JP2003171709A - Temperature measurement sensor for filled layer at high-temperature and highly corrosive atmosphere, and temperature measurement sensor installing method - Google Patents
Temperature measurement sensor for filled layer at high-temperature and highly corrosive atmosphere, and temperature measurement sensor installing methodInfo
- Publication number
- JP2003171709A JP2003171709A JP2001375744A JP2001375744A JP2003171709A JP 2003171709 A JP2003171709 A JP 2003171709A JP 2001375744 A JP2001375744 A JP 2001375744A JP 2001375744 A JP2001375744 A JP 2001375744A JP 2003171709 A JP2003171709 A JP 2003171709A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- heat
- tube
- highly corrosive
- resistant metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000009529 body temperature measurement Methods 0.000 title abstract description 17
- 238000000034 method Methods 0.000 title description 17
- 230000001681 protective effect Effects 0.000 claims abstract description 61
- 229910052751 metal Inorganic materials 0.000 claims abstract description 48
- 239000002184 metal Substances 0.000 claims abstract description 48
- 239000004568 cement Substances 0.000 claims description 9
- 239000011359 shock absorbing material Substances 0.000 claims description 9
- 238000009413 insulation Methods 0.000 claims description 2
- 239000000571 coke Substances 0.000 abstract description 25
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 12
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 11
- 239000000463 material Substances 0.000 description 10
- 229910052697 platinum Inorganic materials 0.000 description 6
- 229910052703 rhodium Inorganic materials 0.000 description 5
- 239000010948 rhodium Substances 0.000 description 5
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 230000035939 shock Effects 0.000 description 3
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 239000003245 coal Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000011819 refractory material Substances 0.000 description 2
- 229910001021 Ferroalloy Inorganic materials 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 239000011195 cermet Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012806 monitoring device Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000010183 spectrum analysis Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
Landscapes
- Blast Furnaces (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、高温、かつ高腐食
性雰囲気の充填層用の測温センサ及びその測温センサ設
置方法に係り、特に、高炉コークス層内の温度測定に好
適な高温、かつ高腐食性雰囲気の充填層用の測温センサ
及びその測温センサ設置方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature measuring sensor for a packed bed in a high temperature and highly corrosive atmosphere and a method for installing the temperature measuring sensor, and particularly to a high temperature suitable for temperature measurement in a blast furnace coke layer, The present invention also relates to a temperature measuring sensor for a packed bed in a highly corrosive atmosphere and a method for installing the temperature measuring sensor.
【0002】[0002]
【従来の技術】周知のとおり、高温状態では高腐食性ガ
ス、つまり高炉ガスを発生する高炉の充填層であるコー
クス層では、休風時における抜熱情報は極めて重要であ
る。即ち、休風時における抜熱情報から、休風立ち上げ
時に必要な補償熱量を定量化し、それに応じて立ち上げ
時のコークス比や送風温度を調整することにより、高炉
の定常操業へ効率良く移行させることが可能になるから
である。高炉の休風中の抜熱は、その炉芯の温度分布を
長時間測定し、測定される炉芯の温度分布の変化から知
ることができる。2. Description of the Related Art As is well known, in a coke layer, which is a packed layer of a blast furnace that generates a highly corrosive gas at high temperature, that is, a blast furnace gas, heat removal information at the time of rest is extremely important. In other words, by quantifying the amount of compensating heat required for start-up of rest air from the heat removal information during rest air, and adjusting the coke ratio and blast temperature during start-up accordingly, it is possible to efficiently shift to steady operation of the blast furnace. This is because it is possible to make them. The heat removal during blast furnace rest can be known by measuring the temperature distribution of the core for a long time and measuring the change in the temperature distribution of the core.
【0003】高炉の炉芯温度は、休風時でも1500℃
〜1700℃の高温であることが予想されるが、従来
は、羽口におけるコークスをサンプリングし、その組織
構造から過去最高履歴温度を推定していた。しかし、こ
のような推定方法では、最高温度を想定することができ
ても、リアルタイムで温度を知ることができないし、ま
た温度の経時変化を把握することができないという本質
的な欠点があった。The core temperature of the blast furnace is 1500 ° C. even when there is no wind.
Although it is expected that the temperature will be as high as ˜1700 ° C., conventionally, the coke at the tuyere was sampled, and the past maximum history temperature was estimated from the tissue structure. However, such an estimation method has an essential drawback in that even if the maximum temperature can be assumed, the temperature cannot be known in real time, and the change in temperature with time cannot be grasped.
【0004】ところで、高炉操業中において、コークス
燃焼帯(以下、レースウェイという)の温度を測定する技
術が、例えば特開昭61−257405号公報、特開平
5−288480号公報、及び特開平7−305105
号公報等に開示されている。以下、これら各従来例に係
るレースウェイの温度を測定する技術の概要を説明す
る。By the way, a technique for measuring the temperature of a coke combustion zone (hereinafter referred to as a raceway) during the operation of a blast furnace is disclosed in, for example, JP-A-61-257405, JP-A-5-288480 and JP-A-7-280480. -305105
It is disclosed in Japanese Patent Publication No. The outline of the technique for measuring the temperature of the raceway according to each of these conventional examples will be described below.
【0005】前記特開昭61−257405号公報に開
示されてなるものは、グラスファイバーを内装した、冷
却機能を有するプローブを、羽口の先端から高炉の炉芯
体に挿入する技術である。前記特開平5−288480
号公報に開示されてなるものは、コークス充填型溶融還
元炉の羽口部に光ファイバを使用した炉内監視装置を設
ける。そして、モニタ、画像処理装置によりレースウェ
イ内の広範囲の状況を自動的に監視する技術である。前
記特開平7−305105号公報に開示されてなるもの
は、高炉羽口覗孔部に放射温度カメラを設置し、レース
ウェイの輝度を非接触で測定し、測定した輝度を画像解
析装置により温度に変換する。そして、変換した温度の
時系列データのスペクトル解析に基づいて、パワー密度
スペクトルが最大となる周波数の逆数から高炉レースウ
ェイの崩壊周期θR,0を算定する。一方、羽口風速、微
粉炭化、羽口径、及び微粉炭の元素分析値に基づくレー
スウェイ周りの物質収支からレースウェイの崩壊周期の
関係式と崩壊周期θR,0とを用いて微粉炭の燃焼率ηPC
を評価する技術である。The technique disclosed in Japanese Patent Laid-Open No. 61-257405 is a technique in which a probe having a glass fiber is inserted and inserted into the furnace core of a blast furnace from the tip of the tuyere. JP-A-5-288480
What is disclosed in the publication is to provide an in-furnace monitoring device using an optical fiber at the tuyere of a coke filling type smelting reduction furnace. Then, it is a technique for automatically monitoring a wide range of conditions in the raceway by a monitor and an image processing device. What is disclosed in Japanese Patent Laid-Open No. 7-305105 is that a radiation temperature camera is installed in the blast furnace tuyere inspection hole, the brightness of the raceway is measured in a non-contact manner, and the measured brightness is measured by an image analyzer. Convert to. Then, based on the spectrum analysis of the time series data of the converted temperature, the collapse period θR, 0 of the blast furnace raceway is calculated from the reciprocal of the frequency at which the power density spectrum becomes maximum. On the other hand, based on the mass balance around the raceway based on the tuyere wind speed, pulverized carbonization, tuyere diameter, and elemental analysis values of pulverized coal, the relationship equation of the decay period of the raceway and the decay period θR, 0 were used to burn the pulverized coal. Rate ηPC
Is a technology for evaluating.
【0006】[0006]
【発明が解決しようとする課題】上記各従来技術によれ
ば、レースウェイの温度をリアルタイムに測定すること
ができるのに加えて、温度の経時変化も知ることができ
るから、極めて有用であると考えられる。しかしなが
ら、これらの何れによっても、レースウェイよりさらに
奥の炉芯温度の測定を目的としたものではない。従っ
て、このような従来技術では、高炉の休風時における抜
熱情報を把握することができない。According to the above-mentioned respective prior arts, the temperature of the raceway can be measured in real time, and in addition, the change in temperature with time can be known, which is extremely useful. Conceivable. However, none of these are intended to measure the core temperature deeper than the raceway. Therefore, with such a conventional technique, it is not possible to grasp heat removal information when the blast furnace is in a blast.
【0007】従って、本発明の目的は、休風時における
レースウェイよりさらに奥の炉芯温度を長時間安定して
測定することを可能ならしめるようにした、高温、かつ
高腐食性雰囲気の充填層用の測温センサ及びその測温セ
ンサ設置方法を提供することである。Therefore, an object of the present invention is to fill a high temperature and highly corrosive atmosphere, which makes it possible to stably measure the core temperature deeper than the raceway at the time of resting air for a long time. A temperature measuring sensor for a layer and a method of installing the temperature measuring sensor.
【0008】[0008]
【課題を解決するための手段】発明者らは、上記各従来
技術の欠点を解決するために、高炉の炉芯に測温センサ
を挿入することを考えた。高炉の炉芯に測温センサを挿
入するには、数トンの推力が必要であるため、例えばフ
ォークリフト、油圧打撃装置等を用いて測温センサを打
ち込む必要がある。その場合、通常の熱電対で使用する
金属保護管だけでは、高炉の炉心温度が金属保護管の融
点を超えているため、耐熱の観点からこのような金属保
護管を使用することができない。また、セラミックスか
らなる保護管では、装入時の打撃による衝撃で破損する
ので使用することができない。The inventors have considered inserting a temperature measuring sensor into the core of a blast furnace in order to solve the drawbacks of the above-mentioned respective prior arts. Since several tons of thrust is required to insert the temperature measuring sensor into the core of the blast furnace, it is necessary to drive the temperature measuring sensor using, for example, a forklift or a hydraulic impact device. In that case, since the core temperature of the blast furnace exceeds the melting point of the metal protection tube only with the metal protection tube used in a normal thermocouple, such a metal protection tube cannot be used from the viewpoint of heat resistance. Further, a protection tube made of ceramics cannot be used because it is damaged by the impact caused by the impact at the time of charging.
【0009】そこで、熱電対を組込んだセラミックスか
らなる保護管を装入してなる金属保護管を打撃したとこ
ろ、この金属保護管をコークス層に打ち込むことができ
た。しかしながら、高炉のコークス層内温度測定の場合
には、十数時間〜数十時間継続して測温する必要がある
のに対して、実際の測温時間は1.5時間程度であり、
実用に供し得なかった。Then, when a metal protective tube having a protective tube made of ceramics having a thermocouple incorporated therein was hit, the metal protective tube could be driven into the coke layer. However, in the case of measuring the temperature in the coke layer of the blast furnace, it is necessary to continuously measure the temperature for a dozen hours to several tens of hours, whereas the actual temperature measurement time is about 1.5 hours,
It could not be put to practical use.
【0010】コークス層から引き抜いて調査したとこ
ろ、打ち込み時の衝撃でセラミックスからなる保護管が
破損し、破損個所から進入した炉内ガスにより熱電対が
炭化したことに起因することが判明した。そこで、発明
者らは、先ず高強度金属筒をコークス層に打設する。そ
して、打設した高強度金属筒内に、熱電対を組込んだセ
ラミックスからなる保護管を装入する。さすれば、この
保護管に衝撃力が作用することがないから、この保護管
の破損を防止することが可能になると考えて、本発明を
なしたものである。As a result of pulling out from the coke layer and investigating, it was revealed that the protective tube made of ceramics was damaged by the impact at the time of driving, and the thermocouple was carbonized by the gas in the furnace that entered from the damaged part. Therefore, the inventors first cast a high-strength metal cylinder on the coke layer. Then, a protective tube made of ceramics incorporating a thermocouple is inserted into the cast high-strength metal cylinder. Then, since the impact force does not act on the protection tube, it is possible to prevent the protection tube from being damaged, and the present invention has been made.
【0011】従って、上記課題を解決するために、本発
明の請求項1に係る高温、かつ高腐食性雰囲気の充填層
用の測温センサが採用した手段は、先端が閉塞され、高
腐食性ガスを発生する高温の充填層内に打設される測温
センサであって、打設される耐熱性金属筒と、この耐熱
性金属筒内に装入され、絶縁管に保持されたセンサ本体
を収納した保護管とから構成されてなることを特徴とす
るものである。Therefore, in order to solve the above-mentioned problems, the means adopted by the temperature measuring sensor for the filling layer in a high temperature and highly corrosive atmosphere according to claim 1 of the present invention has a tip closed and a high corrosiveness. A temperature-measuring sensor placed in a high-temperature packed bed that generates gas, which is a heat-resistant metal tube to be placed and a sensor body inserted in the heat-resistant metal tube and held by an insulating tube. It is characterized in that it is composed of a protective tube that accommodates.
【0012】本発明の請求項2に係る高温、かつ高腐食
性雰囲気の充填層用の測温センサが採用した手段は、先
端が閉塞され、高腐食性ガスを発生する高温の充填層内
に打設される測温センサであって、打設される耐熱性金
属筒と、この耐熱性金属筒内に装入され、絶縁管に保持
されたセンサ本体を収納した第2保護管が収納されてな
る保護管とから構成されてなることを特徴とするもので
ある。The means adopted by the temperature measuring sensor for a packed bed in a high temperature and highly corrosive atmosphere according to claim 2 of the present invention is such that the tip is closed and the temperature is high in the packed bed which generates a highly corrosive gas. A temperature measuring sensor to be installed, in which a heat resistant metal tube to be installed and a second protective tube containing the sensor body held in the insulating tube and housed in the heat resistant metal tube are stored. It is characterized by comprising a protective tube made of
【0013】本発明の請求項3に係る高温、かつ高腐食
性雰囲気の充填層用の測温センサが採用した手段は、先
端が閉塞され、高腐食性ガスを発生する高温の充填層内
に打設される測温センサであって、打設される耐熱性金
属筒と、この耐熱性金属筒内に装入され、絶縁管に保持
された長さが相違するセンサ本体をそれぞれ収納した複
数の第2保護管が収納されてなる保護管とから構成され
てなることを特徴とするものである。The means adopted by the temperature measuring sensor for a packed bed in a high temperature and highly corrosive atmosphere according to claim 3 of the present invention is such that the tip is closed and a highly corrosive gas is generated in the packed bed at a high temperature. A temperature measuring sensor to be placed, and a plurality of heat-resistant metal cylinders to be placed and a plurality of sensor bodies loaded in the heat-resistant metal cylinders and held in an insulating tube and having different lengths, respectively. The second protective tube is stored in the protective tube.
【0014】本発明の請求項4に係る高温、かつ高腐食
性雰囲気の充填層用の測温センサが採用した手段は、請
求項1乃至3のうちの何れか一つの項に記載の高温、か
つ高腐食性雰囲気の充填層用の測温センサにおいて、前
記保護管は、複数の径が相違する耐火物管からなり、耐
火物管内に順次小径の耐火物管を嵌挿して、耐火物管同
士の間の隙間に耐火セメントを介装した多重構成である
ことを特徴とするものである。The means adopted by the temperature measuring sensor for a high temperature and highly corrosive atmosphere according to claim 4 of the present invention is the high temperature according to any one of claims 1 to 3. In the temperature measuring sensor for a packed bed in a highly corrosive atmosphere, the protection tube is made of a refractory tube having a plurality of different diameters, and a refractory tube having a smaller diameter is sequentially inserted into the refractory tube. It is characterized by having a multiple structure in which refractory cement is interposed in the gap between the two.
【0015】本発明の請求項5に係る高温、かつ高腐食
性雰囲気の充填層用の測温センサが採用した手段は、請
求項1乃至4のうちの何れか一つの項に記載の高温、か
つ高腐食性雰囲気の充填層用の測温センサにおいて、前
記耐熱性金属筒と前記保護管との間に、耐熱性熱衝撃緩
衝材が介装されてなることを特徴とするものである。The means adopted by the temperature measuring sensor for a high temperature and highly corrosive atmosphere according to claim 5 of the present invention is the high temperature according to any one of claims 1 to 4, Further, in the temperature measuring sensor for a packed bed in a highly corrosive atmosphere, a heat resistant thermal shock absorbing material is interposed between the heat resistant metal cylinder and the protective tube.
【0016】本発明の請求項6に係る高温、かつ高腐食
性雰囲気の充填層用の測温センサ設置方法が採用した手
段は、高腐食性ガスを発生する高温の充填層内に、先端
が閉塞されてなる耐熱性金属筒を打設し、次いで絶縁管
に保持されたセンサ本体を収納した保護管を、前記耐熱
性金属筒内に装入することを特徴とするものである。According to the sixth aspect of the present invention, the means adopted by the method for installing a temperature measuring sensor for a packed bed in a high temperature and highly corrosive atmosphere is such that the tip is located in a hot packed bed which generates a highly corrosive gas. It is characterized in that a heat resistant metal cylinder formed by closing is driven, and then a protection tube accommodating a sensor body held by an insulating tube is inserted into the heat resistant metal cylinder.
【0017】本発明の請求項7に係る高温、かつ高腐食
性雰囲気の充填層用の測温センサ設置方法が採用した手
段は、請求項6に記載の高温、かつ高腐食性雰囲気の充
填層用の測温センサ設置方法において、前記保護管を前
記耐熱性金属筒内に装入するにあたり、前記保護管の外
周に耐熱性熱衝撃緩衝材を外装することを特徴とするも
のである。According to a seventh aspect of the present invention, the means adopted by the method for installing a temperature measuring sensor for a packed bed in a high temperature and highly corrosive atmosphere is the packed bed in a high temperature and highly corrosive atmosphere according to claim 6. In the method of installing a temperature measuring sensor for use in the above, when the protective tube is inserted into the heat-resistant metal cylinder, a heat-resistant thermal shock absorbing material is provided on the outer periphery of the protective tube.
【0018】[0018]
【発明の実施の形態】以下、本発明の実施の形態1に係
る高温、かつ高腐食性雰囲気の充填層用の測温センサ
を、添付図面を参照しながら、高温、かつ高腐食性雰囲
気の充填層が高炉内のコークス層である場合を例として
説明する。図1は、高炉への測温センサの設置状態説明
図であり、図2(a)は、その先端部の模式的断面図であ
り、図2(b)は図2(a)のA−A線断面図である。BEST MODE FOR CARRYING OUT THE INVENTION A temperature measuring sensor for a packed bed in a high temperature and highly corrosive atmosphere according to a first embodiment of the present invention will be described below with reference to the accompanying drawings. The case where the packed bed is the coke layer in the blast furnace will be described as an example. FIG. 1 is an explanatory view of an installation state of a temperature measuring sensor in a blast furnace, FIG. 2 (a) is a schematic cross-sectional view of a tip portion thereof, and FIG. 2 (b) is A- of FIG. 2 (a). It is an A line sectional view.
【0019】図1に示す符号1は、後述する構成になる
測温センサである。この測温センサ1は高炉100の鉄
皮101に付設されてなる羽口102から、この高炉1
00内の充填層であるコークス層103に打設されてい
る。前記測温センサ1は、図1に示すように、羽口10
2から高炉100内のコークス層103に打ち込まれる
SUS304からなる耐熱性金属筒2を備えている。こ
の耐熱性金属筒2の先端部は、コークス層103内に容
易に進入し得るよう円錐状体により閉塞されて先鋭にな
っている。ところで、羽口102の内周と測温センサ1
の外周との間に積め込まれてなるものは、綿塊状のアル
ミナ繊維(商品名;カオウール)6であって、高炉100
内への空気の流入を防止するためのものである。Reference numeral 1 shown in FIG. 1 is a temperature measuring sensor having a configuration described later. This temperature measuring sensor 1 is installed from the tuyere 102 attached to the iron shell 101 of the blast furnace 100
It is cast on the coke layer 103, which is the filling layer in 00. As shown in FIG. 1, the temperature measuring sensor 1 includes a tuyere 10
The heat-resistant metal cylinder 2 made of SUS304 that is driven into the coke layer 103 in the blast furnace 100 from 2 is provided. The tip of the heat-resistant metal cylinder 2 is sharpened by being closed by a conical body so as to easily enter the coke layer 103. By the way, the inner circumference of the tuyere 102 and the temperature measuring sensor 1
What is loaded between the outer circumference of the blast furnace and the outer circumference is a lump of alumina fiber (trade name: Kao Wool) 6
This is for preventing the inflow of air into the inside.
【0020】次いで、コークス層103に打ち込まれた
耐熱性金属筒2内に、後述する構成になる保護管3が装
入される。この保護管3は、径が相違する3種類の耐火
物管31,32,33から構成されている。より詳しく
は、耐火物管内に順次小径の耐火物管が嵌挿されて、図
2(a),(b)に示すように、3重構成になっている。こ
れら3種類の耐火物管31,32,33は、何れも再結
晶アルミナ(融点2015℃)から形成されている。この
保護管3を構成する3種類の耐火物管31,32,33
のそれぞれは、何れも耐熱セメント8により接続された
複数の管から構成されている。そして、これら管の接続
部は、図2(a)に示すように、互いに重なることがない
ようにオーバーラップしている。Next, the protective tube 3 having the structure described later is loaded into the heat resistant metal cylinder 2 that has been driven into the coke layer 103. The protection pipe 3 is composed of three types of refractory pipes 31, 32, 33 having different diameters. More specifically, small-diameter refractory pipes are successively inserted into the refractory pipes to form a triple structure as shown in FIGS. 2 (a) and 2 (b). All of these three types of refractory tubes 31, 32, and 33 are made of recrystallized alumina (melting point 2015 ° C.). Three types of refractory pipes 31, 32, 33 that form the protective pipe 3.
Each of them is composed of a plurality of pipes connected by heat-resistant cement 8. Then, the connecting portions of these pipes are overlapped with each other so as not to overlap each other, as shown in FIG.
【0021】さらに、耐火物管31と耐火物管32との
間、および耐火物管32と耐火物管33との間の隙間
は、管の接続部と同様に、耐熱セメント8で埋められて
いる。このような保護管3の構成により、耐熱性金属筒
2が溶損しても、熱電対5の位置まで炉内ガスが侵入す
るのに要する時間を大幅に延長させることができ、長時
間の安定測温が可能になる。Further, the gaps between the refractory pipe 31 and the refractory pipe 32 and between the refractory pipe 32 and the refractory pipe 33 are filled with the heat-resistant cement 8 in the same manner as the connecting portions of the pipes. There is. With such a configuration of the protective tube 3, even if the heat-resistant metal cylinder 2 is melted and damaged, the time required for the gas in the furnace to penetrate to the position of the thermocouple 5 can be greatly extended, and stable for a long time. Temperature can be measured.
【0022】再結晶アルミナ以外の耐火物としては、例
えば、シリコンカーバイト、ジルコニア、サーメットセ
ルモサーム等も、保護管3用に採用することができる。
ところで、保護管の材質としては、気密性があり、熱衝
撃に強く、還元性雰囲気に対して耐性がある耐火物であ
れば良い。なお、再結晶アルミナからなる保護管3を採
用したのは、上記特性を備えると共に、コストが安価
で、しかも入手が容易であるからである。As refractories other than recrystallized alumina, for example, silicon carbide, zirconia, cermet thermosotherm, etc. can be adopted for the protective tube 3.
By the way, the material of the protective tube may be a refractory material that is airtight, resistant to thermal shock, and resistant to a reducing atmosphere. The reason why the protective tube 3 made of recrystallized alumina is adopted is that the protective tube 3 has the above-mentioned characteristics, is inexpensive, and is easily available.
【0023】前記保護管3内には、再結晶アルミナから
なる絶縁管4の2つの平行な線通し孔に通されて保持さ
れたセンサ本体である3つの熱電対5が装入されてい
る。これら3つの熱電対5の長さはそれぞれ相違してお
り、この保護管3の長手方向に所定距離ずれた3箇所の
温度を個別に測温し得るように構成されている。これら
熱電対5は何れもB熱電対、つまり白金・30%ロジウ
ム/白金・10%ロジウム熱電対であって、これらは何
れも予め校正されている。ところで、この場合、保護管
3内に3対の熱電対5が装入されているが、熱電対は1
対であっても、2対であっても、また4対以上であって
も良い。換言すれば、羽口102に挿入し得る耐熱性金
属筒杭2に挿入し得る保護管3の内径によって、熱電対
5の装入対数が決定されるものである。なお、白金・ロ
ジウム系の熱電対以外に、例えばタングステン・レニウ
ム系の熱電対を用いることができる。Inside the protective tube 3, three thermocouples 5 which are sensor bodies held by being inserted through two parallel wire through holes of an insulating tube 4 made of recrystallized alumina are loaded. The lengths of these three thermocouples 5 are different from each other, and the temperature of each of the three locations of the protective tube 3 which are deviated by a predetermined distance in the longitudinal direction can be individually measured. These thermocouples 5 are all B thermocouples, that is, platinum / 30% rhodium / platinum / 10% rhodium thermocouple, and all of them are calibrated in advance. By the way, in this case, although three pairs of thermocouples 5 are inserted in the protection tube 3, the number of thermocouples is one.
It may be a pair, two pairs, or four or more pairs. In other words, the number of charging pairs of the thermocouple 5 is determined by the inner diameter of the protective tube 3 that can be inserted into the heat-resistant metal tubular pile 2 that can be inserted into the tuyere 102. In addition to the platinum / rhodium-based thermocouple, for example, a tungsten / rhenium-based thermocouple can be used.
【0024】さらに、前記耐熱性金属筒2の内面と前記
保護管3の外面との間には、耐熱性熱衝撃緩衝材7が介
装されている。この耐熱性熱衝撃緩衝材7は、アルミナ
スリーブ、またはアルミナ繊維(商品名;カオウール)か
らなっている。この耐熱性熱衝撃緩衝材7は、保護管3
を耐熱性金属筒2内に装入するに際して、この保護管3
の外周に外装される。このように、保護管3の外周に耐
熱性熱衝撃緩衝材7を外装するのは、耐熱性金属筒2の
内壁面が高温になっている関係上、装入時の熱衝撃によ
り破損する恐れがあるからである。Further, a heat-resistant thermal shock absorbing material 7 is interposed between the inner surface of the heat-resistant metal cylinder 2 and the outer surface of the protective tube 3. The heat resistant thermal shock absorbing material 7 is made of an alumina sleeve or an alumina fiber (trade name: Kaowool). This heat-resistant thermal shock absorbing material 7 is used for the protection tube 3
When loading the heat-resistant metal tube 2 into the protective tube 3
It is installed on the outer periphery of. As described above, the heat-resistant thermal shock absorbing cushioning material 7 is provided on the outer periphery of the protective tube 3 because the inner wall surface of the heat-resistant metal tube 2 is at a high temperature, so that it may be damaged by thermal shock during charging. Because there is.
【0025】以下、上記構成になる測温センサ1の作用
態様を説明する。この測温センサ1を高炉100の羽口
102からコークス層103に打設するに際しては、先
ず耐熱性金属筒2が所定深さの炉芯に到達するまでコー
クス層103に打ち込む。次いで、熱電対5が装入され
てなる保護管3の外周に耐熱性緩衝材7を外装した後
に、この耐熱性緩衝材7と共に保護管3を押し込んで耐
熱性金属筒2内に装入するという手順で測温センサ1が
構成される。The mode of operation of the temperature measuring sensor 1 having the above structure will be described below. When the temperature measuring sensor 1 is driven into the coke layer 103 from the tuyere 102 of the blast furnace 100, first, the heat resistant metal cylinder 2 is driven into the coke layer 103 until it reaches the furnace core having a predetermined depth. Next, after a heat resistant cushioning material 7 is externally mounted on the outer circumference of the protection tube 3 in which the thermocouple 5 is loaded, the protection tube 3 is pushed together with this heat resistant cushioning material 7 and loaded into the heat resistant metal cylinder 2. The temperature measurement sensor 1 is configured by the procedure.
【0026】このような手順によれば、保護管3に対し
て打撃による衝撃が作用することもなく、また熱衝撃が
作用することもないので、保護管3を損傷させることな
く耐熱性金属筒2内に装入して、測温センサ1を構成す
ることができる。According to such a procedure, since the impact due to the impact does not act on the protective tube 3 and the thermal impact does not act on the protective tube 3, the protective tube 3 is not damaged and the heat-resistant metal tube is not damaged. The temperature measuring sensor 1 can be constructed by charging the temperature measuring sensor 1.
【0027】コークス層103に打設された耐熱性金属
筒2は、このコークス層103内の温度が高温であるた
めに、ある所定時間経過すると溶損する。しかしなが
ら、この温度センサ1では、上記のとおり、下記のよう
に構成されている。
保護筒3の3種類の耐火物管31,32,33の接
続部は、耐熱セメント8により接続されている。
保護筒3の3種類の耐火物管31,32,33の接
続部は、互いに重なることがないようにオーバーラップ
している。
保護筒3の耐火物管31と耐火物管32との間、お
よび耐火物管32と耐火物管33との間の隙間は、耐熱
セメント8により埋められている。The heat resistant metal cylinder 2 cast on the coke layer 103 is melted after a predetermined time because the temperature inside the coke layer 103 is high. However, the temperature sensor 1 is configured as follows as described above. The connection portions of the three types of refractory pipes 31, 32, 33 of the protective cylinder 3 are connected by heat resistant cement 8. The connection portions of the three types of refractory pipes 31, 32, 33 of the protection cylinder 3 overlap so that they do not overlap each other. The gaps between the refractory pipe 31 and the refractory pipe 32 of the protective cylinder 3 and between the refractory pipe 32 and the refractory pipe 33 are filled with the heat-resistant cement 8.
【0028】従って、本実施の形態1に係る測温センサ
1によれば、熱電対5の位置まで炉内ガスが侵入するの
に長時間を要するから、長時間にわたりコークス層10
3内の温度を測温し続けることができる。そして、測温
終了後には、この測温センサ1を引き抜いて羽口102
から取り外すことにより、何の支障もなく高炉操業を継
続することができる。Therefore, according to the temperature measuring sensor 1 according to the first embodiment, it takes a long time for the in-furnace gas to enter the position of the thermocouple 5, so that the coke layer 10 can be used for a long time.
The temperature inside 3 can be continuously measured. Then, after the temperature measurement is completed, the temperature measurement sensor 1 is pulled out to remove the tuyere 102.
The blast furnace operation can be continued without any trouble by removing the blast furnace.
【0029】次に、本発明の実施の形態2に係る高温、
かつ高腐食性雰囲気の充填層用の測温センサを、その先
端部の模式的断面図の図3を参照しながらする。但し、
本実施の形態2に係る測温センサは上記実施の形態1に
係る測温センサと類似であるから、上記実施の形態1と
同一のものならびに同一機能を有するものに同一符号を
付し、かつ同一名称を以って説明する。Next, the high temperature according to the second embodiment of the present invention,
Moreover, a temperature measuring sensor for a packed bed in a highly corrosive atmosphere will be described with reference to FIG. 3 which is a schematic cross-sectional view of a tip portion thereof. However,
Since the temperature measuring sensor according to the second embodiment is similar to the temperature measuring sensor according to the first embodiment, the same components and those having the same functions as those in the first embodiment are designated by the same reference numerals, and The same name will be used for description.
【0030】本実施の形態2に係る測温センサ1の保護
管3は、再結晶アルミナからなる耐火物管31と耐火物
管32との2重構成になっている。そして、この保護管
3に、絶縁管4に保持された長さが相違する熱電対5が
装入された、長さが相違する3本の第2保護管34,3
4,34が装入されている。The protective tube 3 of the temperature measuring sensor 1 according to the second embodiment has a double structure of a refractory tube 31 and a refractory tube 32 made of recrystallized alumina. Then, the second protective tubes 34, 3 having different lengths, in which the thermocouples 5 held by the insulating tube 4 having different lengths are inserted into the protective tube 3,
4, 34 are installed.
【0031】つまり、本実施の形態2に係る測温センサ
1も、上記実施の形態1に係る測温センサ1の場合と同
様に、保護管3の長手方向に所定距離ずれた3箇所の温
度を個別に測温し得るようになっている。そして、保護
筒3の2種類の耐火物管31,32の接続部が耐熱セメ
ント8で接続されると共に、互いに重ならないようにオ
ーバーラップしている。さらに、保護筒3の耐火物管3
1と耐火物管32との間の隙間が耐熱セメント8で埋め
られている。That is, in the temperature measuring sensor 1 according to the second embodiment, as in the case of the temperature measuring sensor 1 according to the above-described first embodiment, the temperature at three locations deviated by a predetermined distance in the longitudinal direction of the protective tube 3 is measured. The temperature can be individually measured. Then, the connecting portions of the two types of refractory pipes 31 and 32 of the protective cylinder 3 are connected by the heat-resistant cement 8 and overlap so as not to overlap each other. Further, the refractory tube 3 of the protective cylinder 3
The heat-resistant cement 8 fills the gap between the pipe 1 and the refractory pipe 32.
【0032】従って、本実施の形態2に係る測温センサ
1によれば、熱電対5の位置まで炉内ガスが侵入するの
に長時間を要するから、上記実施の形態1に係る測温セ
ンサ1と同等の効果がある。但し、本実施の形態2に係
る測温センサ1では、上記のとおり、熱電対5が、長さ
が相違する第2保護管34に装入されているから、下記
の点で上記実施の形態1に係る測温センサ1よりも優れ
ている。Therefore, according to the temperature measuring sensor 1 of the second embodiment, it takes a long time for the in-furnace gas to penetrate to the position of the thermocouple 5, so the temperature measuring sensor of the first embodiment described above. It has the same effect as 1. However, in the temperature measuring sensor 1 according to the second embodiment, as described above, the thermocouple 5 is inserted in the second protective tubes 34 having different lengths, and therefore the following points are included in the above-described embodiment. 1 is superior to the temperature measurement sensor 1 according to the first aspect.
【0033】例えば、保護管3が損傷した場合、上記実
施の形態1に係る測温センサ1では全ての熱電対5の位
置まで炉内ガスが侵入し、炭化白金(低融点である)とな
って熱電対5の素線が溶融するため、同時に測温不能に
なる。これに対して、本実施の形態2に係る測温センサ
1では、3本の第2保護管34が同時に損傷する確率が
少ない。つまり、たとえ1本の第2保護管34が損傷し
ても、残りの第2保護管34内の熱電対5で測温を継続
することができるから、測温時間延長効果があるという
点で、上記実施の形態1に係る測温センサ1よりも優れ
ている。For example, when the protective tube 3 is damaged, in the temperature measuring sensor 1 according to the first embodiment, the in-furnace gas enters all the thermocouples 5 and becomes platinum carbide (having a low melting point). As the wires of the thermocouple 5 melt, the temperature cannot be measured at the same time. On the other hand, in the temperature measuring sensor 1 according to the second embodiment, the probability that the three second protection tubes 34 are simultaneously damaged is small. That is, even if one of the second protection tubes 34 is damaged, the thermocouple 5 in the remaining second protection tube 34 can continue to measure the temperature, so that there is an effect of extending the temperature measurement time. Is superior to the temperature measuring sensor 1 according to the first embodiment.
【0034】[0034]
【実施例】以下、本発明の実施例に係る測温センサを説
明する。この測温センサを構成する各部品の仕様等は、
下記に示すとおりである。
耐熱性金属筒
材 質 ;SUS304
全 長 ;6000mm(先鋭部を除く)
外径/内径;34mm/28mm(肉厚;3mm)
保護管(3重構成)
材 質 ;再結晶アルミナ
外径/内径;20mm/16mm、15mm/11m
m、10mm/6mm
絶縁管
材 質 ;再結晶アルミナ
線通し孔数;2
使用本数 ;1
熱電対
材 質 ;白金・30%ロジウム/白金・10%ロジ
ウム
線 径 ;0.5mm
使用数 ;1対EXAMPLE A temperature measuring sensor according to an example of the present invention will be described below. The specifications of each component that makes up this temperature sensor are
It is as shown below. Heat-resistant metal tube material; SUS304 full length; 6000 mm (excluding sharpened portion) outer diameter / inner diameter; 34 mm / 28 mm (wall thickness; 3 mm) Protective tube (triple structure) material; recrystallized alumina outer diameter / inner diameter; 20 mm / 16 mm, 15 mm / 11 m
m, 10 mm / 6 mm Insulation pipe material; Recrystallized alumina wire through hole number; 2 Number of used wires; 1 Thermocouple material; Platinum / 30% rhodium / platinum / 10% rhodium wire diameter; 0.5 mm Number of usage: 1 pair
【0035】このような仕様の各部品からなる測温セン
サ1を羽口からコークス層内に打設して、羽口の先端か
ら4000mm深さの炉芯の温度を測定した。その結
果、休風中の炉芯の温度分布を約16時間継続して測定
することができた。なお、本実施例に係る測温センサ1
では、耐熱性熱衝撃緩衝材として、上述のカオウールを
採用した。The temperature measuring sensor 1 composed of each component having such specifications was cast into the coke layer from the tuyere to measure the temperature of the furnace core at a depth of 4000 mm from the tip of the tuyere. As a result, it was possible to continuously measure the temperature distribution of the core while the wind was off for about 16 hours. The temperature sensor 1 according to the present embodiment
Then, the above-mentioned kao wool was adopted as the heat resistant thermal shock absorbing material.
【0036】以上の実施例においては、絶縁管に支持さ
れてなる熱電対を直に3重構成の保護管に収納した場合
を説明した。これに対して、例えば上記実施の形態2に
係る測温センサで説明したように、絶縁管に支持されて
なる熱電対を第2保護管に収納し、この熱電対を収納し
た第2保護管を3重構成の保護管に収容する構成にして
も良い。このような構成にすると、熱電対の位置に炉内
ガスが到達するのに、さらに長時間を要するから、より
一層長時間にわたって測温することが可能になるという
効果がある。In the above embodiments, the case where the thermocouple supported by the insulating tube is directly housed in the triple protective tube has been described. On the other hand, for example, as described in the temperature measuring sensor according to the second embodiment, the thermocouple supported by the insulating tube is housed in the second protective tube, and the second protective tube housing the thermocouple. May be housed in a triple protective tube. With such a configuration, it takes an even longer time for the in-furnace gas to reach the position of the thermocouple, so that it is possible to measure the temperature for a further longer time.
【0037】また、以上の実施の形態および実施例にお
いては、何れも測温センサにより高炉内のコークス層の
温度を測温する場合の例を説明した。しかしながら、本
発明に係る測温センサを、例えば、直接還元炉や合金鉄
製造炉等の充填層内の温度測定に適用することができ
る。従って、本発明に係る測温センサは、高炉内のコー
クス層の温度測定用に限定されるものではない。In each of the above-described embodiments and examples, the case where the temperature of the coke layer in the blast furnace is measured by the temperature measurement sensor has been described. However, the temperature measuring sensor according to the present invention can be applied to, for example, temperature measurement in a packed bed of a direct reduction furnace, a ferroalloy manufacturing furnace, or the like. Therefore, the temperature sensor according to the present invention is not limited to the temperature measurement of the coke layer in the blast furnace.
【0038】[0038]
【発明の効果】以上述べたように、本発明の請求項1乃
至5に係る測温センサ、または本発明の請求項6,7に
係る測温センサ設置方法では、耐熱性金属筒が所定深さ
に到達するまで高温、かつ高腐食性雰囲気の充填層に打
ち込む。次いで、センサ本体が装入されてなる保護管に
耐熱性熱緩衝材を外装した後に、この耐熱性熱緩衝材と
共に保護管を押し込んで、充填層に打ち込まれた耐熱性
金属筒杭内に装入する。そのため、耐熱性金属筒内への
装入時に、保護管に対して打撃による衝撃が作用するよ
うなこともなく、また熱衝撃が作用するようなことがな
い。As described above, in the temperature measuring sensor according to claims 1 to 5 of the present invention or the method of installing a temperature measuring sensor according to claims 6 and 7 of the present invention, the heat-resistant metal cylinder has a predetermined depth. Until it reaches a certain temperature, it is driven into a packed bed in a high temperature and highly corrosive atmosphere. Next, after covering the protective tube in which the sensor main body is inserted with a heat-resistant heat buffer material, the protective tube is pushed together with this heat-resistant heat buffer material and mounted in the heat-resistant metal cylinder pile driven into the packing layer. To enter. Therefore, at the time of loading into the heat resistant metal cylinder, the impact due to the impact does not act on the protective tube, and the thermal impact does not act.
【0039】従って、本発明の請求項1乃至5に係る測
温センサ、または本発明の請求項6,7に係る測温セン
サ設置方法によれば、保護管を損傷させることなく耐熱
性金属筒内に装入して、測温センサを構成することがで
きる。そして、耐熱性金属筒は溶損するが、センサ本体
は保護筒3に装入されていて、このセンサ本体の位置ま
で高温、かつ高腐食性雰囲気が侵入するのに長時間を要
する。そのため、長時間にわたり充填層内の温度を測温
し続けることができる。Therefore, according to the temperature measuring sensor according to the first to fifth aspects of the present invention or the temperature measuring sensor installation method according to the sixth and seventh aspects of the present invention, the heat resistant metal tube can be provided without damaging the protective tube. A temperature measuring sensor can be configured by charging the inside. Although the heat-resistant metal cylinder is melted, the sensor body is inserted into the protective cylinder 3, and it takes a long time for a high temperature and highly corrosive atmosphere to penetrate to the position of the sensor body. Therefore, the temperature in the packed bed can be continuously measured for a long time.
【0040】また、本発明の請求項3に係る測温センサ
では、保護管内に長さが相違するセンサ本体をそれぞれ
収納した複数の第2保護管が収納されていて、これら第
2保護管が同時に破損するようなことがない。そのた
め、たとえ保護管が破損しても、他の第2保護管に収納
されているセンサ本体で測温を継続することができる。
従って、本発明の請求項3に係る測温センサによれば、
保護管内にセンサ本体が直に収納されている場合に比較
して、高温、かつ高腐食性雰囲気の充填層内の温度を、
より長時間測温することができるという測温時間の延長
効果がある。Further, in the temperature measuring sensor according to claim 3 of the present invention, a plurality of second protective tubes respectively accommodating sensor bodies having different lengths are accommodated in the protective tubes, and these second protective tubes are It will not be damaged at the same time. Therefore, even if the protective tube is damaged, the temperature measurement can be continued by the sensor main body housed in the other second protective tube.
Therefore, according to the temperature sensor according to claim 3 of the present invention,
Compared to the case where the sensor body is directly stored in the protective tube, the temperature inside the packed bed in a high temperature and highly corrosive atmosphere is
This has the effect of extending the temperature measurement time, which allows longer temperature measurements.
【図1】本発明の実施の形態1に係り、高炉への測温セ
ンサ設置状態説明図である。FIG. 1 is an explanatory diagram of a temperature sensor installation state in a blast furnace according to a first embodiment of the present invention.
【図2】本発明の実施の形態1に係り、図2(a)は、測
温センサの先端部の模式的断面図であり、図2(b)は、
図2(a)のA−A線断面図である。FIG. 2 relates to the first embodiment of the present invention, FIG. 2 (a) is a schematic cross-sectional view of a tip portion of a temperature measuring sensor, and FIG. 2 (b) is
It is the sectional view on the AA line of Fig.2 (a).
【図3】本発明の実施の形態2に係る測温センサの先端
部の模式的断面図である。FIG. 3 is a schematic cross-sectional view of a tip portion of a temperature measuring sensor according to a second embodiment of the present invention.
1…測温センサ、2…耐熱性金属筒、3…保護管、3
1,32,33…耐火物管、34…第2保護管、4…絶
縁管、5…熱電対、6…アルミナ繊維、7…耐熱性熱衝
撃緩衝材、8…耐熱セメント
100…高炉、101…鉄皮、102…羽口、103…
コークス層1 ... Temperature sensor, 2 ... Heat resistant metal cylinder, 3 ... Protection tube, 3
1, 32, 33 ... Refractory tube, 34 ... Second protective tube, 4 ... Insulating tube, 5 ... Thermocouple, 6 ... Alumina fiber, 7 ... Heat-resistant thermal shock absorbing material, 8 ... Heat-resistant cement 100 ... Blast furnace, 101 … Iron skin, 102… Tuyere, 103…
Coke layer
───────────────────────────────────────────────────── フロントページの続き (72)発明者 永井 信幸 兵庫県加古川市金沢町1番地 神鋼メック ス株式会社内 Fターム(参考) 4K015 KA01 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Nobuyuki Nagai 1 Kanazawa Town, Kakogawa City, Hyogo Prefecture Su Co., Ltd. F-term (reference) 4K015 KA01
Claims (7)
る高温の充填層内に打設される測温センサであって、打
設される耐熱性金属筒と、この耐熱性金属筒内に装入さ
れ、絶縁管に保持されたセンサ本体を収納した保護管と
から構成されてなることを特徴とする高温、かつ高腐食
性雰囲気の充填層用の測温センサ。1. A temperature-measuring sensor having a tip closed and placed in a high-temperature packed bed that generates a highly corrosive gas, wherein the heat-resistant metal cylinder is placed and the inside of this heat-resistant metal cylinder. A temperature-measuring sensor for a packed bed in a high-temperature and highly corrosive atmosphere, which comprises a protective tube that is inserted into a protective tube that houses a sensor body held by an insulating tube.
る高温の充填層内に打設される測温センサであって、打
設される耐熱性金属筒と、この耐熱性金属筒内に装入さ
れ、絶縁管に保持されたセンサ本体を収納した第2保護
管が収納されてなる保護管とから構成されてなることを
特徴とする高温、かつ高腐食性雰囲気の充填層用の測温
センサ。2. A temperature-measuring sensor having a tip closed and placed in a high-temperature packed bed that generates a highly corrosive gas, the heat-resistant metal cylinder being placed, and the inside of this heat-resistant metal cylinder. For a filling layer in a high-temperature and highly corrosive atmosphere, characterized in that it comprises a second protection tube that houses the sensor body held in the insulating tube and that houses the sensor body. Temperature sensor.
る高温の充填層内に打設される測温センサであって、打
設される耐熱性金属筒と、この耐熱性金属筒内に装入さ
れ、絶縁管に保持された長さが相違するセンサ本体をそ
れぞれ収納した複数の第2保護管が収納されてなる保護
管とから構成されてなることを特徴とする高温、かつ高
腐食性雰囲気の充填層用の測温センサ。3. A temperature-measuring sensor having a tip closed and being placed in a high-temperature packed bed that generates a highly corrosive gas, the heat-resistant metal cylinder being placed, and the inside of this heat-resistant metal cylinder. A high temperature and a high temperature, which are characterized in that they are configured to include a plurality of second protection tubes each of which stores a plurality of sensor main bodies which are loaded in the insulation tube and are held by the insulating tube and which have different lengths. Temperature sensor for packed bed in corrosive atmosphere.
物管からなり、耐火物管内に順次小径の耐火物管を嵌挿
して、耐火物管同士の間の隙間に耐火セメントを介装し
た多重構成であることを特徴とする請求項1乃至3のう
ちの何れか一つの項に記載の高温、かつ高腐食性雰囲気
の充填層用の測温センサ。4. The protection tube is composed of a plurality of refractory pipes having different diameters, the refractory pipes having smaller diameters are successively inserted into the refractory pipes, and the refractory cement is interposed in the gap between the refractory pipes. The temperature measuring sensor for a packed bed in a high temperature and highly corrosive atmosphere according to any one of claims 1 to 3, wherein the temperature measuring sensor has a mounted multiple structure.
に、耐熱性熱衝撃緩衝材が介装されてなることを特徴と
する請求項1乃至4のうちの何れか一つの項に記載の高
温、かつ高腐食性雰囲気の充填層用の測温センサ。5. A heat-resistant thermal shock absorbing material is interposed between the heat-resistant metal cylinder and the protective tube, according to any one of claims 1 to 4. A temperature measuring sensor for a packed bed in the high temperature and highly corrosive atmosphere described.
に、先端が閉塞されてなる耐熱性金属筒を打設し、次い
で絶縁管に保持されたセンサ本体を収納した保護管を、
前記耐熱性金属筒内に装入することを特徴とする高温、
かつ高腐食性雰囲気の充填層用の測温センサ設置方法。6. A protective tube containing a sensor body held in an insulating tube, in which a heat-resistant metal tube having a closed tip is placed in a high-temperature packed bed that generates a highly corrosive gas,
High temperature, characterized by charging in the heat-resistant metal cylinder,
And how to install a temperature sensor for a packed bed in a highly corrosive atmosphere.
するにあたり、前記保護管の外周に耐熱性熱衝撃緩衝材
を外装することを特徴とする請求項6に記載の高温、か
つ高腐食性雰囲気の充填層用の測温センサ設置方法。7. The high temperature according to claim 6, wherein a heat-resistant thermal shock absorbing material is applied to the outer periphery of the protection tube when the protection tube is loaded into the heat-resistant metal cylinder. How to install a temperature sensor for a packed bed in a highly corrosive atmosphere.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001375744A JP4113703B2 (en) | 2001-12-10 | 2001-12-10 | Temperature sensor for packed bed in high temperature and highly corrosive atmosphere and method for installing the temperature sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001375744A JP4113703B2 (en) | 2001-12-10 | 2001-12-10 | Temperature sensor for packed bed in high temperature and highly corrosive atmosphere and method for installing the temperature sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003171709A true JP2003171709A (en) | 2003-06-20 |
JP4113703B2 JP4113703B2 (en) | 2008-07-09 |
Family
ID=19184058
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001375744A Expired - Lifetime JP4113703B2 (en) | 2001-12-10 | 2001-12-10 | Temperature sensor for packed bed in high temperature and highly corrosive atmosphere and method for installing the temperature sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4113703B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100711782B1 (en) | 2005-12-26 | 2007-04-25 | 주식회사 포스코 | Multipoint Sensor for Blast Furnace Pressure Measurement |
KR100722398B1 (en) | 2005-12-26 | 2007-05-28 | 주식회사 포스코 | Core temperature measuring device |
JP2010238435A (en) * | 2009-03-30 | 2010-10-21 | Mitsubishi Materials Corp | Fuel battery module |
KR101289102B1 (en) * | 2011-12-05 | 2013-07-23 | 주식회사 포스코 | Apparatus for meaturing temperature of coal's pipe |
-
2001
- 2001-12-10 JP JP2001375744A patent/JP4113703B2/en not_active Expired - Lifetime
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100711782B1 (en) | 2005-12-26 | 2007-04-25 | 주식회사 포스코 | Multipoint Sensor for Blast Furnace Pressure Measurement |
KR100722398B1 (en) | 2005-12-26 | 2007-05-28 | 주식회사 포스코 | Core temperature measuring device |
JP2010238435A (en) * | 2009-03-30 | 2010-10-21 | Mitsubishi Materials Corp | Fuel battery module |
KR101289102B1 (en) * | 2011-12-05 | 2013-07-23 | 주식회사 포스코 | Apparatus for meaturing temperature of coal's pipe |
Also Published As
Publication number | Publication date |
---|---|
JP4113703B2 (en) | 2008-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0244186Y2 (en) | ||
US4442706A (en) | Probe and a system for detecting wear of refractory wall | |
CN1116593C (en) | Method for continuous measuring molten steel temperature and temp. measuring tube | |
JPS6226420B2 (en) | ||
JP2003171709A (en) | Temperature measurement sensor for filled layer at high-temperature and highly corrosive atmosphere, and temperature measurement sensor installing method | |
US4358630A (en) | Replacement cap for repeating use thermocouple | |
JP4391195B2 (en) | Temperature measuring device | |
US11959813B2 (en) | Device and method for measuring a temperature of a molten metal | |
JP2008286609A (en) | Temperature measuring device | |
JP2009174032A (en) | Method and apparatus for detecting firing point of sintering machine | |
JPH0474813A (en) | Blast furnace wall thickness measurement method and equipment | |
JP6219068B2 (en) | Temperature measuring device | |
CN105784122B (en) | A kind of high temperature blasthole temperature measuring equipment and high temperature blasthole temp measuring method | |
JP2786811B2 (en) | Temperature measurement method | |
Pyszko et al. | Measuring temperature of the atmosphere in the steelmaking furnace | |
JP4577703B2 (en) | Thermocouple for melting furnace and temperature measurement method using the same | |
JP2004301615A (en) | Furnace temperature measurement device | |
CN206670806U (en) | Improved cross thermocouple for blast furnace protection device | |
RU2303637C2 (en) | Probe for controlling the temperature profile in a blast furnace | |
JP3006417B2 (en) | Detection method of refractory wear of tapping gutter | |
JPS63317749A (en) | Sensor for measuring the amount of erosion in fireproof walls | |
CN218444198U (en) | Novel heating furnace temperature measuring device | |
JPH0329313Y2 (en) | ||
JP2019215094A (en) | Refractory lining structure and temperature sensor | |
JPH11230834A (en) | Furnace temperature distribution measurement device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040401 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050131 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071016 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071206 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080408 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080414 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4113703 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110418 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120418 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130418 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130418 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140418 Year of fee payment: 6 |
|
EXPY | Cancellation because of completion of term |