[go: up one dir, main page]

JP2003166983A - Method of manufacturing solid-phase extraction adsorption column - Google Patents

Method of manufacturing solid-phase extraction adsorption column

Info

Publication number
JP2003166983A
JP2003166983A JP2001402325A JP2001402325A JP2003166983A JP 2003166983 A JP2003166983 A JP 2003166983A JP 2001402325 A JP2001402325 A JP 2001402325A JP 2001402325 A JP2001402325 A JP 2001402325A JP 2003166983 A JP2003166983 A JP 2003166983A
Authority
JP
Japan
Prior art keywords
column
phase extraction
heat
silica
adsorption column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001402325A
Other languages
Japanese (ja)
Inventor
Katsunori Satoda
克則 里田
Yoshiaki Uryu
喜章 瓜生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PIATEKKU KK
RIDAKKU KK
Original Assignee
PIATEKKU KK
RIDAKKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PIATEKKU KK, RIDAKKU KK filed Critical PIATEKKU KK
Priority to JP2001402325A priority Critical patent/JP2003166983A/en
Publication of JP2003166983A publication Critical patent/JP2003166983A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method, by which a solid-phase extraction adsorption column that is inexpensive than a column using granular filler and a molded container and is suitable for the detection of trace elements can be manufactured. <P>SOLUTION: The adsorption column is manufactured, by putting a small piece of a double-pored porous material in a heat-shrinkable tube, having a longer length than the piece has and heat-shrinking the tube. The porous material is composed of silica, containing through-holes having diameters of >500 nm and continuously formed in a three-dimensional net-like state and micropores, having pore diameters in the range of 5-20 nm and formed in the internal wall surfaces of the through-holes or silica having a chemically modified surface. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】 この発明は、試料をカラム
に注入してカラム内の収着剤に収着させたのち、適当な
溶剤で試料中の成分を抽出して分析に供する固相抽出法
に用いる、収着カラムの製造方法に関する。多くの場
合、試料は注射器を用いてカラムに注入される。
TECHNICAL FIELD The present invention relates to a solid-phase extraction method in which a sample is injected into a column to be sorbed by a sorbent in the column, and then components in the sample are extracted with an appropriate solvent for analysis. The present invention relates to a method for producing a sorption column used in. Often, the sample is injected into the column using a syringe.

【0002】[0002]

【従来の技術】 このような用途に用いる収着カラムと
して、一般に、注射器と接続できる孔径の注入口をもつ
プラスチック容器のなかにシリカゲル、オクタデシル化
したシリカゲルなどの粒子状充填剤を充填したものが用
いられている。
2. Description of the Related Art As a sorption column used in such applications, generally, a plastic container having an injection port having a pore size capable of being connected to a syringe is packed with a particulate packing material such as silica gel or octadecyl silica gel. It is used.

【0003】 収着カラムは使い捨てにされるのが普通
であるが、粒子状充填剤を用いる場合は、充填するうえ
で、あらかじめ成型された容器が必要なため、使い捨て
用途に対しては容器代が高くつく欠点がある。
The sorption column is usually disposable, but when a particulate filler is used, a preformed container is required for filling, so a container charge is required for disposable use. Has the drawback of being expensive.

【0004】 また粒子状充填剤は、慎重に充填しない
と、抽出用溶剤などが充填斑のために生じた大きい通路
を通り抜けてしまうチヤネリング現象が起こるので、充
填に手間が掛かる問題もある。
[0006] Furthermore, if the particulate filler is not carefully filled, a channeling phenomenon occurs in which the extraction solvent and the like pass through a large passage caused by the filling unevenness, so that there is a problem that the filling takes time.

【0005】 さらに、粒子状充填剤は、充填しやすい
粒子径40μm(=0.04mm)程度のものが一般に
用いられている。このような粒子径の大きい充填剤は、
10μm(=0.01mm)以下の粒子径の小さい充填
剤に比し比表面積が小さいので、単位重量当たりの充填
剤が収着し得る最大収着量(保持容量)も少なくなる。
このため粒子径の大きい充填剤は、使用上必要なある一
定の、カラムとしての最大収着量(全保持容量)を保障
するためには、粒子径の小さい充填剤より多量に用いな
ければならない。その結果、抽出に必要な溶剤量も多く
なるので、試料中に含まれる微量成分を検出するような
場合、抽出後分析前に濃縮が必要になり、非効率的であ
る。このように、粒子径の大きい充填剤は粒子径の小さ
い充填剤より充填しやすいが、保持容量が関連する点で
問題がある。
Further, as the particulate filler, one having a particle diameter of about 40 μm (= 0.04 mm) which is easy to fill is generally used. The filler having such a large particle size is
Since the specific surface area is smaller than that of the filler having a small particle size of 10 μm (= 0.01 mm) or less, the maximum sorbable amount (retention capacity) of the filler per unit weight is also small.
Therefore, a packing material with a large particle size must be used in a larger amount than a packing material with a small particle size in order to ensure a certain maximum sorption amount (total retention capacity) as a column necessary for use. . As a result, the amount of solvent required for extraction increases, so that in the case of detecting a trace component contained in a sample, concentration is required after extraction and before analysis, which is inefficient. Thus, a filler having a large particle size is easier to fill than a filler having a small particle size, but there is a problem in that the retention capacity is related.

【0006】 保持容量の問題を解決するため、たとえ
ば10μm(0.01mm)のシリカゲルをポリエチレ
ン製スクリーンとガラスファイバーフィルターでサンド
ウイッチ状に包んだディスクを作成し、これを成型容器
のなかにセットした固相抽出用収着カラムが開発されて
いるが、製作に手間が掛かり、また成型容器を用いる点
でもコスト上の問題がある。
In order to solve the problem of storage capacity, for example, a disc in which 10 μm (0.01 mm) silica gel was wrapped in a sandwich shape with a polyethylene screen and a glass fiber filter was prepared and set in a molding container. Sorption columns for solid-phase extraction have been developed, but they are troublesome to manufacture, and there is a cost problem in using a molded container.

【0007】[0007]

【発明が解決しようとする課題】 固相抽出用収着カラ
ムは、使用状況が使い捨てであることを考慮すると、製
作時の手間や容器に係るコストの低減を図ることが必要
である。
In consideration of the fact that the sorption column for solid phase extraction is used in a disposable state, it is necessary to reduce the labor required for production and the cost for the container.

【0008】 また微量成分を効率よく検出するために
は、保持容量の大きい充填剤を用いて充填量を少なくす
ることが必要である。本発明の目的は、この二つの要求
を同時に解決するため、粒子状充填剤と成型容器を用い
るカラムより安価で、微量成分の検出にも適する固相抽
出用収着カラムの製造方法を提供することにある。
Further, in order to detect a trace component efficiently, it is necessary to use a filler having a large holding capacity to reduce the filling amount. An object of the present invention is to provide a method for producing a sorption column for solid phase extraction, which is cheaper than a column using a particulate filler and a molding container and is also suitable for detecting a trace amount component, in order to solve these two requirements at the same time. Especially.

【0009】[0009]

【課題を解決するための手段】 コストを低減するた
め、容器として成型品の代わりに、それより安価な熱収
縮性チューブを用いるが、これは、収着剤として粒子状
のものではなく、逸散を防ぐためのフィルターなどの必
要がない、モノリス型の二重細孔性多孔体を用いること
によってはじめて可能となる。この多孔体はもちろん保
持容量の大きいものでなければならない。また多孔体の
大きさを変えることにより、全保持容量と抽出に必要な
溶剤量を調整することができる。
[Means for Solving the Problems] In order to reduce the cost, a cheaper heat-shrinkable tube is used as a container instead of a molded product, but this is not a particulate sorbent, but a sorbent. It becomes possible only by using a monolithic type double-pore porous body which does not require a filter for preventing dispersion. This porous body must of course have a large holding capacity. Further, by changing the size of the porous body, the total holding capacity and the amount of solvent necessary for extraction can be adjusted.

【0010】 所定の大きさの二重細孔性多孔体の小片
たとえば円柱をそれより長い熱収縮性チューブのなかに
入れ、チューブが収縮を起こす温度に加熱するだけの簡
単な手段で、図1に示すような、本発明の固相抽出用収
着カラムを得ることができる。
[0010] A small piece of a double-pore porous body of a predetermined size, for example, a cylinder, is placed in a longer heat-shrinkable tube and heated to a temperature at which the tube shrinks. The sorption column for solid phase extraction of the present invention as shown in can be obtained.

【0011】 熱収縮性チューブとしてはポリエチレ
ン、ポリテトラフルオロエチレンその他のプラスチック
よりなるものを用いることができる。また熱収縮性チュ
ーブの内径は、収縮処理後、収着カラムの両端に形成さ
れる注入口の孔径が注射器に接続できるサイズになるよ
う、収縮率を考えて選択することが必要である。
As the heat-shrinkable tube, one made of polyethylene, polytetrafluoroethylene, or other plastic can be used. Further, the inner diameter of the heat-shrinkable tube needs to be selected in consideration of the shrinkage ratio so that the hole diameters of the injection ports formed at both ends of the sorption column after the shrinking treatment have a size that can be connected to the syringe.

【0012】 保持容量に係る課題を解決するために
は、高速液体クロマトグラフィーに用いられる粒子径1
0μm(0.01mm)のシリカゲルの程度あるいはそ
れ以上の比表面積を有する二重細孔性多孔体を用いるこ
とが望ましく、物質輸送を担う、孔径500nm以上の
3次元網目状に連続した貫通孔と、収着を担う、貫通孔
の内壁面に形成された5〜20nmの微細孔とを有する
二重細孔性シリカ多孔体が適する。
In order to solve the problem relating to the holding capacity, the particle size used in high performance liquid chromatography is 1
It is desirable to use a double-pore porous body having a specific surface area of 0 μm (0.01 mm) or more, and a through-hole having a pore size of 500 nm or more and continuous through holes in a three-dimensional mesh shape, which is responsible for mass transport. A double-porous silica porous body having 5 to 20 nm fine pores formed on the inner wall surface of the through-hole, which is responsible for sorption, is suitable.

【0013】 このような性能をもつ二重細孔性シリカ
多孔体として、ホウケイ酸ガラスの熱処理により生じる
分相現象を用いてつくられる多孔質ガラス、ケイ素アル
コキシドからゾルゲル法によって合成される多孔質ガラ
スなどがある。
As the double-pore silica porous material having such performance, a porous glass produced by using a phase separation phenomenon caused by heat treatment of borosilicate glass, a porous glass synthesized from a silicon alkoxide by a sol-gel method, etc. There is.

【0014】 前者は、ホウケイ酸ナトリュウムを数百
度に加熱すると分相現象によって酸に溶けるホウ酸塩相
と酸に不溶のケイ素骨格との2相に分かれるので、ホウ
ケイ酸ガラスを熱処理後酸処理してホウ酸塩を溶出させ
ることによりつくられる。
In the former case, when sodium borosilicate is heated to several hundred degrees, it is divided into two phases, a borate phase soluble in acid and a silicon skeleton insoluble in acid, by a phase separation phenomenon. It is prepared by eluting borate.

【0015】 後者は、有機高分子の酸性溶液にケイ素
アルコキシドを添加して加水分解とそれに次ぐ縮重合を
行なわせると反応溶液はゲル化して3次元網目状の貫通
孔をもった多孔質湿潤ゲルが得られるので、これをアル
カリで処理して貫通孔の内壁面に微細孔を生成させたの
ち、乾燥、熱処理することによってつくることができ
る。
In the latter case, when a silicon alkoxide is added to an acidic solution of an organic polymer to cause hydrolysis and subsequent polycondensation, the reaction solution gels and is a porous wet gel having three-dimensional network through-holes. It can be prepared by treating this with an alkali to form fine pores on the inner wall surface of the through hole, and then drying and heat treating.

【0016】 ケイ素アルコキシドとしては、テトラメ
トキシシラン、テトラエトキシシランなどが好適に用い
られる。有機高分子は、ポリアクリル酸、ポリエチレン
グリコールなどのイオン性あるいは非イオン性の水溶性
高分子が、またアルカリは、乾燥、熱処理工程で除去で
きる、揮発性のアンモニアなどが適する。
As the silicon alkoxide, tetramethoxysilane, tetraethoxysilane, etc. are preferably used. The organic polymer is preferably an ionic or nonionic water-soluble polymer such as polyacrylic acid or polyethylene glycol, and the alkali is preferably volatile ammonia which can be removed by the drying and heat treatment steps.

【0017】 有機高分子はアルカリ処理前に洗浄工程
を加えることによってかなり除去できるが、最終的に
は、熱処理時に完全に分解除去される。
The organic polymer can be considerably removed by adding a washing step before the alkali treatment, but finally, it is completely decomposed and removed during the heat treatment.

【0018】 固相抽出用収着カラムに用いられる粒子
状充填剤(シリカゲル)は、液体クロマトグラフィー用
のシリカゲルと同様、表面をフェニル基、アルキル基な
どの非極性基やアミン、ニトリルなどの極性基で化学修
飾したものが多く使用されているが、本発明に用いる二
重細孔性シリカ多孔体も粒子状シリカゲルと全く同様の
方法で化学修飾することができる。
The particulate packing (silica gel) used in the sorption column for solid-phase extraction has a surface similar to that of silica gel for liquid chromatography, and has a non-polar group such as a phenyl group or an alkyl group or a polar group such as amine or nitrile. Many of them are chemically modified with a group, but the double-porous silica material used in the present invention can also be chemically modified by the same method as that of the particulate silica gel.

【0019】[0019]

【実施例】―実施例1― 0.01規定の酢酸100ml中にポリエチレングリコ
ール(分子量10,000)10.2gを溶解し、これ
にテトラメトキシシラン45mlを添加し、40℃で3
0分反応させた。所要量の反応液を内径8mm、高さ8
mmのポリプロピレン製の円筒形の型に入れ、40℃の
乾燥器中に保持したところ、数時間で白濁固化した。固
化した試料はさらに1日乾燥器中で熟成したのち型より
取り出し、蒸留水で洗浄した。ついで40℃の0.01
規定アンモニア水溶液に3日間浸漬したのち50℃で乾
燥し、600℃で2時間熱処理することにより、平均ほ
ぼ1.7μm(=0.0017mm)の貫通孔と平均ほ
ぼ13nmの微細孔及びほぼ370m/gの比表面積
を有する、直径6mm、高さ4mmの円柱状二重細孔性
シリカ多孔体を得た。
EXAMPLES Example 1 10.2 g of polyethylene glycol (molecular weight 10,000) was dissolved in 100 ml of 0.01N acetic acid, and 45 ml of tetramethoxysilane was added thereto, and the mixture was mixed at 40 ° C. for 3 hours.
The reaction was allowed for 0 minutes. The required amount of reaction liquid is 8 mm in inner diameter and 8 in height
It was placed in a cylindrical polypropylene mold of mm and held in a drier at 40 ° C., whereupon it became cloudy and solidified in several hours. The solidified sample was further aged in a dryer for one day, then taken out from the mold and washed with distilled water. Then 0.01 at 40 ℃
After being immersed in a specified aqueous ammonia solution for 3 days, dried at 50 ° C. and heat-treated at 600 ° C. for 2 hours, a through-hole having an average of about 1.7 μm (= 0.017 mm), a fine hole having an average of about 13 nm and an average of about 370 m 2 A cylindrical double-porous silica porous body having a specific surface area of / g and a diameter of 6 mm and a height of 4 mm was obtained.

【0020】 次にこの円柱状多孔体を内径8.5m
m、長さ40mmの熱収縮性ポリエチレンチューブ(住
友電気工業株式会社製)の中に入れ、100℃で10分
熱処理することにより、本発明の固相抽出用収着カラム
を製作した。
Next, the columnar porous body was made to have an inner diameter of 8.5 m.
A sorbent column for solid phase extraction of the present invention was produced by placing the tube in a heat-shrinkable polyethylene tube (made by Sumitomo Electric Industries, Ltd.) having a length of m and a length of 40 mm and heat-treating at 100 ° C. for 10 minutes.

【0021】―実施例2― 実施例1の方法でつくったシリカ多孔体を、通常の方法
に従い還流トルエン中でオクタデシルトリクロロエチレ
ンと16時間反応させて表面をオクタデシル基で化学修
飾し、逆相用収着剤となる、40mgの円柱状二重細孔
性シリカ多孔体を得た。次にこれを用いて、実施例1と
同様の方法で固相抽出用収着カラムを製作した。
Example 2 The silica porous material prepared by the method of Example 1 was reacted with octadecyltrichlorethylene in refluxing toluene for 16 hours in accordance with a usual method to chemically modify the surface with octadecyl group, and then the reversed phase recovery was performed. 40 mg of a cylindrical double-porous silica porous material as a binder was obtained. Then, using this, a sorption column for solid phase extraction was manufactured in the same manner as in Example 1.

【0022】 このカラムの全保持容量は収着剤重量の
約10%であった。またカラムの性能試験は、蒸留水に
既知濃度のプリミドン、フェノバルビタール、カルバマ
ゼピン及びフェニトインを加えた試料を用いて、カラム
のコンディショニング、カラムへの試料の注入、洗浄、
試料の抽出の順に処理し、抽出液を高速液体クロマトグ
ラフィーで分析した。カラムのコンディショニングに
は、各400μlのメタノールと蒸留水を使用した。試
料注入量は500μl、また洗浄には600μlの蒸留
水を使用した。次に抽出に必要な溶剤(メタノール)量
を検討した結果、500μlで完全に抽出することがで
きた(回収率100%)。なお、同一量の試料を用いて
粒子径40μm(0.04mm)の粒子充填剤100m
gを充填した従来のカラムと性能を比較したところ、従
来のカラムは、コンディショニング溶剤として各2.0
mlのメタノールと蒸留水が、洗浄溶媒として1.5m
lの蒸留水が、また抽出溶剤として2.0mlのメタノ
ールが必要であった。
The total retention capacity of this column was about 10% of the sorbent weight. In addition, column performance tests were performed using a sample prepared by adding known concentrations of primidone, phenobarbital, carbamazepine and phenytoin to distilled water, conditioning the column, injecting the sample into the column, washing,
The samples were processed in the order of extraction, and the extracts were analyzed by high performance liquid chromatography. 400 μl of methanol and distilled water were used for conditioning the column. A sample injection amount was 500 μl, and 600 μl of distilled water was used for washing. Next, as a result of examining the amount of solvent (methanol) required for extraction, it was possible to completely extract with 500 μl (recovery rate 100%). In addition, using the same amount of sample, 100 m of particle filler having a particle diameter of 40 μm (0.04 mm)
When the performance was compared with the conventional column filled with g, the conventional column was found to have 2.0% as a conditioning solvent.
1.5 ml of methanol and distilled water as washing solvent
1 of distilled water and 2.0 ml of methanol as extraction solvent were required.

【0023】[0023]

【発明の効果】 以上のように、本発明によれば、粒子
状充填剤と成型容器を用いるカラムより安価で、微量成
分の検出にも適する固相抽出用収着カラムを簡単に製作
することができる。このカラムは注射器と接続して使用
することができ、カラムは使い捨てが常識のこの種の分
析に、価額や性能面で極めて好適である。
As described above, according to the present invention, it is possible to easily manufacture a sorption column for solid-phase extraction, which is cheaper than a column using a particulate filler and a molding container and which is also suitable for detecting a trace component. You can This column can be used by connecting to a syringe, and the column is extremely suitable in terms of price and performance for this type of analysis, which is generally accepted as disposable.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の固相抽出用収着カラムの平面図であ
る。
FIG. 1 is a plan view of a sorption column for solid phase extraction of the present invention.

【図2】本発明の固相抽出用収着カラムの側面図であ
る。
FIG. 2 is a side view of the sorption column for solid phase extraction of the present invention.

【符号の説明】[Explanation of symbols]

1 二重細孔性シリカ多孔体 2 ポリエチレンチューブ 3 ポリエチレンチューブ(注入口になる部分) 1 Double porous silica 2 polyethylene tube 3 Polyethylene tube (portion that becomes the inlet)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G01N 30/56 G01N 30/56 A // G01N 30/06 30/06 Z Fターム(参考) 4D017 CA05 CB01 DA03 4G066 AA22A AA22B BA23 DA07 EA01 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) G01N 30/56 G01N 30/56 A // G01N 30/06 30/06 Z F term (reference) 4D017 CA05 CB01 DA03 4G066 AA22A AA22B BA23 DA07 EA01

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 孔径500nm以上の3次元網目状に連
続した貫通孔と、貫通孔の内壁面に形成された孔径5〜
20nmの微細孔とを有するシリカよりなる二重細孔性
多孔体の小片を、それより長い熱収縮性チューブのなか
に入れ、次いで加熱収縮させることを特徴とする固相抽
出用収着カラムの製造方法。
1. A through-hole having a hole diameter of 500 nm or more and continuous in a three-dimensional mesh, and a hole diameter of 5 to 5 formed on the inner wall surface of the through-hole.
A sorption column for solid-phase extraction, characterized in that a small piece of a double-pore porous body made of silica having fine pores of 20 nm is placed in a heat-shrinkable tube longer than that and then heat-shrinked. Production method.
【請求項2】 二重細孔性多孔体が表面を化学修飾した
シリカである請求項1に記載の固相抽出用収着カラムの
製造方法。
2. The method for producing a sorption column for solid phase extraction according to claim 1, wherein the double-porous material is silica whose surface is chemically modified.
JP2001402325A 2001-11-30 2001-11-30 Method of manufacturing solid-phase extraction adsorption column Pending JP2003166983A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001402325A JP2003166983A (en) 2001-11-30 2001-11-30 Method of manufacturing solid-phase extraction adsorption column

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001402325A JP2003166983A (en) 2001-11-30 2001-11-30 Method of manufacturing solid-phase extraction adsorption column

Publications (1)

Publication Number Publication Date
JP2003166983A true JP2003166983A (en) 2003-06-13

Family

ID=19190123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001402325A Pending JP2003166983A (en) 2001-11-30 2001-11-30 Method of manufacturing solid-phase extraction adsorption column

Country Status (1)

Country Link
JP (1) JP2003166983A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006153850A (en) * 2004-08-31 2006-06-15 Showa Denko Kk Device for purifying and concentrating compound and method for purifying and concentrating compound using the device
JP2007199074A (en) * 2005-05-24 2007-08-09 Hellermann Tyton Co Ltd Column and cartridge column using the same
JP2007199041A (en) * 2005-05-24 2007-08-09 Hellermann Tyton Co Ltd Cartridge column
US7291383B2 (en) 2004-01-23 2007-11-06 Ngk Insulators, Ltd. Supports for solid phase extraction
JP2010521673A (en) * 2007-03-13 2010-06-24 バリアン・インコーポレイテッド Method and apparatus for using a shrinkable support in a porous monolith material
WO2023165918A1 (en) 2022-03-01 2023-09-07 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for solid-phase extraction using a porous monolith

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7291383B2 (en) 2004-01-23 2007-11-06 Ngk Insulators, Ltd. Supports for solid phase extraction
JP2006153850A (en) * 2004-08-31 2006-06-15 Showa Denko Kk Device for purifying and concentrating compound and method for purifying and concentrating compound using the device
JP2007199074A (en) * 2005-05-24 2007-08-09 Hellermann Tyton Co Ltd Column and cartridge column using the same
JP2007199041A (en) * 2005-05-24 2007-08-09 Hellermann Tyton Co Ltd Cartridge column
JP2010521673A (en) * 2007-03-13 2010-06-24 バリアン・インコーポレイテッド Method and apparatus for using a shrinkable support in a porous monolith material
WO2023165918A1 (en) 2022-03-01 2023-09-07 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for solid-phase extraction using a porous monolith
FR3133143A1 (en) 2022-03-01 2023-09-08 Commissariat A L'energie Atomique Et Aux Energies Alternatives Solid phase extraction process using a porous monolith

Similar Documents

Publication Publication Date Title
Nema et al. Applications of monolithic materials for sample preparation
Allen et al. Silica‐based monoliths for capillary electrochromatography: Methods of fabrication and their applications in analytical separations
Sarafraz-Yazdi et al. Application of molecularly-imprinted polymers in solid-phase microextraction techniques
Ishizuka et al. Performance of a monolithic silica column in a capillary under pressure-driven and electrodriven conditions
Lin et al. A novel hybrid metal–organic framework–polymeric monolith for solid‐phase microextraction
Courtois et al. Molecularly imprinted polymers grafted to flow through poly (trimethylolpropane trimethacrylate) monoliths for capillary-based solid-phase extraction
Kłodzińska et al. Monolithic continuous beds as a new generation of stationary phase for chromatographic and electro-driven separations
Namera et al. Advances in monolithic materials for sample preparation in drug and pharmaceutical analysis
US6531060B1 (en) Capillary column including porous silica gel having continuous throughpores and mesopores
Fujimoto Preparation of fritless packed silica columns for capillary electrochromatography
Li et al. Hybrid molecularly imprinted polymers modified by deep eutectic solvents and ionic liquids with three templates for the rapid simultaneous purification of rutin, scoparone, and quercetin from Herba Artemisiae Scopariae
Martínez-Pérez-Cejuela et al. A hybrid nano-MOF/polymer material for trace analysis of fluoroquinolones in complex matrices at microscale by on-line solid-phase extraction capillary electrophoresis
Yin et al. Polydopamine‐coated magnetic molecularly imprinted polymer for the selective solid‐phase extraction of cinnamic acid, ferulic acid and caffeic acid from radix scrophulariae sample
Ünlü et al. Investigation of protein adsorption performance of Ni2+‐attached diatomite particles embedded in composite monolithic cryogels
CN101735417B (en) Preparation method of surface imprinted material for recognition and separation of rare earth ions
Xiong et al. Organic–inorganic hybrid fluorous monolithic capillary column for selective solid‐phase microextraction of perfluorinated persistent organic pollutants
Martin et al. Properties and performance of novel high-resolution/high-permeability ion-exchange media for protein chromatography
JP2003166983A (en) Method of manufacturing solid-phase extraction adsorption column
CN101249425A (en) Raw material formula and preparation method of a chromatographic column with two separation modes of hydrophilic ion exchange and reversed-phase ion exchange
Eeltink et al. Recent developments and applications of polymer monolithic stationary phases
CN107179367B (en) Solid phase extraction series column for toxin detection and preparation method thereof
CN102590402A (en) Preparing method of capillary tube chromatographic columns
Henrique do Nascimento et al. Construction of polymer monolithic columns in polypropylene ink‐pen tubes for separation of proteins by cation‐exchange chromatography
Wang et al. Chromatographic efficiency comparison of polyhedral oligomeric silsesquioxanes-containing hybrid monoliths via photo-and thermally-initiated free-radical polymerization in capillary liquid chromatography for small molecules
ALOthman et al. Preparation and evaluation of long chain alkyl methacrylate monoliths for capillary chromatography