JP2003165736A - Method for manufacturing optical fiber preform and device and manufacturing optical fiber preform using it - Google Patents
Method for manufacturing optical fiber preform and device and manufacturing optical fiber preform using itInfo
- Publication number
- JP2003165736A JP2003165736A JP2001365173A JP2001365173A JP2003165736A JP 2003165736 A JP2003165736 A JP 2003165736A JP 2001365173 A JP2001365173 A JP 2001365173A JP 2001365173 A JP2001365173 A JP 2001365173A JP 2003165736 A JP2003165736 A JP 2003165736A
- Authority
- JP
- Japan
- Prior art keywords
- optical fiber
- core tube
- fiber preform
- porous material
- cylindrical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013307 optical fiber Substances 0.000 title claims abstract description 114
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 28
- 238000000034 method Methods 0.000 title abstract description 5
- 239000011148 porous material Substances 0.000 claims abstract description 31
- 239000012535 impurity Substances 0.000 claims abstract description 27
- 229910052751 metal Inorganic materials 0.000 claims abstract description 27
- 239000002184 metal Substances 0.000 claims abstract description 27
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 18
- 239000011521 glass Substances 0.000 claims abstract description 14
- 239000010419 fine particle Substances 0.000 claims abstract description 7
- 238000005245 sintering Methods 0.000 claims description 6
- 239000000463 material Substances 0.000 claims description 5
- 230000002093 peripheral effect Effects 0.000 claims description 5
- 230000018044 dehydration Effects 0.000 claims description 3
- 238000006297 dehydration reaction Methods 0.000 claims description 3
- 239000011859 microparticle Substances 0.000 claims 1
- 230000005540 biological transmission Effects 0.000 abstract description 18
- 239000005350 fused silica glass Substances 0.000 abstract 1
- 238000010438 heat treatment Methods 0.000 description 27
- 239000011261 inert gas Substances 0.000 description 13
- 238000002844 melting Methods 0.000 description 8
- 230000008018 melting Effects 0.000 description 8
- 230000007423 decrease Effects 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 239000002245 particle Substances 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 229910003902 SiCl 4 Inorganic materials 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000004031 devitrification Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005485 electric heating Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000003286 fusion draw glass process Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/01446—Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
- C03B37/0146—Furnaces therefor, e.g. muffle tubes, furnace linings
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P40/00—Technologies relating to the processing of minerals
- Y02P40/50—Glass production, e.g. reusing waste heat during processing or shaping
- Y02P40/57—Improving the yield, e-g- reduction of reject rates
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Thermal Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、光ファイバ用多孔
質材を脱水、焼結して光ファイバ母材を形成する光ファ
イバ母材の製造方法およびこれを用いた光ファイバ母材
の製造装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an optical fiber preform by dehydrating and sintering a porous material for optical fiber to form an optical fiber preform, and an optical fiber preform producing apparatus using the same. Regarding
【0002】[0002]
【従来の技術】光ファイバの製造方法としては、光ファ
イバ用多孔質材を形成し、この光ファイバ用多孔質材を
脱水、焼結して光ファイバ母材とした後、これを溶融線
引きして光ファイバを得る方法がある。2. Description of the Related Art As a method for manufacturing an optical fiber, a porous material for an optical fiber is formed, the porous material for an optical fiber is dehydrated and sintered to form an optical fiber base material, which is then melt-drawn. There is a method to obtain an optical fiber.
【0003】光ファイバ用多孔質材を脱水、焼結して光
ファイバ母材を形成するには、光ファイバ用多孔質材
を、光ファイバ母材の製造装置に備えられた石英ガラス
からなる炉心管内に収容し、この炉心管内にヘリウム
(He)や必要に応じて塩素系脱水ガスなどを添加し、
この不活性ガス雰囲気中で1000〜1600℃の高温
で加熱処理するのが一般的である。In order to form an optical fiber preform by dehydrating and sintering the porous material for optical fiber, the porous material for optical fiber is made of quartz glass provided in an optical fiber preform manufacturing apparatus. It is housed in a tube, and helium (He) and, if necessary, chlorine-based dehydrated gas are added to the core tube,
It is general to perform heat treatment at a high temperature of 1000 to 1600 ° C. in this inert gas atmosphere.
【0004】[0004]
【発明が解決しようとする課題】ところで、上記の方法
で、100本程度の光ファイバ用多孔質材の加熱処理を
行うと、石英ガラスからなる炉心管が結晶化して不透明
になり(このような現象を「失透」という。)、炉心管
の機械的強度が劣化する。そのため、所定本数の光ファ
イバ用多孔質材を加熱処理した後に、炉心管を交換しな
ければならなかった。By the way, when the heat treatment of about 100 porous materials for optical fibers is carried out by the above-mentioned method, the furnace core tube made of quartz glass is crystallized and becomes opaque. The phenomenon is called "devitrification"), and the mechanical strength of the core tube deteriorates. Therefore, it was necessary to replace the core tube after heating a predetermined number of porous materials for optical fibers.
【0005】また、光ファイバの波長1.31μm帯に
おける光の伝送損失は、通常、0.34dB/km以下
であることが要求されている。ところが、生産性を向上
するために、光ファイバ母材を大型化するにつれて、上
記炉心管を交換した直後に加熱処理された光ファイバ母
材を溶融線引きして得られた光ファイバの波長1.31
μm帯における伝送損失が、0.34dB/km以上に
なるという問題があった。また、炉心管交換後、数回の
加熱処理を経た後に形成された光ファイバ母材を溶融線
引きし、得られた光ファイバの伝送損失を測定したとこ
ろ、図3に示すように、伝送損失が0.34dB/km
以下になり、安定するという問題があった。The optical transmission loss of the optical fiber in the 1.31 μm wavelength band is usually required to be 0.34 dB / km or less. However, in order to improve productivity, as the size of the optical fiber preform is increased, the optical fiber preform obtained by melting and drawing the heat-treated optical fiber preform immediately after the replacement of the core tube has a wavelength of 1. 31
There was a problem that the transmission loss in the μm band was 0.34 dB / km or more. After the core tube was replaced, the optical fiber preform formed after several heat treatments was melt-drawn, and the transmission loss of the obtained optical fiber was measured. As shown in FIG. 0.34 dB / km
It became the following, and there was a problem of being stable.
【0006】このような問題は、光ファイバ母材が大型
化するにつれて、光ファイバ母材の加熱処理温度および
加熱処理時間が増加することによって生じるものと考え
られる。加熱処理温度および加熱処理時間が増加する
と、石英ガラスからなる炉心管に含まれる金属不純物
が、不活性ガス雰囲気中に拡散し易くなる。そして、不
活性ガス雰囲気中に拡散した金属不純物は、光ファイバ
母材の表面に付着し、金属不純物が付着した光ファイバ
母材を溶融線引きして得られた光ファイバは、光の伝送
損失が増加する。It is considered that such a problem is caused by an increase in heat treatment temperature and heat treatment time of the optical fiber preform as the optical fiber preform becomes larger. When the heat treatment temperature and the heat treatment time are increased, the metal impurities contained in the furnace core tube made of quartz glass are likely to diffuse into the inert gas atmosphere. Then, the metal impurities diffused in the inert gas atmosphere adhere to the surface of the optical fiber preform, and the optical fiber obtained by melting and drawing the optical fiber preform with the metal impurities has a light transmission loss. To increase.
【0007】以上のようなことから、光ファイバ母材の
加熱処理を数回行うことにより、石英ガラスからなる炉
心管に含まれていた金属不純物がある程度光ファイバ母
材の表面に付着し、不活性ガス雰囲気中の金属不純物の
濃度が低下すると、光の伝送損失が安定すると考えられ
る。また、炉心管の強度を高めて、炉心管の交換頻度を
少なくするために、炉心管の厚みを厚くしているため、
炉心管に含まれる金属不純物の濃度が高くなっていると
考えられる。From the above, by performing the heat treatment of the optical fiber preform several times, the metal impurities contained in the quartz glass core tube adhere to the surface of the optical fiber preform to a certain extent, and It is considered that the light transmission loss becomes stable when the concentration of metal impurities in the active gas atmosphere decreases. Further, in order to increase the strength of the core tube and reduce the frequency of replacement of the core tube, the thickness of the core tube is increased,
It is considered that the concentration of metal impurities contained in the core tube is high.
【0008】本発明は、前記事情に鑑みてなされたもの
で、光ファイバ母材の溶融線引きによって得られる光フ
ァイバの伝送損失を増加することのない光ファイバ母材
を長期間、安定に製造することが可能な光ファイバ母材
の製造方法およびこれを用いた光ファイバ母材の製造装
置を提供することを課題とする。The present invention has been made in view of the above circumstances, and stably manufactures an optical fiber preform that does not increase the transmission loss of an optical fiber obtained by fusion drawing of the optical fiber preform for a long period of time. An object of the present invention is to provide an optical fiber preform manufacturing method and an optical fiber preform manufacturing apparatus using the same.
【0009】[0009]
【課題を解決するための手段】前記課題は、円柱形の出
発部材の外周部の径方向に、ガラス微粒子を堆積させて
多孔質層を形成して、円柱形の光ファイバ用多孔質材を
製造し、該光ファイバ用多孔質材を石英ガラスからなる
炉心管内に収容し、該光ファイバ用多孔質材を焼結し
て、光ファイバ母材を製造する光ファイバ母材の製造方
法において、前記炉心管内に含まれる金属不純物の濃度
を25ppm以下とし、かつ前記炉心管の内径をd、前
記炉心管の厚みをtとすると、d/4tを10以上とす
る光ファイバ母材の製造方法によって解決できる。ま
た、前記課題は、円柱形の出発部材の外周部の径方向
に、ガラス微粒子を堆積させた多孔質層を有する光ファ
イバ用多孔質材を収容して脱水、焼結を行なう円筒形の
石英ガラスからなる炉心管を備えた光ファイバ母材の製
造装置であって、前記炉心管に含まれる金属不純物の濃
度が25ppm以下であり、かつ前記炉心管の内径を
d、前記炉心管の厚みをtとすると、d/4tが10以
上である光ファイバ母材の製造装置によって解決でき
る。[Means for Solving the Problems] The above-mentioned problem is obtained by depositing glass fine particles in the radial direction of the outer peripheral portion of a cylindrical starting member to form a porous layer, thereby forming a cylindrical porous material for an optical fiber. In the manufacturing method of the optical fiber preform for producing, the optical fiber preform is housed in a furnace core tube made of quartz glass, the optical fiber porous material is sintered, and the optical fiber preform is produced. Assuming that the concentration of the metal impurities contained in the core tube is 25 ppm or less, the inner diameter of the core tube is d, and the thickness of the core tube is t, d / 4t is 10 or more. Solvable. Further, the above-mentioned problem is a cylindrical quartz for carrying out dehydration and sintering by accommodating a porous material for an optical fiber having a porous layer in which glass particles are deposited in a radial direction of an outer peripheral portion of a cylindrical starting member. An apparatus for manufacturing an optical fiber preform having a furnace core tube made of glass, wherein the concentration of metal impurities contained in the furnace core tube is 25 ppm or less, the inner diameter of the furnace core tube is d, and the thickness of the furnace core tube is If t, it can be solved by an apparatus for manufacturing an optical fiber preform having d / 4t of 10 or more.
【0010】[0010]
【発明の実施の形態】以下、本発明を詳しく説明する。
図1は、本発明の光ファイバ母材の製造装置の一例を示
す概略構成図である。この例の光ファイバ母材の製造装
置は、光ファイバ用多孔質材1を収容する石英ガラスか
らなる円筒形の炉心管2と、炉心管2内に収容された光
ファイバ用多孔質材1を加熱処理するためのヒータ3
と、ヒータ3を収容している加熱炉4と、炉心管2内に
不活性ガスを導入するための導入口5と、光ファイバ用
多孔質材1を支持する支持棒6とから概略構成されてい
る。BEST MODE FOR CARRYING OUT THE INVENTION The present invention is described in detail below.
FIG. 1 is a schematic configuration diagram showing an example of an optical fiber preform manufacturing apparatus of the present invention. The manufacturing apparatus of the optical fiber preform of this example includes a cylindrical core tube 2 made of quartz glass for containing the optical fiber porous material 1 and an optical fiber porous material 1 housed in the core tube 2. Heater 3 for heat treatment
And a heating furnace 4 accommodating the heater 3, an inlet 5 for introducing an inert gas into the furnace core tube 2, and a support rod 6 for supporting the porous material 1 for an optical fiber. ing.
【0011】炉心管2に含まれる鉄(Fe)、アルミニ
ウム(Al)などの金属不純物の濃度は、25ppm以
下であることが好ましく、より好ましくは20ppm以
下である。炉心管2に含まれる金属不純物の濃度が25
ppmを超えると、加熱により炉心管2内に拡散した金
属不純物が光ファイバ母材の表面に付着し易くなり、炉
心管2内で加熱処理して形成された光ファイバ母材を溶
融線引きして得られた光ファイバの波長1.31μmに
おける伝送損失が増加する。The concentration of metal impurities such as iron (Fe) and aluminum (Al) contained in the core tube 2 is preferably 25 ppm or less, more preferably 20 ppm or less. The concentration of metal impurities contained in the core tube 2 is 25
When the content exceeds ppm, the metal impurities diffused in the furnace core tube 2 due to heating easily adhere to the surface of the optical fiber preform, and the optical fiber preform formed by the heat treatment in the furnace core tube 2 is melt-drawn. The transmission loss of the obtained optical fiber at the wavelength of 1.31 μm increases.
【0012】炉心管2の大きさは特に制限されることは
なく、これに収容される光ファイバ用多孔質材1の大き
さに応じて適宜設定されるが、炉心管2の内径をd、厚
みをtとすると、d/4tが10以上であることが好ま
しく、炉心管2の強度の観点から30以下であることが
より好ましい。この例の光ファイバ母材の製造装置につ
いて、炉心管2に含まれる金属不純物の量と、炉心管2
の内径dおよび厚みtとの関係を調査した結果、以下の
関係を見出した。金属不純物は炉心管2内に拡散するか
ら、金属不純物が炉心管2の長手方向に対して垂直な断
面内を拡散する範囲は、πd2/4(式1)と表すこと
ができる。また、炉心管2の長手方向に対して垂直な断
面内に含まれる金属不純物の総量は、(π/4)×
{(d+2t)2−d2}(式2)と表すことができる。そ
して、金属不純物が、炉心管2内で加熱処理された光フ
ァイバ母材を溶融線引きして得られた光ファイバの伝送
損失に与える影響は、(1)/(2)を簡略化して、d
/4t(式3)と表すことができる。The size of the furnace core tube 2 is not particularly limited and is appropriately set according to the size of the porous material 1 for optical fiber accommodated therein. When the thickness is t, d / 4t is preferably 10 or more, and more preferably 30 or less from the viewpoint of the strength of the core tube 2. Regarding the optical fiber preform manufacturing apparatus of this example, the amount of metal impurities contained in the core tube 2 and the core tube 2
As a result of investigating the relationship between the inner diameter d and the thickness t, the following relationship was found. Since the metal impurities diffused into the core tube 2, the range in which the metal impurity is diffused through the cross section perpendicular to the longitudinal direction of the core tube 2 can be represented as [pi] d 2/4 (Equation 1). The total amount of metal impurities contained in the cross section perpendicular to the longitudinal direction of the core tube 2 is (π / 4) ×
It can be expressed as {(d + 2t) 2 −d 2 } (Formula 2). The influence of the metal impurities on the transmission loss of the optical fiber obtained by melting and drawing the optical fiber preform heat-treated in the core tube 2 simplifies (1) / (2) and d
It can be expressed as / 4t (formula 3).
【0013】ここで、d/4tが10未満では、加熱に
より炉心管2内に拡散した金属不純物が光ファイバ母材
の表面に付着し易くなり、炉心管2内で加熱処理して形
成された光ファイバ母材を溶融線引きして得られた光フ
ァイバの波長1.31μmにおける伝送損失が増加する
ことがある。When d / 4t is less than 10, the metal impurities diffused in the furnace core tube 2 due to heating are likely to adhere to the surface of the optical fiber preform, and are formed by heat treatment in the furnace core tube 2. The transmission loss at the wavelength of 1.31 μm of the optical fiber obtained by melting and drawing the optical fiber preform may increase.
【0014】ヒータ3は、電圧または電流を調節するこ
とにより、温度調節可能な電熱装置で、900〜160
0℃に温度調節できるようになっている。また、加熱炉
4は、その外壁が断熱材で形成されており、加熱炉4内
には不活性ガスが充填されている。この例の光ファイバ
母材の製造装置では、加熱炉4内の不活性ガスをヒータ
3で高温に加熱して、この高温に加熱された不活性ガス
の熱により、炉心管2内の不活性ガスを加熱して、光フ
ァイバ用多孔質材1を加熱処理するようになっている。The heater 3 is an electric heating device whose temperature can be adjusted by adjusting the voltage or current, and is 900 to 160.
The temperature can be adjusted to 0 ° C. The outer wall of the heating furnace 4 is formed of a heat insulating material, and the heating furnace 4 is filled with an inert gas. In the optical fiber preform manufacturing apparatus of this example, the inert gas in the heating furnace 4 is heated to a high temperature by the heater 3, and the heat of the inert gas heated to the high temperature heats the inert gas in the furnace core tube 2. The gas is heated to heat-treat the optical fiber porous material 1.
【0015】また、導入口5には、不活性ガス供給管
(図示略)を介して、不活性ガスが充填されたボンベな
どからなる不活性ガス供給部(図示略)が接続されてい
る。これにより、炉心管2内には常に不活性ガスが満た
されるようになっている。また、支持棒6は、石英など
で形成された円柱形で、光ファイバ用多孔質材1を支持
した状態で、その中心軸を中心にして、図示略のモータ
などの動力により回転可能となっている。Further, an inert gas supply section (not shown) including a cylinder filled with an inert gas is connected to the inlet 5 via an inert gas supply pipe (not shown). As a result, the core tube 2 is always filled with the inert gas. Further, the support rod 6 has a cylindrical shape formed of quartz or the like, and can rotate about the central axis of the support material for the optical fiber porous material 1 by the power of a motor (not shown) or the like. ing.
【0016】本発明の光ファイバ母材の製造方法につい
て説明する。まず、石英系ガラスからなる円柱形の出発
部材を用意する。次いで、この出発部材を、その中心軸
を中心にして回転させながら、酸水素バーナーの酸水素
炎中に、SiCl4、GeCl4などのガラス原料ガスを
酸素、水素とともに供給して、ガラス微粒子を合成し、
酸水素バーナーを、出発部材の長手方向と平行にトラバ
ースさせならが、ガラス微粒子を、回転する出発部材の
半径方向に堆積して多孔質層を形成し、円柱形の光ファ
イバ用多孔質材1を得る。次に、光ファイバ用多孔質材
1を支持棒6で支持し、炉心管2内に収容する。次い
で、不活性ガス雰囲気中で、光ファイバ用多孔質材1を
支持棒6の中心軸を中心に回転させながら、1000〜
1200℃で数時間脱水し、その後1400〜1600
℃で数時間焼結し、光ファイバ母材を得る。A method of manufacturing the optical fiber preform of the present invention will be described. First, a cylindrical starting member made of quartz glass is prepared. Next, while rotating the starting member around its central axis, glass raw material gases such as SiCl 4 and GeCl 4 are supplied together with oxygen and hydrogen into the oxyhydrogen flame of the oxyhydrogen burner to form glass fine particles. Synthesize
If the oxyhydrogen burner is traversed parallel to the longitudinal direction of the starting member, glass particles are deposited in the radial direction of the rotating starting member to form a porous layer, and the cylindrical porous material for optical fibers 1 To get Next, the porous material 1 for an optical fiber is supported by the support rod 6 and is housed in the core tube 2. Then, while rotating the optical fiber porous material 1 around the central axis of the support rod 6 in an inert gas atmosphere,
Dehydrate at 1200 ° C for several hours, then 1400 to 1600
The optical fiber preform is obtained by sintering at several degrees Celsius for several hours.
【0017】本発明の光ファイバ母材の製造方法によれ
ば、石英ガラスからなる炉心管交換直後の加熱処理およ
び、その後の加熱処理において、ほぼ均質な光ファイバ
母材を、安定に得ることができる。したがって、炉心管
交換直後に、この炉心管内で加熱処理して形成された光
ファイバ母材を溶融線引きして得られた光ファイバの波
長1.31μmにおける伝送損失が増加することがな
い。また、炉心管の強度が低下し難くなり、炉心管の交
換頻度が少なくなる。According to the method for producing an optical fiber preform of the present invention, a substantially homogeneous optical fiber preform can be stably obtained in the heat treatment immediately after the replacement of the quartz glass core tube and the subsequent heat treatment. it can. Therefore, immediately after the replacement of the core tube, the transmission loss at the wavelength of 1.31 μm of the optical fiber obtained by melting and drawing the optical fiber preform formed by the heat treatment in the core tube does not increase. Further, the strength of the core tube is less likely to decrease, and the frequency of replacement of the core tube decreases.
【0018】以下、図1を用いて具体的な実施例を示
し、本発明の効果を明らかにする。
(実施例)まず、外径30mm、長さ600mmの石英
系ガラスからなる円柱形の出発部材を用意した。次い
で、この出発部材を、その中心軸を中心にして回転させ
ながら、酸水素バーナーの酸水素炎中に、SiCl4、
GeCl4などのガラス原料ガスを酸素、水素とともに
供給して、出発部材先端にガラス微粒子を合成し、ガラ
ス微粒子を、回転する出発部材の軸方向に堆積して、多
孔質層を形成し、外径200mm、長さ1000mmの
円柱形の光ファイバ用多孔質材1を得た。次に、金属不
純物濃度が20ppm、25ppmまたは30ppmの
石英ガラスで形成された内径dが200mmで、厚みt
が4mm、5mmまたは6mmの炉心管2、および金属
不純物濃度が20ppm、25ppmまたは30ppm
の石英ガラスで形成された内径dが300mmで、厚み
tが6mm、8mmまたは10mmの炉心管2を用意し
た。これらの炉心管2をそれぞれ、光ファイバ母材の製
造装置に装着し、この炉心管2内で光ファイバ用多孔質
材1を支持棒6で回転させながら加熱処理し、光ファイ
バ母材を得た。次に、上記の各種炉心管2を交換後1回
目に、光ファイバ用多孔質材1が加熱処理されて得られ
た光ファイバ母材を溶融線引きし、光ファイバを得た。
このようにして得られた光ファイバの波長1.31μm
における光の伝送損失を測定し、金属不純物濃度および
d/4tと、伝送損失との関係を調べた。結果を表1お
よび図2に示す。A concrete example will be shown below with reference to FIG. 1 to clarify the effect of the present invention. Example First, a cylindrical starting member made of silica glass having an outer diameter of 30 mm and a length of 600 mm was prepared. Then, while rotating the starting member about its central axis, in the oxyhydrogen flame of the oxyhydrogen burner, SiCl 4 ,
A glass source gas such as GeCl 4 is supplied together with oxygen and hydrogen to synthesize glass fine particles at the tip of the starting member, and the glass fine particles are deposited in the axial direction of the rotating starting member to form a porous layer. A cylindrical porous material 1 for an optical fiber having a diameter of 200 mm and a length of 1000 mm was obtained. Next, the inner diameter d formed of silica glass having a metal impurity concentration of 20 ppm, 25 ppm or 30 ppm has an inner diameter d of 200 mm and a thickness t.
Of 4 mm, 5 mm or 6 mm, and metal impurity concentration of 20 ppm, 25 ppm or 30 ppm
A core tube 2 having an inner diameter d of 300 mm and a thickness t of 6 mm, 8 mm or 10 mm was prepared from the quartz glass. Each of these core tubes 2 is mounted on an optical fiber preform manufacturing apparatus, and the optical fiber porous material 1 is heat-treated in the core tube 2 while being rotated by a support rod 6 to obtain an optical fiber preform. It was Next, after exchanging the various core tubes 2 for the first time, the optical fiber preform obtained by heat-treating the optical fiber porous material 1 was melt-drawn and an optical fiber was obtained.
The wavelength of the optical fiber thus obtained is 1.31 μm
The transmission loss of light in was measured, and the relationship between the metal impurity concentration and d / 4t and the transmission loss was investigated. The results are shown in Table 1 and FIG.
【0019】[0019]
【表1】 [Table 1]
【0020】表1および図1の結果から、炉心管2に含
まれる金属不純物の濃度が25ppm以下かつd/4t
が10以上であれば、炉心管2を交換後1回目に、この
炉心管2内で加熱処理して形成された光ファイバ母材を
溶融線引きして得られた光ファイバの波長1.31μm
における伝送損失が0.34dB/km以下になること
が確認された。From the results shown in Table 1 and FIG. 1, the concentration of metal impurities contained in the core tube 2 is 25 ppm or less and d / 4t.
Is 10 or more, the wavelength of the optical fiber obtained by melting and drawing the optical fiber preform formed by heat treatment in the core tube 2 is 1.31 μm for the first time after replacement of the core tube 2.
It was confirmed that the transmission loss in the above was 0.34 dB / km or less.
【0021】[0021]
【発明の効果】以上説明したように、本発明の光ファイ
バ母材の製造方法は、円柱形の出発部材の外周部の径方
向に、ガラス微粒子を堆積させて多孔質層を形成して、
円柱形の光ファイバ用多孔質材を製造し、該光ファイバ
用多孔質材を石英ガラスからなる炉心管内に収容し、該
光ファイバ用多孔質材を焼結して、光ファイバ母材を製
造する光ファイバ母材の製造方法において、前記炉心管
内に含まれる金属不純物の濃度を25ppm以下とし、
かつ前記炉心管の内径をd、前記炉心管の厚みをtとす
ると、d/4tを10以上とするから、炉心管交換直後
の加熱処理および、その後の加熱処理において、ほぼ均
質な光ファイバ母材を、安定に得ることができる。した
がって、炉心管交換直後に、この炉心管内で加熱処理し
て形成された光ファイバ母材を溶融線引きして得られた
光ファイバの波長1.31μmにおける伝送損失が増加
することがない。また、本発明の光ファイバ母材の製造
装置は、円柱形の出発部材の外周部の径方向に、ガラス
微粒子を堆積させた多孔質層を有する光ファイバ用多孔
質材を収容して脱水、焼結を行なう円筒形の石英ガラス
からなる炉心管を備えた光ファイバ母材の製造装置であ
って、前記炉心管に含まれる金属不純物の濃度が25p
pm以下であり、かつ前記炉心管の内径をd、前記炉心
管の厚みをtとすると、d/4tが10以上であるか
ら、炉心管交換直後に、この炉心管内で加熱処理して形
成された光ファイバ母材を溶融線引きして得られた光フ
ァイバの波長1.31μmにおける伝送損失が増加する
ことがない。また、炉心管の強度が低下し難くなり、炉
心管の交換頻度が少なくなる。As described above, in the method for producing an optical fiber preform of the present invention, glass particles are deposited in the radial direction of the outer periphery of a cylindrical starting member to form a porous layer,
A cylindrical porous material for optical fiber is manufactured, the porous material for optical fiber is housed in a furnace core tube made of quartz glass, and the porous material for optical fiber is sintered to manufacture an optical fiber preform. In the method for producing an optical fiber preform, the concentration of metal impurities contained in the core tube is 25 ppm or less,
Further, assuming that the inner diameter of the core tube is d and the thickness of the core tube is t, d / 4t is 10 or more. Therefore, in the heat treatment immediately after the core tube is exchanged and in the subsequent heat treatment, an almost uniform optical fiber mother fiber is used. The material can be stably obtained. Therefore, immediately after the replacement of the core tube, the transmission loss at the wavelength of 1.31 μm of the optical fiber obtained by melting and drawing the optical fiber preform formed by the heat treatment in the core tube does not increase. Further, the manufacturing apparatus of the optical fiber preform of the present invention, in the radial direction of the outer peripheral portion of the cylindrical starting member, accommodates the optical fiber porous material having a porous layer deposited glass fine particles, dehydration, An apparatus for producing an optical fiber preform having a core tube made of cylindrical quartz glass for sintering, wherein the concentration of metal impurities contained in the core tube is 25 p.
pm or less, and assuming that the inner diameter of the core tube is d and the thickness of the core tube is t, d / 4t is 10 or more. Therefore, it is formed by heat treatment in the core tube immediately after replacement of the core tube. The transmission loss at the wavelength of 1.31 μm of the optical fiber obtained by melting and drawing the optical fiber preform does not increase. Further, the strength of the core tube is less likely to decrease, and the frequency of replacement of the core tube decreases.
【図1】 本発明の光ファイバ母材の一例を示す概略構
成図である。FIG. 1 is a schematic configuration diagram showing an example of an optical fiber preform of the present invention.
【図2】 金属不純物濃度およびd/4tと、伝送損失
との関係を示すグラフである。FIG. 2 is a graph showing the relationship between the metal impurity concentration and d / 4t, and the transmission loss.
【図3】 従来の光ファイバ母材の製造方法で形成され
た光ファイバ母材において、炉心管交換後の光ファイバ
母材の処理回数と、形成された光ファイバ母材を溶融線
引きして得られた光ファイバの波長1.31μmにおけ
る伝送損失との関係を示すグラフである。FIG. 3 shows an optical fiber preform formed by a conventional optical fiber preform manufacturing method, the number of times the optical fiber preform is processed after the replacement of the core tube, and the obtained optical fiber preform by melt drawing. It is a graph which shows the relationship with the transmission loss in wavelength 1.31 micrometer of the obtained optical fiber.
1・・・光ファイバ用多孔質材、2・・・炉心管、3・・・ヒー
タ、4・・・加熱炉、5・・・導入口、6・・・支持棒1 ... Porous material for optical fiber, 2 ... Core tube, 3 ... Heater, 4 ... Heating furnace, 5 ... Inlet port, 6 ... Support rod
Claims (2)
ガラス微粒子を堆積させて多孔質層を形成して、円柱形
の光ファイバ用多孔質材を製造し、該光ファイバ用多孔
質材を石英ガラスからなる炉心管内に収容し、該光ファ
イバ用多孔質材を焼結して、光ファイバ母材を製造する
光ファイバ母材の製造方法において、 前記炉心管内に含まれる金属不純物の濃度を25ppm
以下とし、 かつ前記炉心管の内径をd、前記炉心管の厚みをtとす
ると、d/4tを10以上とすることを特徴とする光フ
ァイバ母材の製造方法。1. A radial direction of an outer peripheral portion of a cylindrical starting member,
Glass microparticles are deposited to form a porous layer to manufacture a cylindrical porous material for optical fiber, and the porous material for optical fiber is housed in a furnace core tube made of quartz glass, In the method for producing an optical fiber preform, in which a high quality material is sintered to produce an optical fiber preform, the concentration of metal impurities contained in the furnace core tube is 25 ppm.
D / 4t is 10 or more, where d is the inner diameter of the core tube and t is the thickness of the core tube.
ガラス微粒子を堆積させた多孔質層を有する光ファイバ
用多孔質材を収容して脱水、焼結を行なう円筒形の石英
ガラスからなる炉心管を備えた光ファイバ母材の製造装
置であって、 前記炉心管に含まれる金属不純物の濃度が25ppm以
下であり、 かつ前記炉心管の内径をd、前記炉心管の厚みをtとす
ると、d/4tが10以上であることを特徴とする光フ
ァイバ母材の製造装置。2. The radial direction of the outer peripheral portion of the cylindrical starting member,
A device for producing an optical fiber preform having a core tube made of cylindrical quartz glass for accommodating a porous material for an optical fiber having a porous layer on which glass fine particles are deposited and performing dehydration and sintering, An optical fiber having a concentration of metal impurities contained in the core tube of 25 ppm or less, d / 4t of 10 or more, where d is an inner diameter of the core tube and t is a thickness of the core tube. Base material manufacturing equipment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001365173A JP2003165736A (en) | 2001-11-29 | 2001-11-29 | Method for manufacturing optical fiber preform and device and manufacturing optical fiber preform using it |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001365173A JP2003165736A (en) | 2001-11-29 | 2001-11-29 | Method for manufacturing optical fiber preform and device and manufacturing optical fiber preform using it |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003165736A true JP2003165736A (en) | 2003-06-10 |
Family
ID=19175234
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001365173A Pending JP2003165736A (en) | 2001-11-29 | 2001-11-29 | Method for manufacturing optical fiber preform and device and manufacturing optical fiber preform using it |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003165736A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008001775A1 (en) * | 2006-06-26 | 2008-01-03 | Shin-Etsu Chemical Co., Ltd. | Process for producing optical fiber base and apparatus therefor |
JP2012087034A (en) * | 2010-10-22 | 2012-05-10 | Sumitomo Electric Ind Ltd | Method for manufacturing glass perform |
CN105936584A (en) * | 2016-06-07 | 2016-09-14 | 长飞光纤光缆股份有限公司 | Preparation method of quartz glass |
-
2001
- 2001-11-29 JP JP2001365173A patent/JP2003165736A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008001775A1 (en) * | 2006-06-26 | 2008-01-03 | Shin-Etsu Chemical Co., Ltd. | Process for producing optical fiber base and apparatus therefor |
JP2008031033A (en) * | 2006-06-26 | 2008-02-14 | Shin Etsu Chem Co Ltd | Optical fiber preform manufacturing method and apparatus |
EP2048120A4 (en) * | 2006-06-26 | 2013-02-27 | Shinetsu Chemical Co | PROCESS FOR PRODUCING OPTICAL FIBER PREFORM AND APPARATUS THEREOF |
KR101343683B1 (en) | 2006-06-26 | 2013-12-20 | 신에쓰 가가꾸 고교 가부시끼가이샤 | Method for manufacturing optical fiber base material and apparatus therefor |
US8839645B2 (en) | 2006-06-26 | 2014-09-23 | Shin-Etsu Chemical Co., Ltd. | Method of manufacturing optical fiber base material and apparatus of the same |
CN104445914A (en) * | 2006-06-26 | 2015-03-25 | 信越化学工业株式会社 | Process for producing optical fiber base and apparatus therefor |
JP2012087034A (en) * | 2010-10-22 | 2012-05-10 | Sumitomo Electric Ind Ltd | Method for manufacturing glass perform |
CN105936584A (en) * | 2016-06-07 | 2016-09-14 | 长飞光纤光缆股份有限公司 | Preparation method of quartz glass |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5916966B2 (en) | Optical fiber preform manufacturing method and optical fiber manufacturing method | |
WO2011136325A1 (en) | Method for producing glass preform | |
CN116282887B (en) | A tapered optical fiber and a method for manufacturing the same | |
RU2236386C2 (en) | Method of manufacturing optic fiber intermediate product | |
JP2003165736A (en) | Method for manufacturing optical fiber preform and device and manufacturing optical fiber preform using it | |
JPWO2002102725A1 (en) | Manufacturing method of glass base material and glass base material | |
US20020083740A1 (en) | Process and apparatus for production of silica grain having desired properties and their fiber optic and semiconductor application | |
JPH04367536A (en) | Production of rare earth elements-containing quartz | |
GB1559768A (en) | Optical fibre preform manufacture | |
JP4565221B2 (en) | Optical fiber preform | |
US20070157674A1 (en) | Apparatus for fabricating optical fiber preform and method for fabricating low water peak fiber using the same | |
JP2002154838A (en) | Method for producing glass preform for optical fiber | |
JP2002249342A (en) | Glass body and method for producing the same | |
JP2005320197A (en) | Apparatus for manufacturing optical fiber preform, and method of manufacturing optical fiber preform | |
WO2024157800A1 (en) | Method for manufacturing optical fiber preform, and optical fiber manufacturing method | |
JP2000128558A (en) | Method for producing quartz glass preform for optical fiber | |
JP2007091579A (en) | Method of manufacturing optical fiber preform | |
JP4252871B2 (en) | Optical fiber preform manufacturing method | |
JP2000344538A (en) | Optical fiber porous preform sintering device | |
JP2022049501A (en) | Manufacturing method of glass base material for optical fiber | |
JP2003321238A (en) | Method and apparatus for producing optical fiber preform | |
US20040007026A1 (en) | Glass base material and method of manufacturing glass base material | |
JPS63315531A (en) | Production of optical fiber preform | |
JP2017043512A (en) | Optical fiber preform manufacturing method, optical fiber manufacturing method, and lens manufacturing method | |
JP2005263555A (en) | Porous glass preform manufacturing method and optical fiber glass preform |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040603 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070411 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070417 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20070821 |