[go: up one dir, main page]

JP2003164903A - Method for manufacturing aluminium foil - Google Patents

Method for manufacturing aluminium foil

Info

Publication number
JP2003164903A
JP2003164903A JP2001364054A JP2001364054A JP2003164903A JP 2003164903 A JP2003164903 A JP 2003164903A JP 2001364054 A JP2001364054 A JP 2001364054A JP 2001364054 A JP2001364054 A JP 2001364054A JP 2003164903 A JP2003164903 A JP 2003164903A
Authority
JP
Japan
Prior art keywords
rolling
foil
hot
temperature
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001364054A
Other languages
Japanese (ja)
Other versions
JP3737744B2 (en
Inventor
Akira Hibino
日比野旭
Toshiki Muramatsu
村松俊樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sky Aluminium Co Ltd
Original Assignee
Sky Aluminium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sky Aluminium Co Ltd filed Critical Sky Aluminium Co Ltd
Priority to JP2001364054A priority Critical patent/JP3737744B2/en
Publication of JP2003164903A publication Critical patent/JP2003164903A/en
Application granted granted Critical
Publication of JP3737744B2 publication Critical patent/JP3737744B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing aluminium foil with good rolling property in a foil rolling mill, which reduces the generation of pinholes in high-speed foil rolling as well as the generation of macro stripes of the foil. <P>SOLUTION: An aluminium alloy ingot, containing Fe of 0.20-0.80%, Si of 0.05-0.30%, Cu of 0.003-0.10% and Mg of 0.01% or less with Fe/Si ratio of 2-10, and containing one kinds or more of Ti of 0.005-0.2% and B of 0.0001-0.005%, after undergoing the soaking at 500°C or higher, starts to be hot-rolled at 360-460°C. In the rough hot-rolling at the stage of the plate thickness of 10-100 mm, at least one pass is carried out with the rate of descent of 50-85% and the distortion speed of 2/sec or more, at the temperature of 340-420°C. The temperature of the finishing hot-rolling is set at 200-330°C. After the hot-rolling, the primary cold rolling is carried out at the rolling rate of 50% or more, and then the batch annealing is carried out at 250-450°C maintained for more than 0.5 hours. Thereafter the secondary cold rolling is carried out. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】 【0001】 【発明が属する技術分野】本発明はアルミニウム箔地の
製造方法に関し、より詳しくは箔圧延機での圧延性が良
好で、高速箔圧延によるピンホールの発生が少なく、し
かも箔地のマクロ筋の少ないアルミニウム箔地を製造す
る方法に関するものである。 【0002】 【従来の技術】アルミニウム箔は5〜200μm程度の
板厚を有し、主として食料品、薬品などの包装用として
利用されており、ポリエチレンやビニール、紙、樹脂な
どと張り合わされて使用されることが多い。従来、この
ような用途のアルミニウム箔にはJIS−1N30、J
IS−1050、JIS−1100などの純アルミニウ
ム系合金が一般的に用いられており、アルミニウム溶湯
から半連続鋳造法によって鋳塊を鋳造し、均質化処理、
熱間圧延および冷間圧延によって0.4〜2.0mm程
度の厚さの板材とした後、中間焼鈍を施し、さらに冷間
圧延によって0.15〜0.60mm程度の厚さの板材
(箔地)とし、その後箔圧延によって5〜200μm程度
の厚さまで箔圧延し、さらに焼鈍処理することが一般的
な製造方法である。なお、品質とコストの要求レベルに
応じて、前述の均質化処理、中間焼鈍などを省略するこ
ともある。 【0003】 【発明が解決しようとする課題】上述のようにアルミニ
ウム箔は食料品、薬品などの包装用として利用されてい
るが、このような用途に使用されるアルミニウム箔は、
大気中の湿気や紫外線から内容物を遮断するという機能
が重要となってくる。しかし、箔は、その製造工程にお
いてピンホールと呼ばれる微小な孔が生じてしまい、こ
のピンホールの個数が多いとそこから侵入した外気や光
により内容物の品質を劣化させるということがある。こ
のため、ピンホールをいかに少なくするかが箔製造の重
要な課題となっている。近年では、生産性を高めるため
に、より高速な箔圧延が行われるようになり、それに伴
って、ピンホールの発生、特に厚さ15μm以下の薄箔
におけるピンホールの発生の増加が問題となっている。
本発明は、厚さ15μm以下の薄箔を高速箔圧延により
製造しても、ピンホールの発生の少ない箔地を提供する
ことを課題としたものである。 【0004】 【課題を解決するための手段】前述のような課題を解決
するべく本発明者が実験・検討を重ねた結果、合金の成
分組成を適切に選択すると同時に、板製造プロセス中に
おいて、均質化処理、熱間圧延、冷間圧延、中間焼鈍な
どの製造工程を適切に組合わせ、特に熱間圧延中におけ
る材料の再結晶挙動を制御することによって、前述の課
題を解決し得ることを見出し、この発明をなすに至っ
た。 【0005】具体的には、請求項1記載の通り、Fe:
0.20〜0.80%、Si:0.05〜0.30%、
Cu:0.003〜0.1%、Mg:0.01%以下を
含み、Fe/Si=2〜10の関係を満たし、さらにT
i:0.005〜0.2、B:0.0001〜0.05
のうちから選ばれた1種または2種を含有し、残部がA
lおよび不可避的不純物よりなる合金を鋳塊にして、5
00℃以上の温度で均質化処理を行った後、360℃〜
460℃の温度範囲で熱間圧延を開始し、板厚10〜1
00mm段階の熱間粗圧延において少なくとも一回は1
パスの圧下率を50%〜85%、この時の歪み速度を2
/sec以上、温度を340〜420℃とし、熱間仕上
圧延の上り温度を200〜330℃とした熱間圧延を施
し、その後1次冷間圧延を圧延率50%以上で行い、中
間焼鈍は250〜450℃、0.5h以上保持のバッチ
焼鈍で行い、その後2次冷間圧延を施すことを特徴とす
るマクロ筋が少なく、高速の箔圧延を行ってもピンホー
ルの発生の少ないAl−Fe系箔地の製造方法である。 【0006】 【発明の実施の形態】本発明者等は、熱延段階の10〜
100mm板厚において再結晶が不充分であると、熱延
板に強いマクロ筋が形成され、このようなマクロ筋の強
い板を中間焼鈍すると、マクロ筋のところに対応して粗
大な結晶粒が生じる恐れがあり、このような著しく不均
一な結晶粒組織は耐ピンホール性に劣ることを見出し
た。このようなマクロ筋を抑制し、ピンホールの発生の
少ない箔地を提供する方法が本発明である。 【0007】先ずこの発明の合金成分組成の限定理由に
ついて説明する。 【0008】Fe:Feはこの発明で基本となる合金元
素であって、AlとあるいはAlとSiと金属間化合物
を作り、結晶粒の微細化と強度向上に寄与する重要な元
素である。本発明においては0.20〜0.80%と多
めに添加することにより、Feの固溶と析出、金属間化
合物のサイズと分布をコントロールして、マトリクス中
にFe系金属間化合物を多く分散させて、再結晶の核生
成サイトを増やし、これにより結晶粒の微細化を図り、
耐ピンホール性を向上させるものである。Fe量が0.
2%未満では結晶粒の微細化が困難となる。逆に0.8
%を越えると箔圧延性が劣る。 【0009】Si:Siはこの発明で基本となる合金元
素であって、Al・Feと金属間化合物を作り、結晶粒
の微細化に寄与する。また、SiはFeの析出を促進
し、再結晶挙動に影響をおよぼす。Si量が0.05%
未満では、Feの析出が不充分となり、熱間圧延中に起
きる再結晶が遅延され、マクロ筋が形成されやすい。一
方、0.3%を越えるとSiの量が多すぎで、耐ピンホ
ール性が低下する。 【0010】Fe/SiFeとSiの比率Fe/Siが
2未満では微細な再結晶粒組織が得られないおそれがあ
り、、また10を越えると箔圧延しにくくなると共にピ
ンホールが発生しやすくなるという問題がある。従っ
て、Fe/Siは2〜10の範囲とする。 【0011】Cu:Cuはこの発明で基本となる合金元
素であって、特に強度向上、箔圧延中の材料軟化を防止
するための重要な元素である。ただし0.003%以下
では、材料軟化を防ぐ効果がなく、0.1%越えると、
加工硬化が進みやすく、耐ピンホール性が低下する。 【0012】Mg:Mgは微量な含有でも箔と樹脂・ビ
ニールなどとの接着性を低下させる作用があるため、
0.01%以下に規制する必要がある。 【0013】Ti、B:通常のアルミニウム合金におい
ては、鋳塊結晶粒微細化のためにTi、あるいはTiお
よびBを微量添加することが行なわれており、この発明
においても微量のTi、もしくはTiおよびBを添加す
る。但しTi量が0.005%未満ではその効果が得ら
れず、0.20%を越えれば巨大なAl−Ti系金属間
化合物が晶出して耐ピンホール性が低下するため、Ti
量は0.005〜0.20%の範囲とした。またTiと
ともにBを添加すれば鋳塊結晶粒微細化の効果が向上す
る。但しTiと併せてBを添加する場合、B量が0.0
001%未満ではその効果がなく、0.05%を越えれ
ばTi−B系の粗大粒子が混入して耐ピンホール性を劣
化させることからBは0.0001〜0.05%の範囲
とした。 【0014】そのほかのMn、Cr、Zn、Zr、Vな
どの不純物元素は個々0.05以下に規制すれば、本発
明の効果を妨げない。 【0015】次に製造工程について説明する。本発明者
等は、中間焼鈍時の結晶粒度が、熱間圧延の工程と密接
な関係があることを見出した。すなわち、熱延段階の1
0〜100mm板厚において再結晶が不充分であると、
熱延板に強いマクロ筋が形成される。このようなマクロ
筋の強い板を中間焼鈍すると、マクロ筋のところに対応
して、粗大な結晶粒が生じる恐れがあり、このような著
しく不均一な結晶粒組織は耐ピンホール性に劣ることが
判明した。そこで、以下のように製造条件を規定する。 【0016】均質化処理:均質化処理は鋳造時に生じた
元素の偏析を無くすだけでなく、Fe、Siの固溶と析
出およびこれらの金属間化合物のサイズと分布を調整
し、耐ピンホール性の向上に効果がある。ただし500
℃未満では上記の効果が不十分である。また、上限は特
に規制しないが、通常は共晶融解が起きない温度範囲6
30℃以下とする。 【0017】熱間圧延条件:熱間圧延は機械的性質、表
面品質、耐ピンホール性にとって重要な工程であり、そ
の条件を特定の範囲に限定することが必須である。熱間
圧延開始温度360℃より低い場合は熱間圧延中の再結
晶が抑制され、マクロ筋が形成されやすく、耐ピンホー
ル性が悪化する。一方460℃を越える温度で熱間圧延
開始する場合は、熱延中に形成された結晶粒が大きくな
り、耐ピンホールが低下する。したがって360〜46
0℃の範囲に制御する。さらに耐ピンホール性の向上と
マクロ筋を低減するためには、熱間圧延中、特に10m
m〜100mm板厚の熱間粗圧延において、微細な再結
晶を起こさせることが重要であり、そのためにこの段階
における圧下率、歪み速度、温度などを適切に制御する
ことが不可欠である。圧下率が50%未満では、微細な
再結晶粒が得られ難い。一方、85%を越えると、圧延
負荷が大きく、しかも表面品質が低下する。従って1パ
スの圧下率は50〜85%とする。またこの時の歪み速
度が2/sec未満では、微細な再結晶粒が得られ難
い。従って歪み速度は2/sec以上とする。なお上限
は規制しないが、表面品質などを考慮して、通常20/
sec以下に制御する。温度が340℃未満では、再結
晶の進行が不充分でマクロ筋が形成されやすい。一方、
420℃を越えると、微細な結晶粒が得られ難い。従っ
て、340〜420℃の温度範囲にする必要がある。熱
間圧延終了温度は、330℃を越える場合は不均一な粗
大結晶粒が形成される恐れがあり、200℃未満では潤
滑不良や水腐食が発生する恐れがあることから、200
〜330℃の範囲とした。 【0018】中間焼鈍前の一次冷間圧延:50%以上の
冷間圧延率は中間焼鈍時に微細な結晶粒を得るために必
要である。50%未満では、冷間歪みの蓄積が不充分
で、中間焼鈍時の結晶粒が粗くなりやすく、耐ピンホー
ル性が低下する。 【0019】中間焼鈍条件:材料を完全に再結晶させ、
適切な材料強度を調整するとともに、Fe、Siの析出
を促進し、耐ピンホール性の向上に不可欠の工程であ
る。中間焼鈍はバッチ炉で行う。250℃未満では再結
晶が進行し難く、完全再結晶になるまで時間がかかりす
ぎてコスト増を招く。逆に450℃を越える温度では、
結晶粒が粗大化するだけではなく、表面酸化皮膜が厚く
形成され、塗膜・フィルムとの密着性を低下させる恐れ
がある。酸化皮膜の形成を抑制するためには430℃以
下の温度で、且つ、不活性ガス雰囲気中の焼鈍が好まし
い。処理時間が0.5h未満では、均一な再結晶組織が
得られないおそれがある。保持時間の上限を規制しない
が、経済性を顧慮して通常は24h以内である。その
後、2次冷間圧延を施して、箔地とする。そして、この
箔地を箔圧延して箔製品とする。 【0020】以上のようにして得られた箔地は、一般の
箔圧延だけでなく、最終箔圧延速度(最終パス)が40
0mpm以上の高速箔圧延で、厚さの薄い5.5〜7.
0μmの薄箔に圧延するという過酷な条件においても、
ピンホールの発生の少ない箔を得ることができる耐ピン
ホール性に優れた箔地である。 【0021】 【実施例】表1に示す本発明成分組成範囲内の合金記号
A1〜A3合金、および本発明成分組成範囲外の合金記
号B1の合金について、それぞれ常法に従ってDC鋳造
法により鋳造し、得られた鋳塊に均質化処理を施してか
ら、熱間圧延を開始し、続いて冷間圧延を行い、途中に
バッチ方式で中間焼鈍を行って、冷間圧延して箔地を得
た。詳細な条件は表2、3に示す。 【0022】 【表1】 【0023】 【表2】 【0024】 【表3】 【0025】以上のように得られた箔地について、目視
によってマクロ筋の有無を判定した。なおマクロ筋の見
えないものを「良好」とした。さらにこの箔地を表4に
示す各厚さまで箔圧延を行い、得られた箔について、暗
室でも目視観察によってピンホールの数を調べた。その
結果を表4に示す。 【0026】 【表4】 【0027】1,2,3は本発明合金成分と本発明製造
方法であり、1,2,3はいずれもマクロ筋が弱く、ピ
ンホールの数が極端に少なく、耐ピンホール性が良好で
ある。これに対して、4は本発明合金成分であるが、製
造条件は本発明範囲から外れており、10〜100mm
板厚段階の粗熱延においてワン・パスの圧下率が小さ
く、材料温度も低いため、マクロ筋が強く、ピンホール
の数も多かった。また5は製造方法は本発明範囲内であ
るが、合金成分がCu含有量が高く本発明範囲から外れ
ているため、本発明の方法で行っても、耐ピンホール性
が悪い。 【0028】 【発明の効果】以上述べたように、本発明による箔地は
15μm以下の薄さまで箔圧延した時、特に高速箔圧延
機により高速圧延を行った場合においてもピンホールの
発生が少なく、従って食品包装などの用途に使用した場
合でも高いバリヤー性を示すものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an aluminum foil, and more particularly, the rollability is good in a foil rolling mill and pinholes are generated by high-speed foil rolling. The present invention relates to a method for manufacturing an aluminum foil having a small amount of macro streaks. [0002] Aluminum foil has a thickness of about 5 to 200 μm and is mainly used for packaging foodstuffs, medicines, etc., and is used by being bonded to polyethylene, vinyl, paper, resin, etc. Often done. Conventionally, aluminum foils for such applications include JIS-1N30, J
Pure aluminum alloys such as IS-1050 and JIS-1100 are generally used, casting ingots from molten aluminum by a semi-continuous casting method, homogenizing treatment,
A plate material having a thickness of about 0.4 to 2.0 mm by hot rolling and cold rolling, then subjected to intermediate annealing, and further a plate material having a thickness of about 0.15 to 0.60 mm by cold rolling.
It is a common manufacturing method to form (foil), then foil-roll to a thickness of about 5 to 200 μm by foil rolling, and further anneal. Note that the above-described homogenization treatment, intermediate annealing, and the like may be omitted depending on the required levels of quality and cost. As described above, aluminum foil is used for packaging foodstuffs, medicines, etc., and aluminum foil used for such applications is:
The function of shielding the contents from atmospheric moisture and ultraviolet rays becomes important. However, a minute hole called a pinhole is generated in the manufacturing process of the foil, and if the number of the pinhole is large, the quality of the contents may be deteriorated by the outside air or light entering from the pinhole. For this reason, how to reduce pinholes is an important issue in foil production. In recent years, in order to increase productivity, higher-speed foil rolling has been performed, and accompanying this, the occurrence of pinholes, especially the increase in the occurrence of pinholes in thin foils with a thickness of 15 μm or less has become a problem. ing.
An object of the present invention is to provide a foil having less pinholes even when a thin foil having a thickness of 15 μm or less is produced by high-speed foil rolling. As a result of the inventor's repeated experiments and studies to solve the above-described problems, the alloy composition is appropriately selected, and at the same time, during the plate manufacturing process, Appropriate combination of manufacturing processes such as homogenization, hot rolling, cold rolling, and intermediate annealing, and in particular, by controlling the recrystallization behavior of the material during hot rolling, the problem described above can be solved. The headline and the present invention were made. Specifically, as described in claim 1, Fe:
0.20 to 0.80%, Si: 0.05 to 0.30%,
Cu: 0.003 to 0.1%, Mg: 0.01% or less, satisfying the relationship of Fe / Si = 2 to 10, and T
i: 0.005-0.2, B: 0.0001-0.05
1 type or 2 types selected from among them, with the balance being A
1 and an alloy consisting of inevitable impurities is made into an ingot.
After performing homogenization at a temperature of 00 ° C. or higher, 360 ° C. to
Hot rolling is started at a temperature range of 460 ° C.
At least once in hot rough rolling in the 00mm stage
Pass reduction ratio of 50% to 85%, distortion rate at this time is 2
/ Sec or more, the temperature is set to 340 to 420 ° C., the hot temperature of the hot finish rolling is set to 200 to 330 ° C., and then the primary cold rolling is performed at a rolling rate of 50% or more. Al- with less macro streak, characterized by performing batch annealing at 250 to 450 ° C. and holding for 0.5 h or more, followed by secondary cold rolling, and low pinholes even when high speed foil rolling is performed It is a manufacturing method of Fe-type foil. DETAILED DESCRIPTION OF THE INVENTION The present inventors have described 10 to 10 in the hot rolling stage.
If recrystallization is insufficient at a thickness of 100 mm, strong macro streaks are formed on the hot-rolled sheet, and if such a plate with strong macro streaks is subjected to intermediate annealing, coarse crystal grains corresponding to the macro streaks are formed. It has been found that such a remarkably non-uniform grain structure is inferior in pinhole resistance. The present invention provides a method for suppressing such macro streak and providing a foil with less pinholes. First, the reasons for limiting the alloy component composition of the present invention will be described. Fe: Fe is an alloying element which is a basic element of the present invention, and is an important element that forms an intermetallic compound with Al or Al and Si and contributes to refinement of crystal grains and improvement of strength. In the present invention, by adding a large amount of 0.20 to 0.80%, the solid solution and precipitation of Fe, the size and distribution of intermetallic compounds are controlled, and a large amount of Fe-based intermetallic compounds are dispersed in the matrix. To increase the number of nucleation sites for recrystallization.
It improves pinhole resistance. Fe amount is 0.
If it is less than 2%, it is difficult to refine the crystal grains. Conversely, 0.8
If it exceeds 50%, the foil rollability is inferior. Si: Si is an alloy element which is the basis of the present invention, and forms an intermetallic compound with Al.Fe and contributes to refinement of crystal grains. Moreover, Si accelerates the precipitation of Fe and affects the recrystallization behavior. Si amount is 0.05%
If it is less than 1, precipitation of Fe becomes insufficient, recrystallization that occurs during hot rolling is delayed, and macro streaks are likely to be formed. On the other hand, if it exceeds 0.3%, the amount of Si is too much and pinhole resistance is lowered. If the ratio Fe / Si of Fe / SiFe to Si is less than 2, a fine recrystallized grain structure may not be obtained, and if it exceeds 10, foil rolling becomes difficult and pinholes are likely to occur. There is a problem. Therefore, Fe / Si is set to a range of 2 to 10. Cu: Cu is an alloying element that is the basis of the present invention, and is an important element for improving strength and preventing material softening during foil rolling. However, if it is 0.003% or less, there is no effect of preventing material softening, and if it exceeds 0.1%,
Work hardening is easy to proceed and pinhole resistance decreases. Mg: Mg has the effect of reducing the adhesion between the foil and the resin / vinyl even if contained in a small amount.
It is necessary to regulate to 0.01% or less. Ti, B: In a normal aluminum alloy, a small amount of Ti or Ti and B is added for refining ingot crystal grains. In this invention, a small amount of Ti or Ti is also added. And B are added. However, if the amount of Ti is less than 0.005%, the effect cannot be obtained, and if it exceeds 0.20%, a huge Al—Ti intermetallic compound is crystallized and pinhole resistance is lowered.
The amount was in the range of 0.005 to 0.20%. Moreover, if B is added together with Ti, the effect of ingot crystal grain refinement is improved. However, when adding B together with Ti, the amount of B is 0.0.
If it is less than 001%, the effect is not obtained, and if it exceeds 0.05%, Ti-B coarse particles are mixed and the pinhole resistance is deteriorated. Therefore, B is set in the range of 0.0001 to 0.05%. . If other impurity elements such as Mn, Cr, Zn, Zr, and V are restricted to 0.05 or less, the effect of the present invention is not hindered. Next, the manufacturing process will be described. The present inventors have found that the crystal grain size during the intermediate annealing is closely related to the hot rolling process. That is, 1 in the hot rolling stage
If recrystallization is insufficient at 0-100 mm plate thickness,
Strong macro streaks are formed on the hot-rolled sheet. If such a plate with strong macro streak is subjected to intermediate annealing, coarse crystal grains may be generated corresponding to the macro streak, and such extremely uneven crystal grain structure is inferior in pinhole resistance. There was found. Therefore, the manufacturing conditions are defined as follows. Homogenization treatment: Homogenization treatment not only eliminates the segregation of elements generated during casting, but also adjusts the solid solution and precipitation of Fe and Si and the size and distribution of these intermetallic compounds, thereby preventing pinhole resistance. It is effective in improving. However, 500
If it is less than 0 ° C., the above effect is insufficient. Further, the upper limit is not particularly limited, but a temperature range in which eutectic melting does not normally occur 6
It shall be 30 degrees C or less. Hot rolling conditions: Hot rolling is an important process for mechanical properties, surface quality, and pinhole resistance, and it is essential to limit the conditions to a specific range. When the hot rolling start temperature is lower than 360 ° C., recrystallization during hot rolling is suppressed, macro streaks are easily formed, and pinhole resistance is deteriorated. On the other hand, when hot rolling is started at a temperature exceeding 460 ° C., the crystal grains formed during hot rolling become large and pinhole resistance is reduced. Therefore 360-46
Control within the range of 0 ° C. Furthermore, in order to improve pinhole resistance and reduce macro streak, during hot rolling, especially 10m
In hot rough rolling with a thickness of m to 100 mm, it is important to cause fine recrystallization. Therefore, it is indispensable to appropriately control the reduction ratio, strain rate, temperature, and the like at this stage. If the rolling reduction is less than 50%, it is difficult to obtain fine recrystallized grains. On the other hand, if it exceeds 85%, the rolling load is large and the surface quality is deteriorated. Therefore, the rolling reduction for one pass is 50 to 85%. If the strain rate at this time is less than 2 / sec, it is difficult to obtain fine recrystallized grains. Accordingly, the strain rate is 2 / sec or more. Although the upper limit is not restricted, it is usually 20 /
Control to less than sec. If the temperature is lower than 340 ° C., the recrystallization proceeds insufficiently and macro streaks are likely to be formed. on the other hand,
If it exceeds 420 ° C., it is difficult to obtain fine crystal grains. Therefore, it is necessary to make it the temperature range of 340-420 degreeC. If the hot rolling end temperature exceeds 330 ° C., non-uniform coarse crystal grains may be formed. If it is less than 200 ° C., lubrication failure or water corrosion may occur.
It was set as the range of -330 degreeC. Primary cold rolling before intermediate annealing: A cold rolling rate of 50% or more is necessary to obtain fine crystal grains during intermediate annealing. If it is less than 50%, cold strain accumulation is insufficient, crystal grains during intermediate annealing tend to be coarse, and pinhole resistance is lowered. Intermediate annealing conditions: The material is completely recrystallized,
It is an indispensable process for improving pinhole resistance by adjusting appropriate material strength and promoting precipitation of Fe and Si. Intermediate annealing is performed in a batch furnace. If it is less than 250 ° C., recrystallization hardly proceeds and it takes too much time until complete recrystallization occurs, resulting in an increase in cost. Conversely, at temperatures above 450 ° C,
In addition to coarsening of the crystal grains, a thick surface oxide film may be formed, which may reduce the adhesion to the coating film / film. In order to suppress the formation of an oxide film, annealing at a temperature of 430 ° C. or lower and in an inert gas atmosphere is preferable. If the treatment time is less than 0.5 h, a uniform recrystallized structure may not be obtained. Although the upper limit of the holding time is not regulated, it is usually within 24 hours in consideration of economy. Thereafter, secondary cold rolling is performed to obtain a foil. And this foil is rolled into a foil product. The foil obtained as described above has a final foil rolling speed (final pass) of 40 as well as general foil rolling.
Thin thickness of 5.5 to 7 by high speed foil rolling at 0 mpm or more.
Even under the harsh conditions of rolling to a thin foil of 0 μm,
The foil is excellent in pinhole resistance and can provide a foil with less pinholes. EXAMPLE Alloys A1 to A3 within the composition range of the present invention shown in Table 1 and alloys with alloy code B1 outside the composition range of the present invention are cast by DC casting according to conventional methods. After the homogenization treatment was performed on the resulting ingot, hot rolling was started, followed by cold rolling, intermediate annealing in the middle of the batch, and cold rolling to obtain a foil. It was. Detailed conditions are shown in Tables 2 and 3. [Table 1] [Table 2] [Table 3] The foil obtained as described above was visually checked for the presence of macro streaks. In addition, the thing which does not see a macro streak was made "good". Further, the foil was rolled to each thickness shown in Table 4, and the number of pinholes was examined by visual observation in the dark about the obtained foil. The results are shown in Table 4. [Table 4] 1, 2 and 3 are the alloy components of the present invention and the production method of the present invention. Each of 1, 2 and 3 has a weak macro streak, an extremely small number of pinholes, and good pinhole resistance. is there. On the other hand, 4 is an alloy component of the present invention, but the manufacturing conditions are out of the scope of the present invention, and 10 to 100 mm.
In rough hot rolling at the plate thickness stage, the one-pass rolling reduction was small and the material temperature was low, so the macro streaks were strong and the number of pinholes was large. In addition, although the production method 5 is within the scope of the present invention, since the alloy component is high in Cu content and deviates from the scope of the present invention, the pinhole resistance is poor even when the method of the present invention is used. As described above, the foil according to the present invention is less likely to have pinholes when it is rolled to a thickness of 15 μm or less, especially when it is rolled at high speed by a high speed foil rolling machine. Therefore, even when used for food packaging or the like, it exhibits a high barrier property.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/00 682 C22F 1/00 682 683 683 686 686A 691 691B 694 694A 694B Front page continuation (51) Int.Cl. 7 Identification symbol FI Theme code (reference) C22F 1/00 682 C22F 1/00 682 683 683 686 686A 691 691B 694 694A 694B

Claims (1)

【特許請求の範囲】 【請求項1】 Fe:0.20〜0.80%、Si:
0.05〜0.30%、Cu:0.003〜0.1%、
Mg:0.01%以下を含み、Fe/Si=2〜10の
関係を満たし、さらにTi:0.005〜0.2、B:
0.0001〜0.05のうちから選ばれた1種または
2種を含有し、残部がAlおよび不可避的不純物よりな
る合金を鋳塊にして、500℃以上の温度で均質化処理
を行った後、360℃〜460℃の温度範囲で熱間圧延
を開始し、板厚10〜100mm段階の熱間粗圧延にお
いて少なくとも一回は1パスの圧下率を50%〜85
%、この時の歪み速度を2/sec以上、温度を340
〜420℃とし、熱間仕上圧延の上り温度を200〜3
30℃とした熱間圧延を施し、その後1次冷間圧延を圧
延率50%以上で行い、中間焼鈍は250〜450℃、
0.5h以上保持のバッチ焼鈍で行い、その後2次冷間
圧延を施すことを特徴とするマクロ筋が少なく、高速の
箔圧延を行ってもピンホールの発生の少ないAl−Fe
系箔地の製造方法。
Claims: 1. Fe: 0.20-0.80%, Si:
0.05 to 0.30%, Cu: 0.003 to 0.1%,
Mg: 0.01% or less, satisfying the relationship of Fe / Si = 2 to 10, Ti: 0.005 to 0.2, B:
An alloy containing one or two selected from 0.0001 to 0.05, with the balance being Al and inevitable impurities, was ingot, and homogenized at a temperature of 500 ° C. or higher. Thereafter, hot rolling is started in a temperature range of 360 ° C. to 460 ° C., and the rolling reduction of one pass is 50% to 85 at least once in the hot rough rolling at a thickness of 10 to 100 mm.
%, The strain rate at this time is 2 / sec or more, and the temperature is 340
˜420 ° C., and the finishing temperature of hot finish rolling is 200 to 3
Hot rolling was performed at 30 ° C., and then primary cold rolling was performed at a rolling rate of 50% or more, and intermediate annealing was performed at 250 to 450 ° C.
Al-Fe with few macro streaks, characterized by batch annealing for 0.5 h or more, followed by secondary cold rolling, and low pinholes even at high speed foil rolling
A manufacturing method of a foil-based fabric.
JP2001364054A 2001-11-29 2001-11-29 Method for manufacturing aluminum foil Expired - Fee Related JP3737744B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001364054A JP3737744B2 (en) 2001-11-29 2001-11-29 Method for manufacturing aluminum foil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001364054A JP3737744B2 (en) 2001-11-29 2001-11-29 Method for manufacturing aluminum foil

Publications (2)

Publication Number Publication Date
JP2003164903A true JP2003164903A (en) 2003-06-10
JP3737744B2 JP3737744B2 (en) 2006-01-25

Family

ID=19174295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001364054A Expired - Fee Related JP3737744B2 (en) 2001-11-29 2001-11-29 Method for manufacturing aluminum foil

Country Status (1)

Country Link
JP (1) JP3737744B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006312768A (en) * 2005-05-09 2006-11-16 Sumitomo Light Metal Ind Ltd Aluminum alloy foil with excellent corrosion resistance and strength and method for producing the same
JP2016204683A (en) * 2015-04-16 2016-12-08 三菱アルミニウム株式会社 Aluminum foil for PTP and method for producing the same
CN110423920A (en) * 2019-09-05 2019-11-08 江苏大亚铝业有限公司 Flexible package low pin hole thin Al foil and its production technology
CN114214545A (en) * 2021-12-14 2022-03-22 江苏鼎胜新能源材料股份有限公司 Aluminum material for new energy lithium battery high-corrosion-resistance cover plate and preparation method thereof
CN114226459A (en) * 2021-12-14 2022-03-25 邹平宏发铝业科技有限公司 Production method of 5-series aluminum alloy strip
CN114517266A (en) * 2022-01-27 2022-05-20 晟通科技集团有限公司 Aluminum titanium foil

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006312768A (en) * 2005-05-09 2006-11-16 Sumitomo Light Metal Ind Ltd Aluminum alloy foil with excellent corrosion resistance and strength and method for producing the same
JP2016204683A (en) * 2015-04-16 2016-12-08 三菱アルミニウム株式会社 Aluminum foil for PTP and method for producing the same
CN110423920A (en) * 2019-09-05 2019-11-08 江苏大亚铝业有限公司 Flexible package low pin hole thin Al foil and its production technology
CN114214545A (en) * 2021-12-14 2022-03-22 江苏鼎胜新能源材料股份有限公司 Aluminum material for new energy lithium battery high-corrosion-resistance cover plate and preparation method thereof
CN114226459A (en) * 2021-12-14 2022-03-25 邹平宏发铝业科技有限公司 Production method of 5-series aluminum alloy strip
CN114214545B (en) * 2021-12-14 2022-06-17 江苏鼎胜新能源材料股份有限公司 Aluminum material for new energy lithium battery high-corrosion-resistance cover plate and preparation method thereof
CN114226459B (en) * 2021-12-14 2024-02-09 邹平宏发铝业科技有限公司 A production method of 5 series aluminum alloy strip
CN114517266A (en) * 2022-01-27 2022-05-20 晟通科技集团有限公司 Aluminum titanium foil

Also Published As

Publication number Publication date
JP3737744B2 (en) 2006-01-25

Similar Documents

Publication Publication Date Title
JPWO2005056859A1 (en) Method for producing Al-Mg-Si alloy plate excellent in bake hardness and hemmability
JP6719219B2 (en) High strength aluminum alloy sheet excellent in formability and method for producing the same
JP2009221567A (en) Aluminum alloy sheet for positive pressure coated can lid, and method for producing the same
JPH0118979B2 (en)
JP2007031819A (en) Method for producing aluminum alloy plate
JP7442304B2 (en) Aluminum alloy rolled material with excellent thermal conductivity, electrical conductivity, and strength, and its manufacturing method
JP3767492B2 (en) Method for producing aluminum flexible foil
JP3845312B2 (en) Aluminum alloy plate for forming and method for producing the same
JPH0931616A (en) Al-Mg-Si alloy plate excellent in formability and method for producing the same
JP3849095B2 (en) Aluminum alloy plate for forming and method for producing the same
KR102563406B1 (en) 2xxx aluminum alloys, and methods for producing the same
JP3737744B2 (en) Method for manufacturing aluminum foil
JP7432352B2 (en) Aluminum alloy plate for cap material and its manufacturing method
JPH05112840A (en) Bake hardenable Al-Mg-Si alloy plate excellent in press formability and method for producing the same
EP0846781B1 (en) Process of forming an aluminium sheet with excellent high speed superplastic formability
JP2001032031A (en) Aluminum alloy sheet for structural material, excellent in stress corrosion cracking resistance
JPS62207850A (en) Rolled aluminum alloy sheet for forming and its production
JPH0978168A (en) Aluminum alloy sheet
JP2595836B2 (en) Aluminum alloy sheet for press forming excellent in curability by low-temperature baking and method for producing the same
JPS62149857A (en) Method for producing aluminum alloy foil with excellent formability
JP2004076155A (en) Aluminum alloy sheet with excellent anti-seizure resistance
JPH11217656A (en) Production of aluminum alloy foil excellent in foil rollability
JP2002105574A (en) Aluminum alloy hard sheet for can peever and its production method
JP2862198B2 (en) Aluminum alloy plate for DI can body
JP3808276B2 (en) Aluminum alloy foil and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051027

R150 Certificate of patent or registration of utility model

Ref document number: 3737744

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081104

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees