manner as in Example 3 except that This battery was used as the battery of Example 4.
【0033】《実施例5》非水電解質100重量部あた
りジフェニレンオキシドを5.0重量部添加した以外は
実施例1と同様の方法で電池を作製した。この電池を実
施例5の電池とした。Example 5 A battery was prepared in the same manner as in Example 1 except that 5.0 parts by weight of diphenylene oxide was added to 100 parts by weight of the non-aqueous electrolyte. This battery was used as the battery of Example 5.
【0034】《比較例1》非水電解質100重量部あた
りジフェニレンオキシドを0.1重量部添加した以外は
実施例1と同様の方法で電池を作製した。この電池を比
較例1の電池とした。Comparative Example 1 A battery was prepared in the same manner as in Example 1 except that 0.1 part by weight of diphenylene oxide was added to 100 parts by weight of the non-aqueous electrolyte. This battery was used as the battery of Comparative Example 1.
【0035】《比較例2》非水電解質100重量部あた
りジフェニレンオキシドを7.0重量部添加した以外は
実施例1と同様の方法で電池を作製した。この電池を比
較例2の電池とした。Comparative Example 2 A battery was manufactured in the same manner as in Example 1 except that 7.0 parts by weight of diphenylene oxide was added to 100 parts by weight of the non-aqueous electrolyte. This battery was used as a battery of Comparative Example 2.
【0036】《比較例3》電極群を構成した後、電極群
の水分を低減させるための乾燥を行わないこと以外は実
施例1と同様にして電池を作製した。この電池を比較例
3の電池とした。Comparative Example 3 A battery was produced in the same manner as in Example 1 except that after the electrode group was formed, the electrode group was not dried to reduce the water content. This battery was used as a battery of Comparative Example 3.
【0037】《比較例4》電極群を構成した後、電極群
の水分を低減させるための乾燥を行わないこと以外は実
施例3と同様にして電池を作製した。この電池を比較例
4の電池とした。Comparative Example 4 A battery was manufactured in the same manner as in Example 3 except that after the electrode group was formed, the electrode group was not dried to reduce the water content. This battery was used as the battery of Comparative Example 4.
【0038】《比較例5》電極群を構成した後、電極群
の水分を低減させるための乾燥を行わないこと以外は実
施例5と同様にして電池を作製した。この電池を比較例
5の電池とした。以上のように作製した実施例1〜5の
電池および比較例1〜5の電池について、過充電試験お
よび高温保存後における放電容量の回復率の測定を行っ
た。Comparative Example 5 A battery was produced in the same manner as in Example 5 except that after the electrode group was formed, the electrode group was not dried to reduce the water content. This battery was used as the battery of Comparative Example 5. With respect to the batteries of Examples 1 to 5 and the batteries of Comparative Examples 1 to 5 manufactured as described above, the recovery rate of the discharge capacity after the overcharge test and the high temperature storage was measured.
【0039】過充電試験は以下のように行った。20℃
の環境下において、放電電流1A、終止電圧3.0Vで
放電を行った後、最大電流1A、設定電圧4.2Vで定
電流定電圧充電を2時間行った。この時の充電容量を電
池の規定容量とした。規定容量に充電した各電池につい
て、放電電流1A、終止電圧3.0Vで放電を行った。
その後、電流遮断機構が作動するまで充電電流3Aで定
電流充電を行い、過充電状態とし、その時の充電容量率
と電池の最大温度を測定した。なお、充電容量率は規定
容量に対する過充電試験における充電容量の割合であ
る。The overcharge test was conducted as follows. 20 ° C
In this environment, after discharging with a discharge current of 1 A and a cutoff voltage of 3.0 V, constant current and constant voltage charging was performed with a maximum current of 1 A and a set voltage of 4.2 V for 2 hours. The charging capacity at this time was defined as the specified capacity of the battery. Each battery charged to the specified capacity was discharged at a discharge current of 1 A and a final voltage of 3.0V.
After that, constant current charging was performed at a charging current of 3 A until the current cut-off mechanism was activated to bring the battery into an overcharged state, and the charge capacity rate and the maximum temperature of the battery at that time were measured. The charge capacity ratio is the ratio of the charge capacity in the overcharge test to the specified capacity.
【0040】次に、高温保存後における放電容量の回復
率の測定は以下のように行った。規定容量に充電した各
電池を用いて、20℃の環境下において、放電電流1
A、終止電圧3.0Vで放電を行い、放電容量を測定し
た。そして,最大電流1A、設定電圧4.2Vで定電流
定電圧充電を2時間行い、その後、周囲温度85℃で、
3日間保存した。保存後、放電電流1A、終止電圧3.
0Vで放電を行った。そして、保存前の放電容量に対す
る保存後の放電容量の割合を高温保存後の放電容量の回
復率とした。Next, the recovery rate of the discharge capacity after high temperature storage was measured as follows. Using each battery charged to the specified capacity, discharge current 1
A, discharge was performed at a final voltage of 3.0 V, and the discharge capacity was measured. Then, the constant current constant voltage charging is performed for 2 hours at the maximum current of 1 A and the set voltage of 4.2 V, and then at the ambient temperature of 85 ° C.,
Stored for 3 days. After storage, discharge current 1A, final voltage 3.
The discharge was performed at 0V. The ratio of the discharge capacity after storage to the discharge capacity before storage was defined as the recovery rate of the discharge capacity after high temperature storage.
【0041】各電池のジフェニレンオキシドまたはジフ
ェニレンオキシド誘導体の添加量、過充電試験における
充電容量率および電池の最大温度、ならびに高温保存後
の放電容量の回復率を表1に示す。Table 1 shows the addition amount of diphenylene oxide or diphenylene oxide derivative in each battery, the charge capacity ratio in the overcharge test and the maximum temperature of the battery, and the recovery ratio of the discharge capacity after high temperature storage.
【0042】[0042]
【表1】 [Table 1]
【0043】実施例1および比較例3は、非水電解質1
00重量部に対してジフェニレンオキシドの添加量はい
ずれも0.2重量部であるが、過充電時において、実施
例1は、比較例3と比べて充電容量率が低く、電池温度
の上昇が抑えられている。In Example 1 and Comparative Example 3, the non-aqueous electrolyte 1 was used.
The addition amount of diphenylene oxide was 0.2 parts by weight with respect to 00 parts by weight, but at the time of overcharge, Example 1 had a lower charge capacity ratio than Comparative Example 3 and an increase in battery temperature. Is suppressed.
【0044】これは、実施例1では電極群の水分量を5
0ppm以下に低減することにより、ジフェニレンオキ
シドと水の副反応を削減でき、その分がガス発生の促進
に有効に作用したためである。よって、ガス発生量が増
加し、電池温度が急激に上昇する前に電流遮断機構が早
い段階で作動したものと考えられる。このように、電極
群の水分量を低減することにより、少ないジフェニレン
オキシドの添加量で、過充電時の電池温度の急激な上昇
を抑えることができた。このような効果は、実施例2の
ようにジフェニレンオキシド誘導体を添加した場合にお
いても同様にみられた。This is because the water content of the electrode group is 5 in the first embodiment.
This is because by reducing the amount to 0 ppm or less, the side reaction of diphenylene oxide with water can be reduced, and that amount effectively acted to promote gas generation. Therefore, it is considered that the current cutoff mechanism operated at an early stage before the gas generation amount increased and the battery temperature rapidly increased. As described above, by reducing the water content of the electrode group, it was possible to suppress a rapid increase in battery temperature during overcharge with a small amount of diphenylene oxide added. Such an effect was similarly observed when the diphenylene oxide derivative was added as in Example 2.
【0045】また、実施例3、5と比較例4、5を比較
した場合でも、実施例3、5のほうが充電容量率が低
く、電池温度が低い時期で電流遮断機構が作動したこと
から、より安全な電池であることがわかった。Also, when comparing Examples 3 and 5 with Comparative Examples 4 and 5, the charging capacity ratios of Examples 3 and 5 were lower, and the current interruption mechanism operated at the time when the battery temperature was low. It turned out to be a safer battery.
【0046】高温保存後の放電容量の回復率は、ジフェ
ニレンオキシドまたはジフェニレンオキシド誘導体の添
加量が多いほど、低いことがわかった。これは、85℃
の高温環境下でジフェニレンオキシド自体が分解して副
生成物が生じ、これが障害となり放電容量が低下したた
めであると考えられる。It was found that the recovery rate of the discharge capacity after high temperature storage was lower as the amount of the diphenylene oxide or diphenylene oxide derivative added was larger. This is 85 ℃
It is considered that this is because the diphenylene oxide itself decomposes in the high temperature environment to generate a by-product, which becomes an obstacle and reduces the discharge capacity.
【0047】[0047]
【発明の効果】以上のように本発明では、過充電時にお
ける急激な温度上昇を阻止し、安全で、かつ高温保存後
も電池特性を維持できる非水電解質二次電池を提供でき
る。INDUSTRIAL APPLICABILITY As described above, the present invention can provide a non-aqueous electrolyte secondary battery that prevents a rapid temperature rise during overcharge, is safe, and can maintain battery characteristics even after storage at high temperature.
【図1】本発明の非水電解質二次電池の縦断面図であ
る。FIG. 1 is a vertical cross-sectional view of a non-aqueous electrolyte secondary battery of the present invention.
11 電池ケース 12 正極 12a 正極リード板 13 セパレータ 14 負極 14a 負極リード板 15 正極端子 16 ガスケット 17 封口板 18 上部絶縁リング 19 下部絶縁リング 20 上部金属板 21 下部金属板 11 battery case 12 Positive electrode 12a Positive lead plate 13 separator 14 Negative electrode 14a Negative electrode lead plate 15 Positive terminal 16 gasket 17 Seal plate 18 Upper insulation ring 19 Lower insulation ring 20 Upper metal plate 21 Lower metal plate
───────────────────────────────────────────────────── フロントページの続き (72)発明者 加藤 清美 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 越名 秀 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 岡原 賢二 神奈川県横浜市青葉区鴨志田町1000番地 三菱化学株式会社内 (72)発明者 島 紀子 茨城県稲敷郡阿見町中央八丁目3番1号 三菱化学株式会社内 (72)発明者 鈴木 仁 茨城県稲敷郡阿見町中央八丁目3番1号 三菱化学株式会社内 Fターム(参考) 5H029 AJ04 AJ12 AK03 AL06 AM03 AM05 AM07 BJ02 BJ14 DJ09 EJ11 HJ01 5H050 AA10 AA15 BA17 CA08 CA09 CB07 DA13 EA22 HA01 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Kiyomi Kato 1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric Sangyo Co., Ltd. (72) Inventor Shu Koshina 1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric Sangyo Co., Ltd. (72) Inventor Kenji Okahara 1000 Kamoshida-cho, Aoba-ku, Yokohama-shi, Kanagawa Within Mitsubishi Chemical Corporation (72) Inventor Noriko Shima 3-3-1 Chuo 8-chome, Ami Town, Inashiki District, Ibaraki Prefecture Within Mitsubishi Chemical Corporation (72) Inventor, Hitoshi Suzuki 3-3-1 Chuo 8-chome, Ami Town, Inashiki District, Ibaraki Prefecture Within Mitsubishi Chemical Corporation F-term (reference) 5H029 AJ04 AJ12 AK03 AL06 AM03 AM05 AM07 BJ02 BJ14 DJ09 EJ11 HJ01 5H050 AA10 AA15 BA17 CA08 CA09 CB07 DA13 EA22 HA01
Claims (3)
らなる群より選ばれた少なくとも一種を含むリチウム含
有遷移金属複合酸化物からなる正極と、リチウムの吸
蔵、放出が可能な炭素材料からなる負極とを、セパレー
タを介して積層した電極群ならびに非水電解質を備えた
非水電解質二次電池であって、 前記電極群に含まれる水分量が、50ppm以下であ
り、前記非水電解質の100重量部にジフェニレンオキ
シドおよびジフェニレンオキシド誘導体からなる群より
選ばれた少なくとも一種を0.2〜5重量部添加したこ
とを特徴とする非水電解質二次電池。1. A positive electrode made of a lithium-containing transition metal composite oxide containing at least one selected from the group consisting of cobalt, nickel, and manganese, and a negative electrode made of a carbon material capable of inserting and extracting lithium. A non-aqueous electrolyte secondary battery comprising an electrode group and a non-aqueous electrolyte laminated via a separator, wherein the amount of water contained in the electrode group is 50 ppm or less, and 100 parts by weight of the non-aqueous electrolyte is mixed with dihydrate. A non-aqueous electrolyte secondary battery comprising 0.2 to 5 parts by weight of at least one selected from the group consisting of phenylene oxide and diphenylene oxide derivatives.
鎖状エステルからなる非水溶媒ならびに溶質からなる請
求項1記載の非水電解質二次電池。2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the non-aqueous electrolyte comprises a non-aqueous solvent composed of ethylene carbonate and a chain ester and a solute.
酸エチルメチル、および炭酸ジエチルからなる群より選
ばれた少なくとも一種である請求項2記載の非水電解質
二次電池。3. The non-aqueous electrolyte secondary battery according to claim 2, wherein the chain ester is at least one selected from the group consisting of dimethyl carbonate, ethylmethyl carbonate, and diethyl carbonate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002272046A JP4191969B2 (en) | 2001-09-28 | 2002-09-18 | Nonaqueous electrolyte secondary battery |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001302385 | 2001-09-28 | ||
JP2001-302385 | 2001-09-28 | ||
JP2002272046A JP4191969B2 (en) | 2001-09-28 | 2002-09-18 | Nonaqueous electrolyte secondary battery |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2003173820A true JP2003173820A (en) | 2003-06-20 |
JP2003173820A5 JP2003173820A5 (en) | 2005-07-28 |
JP4191969B2 JP4191969B2 (en) | 2008-12-03 |
Family
ID=26623363
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002272046A Expired - Fee Related JP4191969B2 (en) | 2001-09-28 | 2002-09-18 | Nonaqueous electrolyte secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4191969B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005209514A (en) * | 2004-01-23 | 2005-08-04 | Mitsubishi Heavy Ind Ltd | Dryer for electrode film, electrode for non aqueous electrolysis secondary battery, and non aqueous electrolysis secondary battery |
JP2013080627A (en) * | 2011-10-04 | 2013-05-02 | Toyota Motor Corp | Nonaqueous electrolyte secondary battery |
JP2016062706A (en) * | 2014-09-17 | 2016-04-25 | 積水化学工業株式会社 | Method for manufacturing negative electrode for lithium ion secondary battery, and method for manufacturing lithium ion secondary battery |
KR20180127373A (en) * | 2016-03-09 | 2018-11-28 | 잽고 엘티디 | How to reduce outgasing in supercapacitors |
JP2020053352A (en) * | 2018-09-28 | 2020-04-02 | トヨタ自動車株式会社 | Manufacturing method for secondary battery |
-
2002
- 2002-09-18 JP JP2002272046A patent/JP4191969B2/en not_active Expired - Fee Related
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005209514A (en) * | 2004-01-23 | 2005-08-04 | Mitsubishi Heavy Ind Ltd | Dryer for electrode film, electrode for non aqueous electrolysis secondary battery, and non aqueous electrolysis secondary battery |
JP2013080627A (en) * | 2011-10-04 | 2013-05-02 | Toyota Motor Corp | Nonaqueous electrolyte secondary battery |
JP2016062706A (en) * | 2014-09-17 | 2016-04-25 | 積水化学工業株式会社 | Method for manufacturing negative electrode for lithium ion secondary battery, and method for manufacturing lithium ion secondary battery |
KR20180127373A (en) * | 2016-03-09 | 2018-11-28 | 잽고 엘티디 | How to reduce outgasing in supercapacitors |
KR102371036B1 (en) * | 2016-03-09 | 2022-03-07 | 잽고 엘티디 | How to reduce outgassing in supercapacitors |
JP2020053352A (en) * | 2018-09-28 | 2020-04-02 | トヨタ自動車株式会社 | Manufacturing method for secondary battery |
JP7079413B2 (en) | 2018-09-28 | 2022-06-02 | トヨタ自動車株式会社 | How to manufacture a secondary battery |
Also Published As
Publication number | Publication date |
---|---|
JP4191969B2 (en) | 2008-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8785015B2 (en) | Additives for non-aqueous electrolyte and secondary battery using the same | |
KR101073228B1 (en) | Nonaqueous Electrolyte Secondary Battery | |
JP4240078B2 (en) | Lithium secondary battery | |
KR101871231B1 (en) | Lithium ion secondary battery | |
WO2019148873A1 (en) | Battery connecting device and battery pack having same | |
JP2009238387A (en) | Nonaqueous electrolyte secondary battery | |
JP4149042B2 (en) | Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery | |
JP5205863B2 (en) | Non-aqueous electrolyte secondary battery | |
JP2005116424A (en) | Nonaqueous electrolyte secondary battery | |
US20130230748A1 (en) | Nonaqueous electrolyte secondary battery, method for manufacturing nonaqueous electrolyte secondary battery, and vehicle comprising nonaqueous electrolyte secondary battery | |
JPH11273674A (en) | Organic electrolyte secondary battery | |
JP2014035807A (en) | Battery pack | |
JP2001185223A (en) | Lithium secondary battery | |
JP2002289159A (en) | Nonaqueous electrolyte secondary battery pack | |
JP2003173820A (en) | Non-aqueous electrolyte secondary battery | |
JP2016192338A (en) | Non-aqueous electrolyte secondary battery | |
JPH11260413A (en) | Secondary battery | |
JPH07272762A (en) | Nonaqueous electrolytic secondary battery | |
JPH11265700A (en) | Nonaqueous electrolyte secondary battery | |
JPH11224670A (en) | Lithium secondary battery | |
JP4626021B2 (en) | Non-aqueous electrolyte secondary battery and manufacturing method thereof | |
KR101179392B1 (en) | Additives for non-aqueous electrolyte and secondary battery using the same | |
JP4538866B2 (en) | Non-aqueous electrolyte electrochemical device | |
JP2000188132A (en) | Nonaqueous electrode secondary battery | |
JP2003187863A (en) | Organic electrolyte secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20041213 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041213 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070809 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080605 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080731 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080821 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080919 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110926 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110926 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110926 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120926 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130926 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |