[go: up one dir, main page]

JP2003170504A - Pressure welding method and device for thermoplastic resin pipe - Google Patents

Pressure welding method and device for thermoplastic resin pipe

Info

Publication number
JP2003170504A
JP2003170504A JP2001370925A JP2001370925A JP2003170504A JP 2003170504 A JP2003170504 A JP 2003170504A JP 2001370925 A JP2001370925 A JP 2001370925A JP 2001370925 A JP2001370925 A JP 2001370925A JP 2003170504 A JP2003170504 A JP 2003170504A
Authority
JP
Japan
Prior art keywords
melting
resin
thermoplastic resin
pipes
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001370925A
Other languages
Japanese (ja)
Other versions
JP3780925B2 (en
Inventor
Hitoshi Ishizuka
仁司 石塚
Nobuo Takasu
展夫 高須
Hiroyuki Unishi
裕之 卯西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP2001370925A priority Critical patent/JP3780925B2/en
Publication of JP2003170504A publication Critical patent/JP2003170504A/en
Application granted granted Critical
Publication of JP3780925B2 publication Critical patent/JP3780925B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/78Means for handling the parts to be joined, e.g. for making containers or hollow articles, e.g. means for handling sheets, plates, web-like materials, tubular articles, hollow articles or elements to be joined therewith; Means for discharging the joined articles from the joining apparatus
    • B29C65/7802Positioning the parts to be joined, e.g. aligning, indexing or centring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/114Single butt joints
    • B29C66/1142Single butt to butt joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/52Joining tubular articles, bars or profiled elements
    • B29C66/522Joining tubular articles
    • B29C66/5221Joining tubular articles for forming coaxial connections, i.e. the tubular articles to be joined forming a zero angle relative to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/52Joining tubular articles, bars or profiled elements
    • B29C66/522Joining tubular articles
    • B29C66/5229Joining tubular articles involving the use of a socket
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/912Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux
    • B29C66/9121Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/912Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux
    • B29C66/9121Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature
    • B29C66/91221Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9141Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9141Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
    • B29C66/91411Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature of the parts to be joined, e.g. the joining process taking the temperature of the parts to be joined into account
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • B29C66/9192Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams
    • B29C66/91921Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/92Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools
    • B29C66/922Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools by measuring the pressure, the force, the mechanical power or the displacement of the joining tools
    • B29C66/9221Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools by measuring the pressure, the force, the mechanical power or the displacement of the joining tools by measuring the pressure, the force or the mechanical power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/92Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools
    • B29C66/924Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force, the mechanical power or the displacement of the joining tools
    • B29C66/9241Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force or the mechanical power
    • B29C66/92431Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force or the mechanical power the pressure, the force or the mechanical power being kept constant over time
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/93Measuring or controlling the joining process by measuring or controlling the speed
    • B29C66/932Measuring or controlling the joining process by measuring or controlling the speed by measuring the speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/93Measuring or controlling the joining process by measuring or controlling the speed
    • B29C66/934Measuring or controlling the joining process by measuring or controlling the speed by controlling or regulating the speed
    • B29C66/93451Measuring or controlling the joining process by measuring or controlling the speed by controlling or regulating the speed by controlling or regulating the rotational speed, i.e. the speed of revolution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/93Measuring or controlling the joining process by measuring or controlling the speed
    • B29C66/939Measuring or controlling the joining process by measuring or controlling the speed characterised by specific speed values or ranges

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Branch Pipes, Bends, And The Like (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

(57)【要約】 【課題】樹脂管の端面同士を対向し、その間に管状継手
を配置して、これを回転させ、その際の摩擦熱により相
互に融着接合される従来の圧接方式において、工程毎に
最適の発熱速度を実現しないと、発熱過多による接合部
の品質低下や酸化あるいは発熱過小による作業効率低下
が起こる。 【解決手段】管状継手の回転数を工程毎に最適の値に制
御することにより、摩擦熱による接合部の発熱速度を工
程毎の最適値に保ち、接合部の高品質と高い作業効率の
両方を同時に実現できる。
(57) [Summary] A conventional pressure welding method in which end faces of resin pipes are opposed to each other, a tubular joint is arranged therebetween, and this is rotated and fused and joined to each other by frictional heat at that time. If the optimum heat generation rate is not realized for each process, the quality of the bonded portion is reduced due to excessive heat generation, and the work efficiency is reduced due to oxidation or insufficient heat generation. SOLUTION: By controlling the rotational speed of a tubular joint to an optimum value for each process, a heating speed of a joint due to frictional heat is maintained at an optimum value for each process, thereby achieving both high quality and high working efficiency of the joint. Can be realized simultaneously.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、熱可塑性樹脂管、
特にポリエチレン管やポリブテン管を、摩擦接合にて融
着する、熱可塑性樹脂管の圧接接合方法および圧接接合
装置に関するものである。
TECHNICAL FIELD The present invention relates to a thermoplastic resin pipe,
In particular, the present invention relates to a method for pressure-welding a thermoplastic resin tube and a pressure-welding apparatus for fusing a polyethylene tube or a polybutene tube by friction welding.

【0002】[0002]

【従来の技術】図5は、特開平4−39028号公報に
開示された従来の樹脂管の圧接接合装置の一部断面の側
面図である。図5において、ポリエチレン管1及び2は
その端面の間に配置した管状継手3を介して融着接合さ
れる。すなわち、ポリエチレン管1、2は、油圧引寄せ
機構16、17に連結された管固定具5、6に固定さ
れ、端面が対向する。管状継手3は継手保持具10に保
持され、回転駆動機構14により回転自在にポリエチレ
ン管1、2の端面の間に配置される。そして、ポリエチ
レン管1、2の端面と管状継手3を互いに接触させた状
態で、管状継手3を回転させ、ポリエチレン管1、2と
管状継手3の接触面が摩擦熱によって融点に達した時点
で、油圧式引寄せ機構16、17によってポリエチレン
管1、2の端面と管状継手3を締め付けて、これらを融
着一体化する。
2. Description of the Related Art FIG. 5 is a side view of a partial cross section of a conventional pressure welding apparatus for resin pipes disclosed in Japanese Patent Laid-Open No. 4-39028. In FIG. 5, the polyethylene pipes 1 and 2 are fusion-bonded via a tubular joint 3 arranged between the end faces thereof. That is, the polyethylene pipes 1 and 2 are fixed to the pipe fixtures 5 and 6 connected to the hydraulic pulling mechanisms 16 and 17, and their end faces face each other. The tubular joint 3 is held by a joint holder 10 and is rotatably arranged between the end faces of the polyethylene pipes 1 and 2 by a rotary drive mechanism 14. When the end faces of the polyethylene pipes 1 and 2 and the tubular joint 3 are in contact with each other, the tubular joint 3 is rotated, and when the contact surfaces of the polyethylene pipes 1 and 2 and the tubular joint 3 reach the melting point due to frictional heat. The end faces of the polyethylene pipes 1 and 2 and the tubular joint 3 are tightened by the hydraulic pulling mechanisms 16 and 17, and these are fused and integrated.

【0003】[0003]

【発明が解決しようとする課題】摩擦熱を利用した樹脂
管の融着においては、接合作業を構成するそれぞれの工
程で最適とされる発熱速度が異なり、発熱速度過多の場
合は、樹脂温度の過上昇による酸化や、溶融時間過小の
ために酸化膜や汚れの不十分な排除による溶融部の品質
低下が起き、発熱速度過小の場合は、作業効率の低下が
起きる。上記のような従来の樹脂管の圧接接合方法とそ
の装置では、工程毎の発熱速度の制御方法が明確でな
く、これらの全ての現象を防ぐことができないという問
題点があった。本発明は、工程毎の最適発熱速度の制御
を可能とし、接合部の高品質と高い作業効率の両方を同
時に実現できる樹脂管の圧接接合方法および圧接接合装
置を提供することを目的としている。
When fusing resin pipes using frictional heat, the optimum heat generation rate differs in each step of the joining work. If the heat generation rate is too high, the resin temperature Oxidation due to excessive rise and insufficient melting time lead to insufficient removal of oxide film and dirt, resulting in deterioration of the quality of the melted portion. When the heat generation rate is too small, work efficiency decreases. In the conventional pressure welding method and apparatus for resin pipes as described above, the method of controlling the heat generation rate in each step is not clear, and all of these phenomena cannot be prevented. An object of the present invention is to provide a pressure welding method and a pressure welding apparatus for a resin pipe, which enables control of an optimum heat generation rate for each process and can simultaneously realize both high quality and high work efficiency of a welding portion.

【0004】[0004]

【課題を解決するための手段】本発明に係わる熱可塑性
樹脂管の圧接接合方法は、二つの熱可塑性樹脂管を、こ
れらの対向する端面を互いに当接させた状態で、一方の
樹脂管を軸心周りに回転させることにより、摩擦熱を発
生させて融着させる圧接接合方法において、所定の相対
速度で両樹脂管を軸方向に引寄せながら、一方の樹脂管
の回転数を所定の値に達するまで上昇させ、接触部の溶
融を開始する溶融開始工程と、所定の相対速度で両樹脂
管を軸方向に引寄せながら、一方の樹脂管を所定の回転
数で回転させることにより接合部の溶融を継続する溶融
継続工程とを含み、溶融開始工程での回転数を溶融継続
工程での回転数より高く設定することを特徴とする。
SUMMARY OF THE INVENTION A method for pressure-welding a thermoplastic resin pipe according to the present invention is one in which two thermoplastic resin pipes are contacted with their opposite end faces in contact with each other. In the pressure welding method in which frictional heat is generated and fused by rotating around the axis, both resin tubes are pulled in the axial direction at a predetermined relative speed, and the rotation speed of one resin tube is set to a predetermined value. To start the melting of the contact part, and one resin pipe is rotated at a predetermined rotation speed while pulling both resin pipes in the axial direction at a predetermined relative speed. And a melting continuation step for continuing the melting of No. 3, and the number of rotations in the melting start step is set higher than the number of rotations in the melting continuation step.

【0005】また、本発明の請求項2における熱可塑性
樹脂管の圧接接合方法は、二つの熱可塑性樹脂管を、こ
れらの対向する端面を互いに当接させた状態で、一方の
樹脂管を軸心周りに回転させることにより、摩擦熱を発
生させて融着させる圧接接合方法において、所定の相対
速度で両樹脂管を軸方向に引寄せながら、一方の樹脂管
を所定の回転数で回転させることにより接合部の溶融を
継続する溶融継続工程と、溶融継続工程より低い相対速
度にて両樹脂管を軸方向に引寄せながら、所定の回転数
で一方の樹脂管を回転させることにより溶融範囲を拡大
する溶融範囲拡大工程とを含み、溶融範囲拡大工程での
回転数を溶融継続工程より高く設定することを特徴とす
る。
According to a second aspect of the present invention, there is provided a method for pressure-welding and joining a thermoplastic resin pipe, wherein two thermoplastic resin pipes are axially attached to each other in a state where their opposing end surfaces are in contact with each other. In a pressure welding method in which frictional heat is generated and fusion-bonded by rotating about the center, one resin pipe is rotated at a predetermined rotation speed while pulling both resin pipes in the axial direction at a predetermined relative speed. The melting range by continuing to melt the joint part by pulling both resin pipes in the axial direction at a relative speed lower than the melting continuation process and rotating one resin pipe at a predetermined rotation speed. And a melting range expanding step of expanding the melting range, and the number of rotations in the melting range expanding step is set to be higher than that in the melting continuing step.

【0006】また、本発明の請求項3における熱可塑性
樹脂管の圧接方法は、二つの熱可塑性樹脂管を、これら
の対向する端面を互いに当接させた状態で、一方の樹脂
管を軸心周りに回転させることにより、摩擦熱を発生さ
せて融着させる圧接接合方法において、所定の相対速度
で両樹脂管を軸方向に引寄せながら、一方の樹脂管の回
転数を所定の値に達するまで上昇させ、接触部の溶融を
開始する溶融開始工程と、所定の相対速度で両樹脂管を
軸方向に引寄せながら、一方の樹脂管を所定の回転数で
回転させることにより接合部の溶融を継続する溶融継続
工程と、溶融継続工程より低い相対速度にて両樹脂管を
軸方向に引寄せながら、所定の回転数で一方の樹脂管を
回転させることにより溶融範囲を拡大する溶融範囲拡大
工程とを含み、溶融開始工程での回転数を溶融継続工程
での回転数より高く、かつ溶融範囲拡大工程での回転数
を溶融継続工程での回転数より高く設定することを特徴
とする。
According to a third aspect of the present invention, there is provided a method for pressure-welding a thermoplastic resin pipe, wherein two thermoplastic resin pipes are axially contacted with their opposite end faces abutting each other. In a pressure welding method in which frictional heat is generated by fusing the resin tubes to fuse them together, the rotational speed of one of the resin pipes reaches a predetermined value while pulling both resin pipes in the axial direction at a predetermined relative speed. Melting process to start the melting of the contact part and to melt the joint part by pulling both resin pipes at a predetermined relative speed in the axial direction and rotating one resin pipe at a predetermined rotation speed. And the melting continuation process that expands the melting range by pulling both resin pipes in the axial direction at a lower relative speed than the melting continuation process and rotating one resin pipe at a specified rotation speed. Process and The rotational speed at the start step higher than the rotational speed in the melt continuous process, and characterized by setting the rotational speed at melting range expansion step higher than the rotational speed in the melt continuous process.

【0007】また、本発明の請求項4における熱可塑性
樹脂管の圧接方法は、請求項2又は3の構成に加えて、
樹脂管接合部の温度を熱可塑性樹脂管の融点以上かつ酸
化開始点以下とするように溶融範囲拡大工程での回転数
を設定することを特徴とする。
Further, the method for press-contacting a thermoplastic resin pipe according to claim 4 of the present invention is the same as that of claim 2 or 3,
It is characterized in that the number of rotations in the melting range expanding step is set so that the temperature of the resin pipe joint is equal to or higher than the melting point of the thermoplastic resin pipe and equal to or lower than the oxidation start point.

【0008】また、本発明の請求項5における熱可塑性
樹脂管の圧接方法は、請求項1乃至4の構成に加えて、
溶融継続工程での回転数又は溶融範囲拡大工程での回転
数を、周囲温度が予め実験により定めた基準値より高い
場合には低めに設定し、周囲温度が上記基準値より低い
場合には高めに設定することを特徴とする。
Further, the method of press-contacting a thermoplastic resin pipe according to a fifth aspect of the present invention is the same as that of the first to fourth aspects.
If the ambient temperature is higher than the reference value set in advance by experiment, set the rotation speed in the melting continuation process or the melting range expansion process to a lower value, and increase it if the ambient temperature is lower than the above reference value. It is characterized by setting to.

【0009】本発明の請求項6における熱可塑性樹脂管
の圧接接合装置は、接合する二つの熱可塑性樹脂管を、
それらの端面同士が対向する状態で、所定の相対速度で
引寄せることが可能で、かつ、対向する端面を相対移動
によって密着可能に支持する管支持手段と、この管支持
手段に支持され、かつ、対向する端面同士を密着した状
態で一方の樹脂管をその軸心周りに回転させる回転駆動
手段と、樹脂管の圧接接合作業を構成する各工程毎に予
め定めた値に樹脂管の回転数を調節することができる回
転数制御手段とを具備したことを特徴とする。
According to a sixth aspect of the present invention, there is provided a pressure welding apparatus for joining thermoplastic resin pipes, which comprises two thermoplastic resin pipes to be joined together.
With these end faces facing each other, it is possible to draw at a predetermined relative speed, and the pipe support means for supporting the facing end faces so that they can be in close contact with each other by relative movement, and supported by this pipe support means, and , The rotation driving means for rotating one resin tube around its axis in a state where the opposite end surfaces are in close contact with each other, and the number of rotations of the resin tube to a predetermined value for each step constituting the pressure welding process of the resin tube. And a rotational speed control means capable of adjusting the rotation speed.

【0010】なお、本発明は、二つの樹脂管を直接接合
することに限定するものではなく、二つの樹脂管の間に
熱可塑性樹脂の管状継手を介在させ、該管状継手の端面
を両側の樹脂管の対向する端面に当接させた状態で該管
状継手を回転させ、該管状継手の両端部を同時に溶融さ
せることにより、樹脂管を接合しても良い。
The present invention is not limited to directly joining two resin pipes, but a tubular joint made of a thermoplastic resin is interposed between the two resin pipes, and the end faces of the tubular joint are provided on both sides. The resin pipes may be joined by rotating the tubular joint in a state of abutting against the opposite end faces of the resin pipe and simultaneously melting both end portions of the tubular joint.

【0011】また、本発明は、第1の熱可塑性樹脂管お
よび第2の熱可塑性樹脂管のそれぞれの材質が同一であ
ることに限定するものではなく、第1の熱可塑性樹脂管
と第2の熱可塑性樹脂管とで材質が異なっても良い。
Further, the present invention is not limited to the case where the first thermoplastic resin pipe and the second thermoplastic resin pipe are made of the same material, but the first thermoplastic resin pipe and the second thermoplastic resin pipe are made of the same material. The material may be different from that of the thermoplastic resin tube.

【0012】[0012]

【発明の実施の形態】以下に、二つの樹脂管の間に熱可
塑性樹脂の管状継手を介在させ、該管状継手の端面を両
側の樹脂管の対向する端面に当接させた状態で、該管状
継手を回転させる場合を例に挙げて、本発明の詳細を説
明する。
BEST MODE FOR CARRYING OUT THE INVENTION In the following, a tubular joint made of a thermoplastic resin is interposed between two resin pipes, and the end faces of the tubular joints are brought into contact with the opposite end faces of the resin pipes on both sides. The present invention will be described in detail by taking the case of rotating the tubular joint as an example.

【0013】図1に示したように、本圧接接合装置は、
接合すべき樹脂管1、2を保持するための固定クランプ
5と可動クランプ6、樹脂管1、2の接合すべき端面間
に管状継手3を保持し且つこの管状継手を樹脂管の軸心
周りに回転させるための管状継手保持部4、管状継手保
持部を回転自在に保持する移動ベッド20、可動クラン
プ6に保持された樹脂管2をその軸心方向に移動させる
ための管送り機構9よりなる管支持手段と、移動ベッド
に搭載され管状継手保持部を回転駆動させるための回転
駆動手段と、樹脂管の圧接接合作業を構成する各工程毎
に予め定めた値に樹脂管の回転数を調節することができ
る回転数制御手段とを有している。
As shown in FIG. 1, the present pressure welding device is
A fixed clamp 5 for holding the resin pipes 1 and 2 to be joined, a movable clamp 6, a tubular joint 3 is held between the end faces of the resin pipes 1 and 2 to be joined, and this tubular joint is provided around the axis of the resin pipe. From the tubular joint holding portion 4 for rotating the tubular joint holding portion, the movable bed 20 for rotatably holding the tubular joint holding portion, and the pipe feeding mechanism 9 for moving the resin pipe 2 held by the movable clamp 6 in the axial direction thereof. The tube support means, the rotary drive means mounted on the moving bed for rotating the tubular joint holding portion, and the rotational speed of the resin pipe to a predetermined value for each step constituting the pressure welding process of the resin pipe. And a rotational speed control means that can be adjusted.

【0014】前記固定クランプ5および可動クランプ6
は、接合すべき樹脂管1、2を脱着可能にクランプする
ことによりこれらを保持するもので、前記可動クランプ
6はスライド軸21に案内されて樹脂管の軸心方向に移
動可能である。これら固定クランプ5および可動クラン
プ6は、接合すべき樹脂管1、2の端面同士が同心状に
対向するようにそれらの樹脂管を保持することができ
る。
The fixed clamp 5 and the movable clamp 6
Holds the resin pipes 1 and 2 to be joined by detachably clamping them, and the movable clamp 6 is guided by the slide shaft 21 and is movable in the axial direction of the resin pipes. The fixed clamp 5 and the movable clamp 6 can hold the resin pipes 1 and 2 to be joined so that the end surfaces thereof concentrically face each other.

【0015】前記移動ベッド20は、前記スライド軸2
1に案内されて接合すべき樹脂管方向に移動可能であ
る。管状継手保持部4は、樹脂管を貫通させるための貫
通孔を有すリング状であって、軸受により移動ベッド2
0に回転自在に支持されている。
The movable bed 20 includes the slide shaft 2
It can be moved in the direction of the resin pipe to be joined by being guided by 1. The tubular joint holding portion 4 has a ring shape having a through hole for penetrating the resin pipe, and the moving bed 2 is formed by a bearing.
It is rotatably supported at 0.

【0016】前記管送り機構9は、駆動手段としてスク
リュー軸22を備えており、このスクリュー軸22が前
記可動クランプ6に貫設された雌ネジ孔に装着されてい
る。このスクリュー軸22を回転駆動させることにより
前記可動クランプ6は軸心方向に移動する。
The pipe feeding mechanism 9 is provided with a screw shaft 22 as a driving means, and the screw shaft 22 is mounted in a female screw hole penetrating the movable clamp 6. By rotating the screw shaft 22, the movable clamp 6 moves in the axial direction.

【0017】移動ベッド20は、樹脂管を挿通させるた
めの貫通孔を有し、スライド軸21に案内されてフリー
の状態にあって自由に移動自在であるから、圧接開始時
に管状継手3が樹脂管2の端面により押された時は、管
状継手3に伴って樹脂管の軸心方向に移動する。
The movable bed 20 has a through hole for inserting a resin pipe, and is free to move while being guided by the slide shaft 21 so as to be freely movable. When pushed by the end surface of the pipe 2, the tubular joint 3 moves in the axial direction of the resin pipe.

【0018】図2に、回転駆動手段を示す。回転駆動手
段は、駆動モータ8、駆動モータの出力軸に設置された
ギア7及び管状継手保持部4の外周に設けたギア41よ
りなり、移動ベッド20に搭載されている。ギア7はギ
ア41と噛み合っており、駆動モータ8は、これらのギ
アを介して管状継手保持部4および管状継手3を回転駆
動する。
FIG. 2 shows the rotation driving means. The rotation driving means includes a drive motor 8, a gear 7 installed on the output shaft of the drive motor, and a gear 41 provided on the outer circumference of the tubular joint holding portion 4, and is mounted on the moving bed 20. The gear 7 meshes with the gear 41, and the drive motor 8 rotationally drives the tubular joint holding portion 4 and the tubular joint 3 via these gears.

【0019】ここでは、ギア群による動力伝達について
説明したが、動力伝達機構は他の形式のものでも良い
し、変速機能を内在したものでも良い。
Although the power transmission by the gear group has been described here, the power transmission mechanism may be of another type or may have a gear shifting function.

【0020】回転数制御手段は、その指令により管状継
手3の回転数を変更できるものであれば何でも良い。駆
動モータの回転数を制御するものでも良いし、駆動モー
タと管状継手の間に介在する変速機と変速機のコントラ
ーロとの組み合わせでも良い。駆動モータの回転数を制
御する場合は、駆動モータは、インバータ駆動の誘導モ
ータまたはACサーボモータなどが望ましい。
The rotation speed control means may be any as long as it can change the rotation speed of the tubular joint 3 according to the command. It may be one that controls the rotation speed of the drive motor, or a combination of a transmission and a contralo of the transmission that are interposed between the drive motor and the tubular joint. When controlling the rotation speed of the drive motor, the drive motor is preferably an inverter-driven induction motor or an AC servomotor.

【0021】軸心方向引寄せ速度の制御はエンコーダを
用いたサーボモータにより行う。また、圧接圧力の制御
はサーボモータのトルクを制御することで行う。ただ
し、軸心方向の引寄せを油圧シリンダー等で行い、変位
計等で相対速度を検出し油圧サーボを利用することも可
能である。この時には、ロードセル等の圧力センサで圧
接圧力を制御する。
The control of the pulling speed in the axial direction is performed by a servo motor using an encoder. The pressure contact pressure is controlled by controlling the torque of the servo motor. However, it is also possible to use the hydraulic servo by pulling in the axial direction with a hydraulic cylinder or the like and detecting the relative speed with a displacement gauge or the like. At this time, the pressure contact pressure is controlled by a pressure sensor such as a load cell.

【0022】また、管支持手段を構成するクランプは、
一方が固定型で他方が可動型である必要はなく、所定の
相対速度で軸心方向に引寄せることが可能であれば、両
方とも可動型であっても良い。
The clamp forming the pipe supporting means is
It is not necessary that one is a fixed type and the other is a movable type, and both may be movable types as long as they can be pulled in the axial direction at a predetermined relative speed.

【0023】以下に、この圧接接合装置を使用した本発
明の圧接接合方法を説明する。この圧接接合方法は、5
つの工程よりなっている。
The pressure welding method of the present invention using this pressure welding apparatus will be described below. This pressure welding method is 5
It consists of two processes.

【0024】第一工程は、樹脂管1、2及び管状継手3
を所定の位置に配置する工程である。まず樹脂管1を固
定クランプ5に固定する。次いで、管状継手3を管状継
手保持部4に固定し、その後、樹脂管1の端面と管状継
手3の端面が接するように移動ベッド20をスライドさ
せる。その後、樹脂管2を管状継手3に接するように可
動クランプ6に固定する。接合する各端部は、パイプカ
ッターで切断された程度に軸心に対し直角になっていれ
ば良く、改めて端部を切削する必要は無い。また、アセ
トンなどの溶剤で端部の汚れを落とす必要も無い。管状
継手の長さは、管状継手保持部4の管状継手との接触幅
に2ヶ所の圧接接合部が熱的・物理的に干渉しないよう
に決められ、継手保持部の長さに両側5mmずつ程度を
加えた長さがあれば良い。
The first step is the resin pipes 1 and 2 and the tubular joint 3.
Is a step of arranging at a predetermined position. First, the resin pipe 1 is fixed to the fixed clamp 5. Next, the tubular joint 3 is fixed to the tubular joint holding portion 4, and then the movable bed 20 is slid so that the end surface of the resin pipe 1 and the end surface of the tubular joint 3 are in contact with each other. Then, the resin pipe 2 is fixed to the movable clamp 6 so as to come into contact with the tubular joint 3. Each end to be joined may be at right angles to the axial center to the extent that it is cut by a pipe cutter, and it is not necessary to cut the end again. In addition, it is not necessary to clean the end portion with a solvent such as acetone. The length of the tubular joint is determined so that the two pressure-welded joints do not interfere thermally and physically with the contact width of the tubular joint holder 4 with the tubular joint, and the length of the joint holder is 5 mm on each side. It only needs to have a certain length.

【0025】第二工程は、管状継手を軸心周りに回転さ
せ、所定の回転数まで上昇させ維持することにより、樹
脂管接触部の溶融を開始する溶融開始工程である。コン
トローラのスイッチをオンにし、管状継手3を保持した
管状継手保持部4を駆動モータ8によりギア41で回転
させる。それと同時に管送り機構9により、可動クラン
プ6に低速の送りをかけ、管状継手3をはさんだ状態
で、樹脂管2を樹脂管1に引寄せる。可動クランプ6の
軸心方向送り速度(樹脂管の相対的な引寄せ速度)を低
速にして、管状継手と樹脂管の端面の摩擦を小さくする
ことにより、起動トルクを小さくでき、無理なく管状継
手の回転数を上昇させることができる。可動クランプ6
の軸心方向送り速度は、管状継手の回転数が所定の値に
達した後、上昇させる。管状継手と樹脂管の端面の接触
が強くなるに従い、回転している管状継手3と樹脂管
1、2の接している部分には摩擦熱が発生し、溶融が開
始される。
The second step is a melting start step in which melting of the resin pipe contact portion is started by rotating the tubular joint about the axis and raising and maintaining the rotation speed up to a predetermined number. The switch of the controller is turned on, and the tubular joint holding portion 4 holding the tubular joint 3 is rotated by the drive motor 8 with the gear 41. At the same time, the pipe feed mechanism 9 feeds the movable clamp 6 at a low speed to pull the resin pipe 2 toward the resin pipe 1 while sandwiching the tubular joint 3. The starting torque can be reduced by reducing the axial feed rate (relative pulling speed of the resin pipe) of the movable clamp 6 to reduce the friction between the end faces of the tubular joint and the resin pipe, and the tubular joint can be reasonably reduced. The rotation speed of can be increased. Movable clamp 6
The axial feed rate is increased after the rotational speed of the tubular joint reaches a predetermined value. As the contact between the tubular joint and the end surface of the resin pipe becomes stronger, frictional heat is generated in the contact portion between the rotating tubular joint 3 and the resin pipes 1 and 2, and melting is started.

【0026】図4に示すように、溶融開始工程の初期で
は、樹脂管の相対移動量はほぼゼロ、圧接圧力もほぼゼ
ロ、接合部の温度上昇もほとんど無い状態となる。管状
継手の回転数を所定の回転数まで上昇させた後、軸心方
向送り速度を上昇させることにより、管状継手と樹脂管
の端面の接触が強くなり、圧接圧力は一時的に上昇する
が、接触部の溶融が開始されると、圧接圧力は急激に低
下する。一方、樹脂の接触部の温度は、融点まで短時間
で上昇する。作業効率を向上させるためには、この工程
での所定回転数はできるだけ高い方が良い。
As shown in FIG. 4, in the initial stage of the melting start step, the relative movement amount of the resin tube is almost zero, the pressure contact pressure is almost zero, and the temperature of the joint is almost not increased. After increasing the rotational speed of the tubular joint to a predetermined rotational speed, by increasing the axial feed rate, the contact between the tubular joint and the end surface of the resin pipe becomes stronger, and the pressure contact pressure rises temporarily, When the melting of the contact portion is started, the pressure contact pressure sharply decreases. On the other hand, the temperature of the resin contact portion rises to the melting point in a short time. In order to improve the work efficiency, the predetermined number of rotations in this step should be as high as possible.

【0027】第三工程は、管状継手および樹脂管端部の
溶融を継続させる溶融継続工程である。樹脂管の接触部
は、粘弾性体としてせん断摩擦による発熱で温度は融点
以上に上昇する。そして、溶融により粘性の低下した樹
脂は、圧接面から樹脂管の外面側および内面側に継続し
て排出される。この工程を所定の期間継続することで、
当初端面にあった酸化膜や汚れは管外に完全に排出され
る。管状継手3の回転数が高すぎると発熱速度が速くな
ってしまい、酸化膜や汚れを管外に完全に排出する前に
樹脂の酸化開始温度に達し、煙や臭いが生じたり、ある
いは接合部の品質低下が生じる。そこで、溶融継続工程
での管状継手の回転数は、酸化開始点に達するまでに、
酸化膜や汚れを管外に完全に排出できるほど十分な時間
が掛かるような発熱速度となるよう設定する。また、樹
脂管の相対的な引寄せ速度については、前工程の後期に
て上昇させた値を保つ。
The third step is a melting continuation step for continuing the melting of the tubular joint and the resin pipe end. The contact portion of the resin tube is a viscoelastic body, and the temperature rises above the melting point due to heat generation due to shear friction. Then, the resin whose viscosity is lowered by melting is continuously discharged from the pressure contact surface to the outer surface side and the inner surface side of the resin pipe. By continuing this process for a predetermined period,
Initially, the oxide film and dirt on the end face are completely discharged outside the tube. If the rotational speed of the tubular joint 3 is too high, the heat generation rate becomes fast, and the oxidation start temperature of the resin is reached before the oxide film and dirt are completely discharged to the outside of the pipe, resulting in smoke and odor, or at the joint part. Will cause a deterioration in quality. Therefore, the number of rotations of the tubular joint in the melting continuation step is, by the time the oxidation start point is reached,
The heat generation rate is set so that it takes sufficient time to completely discharge the oxide film and dirt out of the tube. Regarding the relative drawing speed of the resin pipe, the value increased in the latter stage of the previous process is maintained.

【0028】第四工程は、圧接面からの樹脂の排出を押
さえ、溶融部の範囲を拡大すると同時に均一化する溶融
範囲拡大工程である。この工程では、圧接圧力がほとん
どゼロとなるよう、樹脂管の相対的な引寄せ速度を低め
に設定する。また、摩擦による発熱速度が放熱速度とバ
ランスするよう、かつ溶融部の温度が融点以上で酸化開
始点以下のできるだけ高い温度を保持するように、管状
継手の回転数を設定する。
The fourth step is a melting range expanding step of suppressing the discharge of the resin from the pressure contact surface and expanding the range of the melting part and at the same time making it uniform. In this step, the relative drawing speed of the resin pipe is set to be low so that the pressure contact pressure becomes almost zero. Further, the rotational speed of the tubular joint is set so that the heat generation rate due to friction balances with the heat radiation rate and the temperature of the melting portion is maintained as high as possible at the melting point or higher and the oxidation start point or lower as much as possible.

【0029】なお、実際の圧接接合作業の中で接合部の
温度を計測するのは難しいため、上記回転数は実験にて
予め求めておくことになる。この実験では、熱電対等の
小型の温度計測手段を樹脂管の接合予定部近傍に埋めて
おくことになる。
Since it is difficult to measure the temperature of the welded portion during the actual pressure welding operation, the number of rotations is to be obtained in advance by an experiment. In this experiment, a small temperature measuring means such as a thermocouple is buried near the portion to be joined of the resin pipe.

【0030】第五工程は、管状継手とそれを挟む樹脂管
の融着を行う圧接冷却工程である。管状継手3の回転を
停止し、一定の圧接圧力を加えながら、第1および第2
の熱可塑性樹脂管の端面を圧接し、前記管状継手と前記
熱可塑性樹脂管を融着する。この過程で、融点以上に昇
温され低分子化された樹脂は、粘度が低いため、管外に
排出される。冷却速度は樹脂が管外に排出される速度に
も依存するので、良好な継手が得られるように冷却速度
を制御するために、樹脂管の相対的な引寄せ速度の制限
のもとで押付ける。管外に排出された樹脂は、回転中・
回転停止後にかかわらず一体となり管内外面に滑らかな
形状のビードを形成する。
The fifth step is a pressure-contact cooling step of fusing the tubular joint and the resin pipe sandwiching it. While stopping the rotation of the tubular joint 3 and applying a constant pressure contact pressure, the first and second
The end face of the thermoplastic resin pipe is pressure-welded to fuse the tubular joint and the thermoplastic resin pipe. In this process, the resin whose temperature has been raised above the melting point and whose molecular weight has been lowered is discharged to the outside of the tube because of its low viscosity. Since the cooling rate also depends on the rate at which the resin is discharged out of the pipe, in order to control the cooling rate so that a good joint can be obtained, the resin pipe is pushed under the restriction of the relative drawing speed. wear. The resin discharged outside the pipe is
Even after the rotation is stopped, they are integrated and form a bead with a smooth shape on the inner and outer surfaces of the pipe.

【0031】図4に示すように、圧接冷却工程での圧接
圧力は、トルク制御により、一定値に保持される。接合
部の温度は、回転が停止し発熱がなくなること、高温の
樹脂が管内外面に押し出されることにより低下し、押付
けられた状態で冷却される。ただし、軸心方向の引寄せ
を油圧シリンダー等で行う場合は、ロードセル等の圧力
センサにて油圧を計測し、油圧サーボを利用することに
より、圧接冷却工程での圧接圧力は一定値に保持され
る。
As shown in FIG. 4, the pressure contact pressure in the pressure contact cooling step is maintained at a constant value by torque control. The temperature of the joint portion is lowered by the rotation being stopped and the heat generation being eliminated, and the high temperature resin being extruded to the inner and outer surfaces of the pipe, and being cooled while being pressed. However, when pulling in the axial direction with a hydraulic cylinder, etc., the hydraulic pressure is measured with a pressure sensor such as a load cell and the hydraulic servo is used to maintain the constant pressure contact pressure during the pressure contact cooling process. It

【0032】なお、周囲温度が予め設定した基準値より
高い場合には、放熱速度が弱まるので、所定の溶融継続
工程の時間が短めになったり、あるいは溶融範囲拡大工
程での接合部温度が高めになったりすることがある。そ
の場合には、発熱速度を下げるため、管状継手の回転数
を低めに設定しても良い。逆に、周囲温度が予め設定し
た基準値より低い場合には、発熱速度を高めるため、溶
融継続工程あるいは溶融範囲拡大工程での管状継手の回
転数を高めに設定しても良い。
When the ambient temperature is higher than a preset reference value, the heat dissipation rate is weakened, so that the time of the predetermined melting continuation process is shortened or the joint temperature in the melting range expansion process is increased. It may become. In that case, the number of rotations of the tubular joint may be set lower in order to reduce the heat generation rate. On the contrary, when the ambient temperature is lower than the preset reference value, the rotational speed of the tubular joint in the melting continuation step or the melting range expansion step may be set higher in order to increase the heat generation rate.

【0033】以上に、二つの樹脂管の間に熱可塑性樹脂
の管状継手を介在させ、該管状継手の端面を両側の樹脂
管の対向する端面に当接させた状態で、該管状継手を回
転させる場合を例に挙げて説明したが、本発明はこれだ
けに限定されるものではなく、管状継手を用いずに直接
二つの樹脂管を接合する場合も含まれることは、言うま
でもない。
As described above, the tubular joint of the thermoplastic resin is interposed between the two resin pipes, and the tubular joint is rotated while the end faces of the tubular joint are brought into contact with the opposite end faces of the resin pipes on both sides. Although a case has been described as an example, the present invention is not limited to this, and it goes without saying that a case of directly joining two resin pipes without using a tubular joint is also included.

【0034】[0034]

【実施例】以下に本発明の実施例を説明する。いずれの
実施例も、2つの樹脂管の間に熱可塑性樹脂の管状継手
を介在させ、該管状継手の端面を両側の樹脂管の対向す
る端面に当接させた状態で該管状継手を回転させること
により樹脂管を接合する場合である。また、管支持手段
を構成するクランプは、図1に示す構成と同じように、
一方は固定型であり、他方は可動型である。回転駆動手
段は、図2に示す構成と同じように、ギア群にて駆動モ
ータの動力を伝達する形式である。回転数制御手段は、
駆動モータの回転数を直接変更するものである。樹脂管
及び管状継手として150Aの中密度ポリエチレン管を
用い、管状継手の長さは10cmである。
EXAMPLES Examples of the present invention will be described below. In each of the embodiments, a tubular joint made of a thermoplastic resin is interposed between two resin pipes, and the tubular joint is rotated in a state where the end faces of the tubular joint are in contact with the opposite end faces of the resin pipes on both sides. This is the case of joining resin pipes. Further, the clamp constituting the pipe supporting means has the same structure as that shown in FIG.
One is fixed and the other is movable. The rotary drive means is of a type in which the power of the drive motor is transmitted by a gear group, as in the configuration shown in FIG. The rotation speed control means,
The number of rotations of the drive motor is directly changed. A 150 A medium density polyethylene pipe is used as the resin pipe and the tubular joint, and the length of the tubular joint is 10 cm.

【0035】(実施例1)周囲温度23℃において、圧
接接合を行った。まず溶融開始工程で、可動クランプの
軸方向送り速度を0.01mm/秒に設定し、管状継手
の回転数は最高回転数である1200rpmまで上昇さ
せた。その後、可動クランプの軸方向送り速度を0.1
mm/秒まで上昇させ、樹脂管接触部を融点まで昇温し
た。次の溶融継続工程では、可動クランプの軸方向送り
速度を0.1mm/秒に保ちながら、管状継手の回転を
700rpmに設定し、接触部の温度を融点である13
5℃以上かつ酸化開始点である250℃以下に維持しな
がら、酸化膜や汚れは管外に完全に排出した。次いで、
溶融範囲拡大工程では、可動クランプの軸方向送り速度
を0.01mm/秒とし、管状継手の回転を800rp
mに設定した。ここまでの所要時間は60秒であった。
最後の圧接冷却工程では、回転を停止し、可動クランプ
の軸方向送り速度を4mm/秒以下と制限し、圧接圧力
を一定に保つため、駆動モータの押し付けトルクを定格
の60%に制御することで良好な継手を得ることができ
た。この時の圧接圧力は1.5kg/cm2であった。
(Example 1) Pressure welding was performed at an ambient temperature of 23 ° C. First, in the melting start step, the axial feed rate of the movable clamp was set to 0.01 mm / sec, and the rotational speed of the tubular joint was increased to the maximum rotational speed of 1200 rpm. Then, set the axial feed rate of the movable clamp to 0.1.
The temperature was raised to mm / sec and the temperature of the resin tube contact portion was raised to the melting point. In the next melting continuation step, while keeping the axial feed rate of the movable clamp at 0.1 mm / sec, the rotation of the tubular joint was set to 700 rpm, and the temperature of the contact portion was the melting point.
The oxide film and dirt were completely discharged outside the tube while maintaining the temperature at 5 ° C or higher and 250 ° C or lower, which is the oxidation start point. Then
In the melting range expansion process, the axial feed rate of the movable clamp was 0.01 mm / sec, and the rotation of the tubular joint was 800 rp.
set to m. The time required up to this point was 60 seconds.
In the final pressure contact cooling step, rotation is stopped, the axial feed rate of the movable clamp is limited to 4 mm / sec or less, and the pressing torque of the drive motor is controlled to 60% of the rated value in order to keep the pressure contact pressure constant. It was possible to obtain a good joint. The pressure contact pressure at this time was 1.5 kg / cm 2 .

【0036】(実施例2)周囲温度−5℃において、圧
接接合を行った。まず溶融開始工程で、可動クランプの
軸方向送り速度を0.01mm/秒に設定し、管状継手
の回転数は最高回転数である1200rpmまで上昇さ
せた。その後、可動クランプの軸方向送り速度を0.1
mm/秒まで上昇させ、融点まで昇温した。次の溶融継
続工程では、可動クランプの軸方向送り速度を0.1m
m/秒に保ちながら、管状継手の回転数を800rpm
に設定し、接触部の温度を融点である135℃以上かつ
酸化開始点である250℃以下に維持しながら、酸化膜
や汚れは管外に完全に排出した。次いで、溶融範囲拡大
工程では、可動クランプの軸方向送り速度を0.01m
m/秒とし、管状継手の回転を1000rpmに設定し
た。ここまでの所要時間は60秒であった。最後の圧接
冷却工程では、回転を停止し、可動クランプの軸方向送
り速度を4mm/秒以下に制限しながら、圧接圧力を一
定に保つため、押し付けトルクを定格の60%に制御す
ることで良好な継手を得ることができた。この時の圧接
圧力は1.5kg/cm2であった。
(Example 2) Pressure welding was performed at an ambient temperature of -5 ° C. First, in the melting start step, the axial feed rate of the movable clamp was set to 0.01 mm / sec, and the rotational speed of the tubular joint was increased to the maximum rotational speed of 1200 rpm. Then, set the axial feed rate of the movable clamp to 0.1.
The temperature was raised to mm / sec and the temperature was raised to the melting point. In the next melting continuation process, the axial feed rate of the movable clamp is 0.1m.
Rotation speed of the tubular joint is 800 rpm while maintaining m / sec.
And the temperature of the contact portion was maintained at 135 ° C. or higher as the melting point and 250 ° C. or lower as the oxidation start point, while the oxide film and dirt were completely discharged outside the tube. Next, in the melting range expanding process, the axial feed rate of the movable clamp is 0.01 m.
The rotation speed of the tubular joint was set to 1000 rpm. The time required up to this point was 60 seconds. In the final pressure contact cooling step, rotation is stopped and the pressing torque is maintained at 60% of the rated value in order to keep the pressure contact pressure constant while limiting the axial feed rate of the movable clamp to 4 mm / sec or less. I was able to get a good joint. The pressure contact pressure at this time was 1.5 kg / cm 2 .

【0037】以上のように周囲温度が変わっても、管状
継手の回転数を調整することで、同程度の時間で良好な
圧接接合が可能であった。
As described above, even if the ambient temperature was changed, by adjusting the rotational speed of the tubular joint, good pressure welding was possible in the same amount of time.

【0038】[0038]

【発明の効果】以上に述べた本発明の熱可塑性樹脂管の
圧接接合方法および圧接接合装置によれば、それぞれの
工程に応じ回転駆動手段の回転数を制御することによ
り、発熱過多による接合部の酸化や品質低下を起こすこ
ともなく、発熱過小による作業効率低下を招くこともな
く、最適の時間による圧接接合を実現できる。また、周
囲温度に関わらず、同程度の接合時間で、信頼性の高い
良好な継手性能を得ることができる。
According to the above-described method and apparatus for pressure-bonding and joining a thermoplastic resin pipe of the present invention, the number of revolutions of the rotary drive means is controlled according to each process, so that the joint portion due to excessive heat generation is produced. It is possible to realize the pressure welding in an optimum time without causing the oxidization and the deterioration of the quality of the steel and the deterioration of the work efficiency due to the excessive heat generation. In addition, regardless of the ambient temperature, it is possible to obtain a highly reliable and good joint performance with the same joining time.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に係る熱可塑性樹脂管の圧接接合装置
の一実施形態における装置構成を模式的に示す側面図で
ある。
FIG. 1 is a side view schematically showing a device configuration in an embodiment of a pressure welding device for a thermoplastic resin pipe according to the present invention.

【図2】 本発明に係る熱可塑性樹脂管の圧接接合装置
の一実施形態における管状継手の保持機構および回転駆
動機構を示す断面図である。
FIG. 2 is a cross-sectional view showing a tubular joint holding mechanism and a rotary drive mechanism in an embodiment of a thermoplastic resin pipe pressure welding device according to the present invention.

【図3】 本発明に係る熱可塑性樹脂管の圧接接合装置
の一実施形態における装置の斜視図である。
FIG. 3 is a perspective view of a device in one embodiment of a pressure welding device for a thermoplastic resin pipe according to the present invention.

【図4】 本発明に係る熱可塑性樹脂管の圧接接合方法
における各種パラータの経時変化を示す概念図である。
上から順に、(1)樹脂管の相対的な引寄せ速度、
(2)は樹脂管の相対的な移動量、(3)は管状継手回
転数、(4)は圧接圧力、(5)は接合部温度を示す。
FIG. 4 is a conceptual diagram showing changes over time of various parameters in the method for pressure-welding a thermoplastic resin pipe according to the present invention.
From top to bottom, (1) Relative pulling speed of resin pipe,
(2) shows the relative movement amount of the resin pipe, (3) shows the rotational speed of the tubular joint, (4) shows the pressure contact pressure, and (5) shows the joint temperature.

【図5】 従来技術での熱可塑性樹脂管の圧接接合装置
の一部断面の側面図である。
FIG. 5 is a side view of a partial cross section of a pressure welding device for a thermoplastic resin pipe according to the prior art.

【符号の説明】[Explanation of symbols]

1 樹脂管 2 樹脂管 3 管状継手 4 管状継手保持部 5 固定クランプ 6 可動クランプ 7 ギア 8 モータ 9 管送り機構 20 移動ベッド 1 resin tube 2 resin tubes 3 tubular joint 4 Tubular joint holder 5 fixed clamp 6 movable clamp 7 gears 8 motor 9 Pipe feeding mechanism 20 moving beds

───────────────────────────────────────────────────── フロントページの続き (72)発明者 卯西 裕之 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 Fターム(参考) 3H019 GA06 GA12 4F211 AD05 AD12 AG08 AH11 AR09 TA01 TC08 TC11 TD07 TN20 TQ01    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Hiroyuki Unishi             1-2-1, Marunouchi, Chiyoda-ku, Tokyo             Main Steel Pipe Co., Ltd. F-term (reference) 3H019 GA06 GA12                 4F211 AD05 AD12 AG08 AH11 AR09                       TA01 TC08 TC11 TD07 TN20                       TQ01

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 二つの熱可塑性樹脂管を、これらの対向
する端面を互いに当接させた状態で、一方の樹脂管を軸
心周りに回転させることにより、摩擦熱を発生させて融
着させる圧接接合方法において、所定の相対速度で両樹
脂管を軸方向に引寄せながら、一方の樹脂管の回転数を
所定の値に達するまで上昇させ、接触部の溶融が開始す
る溶融開始工程と、所定の相対速度で両樹脂管を軸方向
に引寄せながら、一方の樹脂管を所定の回転数で回転さ
せることにより接合部の溶融を継続する溶融継続工程と
を含み、溶融開始工程での回転数を溶融継続工程での回
転数より高く設定することを特徴とする熱可塑性樹脂管
の圧接接合方法。
1. Two thermoplastic resin tubes are fused with each other by causing frictional heat to be generated by rotating one of the resin tubes around an axis in a state where the opposite end surfaces of the two thermoplastic resin tubes are in contact with each other. In the pressure welding method, while pulling both resin pipes at a predetermined relative speed in the axial direction, the rotation speed of one resin pipe is increased until it reaches a predetermined value, and a melting start step in which melting of the contact portion starts, Includes a melting continuation step that continues melting the joint by rotating one resin tube at a specified rotation speed while pulling both resin tubes in the axial direction at a specified relative speed. A method for pressure welding of thermoplastic resin pipes, characterized in that the number is set higher than the number of rotations in the continuous melting process.
【請求項2】 二つの熱可塑性樹脂管を、これらの対向
する端面を互いに当接させた状態で、一方の樹脂管を軸
心周りに回転させることにより、摩擦熱を発生させて融
着させる圧接接合方法において、所定の相対速度で両樹
脂管を軸方向に引寄せながら、一方の樹脂管を所定の回
転数で回転させることにより接合部の溶融を継続する溶
融継続工程と、溶融継続工程より低い相対速度にて両樹
脂管を軸方向に引寄せながら、所定の回転数で一方の樹
脂管を回転させることにより溶融範囲を拡大する溶融範
囲拡大工程とを含み、溶融範囲拡大工程での回転数を溶
融継続工程より高く設定することを特徴とする熱可塑性
樹脂管の圧接接合方法。
2. The two thermoplastic resin pipes are caused to generate frictional heat by fusing them by rotating one of the resin pipes around an axis in a state where the opposite end surfaces of the two thermoplastic resin pipes are in contact with each other. In the pressure welding method, while continuously pulling both resin pipes at a predetermined relative speed in the axial direction, one of the resin pipes is rotated at a predetermined number of revolutions to continue melting the joint portion, and a melting continuation process. Including the melting range expanding step of expanding the melting range by rotating one of the resin tubes at a predetermined rotation speed while pulling both resin tubes in the axial direction at a lower relative speed, A method for pressure-welding a thermoplastic resin pipe, characterized in that the number of rotations is set higher than that in the continuous melting step.
【請求項3】 二つの熱可塑性樹脂管を、これらの対向
する端面を互いに接させた状態で、一方の樹脂管を軸心
周りに回転させることにより、摩擦熱を発生させて融着
させる圧接接合方法において、所定の相対速度で両樹脂
管を軸方向に引寄せながら、一方の樹脂管の回転数を所
定の値に達するまで上昇させ、接触部の溶融が開始する
溶融開始工程と、所定の相対速度で両樹脂管を軸方向に
引寄せながら、一方の樹脂管を所定の回転数で回転させ
ることにより接合部の溶融を継続する溶融継続工程と、
溶融継続工程より低い相対速度にて両樹脂管を軸方向に
引寄せながら、所定の回転数で一方の樹脂管を回転させ
ることにより溶融範囲を拡大する溶融範囲拡大工程とを
含み、溶融開始工程での回転数を溶融継続工程での回転
数より高く、かつ溶融範囲拡大工程での回転数を溶融継
続工程での回転数より高く設定することを特徴とする熱
可塑性樹脂管の圧接接合方法。
3. A pressure welding method in which two thermoplastic resin pipes are fused to each other by generating frictional heat by rotating one of the resin pipes around an axis in a state where the opposite end faces are in contact with each other. In the joining method, while pulling both resin pipes at a predetermined relative speed in the axial direction, the number of rotations of one resin pipe is increased until it reaches a predetermined value, and a melting start step in which melting of the contact part starts, While continuing to draw both resin pipes at a relative speed in the axial direction, a melting continuation step of continuing melting of the joint portion by rotating one resin pipe at a predetermined rotation speed,
A melting range expanding step of expanding the melting range by rotating one resin tube at a predetermined rotation speed while pulling both resin tubes in the axial direction at a lower relative speed than the melting continuing step, and a melting starting step. Is set to be higher than the number of revolutions in the melting continuation step, and the number of revolutions in the melting range expansion step is set to be higher than the number of revolutions in the melting continuation step.
【請求項4】 樹脂管接合部の温度を熱可塑性樹脂管の
融点以上かつ酸化開始点以下とするように溶融範囲拡大
工程での回転数を設定する請求項2又は3に記載の熱可
塑性樹脂管の圧接接合方法。
4. The thermoplastic resin according to claim 2 or 3, wherein the number of revolutions in the melting range expanding step is set so that the temperature of the resin pipe joint is equal to or higher than the melting point of the thermoplastic resin pipe and equal to or lower than the oxidation start point. Pressure welding method for pipes.
【請求項5】 溶融継続工程あるいは溶融範囲拡大工程
での回転数を、周囲温度が予め実験により定めた基準値
より高い場合には低めに設定し、周囲温度が上記基準値
より低い場合には高めに設定する請求項1乃至4の何れ
かに記載の熱可塑性樹脂管の圧接接合方法。
5. The number of rotations in the melting continuation step or the melting range expansion step is set to a lower value when the ambient temperature is higher than a reference value determined in advance by experiments, and when the ambient temperature is lower than the above reference value. The method for press-welding a thermoplastic resin pipe according to any one of claims 1 to 4, wherein the method is set to a higher value.
【請求項6】 接合する二つの熱可塑性樹脂管を、それ
らの端面同士が対向する状態で、所定の相対速度で引寄
せることが可能で、かつ、対向する端面を相対移動によ
って密着可能に支持する管支持手段と、この管支持手段
に支持され、かつ、対向する端面同士を密着した状態で
一方の樹脂管をその軸心周りに回転させる回転駆動手段
と、樹脂管の圧接接合作業を構成する各工程毎に予め定
めた値に樹脂管の回転数を調節することができる回転数
制御手段とを具備したことを特徴とする熱可塑性樹脂管
の圧接接合装置。
6. Two thermoplastic resin pipes to be joined can be attracted at a predetermined relative speed with their end faces facing each other, and the opposite end faces can be closely contacted by relative movement. And a rotary driving means for rotating one resin pipe around its axis while being supported by the pipe supporting means and in contact with each other and facing each other, and performing a pressure welding process for the resin pipe. And a rotational speed control means capable of adjusting the rotational speed of the resin pipe to a predetermined value for each step.
JP2001370925A 2001-12-05 2001-12-05 Pressure welding method for thermoplastic resin pipes Expired - Fee Related JP3780925B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001370925A JP3780925B2 (en) 2001-12-05 2001-12-05 Pressure welding method for thermoplastic resin pipes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001370925A JP3780925B2 (en) 2001-12-05 2001-12-05 Pressure welding method for thermoplastic resin pipes

Publications (2)

Publication Number Publication Date
JP2003170504A true JP2003170504A (en) 2003-06-17
JP3780925B2 JP3780925B2 (en) 2006-05-31

Family

ID=19180070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001370925A Expired - Fee Related JP3780925B2 (en) 2001-12-05 2001-12-05 Pressure welding method for thermoplastic resin pipes

Country Status (1)

Country Link
JP (1) JP3780925B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102744849A (en) * 2011-04-19 2012-10-24 上海久通塑胶制品有限公司 Method for hot-melting connection of socket-type plastic pipe and adapter sleeve and melting connection device therefor
CN106956438A (en) * 2017-03-21 2017-07-18 鹤山联塑实业发展有限公司 The equipment and Electric thermal smelting belt installation method of Electric thermal smelting belt are installed for conduit insert
CN110142982A (en) * 2019-06-11 2019-08-20 常州聚豪电气有限公司 A kind of wheat trombone slide intelligence cutting production line
CN114228159A (en) * 2021-11-11 2022-03-25 吕梁学院 Friction Rotary Melting Machine for Type IV Gas Cylinder Liner Forming

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102744849A (en) * 2011-04-19 2012-10-24 上海久通塑胶制品有限公司 Method for hot-melting connection of socket-type plastic pipe and adapter sleeve and melting connection device therefor
CN102744849B (en) * 2011-04-19 2015-09-30 上海久通塑胶制品有限公司 Socket-type plastic tube overlaps hot-melt adhesive paste and fusion splicing devices thereof with adapter
CN106956438A (en) * 2017-03-21 2017-07-18 鹤山联塑实业发展有限公司 The equipment and Electric thermal smelting belt installation method of Electric thermal smelting belt are installed for conduit insert
CN110142982A (en) * 2019-06-11 2019-08-20 常州聚豪电气有限公司 A kind of wheat trombone slide intelligence cutting production line
CN110142982B (en) * 2019-06-11 2024-04-05 常州聚豪电气有限公司 Wheat draws pipe intelligence to cut production line
CN114228159A (en) * 2021-11-11 2022-03-25 吕梁学院 Friction Rotary Melting Machine for Type IV Gas Cylinder Liner Forming

Also Published As

Publication number Publication date
JP3780925B2 (en) 2006-05-31

Similar Documents

Publication Publication Date Title
US5752725A (en) Joint
US3973715A (en) Friction welding
US3777360A (en) Friction welding process
WO2017047574A1 (en) Friction stir spot welding device and friction stir spot welding method
JP6121520B2 (en) Acting force adjustment for process control of friction stir work
JP2000301361A5 (en)
JP2000301361A (en) Friction stir welding method
JP2003170504A (en) Pressure welding method and device for thermoplastic resin pipe
JP4520927B2 (en) Friction stir welding apparatus and control method thereof
JP2006061921A (en) Method and apparatus for friction spot welding
JP7278300B2 (en) FRICTION STIR WELDING APPARATUS, OPERATION METHOD THEREOF, AND JOINT STRUCTURE
JP2003062681A (en) Friction stir welding equipment
JP2002126882A (en) Friction stir welding equipment
JP5382794B2 (en) Method for rotational friction welding of thermoplastic resin pipes
JP3433584B2 (en) Friction welding method
JP2003211549A (en) Method and apparatus for judging bonding quality of thermoplastic resin pipe
JP2001260228A (en) Apparatus and method for controlling pressure contact of thermoplastic resin pipe
JP3780807B2 (en) Method and apparatus for pressure welding of thermoplastic resin pipe
JP3412463B2 (en) Friction welding method
JP2000052430A (en) Method for deciding good or detective connection in frictional connection of synthetic resin members and apparatus for connecting synthetic resin members
US3478410A (en) Friction welding
JP3593105B2 (en) Push-through bending method for circular pipe materials
JP3491661B2 (en) Friction welding method
KR100608534B1 (en) Friction welding method and apparatus for bulk amorphous metal
JPH0699298A (en) Laser beam welding equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060227

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees