[go: up one dir, main page]

JP2003161279A - Rotary compressor - Google Patents

Rotary compressor

Info

Publication number
JP2003161279A
JP2003161279A JP2001359131A JP2001359131A JP2003161279A JP 2003161279 A JP2003161279 A JP 2003161279A JP 2001359131 A JP2001359131 A JP 2001359131A JP 2001359131 A JP2001359131 A JP 2001359131A JP 2003161279 A JP2003161279 A JP 2003161279A
Authority
JP
Japan
Prior art keywords
plug
cylinder
rotary compressor
rotary
vane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001359131A
Other languages
Japanese (ja)
Other versions
JP3762690B2 (en
Inventor
Kazuya Sato
里  和哉
Kenzo Matsumoto
兼三 松本
Masaru Matsuura
大 松浦
Takayasu Saito
隆泰 斎藤
Masaya Tadano
昌也 只野
Haruhisa Yamazaki
晴久 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2001359131A priority Critical patent/JP3762690B2/en
Priority to TW091116969A priority patent/TW568996B/en
Priority to CNB2005100966959A priority patent/CN100390421C/en
Priority to CNB021422982A priority patent/CN1245600C/en
Priority to US10/288,586 priority patent/US6732542B2/en
Priority to EP20020257672 priority patent/EP1312880A3/en
Priority to KR1020020071461A priority patent/KR100889202B1/en
Publication of JP2003161279A publication Critical patent/JP2003161279A/en
Application granted granted Critical
Publication of JP3762690B2 publication Critical patent/JP3762690B2/en
Priority to KR1020080098428A priority patent/KR100908376B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • F01C21/0809Construction of vanes or vane holders
    • F01C21/0818Vane tracking; control therefor
    • F01C21/0827Vane tracking; control therefor by mechanical means
    • F01C21/0845Vane tracking; control therefor by mechanical means comprising elastic means, e.g. springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rotary compressor capable of providing a plug for preventing the falling of a spring member in a prescribed position and also preventing the deformation of a cylinder. <P>SOLUTION: This rotary compressor comprises a roller 46 fitted to an upper cylinder 38 for constituting the rotary compressing element 34 of the rotary compressor and an eccentric part formed on the rotating shaft of an electric element and eccentrically rotated within the upper cylinder; a vane 50 allowed to abut on the roller to partition the upper cylinder inner part to a low-pressure chamber side and a high-pressure chamber side; a spring 76 for regularly energizing the vane to the roller side; a housing part 70A for the spring formed on the upper cylinder and opened to the vane side and a sealed casing 12 side; and a plug 137 located on the sealed casing side of the spring and inserted into the housing part by clearance-fitting. A locking part 201 on which the plug 137 abuts in a prescribed position is formed on the inner wall of the housing part 70A located on the spring 76 side of the plug 137. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、密閉容器内に電動
要素と、この電動要素にて駆動される第1及び第2の回
転圧縮要素を備え、第1の回転圧縮要素で圧縮されたガ
スを密閉容器内に吐出し、更にこの吐出された中間圧の
ガスを第2の回転圧縮要素で圧縮するロータリコンプレ
ッサに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention comprises an electric element in a closed container and first and second rotary compression elements driven by the electric element, and a gas compressed by the first rotary compression element. The present invention relates to a rotary compressor that discharges a gas having a medium pressure into a closed container and further compresses the discharged intermediate-pressure gas by a second rotary compression element.

【0002】[0002]

【従来の技術】従来のこの種ロータリコンプレッサ、特
に、内部中間圧型多段圧縮式のロータリコンプレッサで
は、第1の回転圧縮要素の吸込ポートから冷媒ガスがシ
リンダの低圧室側に吸入され、ローラとベーンの動作に
より圧縮されて中間圧となりシリンダの高圧室側より吐
出ポート、吐出消音室を経て密閉容器内に吐出される。
そして、この密閉容器内の中間圧の冷媒ガスは第2の回
転圧縮要素の吸込ポートからシリンダの低圧室側に吸入
され、ローラとベーンの動作により2段目の圧縮が行な
われて高温高圧の冷媒ガスとなり、高圧室側より吐出ポ
ート、吐出消音室を経て吐出される。そして、この吐出
された冷媒ガスは、例えば給湯装置の場合には、その後
放熱器に流入し、放熱した後、膨張弁で絞られて蒸発器
で吸熱し、第1の回転圧縮要素に吸入されるサイクルを
繰り返す。
2. Description of the Related Art In a conventional rotary compressor of this type, in particular, an internal intermediate pressure type multi-stage compression type rotary compressor, a refrigerant gas is sucked into a low pressure chamber side of a cylinder from a suction port of a first rotary compression element, and a roller and a vane. Is compressed to an intermediate pressure and discharged from the high pressure chamber side of the cylinder into the closed container through the discharge port and the discharge muffling chamber.
Then, the intermediate pressure refrigerant gas in the closed container is sucked into the low pressure chamber side of the cylinder from the suction port of the second rotary compression element, and the second stage compression is performed by the operation of the roller and the vane, so that the high temperature and high pressure is achieved. The refrigerant gas is discharged from the high pressure chamber side through the discharge port and the discharge muffling chamber. Then, for example, in the case of a hot water supply device, the discharged refrigerant gas then flows into the radiator, radiates heat, is throttled by the expansion valve, absorbs heat in the evaporator, and is sucked into the first rotary compression element. Repeat the cycle.

【0003】係るロータリコンプレッサに、高低圧差の
大きい冷媒、例えば炭酸ガスの一例としての二酸化炭素
(CO2)を冷媒として用いた場合、吐出冷媒圧力は高
圧となる第2の回転圧縮要素で12MPaGに達し、一
方、低段側となる第1の回転圧縮要素で8MPaG(中
間圧)となる(第1の回転圧縮要素の吸込圧力は4MP
aG)。
When a refrigerant having a large difference in high pressure and low pressure, for example, carbon dioxide (CO 2 ) as an example of carbon dioxide gas is used as a refrigerant in the rotary compressor, the pressure of the discharged refrigerant becomes 12 MPaG in the second rotary compression element which becomes high pressure. On the other hand, the pressure becomes 8 MPaG (intermediate pressure) in the first rotary compression element on the low stage side (the suction pressure of the first rotary compression element is 4 MP).
aG).

【0004】[0004]

【発明が解決しようとする課題】このようなロータリコ
ンプレッサに取り付けられたベーンは、シリンダの半径
方向に設けられた溝にシリンダの半径方向に移動自在に
挿入されている。そして、ベーンの後側(密閉容器側)
にシリンダの外側に開口するスプリング孔(収納部)を
設け、このスプリング孔にベーンを常時ローラ側に付勢
するコイルスプリング(バネ部材)を挿入し、シリンダ
外側の開口からスプリング孔にOリングを挿入した後、
プラグ(抜け止め)で閉塞してスプリングの飛び出しを
防いでいた。
The vane attached to such a rotary compressor is inserted in a groove provided in the radial direction of the cylinder so as to be movable in the radial direction of the cylinder. And behind the vane (closed container side)
A spring hole (storage part) that opens to the outside of the cylinder is provided in this cylinder, and a coil spring (spring member) that constantly biases the vane toward the roller is inserted into this spring hole. After inserting
It was blocked by a plug (retainer) to prevent the spring from jumping out.

【0005】この場合、ローラの偏心回転によってプラ
グはスプリング孔から外側に押し出される方向の力を受
けることになる。特に、内部中間圧型のロータリコンプ
レッサでは、密閉容器内が第2の回転圧縮要素のシリン
ダ内よりも低圧となるため、シリンダ内外の圧力差によ
ってもプラグは押し出されるかたちとなる。そのため、
従来ではプラグをスプリング孔に圧入することでシリン
ダに固定していたが、この圧入によってシリンダが膨ら
むように変形してしまい、シリンダの開口面を塞ぐ支持
部材(軸受け)との間に隙間ができて、シリンダ内のシ
ール性が確保できなくなり、性能が低下してしまうと云
う問題が発生していた。
In this case, the eccentric rotation of the roller causes the plug to receive a force in the direction of being pushed outward from the spring hole. Particularly, in the internal intermediate pressure type rotary compressor, the pressure inside the closed container is lower than that inside the cylinder of the second rotary compression element, so that the plug is pushed out due to the pressure difference between the inside and the outside of the cylinder. for that reason,
In the past, the plug was fixed to the cylinder by pressing it into the spring hole, but this pressing deforms the cylinder so that it expands, creating a gap between it and the support member (bearing) that closes the opening surface of the cylinder. As a result, there is a problem in that the sealability inside the cylinder cannot be ensured and the performance deteriorates.

【0006】そこで、例えばプラグの外径寸法をスプリ
ング孔の内径寸法よりも小さくしてシリンダの変形を阻
止しようとすると(尚、その場合はプラグが密閉容器側
に抜けないようにする必要がある。)、ロータリコンプ
レッサが停止してシリンダ内の高圧側の圧力が低下した
場合に、密閉容器内の中間圧によってプラグがスプリン
グ側に押し込まれ、スプリングを潰して動作に支障が生
じるようになる不都合が発生する。
Therefore, for example, if the outer diameter of the plug is made smaller than the inner diameter of the spring hole to prevent the deformation of the cylinder (in this case, it is necessary to prevent the plug from coming off to the closed container side). .), When the rotary compressor stops and the pressure on the high-pressure side in the cylinder drops, the intermediate pressure in the closed container pushes the plug toward the spring side, crushing the spring and hindering the operation. Occurs.

【0007】一方、例えばプラグの外径寸法をシリンダ
が変形しない程度にスプリング孔の内径寸法より大きく
した場合、スプリング孔にプラグを圧入していく過程で
どこまで挿入したらよいか判別し難くなる問題が発生す
る。
On the other hand, for example, when the outer diameter of the plug is made larger than the inner diameter of the spring hole to the extent that the cylinder is not deformed, there is a problem that it is difficult to determine how much the plug should be inserted in the process of press-fitting the plug into the spring hole. Occur.

【0008】本発明は、係る従来技術の課題を解決する
ために成されたものであり、バネ部材の脱落を防止する
ためのプラグを所定位置に設けられ、且つ、シリンダの
変形も防止可能なロータリコンプレッサを提供すること
を目的とする。
The present invention has been made in order to solve the problems of the prior art, and a plug for preventing the spring member from falling off is provided at a predetermined position, and deformation of the cylinder can be prevented. It is intended to provide a rotary compressor.

【0009】[0009]

【課題を解決するための手段】即ち、本発明のロータリ
コンプレッサは、密閉容器内に電動要素と、この電動要
素にて駆動される第1及び第2の回転圧縮要素を備え、
第1の回転圧縮要素で圧縮されたガスを密閉容器内に吐
出し、更にこの吐出された中間圧のガスを第2の回転圧
縮要素で圧縮するものであって、第2の回転圧縮要素を
構成するためのシリンダ及び電動要素の回転軸に形成さ
れた偏心部に嵌合されてシリンダ内で偏心回転するロー
ラと、このローラに当接してシリンダ内を低圧室側と高
圧室側に区画するベーンと、このベーンを常時ローラ側
に付勢するためのバネ部材と、シリンダに形成され、ベ
ーン側と密閉容器側に開口したバネ部材の収納部と、バ
ネ部材の密閉容器側に位置して収納部内に設けられ、当
該収納部を封止するためのプラグとを備え、このプラグ
のバネ部材側に位置する収納部の内壁には、プラグが所
定位置にて当接する係止部を形成したことを特徴とす
る。
That is, a rotary compressor of the present invention comprises an electric element in a closed container and first and second rotary compression elements driven by the electric element.
The gas compressed by the first rotary compression element is discharged into the closed container, and the discharged intermediate-pressure gas is compressed by the second rotary compression element. A roller that is fitted to an eccentric portion formed on the rotating shaft of the cylinder and the electric element for constituting and that rotates eccentrically in the cylinder, and abuts on this roller to divide the inside of the cylinder into a low pressure chamber side and a high pressure chamber side. A vane, a spring member for constantly urging the vane toward the roller, a storage portion of the spring member formed in the cylinder and opened to the vane side and the closed container side, and a spring member located on the closed container side. The housing is provided with a plug for sealing the housing, and a locking portion with which the plug abuts at a predetermined position is formed on the inner wall of the housing located on the spring member side of the plug. It is characterized by

【0010】請求項2の発明のロータリコンプレッサ
は、上記においてプラグの外径は、当該プラグを収納部
内に挿入した場合に、シリンダが変形しない範囲で収納
部の内径よりも大きく設定されていることを特徴とす
る。
In the rotary compressor according to a second aspect of the present invention, the outer diameter of the plug is set to be larger than the inner diameter of the accommodating portion within the range where the cylinder is not deformed when the plug is inserted into the accommodating portion. Is characterized by.

【0011】請求項3の発明のロータリコンプレッサ
は、請求項1においてプラグの外径は、収納部の内径よ
りも小さく設定されていることを特徴とする。
The rotary compressor of the invention of claim 3 is characterized in that, in claim 1, the outer diameter of the plug is set smaller than the inner diameter of the housing portion.

【0012】請求項4の発明のロータリコンプレッサ
は、上記各発明において係止部は、収納部の内周壁を段
差状に縮径させて形成されていることを特徴とする。
The rotary compressor according to a fourth aspect of the present invention is characterized in that, in each of the above inventions, the locking portion is formed by reducing the inner peripheral wall of the storage portion in a stepped shape.

【0013】請求項5の発明のロータリコンプレッサ
は、上記各発明において第1及び第2の回転圧縮要素
は、CO2ガスを冷媒として圧縮することを特徴とす
る。
The rotary compressor according to a fifth aspect of the present invention is characterized in that, in each of the above inventions, the first and second rotary compression elements compress CO 2 gas as a refrigerant.

【0014】本発明によれば、密閉容器内に電動要素
と、この電動要素にて駆動される第1及び第2の回転圧
縮要素を備え、第1の回転圧縮要素で圧縮されたガスを
密閉容器内に吐出し、更にこの吐出された中間圧のガス
を第2の回転圧縮要素で圧縮するロータリコンプレッサ
において、第2の回転圧縮要素を構成するためのシリン
ダ及び電動要素の回転軸に形成された偏心部に嵌合され
てシリンダ内で偏心回転するローラと、このローラに当
接してシリンダ内を低圧室側と高圧室側に区画するベー
ンと、このベーンを常時ローラ側に付勢するためのバネ
部材と、シリンダに形成され、ベーン側と密閉容器側に
開口したバネ部材の収納部と、バネ部材の密閉容器側に
位置して収納部内に設けられ、当該収納部を封止するた
めのプラグとを備え、このプラグのバネ部材側に位置す
る収納部の内壁には、プラグが所定位置にて当接する係
止部を形成したので、プラグはこの係止部によりそれ以
上バネ部材側に移動できなくなる。
According to the present invention, the closed container is provided with the electric element and the first and second rotary compression elements driven by the electric element, and the gas compressed by the first rotary compression element is closed. In a rotary compressor that discharges into a container and further compresses the discharged intermediate-pressure gas by a second rotary compression element, the rotary compressor is formed on a rotary shaft of a cylinder and an electric element for constituting the second rotary compression element. A roller that is fitted to the eccentric portion and rotates eccentrically in the cylinder; a vane that abuts this roller to divide the inside of the cylinder into a low pressure chamber side and a high pressure chamber side; and to constantly bias this vane to the roller side. The spring member and the storage portion of the spring member formed in the cylinder, which is open to the vane side and the closed container side, and the spring member, which is provided in the storage portion on the closed container side and seals the storage portion. Equipped with a plug The inner wall of the housing part located on the spring member side of the plug, since the plug was formed in contact with the locking portion at a predetermined position, the plug can not move any further spring member side by the locking unit.

【0015】これにより、プラグの位置を所定位置に規
定することが可能となる。従って、例えば請求項2の如
く、プラグの外径を、当該プラグを収納部内に挿入した
場合に、シリンダが変形しない範囲で収納部の内径より
も大きく設定したときには、プラグ挿入によるシリンダ
の変形を回避しながら、プラグを収納部内に圧入する際
の位置決めが行え、プラグの取り付け作業性が向上す
る。
This makes it possible to define the position of the plug at a predetermined position. Therefore, for example, when the outer diameter of the plug is set to be larger than the inner diameter of the accommodating portion within the range where the cylinder is not deformed when the plug is inserted into the accommodating portion, the cylinder is deformed by the plug insertion. While avoiding this, positioning can be performed when the plug is press-fitted into the housing, and the workability of attaching the plug is improved.

【0016】また、例えば請求項3の如くプラグの外径
を、収納部の内径よりも小さく設定した場合には、ロー
タリコンプレッサが停止した際に、密閉容器内の中間圧
によってプラグがバネ部材側に押し込まれる不都合を回
避することができるようになるものである。
When the outer diameter of the plug is set to be smaller than the inner diameter of the storage portion, for example, when the rotary compressor stops, the intermediate pressure in the closed container causes the plug to move toward the spring member side. It is possible to avoid the inconvenience of being pushed into.

【0017】請求項4の発明によれば、上記各発明に加
えて係止部を、収納部の内周壁を段差状に縮径させるこ
とで形成しているので、シリンダの収納部に係止部を容
易に形成することができるようになり、生産コストが削
減されるものである。
According to the invention of claim 4, in addition to the above-mentioned inventions, the locking portion is formed by reducing the inner peripheral wall of the storage portion in a stepped shape, so that the locking portion is locked in the storage portion of the cylinder. The parts can be easily formed, and the production cost is reduced.

【0018】特に、請求項5の発明の如くCO2ガスを
冷媒として用い、圧力差が大きくなる場合に、本発明は
ロータリコンプレッサの性能改善に著しい効果を奏する
ものである。
In particular, when the CO 2 gas is used as the refrigerant and the pressure difference becomes large as in the fifth aspect of the invention, the present invention exerts a remarkable effect in improving the performance of the rotary compressor.

【0019】[0019]

【発明の実施の形態】次に、図面に基づき本発明の実施
形態を詳述する。図1は本発明のロータリコンプレッサ
の実施例として、第1及び第2の回転圧縮要素32、3
4を備えた内部中間圧型多段(2段)圧縮式のロータリ
コンプレッサ10の縦断面図、図2はロータリコンプレ
ッサ10の正面図、図3ロータリコンプレッサ10の側
面図、図4はロータリコンプレッサ10のもう一つの縦
断面図、図5はロータリコンプレッサ10の更にもう一
つの縦断面図、図6はロータリコンプレッサ10の電動
要素14部分の平断面図、図7はロータリコンプレッサ
10の回転圧縮機構部18の拡大断面図をそれぞれ示し
ている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows, as an embodiment of the rotary compressor of the present invention, first and second rotary compression elements 32, 3
4 is a longitudinal sectional view of an internal intermediate pressure type multi-stage (two-stage) compression type rotary compressor 10, FIG. 2 is a front view of the rotary compressor 10, FIG. 3 is a side view of the rotary compressor 10, and FIG. One longitudinal sectional view, FIG. 5 is another longitudinal sectional view of the rotary compressor 10, FIG. 6 is a plan sectional view of the electric element 14 portion of the rotary compressor 10, and FIG. 7 is a rotary compression mechanism portion 18 of the rotary compressor 10. Each of the enlarged cross-sectional views is shown.

【0020】各図において、10は二酸化炭素(C
2)を冷媒として使用する内部中間圧型多段圧縮式の
ロータリコンプレッサで、このロータリコンプレッサ1
0は鋼板からなる円筒状の密閉容器12と、この密閉容
器12の内部空間の上側に配置収納された電動要素14
及びこの電動要素14の下側に配置され、電動要素14
の回転軸16により駆動される第1の回転圧縮要素32
(1段目)及び第2の回転圧縮要素34(2段目)から
なる回転圧縮機構部18にて構成されている。実施例の
ロータリコンプレッサ10の高さ寸法は220mm(外
径120mm)、電動要素14の高さ寸法は約80mm
(外径110mm)、回転圧縮機構部18の高さ寸法は
約70mm(外径110mm)で、電動要素14と回転
圧縮機構部18との間隔は約5mmとなっている。ま
た、第2の回転圧縮要素34の排除容積は第1の回転圧
縮要素32の排除容積よりも小さく設定されている。
In each figure, 10 is carbon dioxide (C
This is an internal intermediate pressure type multi-stage compression type rotary compressor using O 2 ) as a refrigerant.
Reference numeral 0 denotes a cylindrical hermetic container 12 made of a steel plate, and an electric element 14 arranged and housed above the inner space of the hermetic container 12.
And the electric element 14 disposed below the electric element 14.
First rotary compression element 32 driven by the rotary shaft 16 of
The rotary compression mechanism portion 18 includes the (first stage) and the second rotary compression element 34 (second stage). The height dimension of the rotary compressor 10 of the embodiment is 220 mm (outer diameter 120 mm), and the height dimension of the electric element 14 is about 80 mm.
(Outer diameter 110 mm), the height dimension of the rotary compression mechanism portion 18 is about 70 mm (outer diameter 110 mm), and the distance between the electric element 14 and the rotary compression mechanism portion 18 is about 5 mm. The excluded volume of the second rotary compression element 34 is set smaller than the excluded volume of the first rotary compression element 32.

【0021】密閉容器12は実施例では厚さ4.5mm
の鋼板より構成され、底部をオイル溜とし、電動要素1
4と回転圧縮機構部18を収納する容器本体12Aと、
この容器本体12Aの上部開口を閉塞する略椀状のエン
ドキャップ(蓋体)12Bとで構成され、且つ、このエ
ンドキャップ12Bの上面中心には円形の取付孔12D
が形成されており、この取付孔12Dには電動要素14
に電力を供給するためのターミナル(配線を省略)20
が取り付けられている。
The closed container 12 has a thickness of 4.5 mm in the embodiment.
It is composed of the steel plate of
4A and the container main body 12A that houses the rotary compression mechanism portion 18,
It is composed of a substantially bowl-shaped end cap (lid) 12B that closes the upper opening of the container body 12A, and a circular mounting hole 12D is formed in the center of the upper surface of the end cap 12B.
Is formed, and the electric element 14 is provided in the mounting hole 12D.
Terminal for supplying power to the unit (wiring omitted) 20
Is attached.

【0022】この場合、ターミナル20の周囲のエンド
キャップ12Bには、座押成形によって所定曲率の段差
部12Cが環状に形成されている。また、ターミナル2
0は電気的端子139が貫通して取り付けられた円形の
ガラス部20Aと、このガラス部20Aの周囲に形成さ
れ、斜め外下方に鍔状に張り出した金属製の取付部20
Bとから構成されている。取付部20Bの厚さ寸法は
2.4±0.5mmとされている。そして、ターミナル
20は、そのガラス部20Aを下側から取付孔12Dに
挿入して上側に臨ませ、取付部20Bを取付孔12Dの
周縁に当接させた状態でエンドキャップ12Bの取付孔
12D周縁に取付部20Bを溶接することで、エンドキ
ャップ12Bに固定されている。
In this case, the end cap 12B around the terminal 20 is formed with a stepped portion 12C having a predetermined curvature in a ring shape by press forming. Also, Terminal 2
Reference numeral 0 denotes a circular glass portion 20A to which the electrical terminal 139 is attached and is attached, and a metal attaching portion 20 formed around the glass portion 20A and protruding obliquely outward and downward to form a brim.
It is composed of B and. The thickness of the mounting portion 20B is 2.4 ± 0.5 mm. Then, in the terminal 20, the glass portion 20A is inserted from the lower side into the mounting hole 12D so as to face the upper side, and the mounting portion 20B is brought into contact with the peripheral edge of the mounting hole 12D, and the peripheral edge of the mounting hole 12D of the end cap 12B. It is fixed to the end cap 12B by welding the mounting portion 20B to.

【0023】電動要素14は、密閉容器12の上部空間
の内周面に沿って環状に取り付けられたステータ22
と、このステータ22の内側に若干の間隙を設けて挿入
配置されたロータ24とからなる。このロータ24は中
心を通り鉛直方向に延びる回転軸16に固定されてい
る。
The electric element 14 is a stator 22 mounted in an annular shape along the inner peripheral surface of the upper space of the closed container 12.
And a rotor 24 inserted and arranged inside the stator 22 with a slight gap. The rotor 24 is fixed to the rotating shaft 16 that extends vertically through the center.

【0024】ステータ22は、ドーナッツ状の電磁鋼板
を積層した積層体26と、この積層体26の歯部に直巻
き(集中巻き)方式により巻装されたステータコイル2
8を有している(図6)。また、ロータ24もステータ
22と同様に電磁鋼板の積層体30で形成され、この積
層体30内に永久磁石MGを挿入して構成されている。
The stator 22 includes a laminated body 26 in which donut-shaped electromagnetic steel sheets are laminated, and a stator coil 2 wound around the teeth of the laminated body 26 by a direct winding (concentrated winding) method.
8 (FIG. 6). Like the stator 22, the rotor 24 is also formed of a laminated body 30 of electromagnetic steel plates, and a permanent magnet MG is inserted into the laminated body 30.

【0025】前記第1の回転圧縮要素32と第2の回転
圧縮要素34との間には中間仕切板36が挟持されてい
る。即ち、第1の回転圧縮要素32と第2の回転圧縮要
素34は、中間仕切板36と、この中間仕切板36の上
下に配置されたシリンダ38、シリンダ40と、この上
下シリンダ38、40内を180度の位相差を有して回
転軸16に設けた上下偏心部42、44に嵌合されて偏
心回転する上下ローラ46、48と、この上下ローラ4
6、48に当接して上下シリンダ38、40内をそれぞ
れ低圧室側と高圧室側に区画する後述する上下ベーン5
0(下側のベーンは図示せず)と、上シリンダ38の上
側の開口面及び下シリンダ40の下側の開口面を閉塞し
て回転軸16の軸受けを兼用する支持部材としての上部
支持部材54及び下部支持部材56にて構成される。
An intermediate partition plate 36 is sandwiched between the first rotary compression element 32 and the second rotary compression element 34. That is, the first rotary compression element 32 and the second rotary compression element 34 include an intermediate partition plate 36, cylinders 38 and cylinders 40 arranged above and below the intermediate partition plate 36, and inside the upper and lower cylinders 38 and 40. And the upper and lower rollers 46 and 48 which are fitted to the upper and lower eccentric portions 42 and 44 provided on the rotary shaft 16 with a phase difference of 180 degrees and rotate eccentrically.
Upper and lower vanes 5 to be described later, which abut against the upper and lower cylinders 38 and 40 to divide them into the low pressure chamber side and the high pressure chamber side, respectively.
0 (the lower vane is not shown) and an upper support member as a support member that also serves as a bearing for the rotary shaft 16 by closing the upper opening surface of the upper cylinder 38 and the lower opening surface of the lower cylinder 40. 54 and the lower support member 56.

【0026】上部支持部材54および下部支持部材56
には、吸込ポート161、162にて上下シリンダ3
8、40の内部とそれぞれ連通する吸込通路58、60
と、凹陥した吐出消音室62、64が形成されると共
に、これら両吐出消音室62、64の開口部はそれぞれ
カバーにより閉塞される。即ち、吐出消音室62はカバ
ーとしての上部カバー66、吐出消音室64はカバーと
しての下部カバー68にて閉塞される。
Upper support member 54 and lower support member 56
The suction ports 161 and 162 at the upper and lower cylinders 3.
Suction passages 58, 60 communicating with the insides of 8, 40, respectively.
Then, the recessed discharge silencing chambers 62 and 64 are formed, and the openings of the discharge silencing chambers 62 and 64 are closed by covers. That is, the discharge muffling chamber 62 is closed by the upper cover 66 as a cover, and the discharge muffling chamber 64 is closed by the lower cover 68 as a cover.

【0027】この場合、上部支持部材54の中央には軸
受け54Aが起立形成されており、この軸受け54A内
面には筒状のブッシュ122が装着されている。また、
下部支持部材56の中央には軸受け56Aが貫通形成さ
れており、この軸受け56A内面にも筒状のブッシュ1
23が装着されている。これらブッシュ122、123
は後述する如き摺動性の良い材料にて構成されており、
回転軸16はこれらブッシュ122、123を介して上
部支持部材54の軸受け54Aと下部支持部材56の軸
受け56Aに保持される。
In this case, a bearing 54A is formed upright in the center of the upper support member 54, and a cylindrical bush 122 is attached to the inner surface of the bearing 54A. Also,
A bearing 56A is formed through the center of the lower support member 56, and the cylindrical bush 1 is also formed on the inner surface of the bearing 56A.
23 is attached. These bushes 122, 123
Is made of a material with good slidability as described below,
The rotary shaft 16 is held by the bearing 54A of the upper support member 54 and the bearing 56A of the lower support member 56 via the bushes 122 and 123.

【0028】この場合、下部カバー68はドーナッツ状
の円形鋼板から構成されており、周辺部の4カ所を主ボ
ルト129・・・によって下から下部支持部材56に固
定され、吐出ポート41にて第1の回転圧縮要素32の
下シリンダ40内部と連通する吐出消音室64の下面開
口部を閉塞する。この主ボルト129・・・の先端は上
部支持部材54に螺合する。下部カバー68の内周縁は
下部支持部材56の軸受け56A内面より内方に突出し
ており、これによって、ブッシュ123の下端面は下部
カバー68によって保持され、脱落が防止されている
(図9)。図10は下部支持部材56の下面を示してお
り、128は吐出消音室64内において吐出ポート41
を開閉する第1の回転圧縮要素32の吐出弁である。
In this case, the lower cover 68 is made of a donut-shaped circular steel plate and is fixed to the lower support member 56 from below by four main bolts 129 ... The lower surface opening of the discharge muffling chamber 64 that communicates with the inside of the lower cylinder 40 of the first rotary compression element 32 is closed. The tips of the main bolts 129 ... Are screwed into the upper support member 54. The inner peripheral edge of the lower cover 68 projects inward from the inner surface of the bearing 56A of the lower support member 56, whereby the lower end surface of the bush 123 is held by the lower cover 68 and prevented from falling off (FIG. 9). FIG. 10 shows the lower surface of the lower support member 56, and 128 is the discharge port 41 in the discharge muffling chamber 64.
Is a discharge valve of the first rotary compression element 32 that opens and closes.

【0029】ここで、下部支持部材56は鉄系の焼結材
料(若しくは鋳物でも可)により構成されており、下部
カバー68を取り付ける側の面(下面)は、平面度0.
1mm以下に加工された後、スチーム処理が加えられて
いる。このスチーム処理によって下部カバー68を取り
付ける側の面は酸化鉄となるため、焼結材料内部の孔が
塞がれてシール性が向上する。これにより、下部カバー
68と下部支持部材56間にガスケットを介設する必要
が無くなる。
The lower support member 56 is made of an iron-based sintered material (or a casting), and the surface (lower surface) on which the lower cover 68 is attached has a flatness of 0.
After being processed to 1 mm or less, steam treatment is added. By this steam treatment, the surface on the side to which the lower cover 68 is attached becomes iron oxide, so that the holes inside the sintered material are closed and the sealing performance is improved. This eliminates the need to provide a gasket between the lower cover 68 and the lower support member 56.

【0030】尚、吐出消音室64と密閉容器12内にお
ける上部カバー66の電動要素14側は、上下シリンダ
38、40や中間仕切板36を貫通する孔である連通路
63にて連通されている(図4)。この場合、連通路6
3の上端には中間吐出管121が立設されており、この
中間吐出管121は上方の電動要素14のステータ22
に巻装された相隣接するステータコイル28、28間の
隙間に指向している(図6)。
The discharge muffler chamber 64 and the electric element 14 side of the upper cover 66 in the closed container 12 are communicated with each other by a communication passage 63 which is a hole penetrating the upper and lower cylinders 38, 40 and the intermediate partition plate 36. (Fig. 4). In this case, the communication passage 6
An intermediate discharge pipe 121 is erected at the upper end of the stator 3. The intermediate discharge pipe 121 is a stator 22 of the upper electric element 14.
It is directed to the gap between the adjacent stator coils 28, which are wound on each other (FIG. 6).

【0031】また、上部カバー66は吐出ポート39に
て第2の回転圧縮要素34の上シリンダ38内部と連通
する吐出消音室62の上面開口部を閉塞し、密閉容器1
2内を吐出消音室62と電動要素14側とに仕切る。こ
の上部カバー66は図11に示す如く厚さ2mm以上1
0mm以下(実施例では最も望ましい6mmとされてい
る)であって、前記上部支持部材54の軸受け54Aが
貫通する孔が形成された略ドーナッツ状の円形鋼板から
構成されており、上部支持部材54との間にビード付き
のガスケット124を挟み込んだ状態で、当該ガスケッ
ト124を介して周辺部が4本の主ボルト78・・・に
より、上から上部支持部材54に固定されている。この
主ボルト78・・・の先端は下部支持部材56に螺合す
る。
Further, the upper cover 66 closes the upper opening portion of the discharge muffling chamber 62 communicating with the inside of the upper cylinder 38 of the second rotary compression element 34 at the discharge port 39, and the closed container 1
The inside of 2 is partitioned into the discharge silencing chamber 62 and the electric element 14 side. This upper cover 66 has a thickness of 2 mm or more 1 as shown in FIG.
The upper support member 54 has a diameter of 0 mm or less (most preferably 6 mm in the embodiment) and is formed of a substantially donut-shaped circular steel plate having a hole through which the bearing 54A of the upper support member 54 passes. With the beaded gasket 124 sandwiched between and, the peripheral portion is fixed to the upper support member 54 from above by four main bolts 78 ... Through the gasket 124. The tips of the main bolts 78 ... Are screwed into the lower support member 56.

【0032】上部カバー66を係る厚さ寸法とすること
で、密閉容器12内よりも高圧となる吐出消音室62の
圧力に十分に耐えながら、小型化を達成し、電動要素1
4との絶縁距離を確保することもできるようになる。更
に、この上部カバー66の内周縁と軸受け54Aの外面
間にはOリング126が設けられている(図12)。係
るOリング126により軸受け54A側のシールを行う
ことで、上部カバー66の内周縁で十分にシールを行
い、ガスリークを防ぐことができるようになり、吐出消
音室62の容積拡大が図れると共に、Cリングにより上
部カバー66の内周縁側を軸受け54Aに固定する必要
も無くなる。ここで、図11において127は吐出消音
室62内において吐出ポート39を開閉する第2の回転
圧縮要素34の吐出弁である。
By making the upper cover 66 have such a thickness dimension, it is possible to achieve miniaturization while sufficiently withstanding the pressure of the discharge muffling chamber 62, which is higher than that in the closed container 12, and to achieve the size reduction of the electric element 1.
It is also possible to secure an insulation distance from 4. Further, an O-ring 126 is provided between the inner peripheral edge of the upper cover 66 and the outer surface of the bearing 54A (FIG. 12). By sealing the bearing 54A side by the O-ring 126, it is possible to sufficiently seal the inner peripheral edge of the upper cover 66 and prevent the gas leak, and it is possible to increase the volume of the discharge muffling chamber 62 and It is not necessary to fix the inner peripheral edge side of the upper cover 66 to the bearing 54A by the ring. Here, in FIG. 11, 127 is a discharge valve of the second rotary compression element 34 that opens and closes the discharge port 39 in the discharge muffling chamber 62.

【0033】次に、上シリンダ38の下側の開口面及び
下シリンダ40の上側の開口面を閉塞する中間仕切板3
6内には、上シリンダ38内の吸込側に対応する位置
に、図13、図14に示す如く外周面から内周面に至
り、外周面と内周面とを連通して給油路を構成する貫通
孔131が穿設されており、この貫通路131の外周面
側の封止材132を圧入して外周面側の開口を封止して
いる。また、この貫通孔131の中途部には上側に延在
する連通孔133が穿設されている。
Next, the intermediate partition plate 3 for closing the lower opening surface of the upper cylinder 38 and the upper opening surface of the lower cylinder 40.
In FIG. 6, a position corresponding to the suction side in the upper cylinder 38 extends from the outer peripheral surface to the inner peripheral surface as shown in FIGS. 13 and 14, and the outer peripheral surface and the inner peripheral surface communicate with each other to form an oil supply passage. The through hole 131 is formed, and the sealing material 132 on the outer peripheral surface side of the through passage 131 is press-fitted to seal the outer peripheral surface side opening. A communication hole 133 extending upward is formed in the middle of the through hole 131.

【0034】一方、上シリンダ38の吸込ポート161
(吸込側)には中間仕切板36の連通孔133に連通す
る連通孔134が穿設されている。また、回転軸16内
には図7に示す如く軸中心に鉛直方向のオイル孔80
と、このオイル孔80に連通する横方向の給油孔82、
84(回転軸16の上下偏心部42、44にも形成され
ている)が形成されており、中間仕切板36の貫通孔1
31の内周面側の開口は、これらの給油孔82、84を
介してオイル孔80に連通している。
On the other hand, the suction port 161 of the upper cylinder 38
A communication hole 134 that communicates with the communication hole 133 of the intermediate partition plate 36 is formed on the (suction side). Further, as shown in FIG. 7, an oil hole 80 is formed in the rotary shaft 16 in the vertical direction about the shaft center.
And a lateral oil supply hole 82 communicating with the oil hole 80,
84 (also formed on the vertical eccentric portions 42 and 44 of the rotary shaft 16) is formed, and the through hole 1 of the intermediate partition plate 36 is formed.
The opening on the inner peripheral surface side of 31 communicates with the oil hole 80 via these oil supply holes 82, 84.

【0035】後述する如く密閉容器12内は中間圧とな
るため、2段目で高圧となる上シリンダ38内にはオイ
ルの供給が困難となるが、中間仕切板36を係る構成と
したことにより、密閉容器12内底部のオイル溜めから
汲み上げられてオイル孔80を上昇し、給油孔82、8
4から出たオイルは、中間仕切板36の貫通孔131に
入り、連通孔133、134から上シリンダ38の吸込
側(吸込ポート161)に供給されるようになる。
As will be described later, since the inside pressure of the closed container 12 becomes an intermediate pressure, it becomes difficult to supply the oil into the upper cylinder 38 which becomes a high pressure in the second stage. , Pumped up from the oil sump at the bottom of the closed container 12 to raise the oil hole 80,
The oil discharged from No. 4 enters the through hole 131 of the intermediate partition plate 36 and is supplied to the suction side (suction port 161) of the upper cylinder 38 from the communication holes 133 and 134.

【0036】図16中Lは上シリンダ38の吸入側の圧
力変動を示し、図中P1は中間仕切板36の内周面の圧
力を示す。この図にL1で示す如く上シリンダ38の吸
込側の圧力(吸入圧力)は、吸入過程においては吸入圧
損により中間仕切板36の内周面側の圧力よりも低下す
る。この期間に中間仕切板36の貫通孔131、連通孔
133から上シリンダ38の連通孔134を介して上シ
リンダ38内に給油が成されることになる。
In FIG. 16, L shows the pressure fluctuation on the suction side of the upper cylinder 38, and P1 shows the pressure on the inner peripheral surface of the intermediate partition plate 36. As indicated by L1 in this figure, the pressure on the suction side of the upper cylinder 38 (suction pressure) becomes lower than the pressure on the inner peripheral surface side of the intermediate partition plate 36 due to suction pressure loss during the suction process. During this period, oil is supplied from the through hole 131 and the communication hole 133 of the intermediate partition plate 36 into the upper cylinder 38 through the communication hole 134 of the upper cylinder 38.

【0037】上述の如く上下シリンダ38、40、中間
仕切板36、上下支持部材54、56及び上下カバー6
6、68はそれぞれ4本の主ボルト78・・・と主ボル
ト129・・・にて上下から締結されるが、更に、上下
シリンダ38、40、中間仕切板36、上下支持部材5
4、56は、これら主ボルト78、129の外側に位置
する補助ボルト136、136により締結される(図
4)。この補助ボルト136は上部支持部材54側から
挿入され、先端は下支持部材56に螺合している。
As described above, the upper and lower cylinders 38 and 40, the intermediate partition plate 36, the upper and lower support members 54 and 56, and the upper and lower covers 6
6 and 68 are respectively fastened from above and below by four main bolts 78 ... And main bolts 129 ..., but further, upper and lower cylinders 38, 40, intermediate partition plate 36, and upper and lower support members 5
4, 56 are fastened by auxiliary bolts 136, 136 located outside these main bolts 78, 129 (FIG. 4). The auxiliary bolt 136 is inserted from the upper support member 54 side, and the tip end is screwed into the lower support member 56.

【0038】また、この補助ボルト136は前述したベ
ーン50の後述する案内溝70の近傍に位置している。
このように補助ボルト136、136を追加して回転圧
縮機構部18を一体化することで、内部が極めて高圧と
なることに対するシール性の確保が成されると共に、ベ
ーン50の案内溝70の近傍を締め付けるので、ベーン
50に加える高圧の背圧のリークも防止できるようにな
る。
The auxiliary bolt 136 is located near the guide groove 70, which will be described later, of the vane 50 described above.
By thus adding the auxiliary bolts 136 and 136 to integrate the rotary compression mechanism portion 18, the sealing performance against the extremely high pressure inside is ensured and the vicinity of the guide groove 70 of the vane 50 is ensured. Since it is tightened, it is possible to prevent leakage of the high pressure back pressure applied to the vane 50.

【0039】一方、上シリンダ38内には前述したベー
ン50を収納する案内溝70と、この案内溝70の外側
に位置してバネ部材としてのスプリング76を収納する
収納部70Aが形成されており、この収納部70Aは案
内溝70側と密閉容器12(容器本体12A)側に開口
している(図8)。前記スプリング76はベーン50の
外側端部に当接し、常時ベーン50をローラ46側に付
勢する。そして、このスプリング76の密閉容器12側
の収納部70A内には、収納部70Aの外側(密閉容器
12側)の開口から金属製のプラグ137が圧入されて
設けられ、スプリング76の抜け止めの役目を果たす。
On the other hand, inside the upper cylinder 38, there are formed a guide groove 70 for accommodating the vane 50 and an accommodating portion 70A located outside the guide groove 70 for accommodating a spring 76 as a spring member. The storage section 70A is open to the guide groove 70 side and the closed container 12 (container body 12A) side (FIG. 8). The spring 76 contacts the outer end of the vane 50 and constantly urges the vane 50 toward the roller 46. A metal plug 137 is press-fitted into the housing portion 70A of the spring 76 on the airtight container 12 side from an opening on the outer side of the housing portion 70A (on the airtight container 12 side) to prevent the spring 76 from coming off. Play a role.

【0040】この場合、プラグ137の外径寸法は、そ
れを収納部70A内に圧入した際に上シリンダ38が変
形を起こさない程度、収納部70Aの内径寸法よりも大
きく設定されている。即ち、実施例ではプラグ137の
外径寸法は、収納部70Aの内径寸法よりも4μm〜2
3μm大きく設計されている。また、プラグ137の周
面には当該プラグ137と収納部70Aの内面間をシー
ルするためのOリング138が取り付けられている。
In this case, the outer diameter dimension of the plug 137 is set larger than the inner diameter dimension of the storage section 70A so that the upper cylinder 38 does not deform when it is pressed into the storage section 70A. That is, in the embodiment, the outer diameter dimension of the plug 137 is 4 μm to 2 μm smaller than the inner diameter dimension of the housing portion 70A.
It is designed to be 3 μm larger. Further, an O-ring 138 for sealing between the plug 137 and the inner surface of the housing portion 70A is attached to the peripheral surface of the plug 137.

【0041】また、図19に拡大して示すように、プラ
グ137の外端が収納部70Aの外側(密閉容器12
側)の開口縁(収納部70Aの外端)に位置する所定位
置までプラグ137を圧入した時点で、当該プラグ13
7のスプリング76側の端部(内端)が位置する収納部
70Aの箇所には、当該プラグ137の内端が当接する
係止部201が形成されている。この係止部201は収
納部70Aを上シリンダ38内に切削加工する際に、そ
れより内側(ベーン50側)の収納部70Aの内径を切
削加工するドリルを外側を切削加工するものよりも細い
ものに変更して、収納部70Aの内周壁を段差状に縮径
させることで形成されている。
Further, as shown in an enlarged manner in FIG. 19, the outer end of the plug 137 is located outside the housing portion 70A (the closed container 12).
Side), when the plug 137 is press-fitted to a predetermined position located at the opening edge (outer end of the storage portion 70A), the plug 13
A locking portion 201 with which the inner end of the plug 137 abuts is formed at a portion of the storage portion 70A where the end portion (inner end) of the spring 7 on the spring 76 side is located. When the storage portion 70A is cut into the upper cylinder 38, the locking portion 201 is thinner than a drill that cuts the inside diameter of the storage portion 70A inside (the vane 50 side) of the storage portion 70A. It is formed by changing the diameter of the inner peripheral wall of the storage portion 70A into a stepped shape instead of the one.

【0042】そして、上シリンダ38の外端、即ち、収
納部70Aの外端と密閉容器12の容器本体12A間の
間隔は、Oリング138からプラグ137の外端(密閉
容器12側の端部)までの距離よりも小さく設定されて
いる。また、ベーン50の案内溝70に連通する図示し
ない背圧室には、第2の回転圧縮要素34の吐出圧力で
ある高圧が背圧として加えられる。従って、プラグ13
7のスプリング76側は高圧、密閉容器12側は中間圧
となる。
The outer end of the upper cylinder 38, that is, the distance between the outer end of the housing portion 70A and the container body 12A of the closed container 12 is determined by the O-ring 138 to the outer end of the plug 137 (the end on the closed container 12 side). ) Is set smaller than the distance. A high pressure, which is the discharge pressure of the second rotary compression element 34, is applied as a back pressure to a back pressure chamber (not shown) communicating with the guide groove 70 of the vane 50. Therefore, the plug 13
7, the spring 76 side has a high pressure, and the closed container 12 side has an intermediate pressure.

【0043】プラグ137と収納部70Aの寸法関係を
上記の如くしたことにより、プラグ137の圧入によっ
て上シリンダ38が変形し、上部支持部材54との間の
シール性が低下して性能悪化を来す不都合を未然に回避
することができるようになる。また、係る構造としたこ
とにより、プラグ137を収納部70Aの外側の開口か
ら圧入して行った場合に、図19に示す所定位置(プラ
グ137の外端が収納部70Aの外側の開口縁に位置す
る状態)となったところで、プラグ137が係止部20
1に当接してそれ以上圧入できなくなるので、プラグ1
37を収納部70A内に圧入する際の位置決めが行え、
プラグ137の取り付け作業性が向上する。特に、無理
にプラグ137を押し込むことが無くなるので、無理な
圧入による上シリンダ38の変形も未然に回避できるよ
うになる。
By setting the dimensional relationship between the plug 137 and the accommodating portion 70A as described above, the upper cylinder 38 is deformed by the press-fitting of the plug 137, and the sealing performance between the upper support member 54 and the upper support member 54 is deteriorated to deteriorate the performance. It becomes possible to avoid the inconvenience. Further, with such a structure, when the plug 137 is press-fitted from the opening on the outside of the storage section 70A, the predetermined position shown in FIG. 19 (the outer end of the plug 137 is located at the opening edge on the outside of the storage section 70A). (When it is located), the plug 137 is engaged with the locking portion 20.
As it abuts 1 and can no longer be press-fitted, plug 1
Positioning can be performed when 37 is press-fitted into the storage portion 70A,
The workability of attaching the plug 137 is improved. In particular, since the plug 137 is not forcedly pushed, the upper cylinder 38 can be prevented from being deformed due to the forced press-fitting.

【0044】ところで、回転軸16と一体に180度の
位相差を持って形成される上下偏心部42、44の相互
間を連結する連結部90は、その断面形状を回転軸16
の円形断面より断面積を大きくして剛性を持たせるため
に非円形状の例えばラグビーボール状とされている(図
17)。即ち、回転軸16に設けた上下偏心部42、4
4を連結する連結部90の断面形状は上下偏心部42、
44の偏心方向に直交する方向でその肉厚を大きくして
いる(図中ハッチングの部分)。
By the way, the connecting portion 90 which connects the upper and lower eccentric portions 42 and 44 formed integrally with the rotating shaft 16 with a phase difference of 180 degrees has a sectional shape of the rotating shaft 16.
The non-circular shape, for example, a rugby ball shape, has a larger cross-sectional area than the circular cross-section and has rigidity (FIG. 17). That is, the vertical eccentric parts 42, 4 provided on the rotary shaft 16
The cross-sectional shape of the connecting portion 90 connecting the four is the vertical eccentric portion 42
The wall thickness is increased in the direction orthogonal to the eccentric direction of 44 (hatched portion in the figure).

【0045】これにより、回転軸16に一体に設けられ
た上下偏心部42、44を連結する連結部90の断面積
が大きくし、断面2次モーメントを増加させて強度(剛
性)を増し、耐久性と信頼性を向上させている。特に使
用圧力の高い冷媒を2段圧縮する場合、高低圧の圧力差
が大きいために回転軸16にかかる荷重も大きくなる
が、連結部90の断面積を大きくしてその強度(剛性)
を増し、回転軸16が弾性変形してしまうのを防止して
いる。
As a result, the cross-sectional area of the connecting portion 90 that connects the vertical eccentric portions 42 and 44 integrally provided on the rotary shaft 16 is increased, and the second moment of area is increased to increase the strength (rigidity) and durability. It improves the reliability and reliability. Especially when two-stage compression of a refrigerant having a high working pressure is performed, the load applied to the rotating shaft 16 increases due to a large pressure difference between high pressure and low pressure, but the cross-sectional area of the connecting portion 90 is increased to increase its strength (rigidity).
Therefore, the rotation shaft 16 is prevented from being elastically deformed.

【0046】この場合、上側の偏心部42の中心をO1
とし、下側の偏心部44の中心をO2とすると、偏心部
42の偏心方向側の連結部90の面の円弧の中心はO
1、偏心部44の偏心方向側の連結部90の面の円弧の
中心はO2としている。これにより、回転軸16を切削
加工機にチャックして上下偏心部42、44と連結部9
0を切削加工する際、偏心部42を加工した後、半径の
みを変更して連結部90の一面を加工し、チャック位置
を変更して連結部90の他面を加工し、半径のみを変更
して偏心部44を加工すると云う作業が可能となる。こ
れにより、回転軸16をチャックし直す回数が減少して
生産性が著しく改善されるようになる。
In this case, the center of the upper eccentric portion 42 is O1.
And the center of the lower eccentric portion 44 is O2, the center of the arc of the surface of the coupling portion 90 on the eccentric direction side of the eccentric portion 42 is O.
1, the center of the arc of the surface of the connecting portion 90 on the eccentric direction side of the eccentric portion 44 is O2. As a result, the rotary shaft 16 is chucked by the cutting machine and the vertical eccentric parts 42 and 44 and the connecting part 9 are attached.
When cutting 0, after processing the eccentric portion 42, only the radius is changed to process one surface of the connecting portion 90, the chuck position is changed to process the other surface of the connecting portion 90, and only the radius is changed. Then, the work of machining the eccentric portion 44 becomes possible. As a result, the number of times of re-chucking the rotary shaft 16 is reduced, and the productivity is remarkably improved.

【0047】そして、この場合冷媒としては地球環境に
やさしく、可燃性および毒性等を考慮して自然冷媒であ
る炭酸ガスの一例としての前記二酸化炭素(CO2)を
使用し、潤滑油としてのオイルは、例えば鉱物油(ミネ
ラルオイル)、アルキルベンゼン油、エーテル油、エス
テル油等既存のオイルが使用される。
In this case, as the refrigerant, carbon dioxide (CO 2 ) as an example of carbon dioxide which is a natural refrigerant is used in consideration of flammability, toxicity and the like, and oil as a lubricating oil is used. As the oil, existing oils such as mineral oil, alkylbenzene oil, ether oil and ester oil are used.

【0048】密閉容器12の容器本体12Aの側面に
は、上部支持部材54と下部支持部材56の吸込通路5
8、60、吐出消音室62及び上部カバー66の上側
(電動要素14の下端に略対応する位置)に対応する位
置に、スリーブ141、142、143及び144がそ
れぞれ溶接固定されている。スリーブ141と142は
上下に隣接すると共に、スリーブ143はスリーブ14
1の略対角線上にある。また、スリーブ144はスリー
ブ141と略90度ずれた位置にある。
The suction passage 5 of the upper support member 54 and the lower support member 56 is provided on the side surface of the container body 12A of the closed container 12.
The sleeves 141, 142, 143, and 144 are welded and fixed to the positions corresponding to the upper side of the discharge silencer chamber 62 and the upper cover 66 (the position substantially corresponding to the lower end of the electric element 14). The sleeves 141 and 142 are vertically adjacent to each other, and the sleeve 143 is
1 is on a substantially diagonal line. Further, the sleeve 144 is located at a position displaced from the sleeve 141 by approximately 90 degrees.

【0049】そして、スリーブ141内には上シリンダ
38に冷媒ガスを導入するための冷媒導入管92の一端
が挿入接続され、この冷媒導入管92の一端は上シリン
ダ38の吸込通路58に連通される。この冷媒導入管9
2は密閉容器12の上側を通過してスリーブ144に至
り、他端はスリーブ144内に挿入接続されて密閉容器
12内に連通する。
Then, one end of a refrigerant introducing pipe 92 for introducing a refrigerant gas into the upper cylinder 38 is inserted and connected in the sleeve 141, and one end of the refrigerant introducing pipe 92 is communicated with the suction passage 58 of the upper cylinder 38. It This refrigerant introduction pipe 9
2 passes through the upper side of the closed container 12 to reach the sleeve 144, and the other end is inserted and connected in the sleeve 144 to communicate with the closed container 12.

【0050】また、スリーブ142内には下シリンダ4
0に冷媒ガスを導入するための冷媒導入管94の一端が
挿入接続され、この冷媒導入管94の一端は下シリンダ
40の吸込通路60に連通される。この冷媒導入管94
の他端はアキュムレータ146の下端に接続されてい
る。また、スリーブ143内には冷媒吐出管96が挿入
接続され、この冷媒吐出管96の一端は吐出消音室62
に連通される。
In the sleeve 142, the lower cylinder 4
One end of a refrigerant introduction pipe 94 for introducing the refrigerant gas to 0 is inserted and connected, and one end of this refrigerant introduction pipe 94 is communicated with the suction passage 60 of the lower cylinder 40. This refrigerant introducing pipe 94
The other end of is connected to the lower end of the accumulator 146. Further, a refrigerant discharge pipe 96 is inserted and connected in the sleeve 143, and one end of the refrigerant discharge pipe 96 has a discharge muffling chamber 62.
Be communicated to.

【0051】上記アキュムレータ146は吸込冷媒の気
液分離を行うタンクであり、密閉容器12の容器本体1
2Aの上部側面に溶接固定された密閉容器側のブラケッ
ト147にアキュムレータ側のブラケット148を介し
て取り付けられている。このブラケット148はブラケ
ット147から上方に延在し、アキュムレータ146の
上下方向の略中央部を保持しており、その状態でアキュ
ムレータ146は密閉容器12の側方に沿うかたちで配
置される。冷媒導入管92はスリーブ141から出た
後、実施例では右方に屈曲した後、上昇しており、アキ
ュムレータ146の下端はこの冷媒導入管92に近接す
るかたちとなる。そこで、アキュムレータ146の下端
から降下する冷媒導入管94は、スリーブ141から見
て冷媒導入管92の屈曲方向とは反対の左側を迂回して
スリーブ142に至るように引き回されている(図
3)。
The accumulator 146 is a tank for separating the suction refrigerant into gas and liquid, and is the container body 1 of the closed container 12.
It is attached via a bracket 148 on the accumulator side to a bracket 147 on the closed container side welded and fixed to the upper side surface of 2A. The bracket 148 extends upward from the bracket 147 and holds the substantially central portion of the accumulator 146 in the vertical direction. In this state, the accumulator 146 is arranged along the side of the closed container 12. The refrigerant introduction pipe 92, after coming out of the sleeve 141, bends to the right in the embodiment and then rises, and the lower end of the accumulator 146 is in the form of being close to the refrigerant introduction pipe 92. Therefore, the refrigerant introduction pipe 94 that descends from the lower end of the accumulator 146 is routed so as to bypass the left side of the sleeve 141 opposite to the bending direction of the refrigerant introduction pipe 92 and reach the sleeve 142 (FIG. 3). ).

【0052】即ち、上部支持部材38と下部支持部材4
0の吸込通路58、60にそれぞれ連通する冷媒導入管
92、94は密閉容器12から見て水平方向で反対の方
向に屈曲されたかたちとされており、これにより、アキ
ュムレータ146の上下寸法を拡大して容積を増やして
も、各冷媒導入管92、94が相互に干渉しないように
配慮されている。
That is, the upper support member 38 and the lower support member 4
Refrigerant introduction pipes 92 and 94 communicating with the suction passages 58 and 60 of 0 are bent in the opposite directions in the horizontal direction when viewed from the closed container 12, whereby the vertical dimension of the accumulator 146 is enlarged. Therefore, even if the volume is increased, consideration is given so that the refrigerant introduction pipes 92 and 94 do not interfere with each other.

【0053】また、スリーブ141、143、144の
外面周囲には配管接続用のカプラが係合可能な鍔部15
1が形成されており、スリーブ142の内面には配管接
続用のネジ溝152が形成されている。これにより、ス
リーブ141、143、144にはロータリコンプレッ
サ10の製造工程における完成検査で気密試験を行う場
合に試験用配管のカプラを鍔部151に容易に接続でき
るようになると共に、スリーブ142にはネジ溝152
を使用して試験用配管を容易にネジ止めできるようにな
る。特に、上下で隣接するスリーブ141と142は、
一方のスリーブ141に鍔部151が、他方のスリーブ
142にネジ溝152が形成されていることで、狭い空
間で試験用配管を各スリーブ141、142に接続可能
となる。
Further, a flange portion 15 is formed around the outer surfaces of the sleeves 141, 143, 144 so that a coupler for pipe connection can be engaged.
1 is formed, and a thread groove 152 for pipe connection is formed on the inner surface of the sleeve 142. As a result, the sleeves 141, 143, 144 can be easily connected to the flange 151 while the coupler of the test pipe is easily connected to the sleeve 142 when the air tightness test is performed in the completion inspection in the manufacturing process of the rotary compressor 10. Screw groove 152
You can easily screw the test pipe with. In particular, the upper and lower sleeves 141 and 142 are
Since the flange 151 is formed on one sleeve 141 and the thread groove 152 is formed on the other sleeve 142, the test pipe can be connected to each sleeve 141, 142 in a narrow space.

【0054】そして、実施例のロータリコンプレッサ1
0は図18に示すような給湯装置153の冷媒回路に使
用される。即ち、ロータリコンプレッサ10の冷媒吐出
管96は水加熱用のガスクーラ154の入口に接続され
る。このガスクーラ154が給湯装置153の図示しな
い貯湯タンクに設けられる。ガスクーラ154を出た配
管は減圧装置としての膨張弁156を経て蒸発器157
の入口に至り、蒸発器157の出口は冷媒導入管94に
接続される。また、冷媒導入管92の中途部からは図
2、図3では図示していないが除霜回路を構成するデフ
ロスト管158が分岐し、流路制御装置としての電磁弁
159を介してガスクーラ154の入口に至る冷媒吐出
管96に接続されている。尚、図18ではアキュムレー
タ146は省略されている。
The rotary compressor 1 of the embodiment
0 is used in the refrigerant circuit of the water heater 153 as shown in FIG. That is, the refrigerant discharge pipe 96 of the rotary compressor 10 is connected to the inlet of the gas cooler 154 for heating water. The gas cooler 154 is provided in a hot water storage tank (not shown) of the hot water supply device 153. The pipe exiting the gas cooler 154 is passed through an expansion valve 156 as a pressure reducing device and then an evaporator 157.
And the outlet of the evaporator 157 is connected to the refrigerant introduction pipe 94. Further, although not shown in FIGS. 2 and 3, a defrost pipe 158 constituting a defrosting circuit branches from the middle portion of the refrigerant introduction pipe 92, and the defrost pipe 158 of the gas cooler 154 is connected via an electromagnetic valve 159 as a flow path control device. It is connected to the refrigerant discharge pipe 96 leading to the inlet. The accumulator 146 is omitted in FIG.

【0055】以上の構成で次に動作を説明する。尚、加
熱運転では電磁弁159は閉じているものとする。ター
ミナル20および図示されない配線を介して電動要素1
4のステータコイル28に通電されると、電動要素14
が起動してロータ24が回転する。この回転により回転
軸16と一体に設けた上下偏心部42、44に嵌合され
た上下ローラ46、48が上下シリンダ38、40内を
偏心回転する。
The operation of the above configuration will be described below. In the heating operation, the solenoid valve 159 is closed. Electric element 1 via terminal 20 and wiring not shown
When the stator coil 28 of No. 4 is energized, the electric element 14
Starts and the rotor 24 rotates. By this rotation, the upper and lower rollers 46 and 48 fitted in the upper and lower eccentric portions 42 and 44 integrally provided with the rotating shaft 16 eccentrically rotate in the upper and lower cylinders 38 and 40.

【0056】これにより、冷媒導入管94および下部支
持部材56に形成された吸込通路60を経由して吸込ポ
ート162から下シリンダ40の低圧室側に吸入された
低圧(一段目吸入圧LP:4MPaG)の冷媒ガスは、
ローラ48とベーンの動作により圧縮されて中間圧(M
P1:8MPaG)となり下シリンダ40の高圧室側よ
り吐出ポート41、下部支持部材56に形成された吐出
消音室64から連通路63を経て中間吐出管121から
密閉容器12内に吐出される。
As a result, the low pressure (first stage suction pressure LP: 4 MPaG) sucked from the suction port 162 to the low pressure chamber side of the lower cylinder 40 via the suction passage 60 formed in the refrigerant introduction pipe 94 and the lower support member 56. ) The refrigerant gas is
The intermediate pressure (M
P1: 8 MPaG), and is discharged from the high pressure chamber side of the lower cylinder 40 into the closed container 12 from the discharge port 41, the discharge muffling chamber 64 formed in the lower support member 56, the communication passage 63, and the intermediate discharge pipe 121.

【0057】このとき、中間吐出管121は上方の電動
要素14のステータ22に巻装された相隣接するステー
タコイル28、28間の隙間に指向しているので、未だ
比較的温度の低い冷媒ガスを電動要素14方向に積極的
に供給できるようになり、電動要素14の温度上昇が抑
制されるようになる。また、これによって、密閉容器1
2内は中間圧(MP1)となる。
At this time, since the intermediate discharge pipe 121 is directed to the gap between the adjacent stator coils 28, 28 wound around the stator 22 of the upper electric element 14, the refrigerant gas having a relatively low temperature is still present. Can be positively supplied in the direction of the electric element 14, and the temperature rise of the electric element 14 can be suppressed. Moreover, by this, the closed container 1
The inside of 2 becomes an intermediate pressure (MP1).

【0058】そして、密閉容器12内の中間圧の冷媒ガ
スは、スリーブ144から出て(中間吐出圧は前記MP
1)冷媒導入管92及び上部支持部材54に形成された
吸込通路58を経由して吸込ポート161から上シリン
ダ38の低圧室側に吸入される(2段目吸入圧MP
2)。吸入された中間圧の冷媒ガスは、ローラ46とベ
ーン50の動作により2段目の圧縮が行なわれて高温高
圧の冷媒ガスとなり(2段目吐出圧HP:12MPa
G)、高圧室側から吐出ポート39を通り上部支持部材
54に形成された吐出消音室62、冷媒吐出管96を経
由してガスクーラ154内に流入する。このときの冷媒
温度は略+100℃まで上昇しており、係る高温高圧の
冷媒ガスは放熱して、貯湯タンク内の水を加熱し、約+
90℃の温水を生成する。
Then, the intermediate pressure refrigerant gas in the closed container 12 is discharged from the sleeve 144 (the intermediate discharge pressure is equal to the above-mentioned MP value).
1) The refrigerant is introduced into the low pressure chamber side of the upper cylinder 38 from the suction port 161 through the refrigerant introduction pipe 92 and the suction passage 58 formed in the upper support member 54 (second-stage suction pressure MP
2). The sucked intermediate-pressure refrigerant gas is compressed in the second stage by the operation of the roller 46 and the vane 50 to become high-temperature high-pressure refrigerant gas (second-stage discharge pressure HP: 12 MPa.
G) From the high pressure chamber side, the gas flows into the gas cooler 154 through the discharge port 39, the discharge muffling chamber 62 formed in the upper support member 54, and the refrigerant discharge pipe 96. At this time, the refrigerant temperature has risen to approximately + 100 ° C., and the high-temperature and high-pressure refrigerant gas radiates heat to heat the water in the hot water storage tank to approximately +
It produces hot water at 90 ° C.

【0059】一方、ガスクーラ154において冷媒自体
は冷却され、ガスクーラ154を出る。そして、膨張弁
156で減圧された後、蒸発器157に流入して蒸発
し、アキュムレータ146(図18では示していない)
を経て冷媒導入管94から第1の回転圧縮要素32内に
吸い込まれるサイクルを繰り返す。
On the other hand, the refrigerant itself is cooled in the gas cooler 154 and exits the gas cooler 154. Then, after being decompressed by the expansion valve 156, it flows into the evaporator 157 and evaporates, and the accumulator 146 (not shown in FIG. 18).
After that, the cycle of being sucked into the first rotary compression element 32 from the refrigerant introduction pipe 94 is repeated.

【0060】特に、低外気温の環境ではこのような加熱
運転で蒸発器157には着霜が成長する。その場合には
電磁弁159を開放し、膨張弁156は全開状態として
蒸発器157の除霜運転を実行する。これにより、密閉
容器12内の中間圧の冷媒(第2の回転圧縮要素34か
ら吐出された少量の高圧冷媒を含む)は、デフロスト管
158を通ってガスクーラ154に至る。この冷媒の温
度は+50〜+60℃程であり、ガスクーラ154では
放熱せず、当初は逆に冷媒が熱を吸収するかたちとな
る。そして、ガスクーラ154から出た冷媒は膨張弁1
56を通過し、蒸発器157に至るようになる。即ち、
蒸発器157には略中間圧の比較的温度の高い冷媒が減
圧されずに実質的に直接供給されるかたちとなり、これ
によって、蒸発器157は加熱され、除霜されることに
なる。
Particularly, in an environment of low outside temperature, frost is formed on the evaporator 157 by such heating operation. In that case, the solenoid valve 159 is opened, the expansion valve 156 is fully opened, and the evaporator 157 is defrosted. As a result, the medium-pressure refrigerant (including a small amount of high-pressure refrigerant discharged from the second rotary compression element 34) in the closed container 12 reaches the gas cooler 154 through the defrost pipe 158. The temperature of this refrigerant is about +50 to + 60 ° C., and the gas cooler 154 does not dissipate heat, but the refrigerant initially absorbs heat. The refrigerant discharged from the gas cooler 154 is the expansion valve 1
It passes through 56 and reaches the evaporator 157. That is,
The evaporator 157 is substantially directly supplied with the refrigerant having a substantially intermediate pressure and having a relatively high temperature without being decompressed, whereby the evaporator 157 is heated and defrosted.

【0061】ここで、第2の回転圧縮要素34から吐出
された高圧冷媒を減圧せずに蒸発器157に供給して除
霜した場合には、膨張弁156が全開のために第1の回
転圧縮要素32の吸込圧力が上昇し、これにより、第1
の回転圧縮要素32の吐出圧力(中間圧)が高くなる。
この冷媒は第2の回転圧縮要素34を通って吐出される
が、膨張弁156が全開のために第2の回転圧縮要素3
4の吐出圧力が第1の回転圧縮要素32の吸込圧力と同
様となってしまうために第2の回転圧縮要素34の吐出
(高圧)と吸込(中間圧)で圧力の逆転現象が発生して
しまう。しかしながら、上述の如く第1の回転圧縮要素
32から吐出された中間圧の冷媒ガスを密閉容器12か
ら取り出して蒸発器157の除霜を行うようにしている
ので、係る高圧と中間圧の逆転現象を防止することがで
きるようになる。
Here, when the high-pressure refrigerant discharged from the second rotary compression element 34 is supplied to the evaporator 157 without depressurization and defrosted, the expansion valve 156 is fully opened to make the first rotation. The suction pressure of the compression element 32 rises, which causes the first
The discharge pressure (intermediate pressure) of the rotary compression element 32 is increased.
This refrigerant is discharged through the second rotary compression element 34, but because the expansion valve 156 is fully open, the second rotary compression element 3
Since the discharge pressure of No. 4 becomes the same as the suction pressure of the first rotary compression element 32, a pressure reversal phenomenon occurs between the discharge (high pressure) and suction (intermediate pressure) of the second rotary compression element 34. I will end up. However, since the refrigerant gas at the intermediate pressure discharged from the first rotary compression element 32 is taken out from the closed container 12 to defrost the evaporator 157 as described above, the reversal phenomenon of the high pressure and the intermediate pressure. Will be able to prevent.

【0062】尚、上記実施例ではプラグ137の外径寸
法を収納部70Aの内径寸法よりも、上シリンダ38が
変形しない程度に大きく設定し、プラグ137を収納部
70A内に圧入するようにしたが、それに限らず、プラ
グ137の外径寸法を収納部70Aの内径寸法よりも小
さく設定し、プラグ137を収納部70A内に隙間嵌め
により挿入してもよい。
In the above embodiment, the outer diameter of the plug 137 is set larger than the inner diameter of the accommodating portion 70A so that the upper cylinder 38 does not deform, and the plug 137 is press-fitted into the accommodating portion 70A. However, without being limited to this, the outer diameter dimension of the plug 137 may be set smaller than the inner diameter dimension of the storage portion 70A, and the plug 137 may be inserted into the storage portion 70A by a clearance fit.

【0063】係る寸法関係とすれば、上シリンダ38が
変形して上部支持部材54との間のシール性が低下し、
性能悪化を来す不都合を確実に回避することができるよ
うになる。また、係る隙間嵌めであっても、前述の如く
上シリンダ38と密閉容器12間の間隔をOリング13
8からプラグ137の密閉容器12側の端部までの距離
よりも小さく設定しているので、スプリング76側の高
圧(ベーン50の背圧)によってプラグ137が収納部
70Aから押し出される方向に移動しても、密閉容器1
2に当接して移動が阻止された時点で依然Oリング13
8は収納部70A内に位置してシールするので、プラグ
138の機能には何ら問題は生じない。
With such a dimensional relationship, the upper cylinder 38 is deformed and the sealing property with the upper support member 54 deteriorates,
It becomes possible to surely avoid the inconvenience that deteriorates the performance. Even with such a clearance fit, as described above, the space between the upper cylinder 38 and the closed container 12 is set to the O-ring 13.
Since it is set to be smaller than the distance from 8 to the end of the plug 137 on the closed container 12 side, the high pressure on the spring 76 side (back pressure of the vane 50) causes the plug 137 to move in the direction in which it is pushed out of the housing portion 70A. Even closed container 1
O-ring 13 still remains when it abuts 2 and is blocked from moving.
No. 8 does not cause any problem in the function of the plug 138, because 8 is located and sealed in the storage portion 70A.

【0064】また、ロータリコンプレッサ10が停止す
ると、冷媒回路を介して上シリンダ38内の圧力が低圧
側に影響され、密閉容器12内の中間圧よりも低下す
る。係る場合、プラグ137は密閉容器12内の圧力に
よってスプリング76側に押し込まれようとするが、係
る場合にもプラグ137は係止部201に当接してそれ
以上スプリング76側に移動できないので、スプリング
76が係るプラグ137の移動によって潰されてしまう
不都合も生じなくなる。
When the rotary compressor 10 is stopped, the pressure in the upper cylinder 38 is influenced by the low pressure side via the refrigerant circuit and becomes lower than the intermediate pressure in the closed container 12. In such a case, the plug 137 tends to be pushed into the spring 76 side by the pressure in the closed container 12. However, in this case, the plug 137 abuts the locking portion 201 and cannot move to the spring 76 side any more. The inconvenience that the plug 137 is crushed by the movement of the plug 137 does not occur.

【0065】更に、実施例ではロータリコンプレッサ1
0を給湯装置153の冷媒回路に用いたが、これに限ら
ず、室内の暖房用などに用いても本発明は有効である。
Further, in the embodiment, the rotary compressor 1
Although 0 is used for the refrigerant circuit of the hot water supply device 153, the present invention is not limited to this and is also effective when used for heating the room.

【0066】[0066]

【発明の効果】以上詳述した如く本発明によれば、密閉
容器内に電動要素と、この電動要素にて駆動される第1
及び第2の回転圧縮要素を備え、第1の回転圧縮要素で
圧縮されたガスを密閉容器内に吐出し、更にこの吐出さ
れた中間圧のガスを第2の回転圧縮要素で圧縮するロー
タリコンプレッサにおいて、第2の回転圧縮要素を構成
するためのシリンダ及び電動要素の回転軸に形成された
偏心部に嵌合されてシリンダ内で偏心回転するローラ
と、このローラに当接してシリンダ内を低圧室側と高圧
室側に区画するベーンと、このベーンを常時ローラ側に
付勢するためのバネ部材と、シリンダに形成され、ベー
ン側と密閉容器側に開口したバネ部材の収納部と、バネ
部材の密閉容器側に位置して収納部内に設けられ、当該
収納部を封止するためのプラグとを備え、このプラグの
バネ部材側に位置する収納部の内壁には、プラグが所定
位置にて当接する係止部を形成したので、プラグはこの
係止部によりそれ以上バネ部材側に移動できなくなる。
As described above in detail, according to the present invention, the electric element in the closed container and the first element driven by the electric element are provided.
And a second rotary compression element, the gas compressed by the first rotary compression element is discharged into a closed container, and the discharged intermediate-pressure gas is compressed by the second rotary compression element. In a cylinder for constituting the second rotary compression element and an eccentric portion formed on the rotary shaft of the electric element, a roller that eccentrically rotates in the cylinder and a low pressure inside the cylinder that abuts on the roller. A vane that divides the chamber side and the high-pressure chamber side, a spring member that constantly urges the vane toward the roller side, a storage portion of a spring member that is formed in the cylinder and that opens to the vane side and the closed container side, and a spring. The plug is provided on the closed container side of the member and is provided in the storage part, and has a plug for sealing the storage part, and the plug is located at a predetermined position on the inner wall of the storage part located on the spring member side of the plug. Abutting contact Since part was formed, the plug can not move any further spring member side by the locking unit.

【0067】これにより、プラグの位置を所定位置に規
定することが可能となる。従って、例えば請求項2の如
く、プラグの外径を、当該プラグを収納部内に挿入した
場合に、シリンダが変形しない範囲で収納部の内径より
も大きく設定したときには、プラグ挿入によるシリンダ
の変形を回避しながら、プラグを収納部内に圧入する際
の位置決めが行え、プラグの取り付け作業性が向上す
る。
This makes it possible to define the position of the plug at a predetermined position. Therefore, for example, when the outer diameter of the plug is set to be larger than the inner diameter of the accommodating portion within the range where the cylinder is not deformed when the plug is inserted into the accommodating portion, the cylinder is deformed by the plug insertion. While avoiding this, positioning can be performed when the plug is press-fitted into the housing, and the workability of attaching the plug is improved.

【0068】また、例えば請求項3の如くプラグの外径
を、収納部の内径よりも小さく設定した場合には、ロー
タリコンプレッサが停止した際に、密閉容器内の中間圧
によってプラグがバネ部材側に押し込まれる不都合を回
避することができるようになるものである。
When the outer diameter of the plug is set to be smaller than the inner diameter of the storage portion, for example, when the rotary compressor stops, the intermediate pressure in the closed container causes the plug to move toward the spring member side. It is possible to avoid the inconvenience of being pushed into.

【0069】請求項4の発明によれば、上記各発明に加
えて係止部を、収納部の内周壁を段差状に縮径させるこ
とで形成しているので、シリンダの収納部に係止部を容
易に形成することができるようになり、生産コストが削
減されるものである。
According to the invention of claim 4, in addition to the above inventions, the locking portion is formed by reducing the inner peripheral wall of the storage portion in a stepped shape, so that the locking portion is locked in the storage portion of the cylinder. The parts can be easily formed, and the production cost is reduced.

【0070】特に、請求項5の発明の如くCO2ガスを
冷媒として用い、圧力差が大きくなる場合に、本発明は
ロータリコンプレッサの性能改善に著しい効果を奏する
ものである。
In particular, when the CO 2 gas is used as the refrigerant and the pressure difference becomes large as in the fifth aspect of the invention, the present invention exerts a remarkable effect in improving the performance of the rotary compressor.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例のロータリコンプレッサの縦断
面図である。
FIG. 1 is a vertical sectional view of a rotary compressor according to an embodiment of the present invention.

【図2】図1のロータリコンプレッサの正面図である。FIG. 2 is a front view of the rotary compressor of FIG.

【図3】図1のロータリコンプレッサの側面図である。3 is a side view of the rotary compressor of FIG. 1. FIG.

【図4】図1のロータリコンプレッサのもう一つの縦断
面図である。
FIG. 4 is another vertical cross-sectional view of the rotary compressor of FIG.

【図5】図1のロータリコンプレッサの更にもう一つの
縦断面図である。
FIG. 5 is another vertical cross-sectional view of the rotary compressor of FIG.

【図6】図1のロータリコンプレッサの電動要素部分の
平断面図である。
6 is a plan sectional view of an electric element portion of the rotary compressor of FIG. 1. FIG.

【図7】図1のロータリコンプレッサの回転圧縮機構部
の拡大断面図である。
7 is an enlarged sectional view of a rotary compression mechanism portion of the rotary compressor of FIG.

【図8】図1のロータリコンプレッサの第2の回転圧縮
要素のベーン部分の拡大断面図である。
8 is an enlarged sectional view of a vane portion of a second rotary compression element of the rotary compressor of FIG.

【図9】図1のロータリコンプレッサの下部支持部材及
び下部カバーの断面図である。
9 is a cross-sectional view of a lower support member and a lower cover of the rotary compressor of FIG.

【図10】図1のロータリコンプレッサの下部支持部材
の下面図である。
10 is a bottom view of a lower support member of the rotary compressor of FIG. 1. FIG.

【図11】図1のロータリコンプレッサの上部支持部材
及び上部カバーの上面図である。
11 is a top view of an upper support member and an upper cover of the rotary compressor of FIG.

【図12】図1のロータリコンプレッサの上部支持部材
及び上カバーの断面図である。
12 is a sectional view of an upper support member and an upper cover of the rotary compressor of FIG.

【図13】図1のロータリコンプレッサの中間仕切板の
上面図である。
FIG. 13 is a top view of an intermediate partition plate of the rotary compressor of FIG.

【図14】図13A−A線断面図である。FIG. 14 is a sectional view taken along the line AA of FIG.

【図15】図1のロータリコンプレッサの上シリンダの
上面図である。
15 is a top view of the upper cylinder of the rotary compressor of FIG. 1. FIG.

【図16】図1のロータリコンプレッサの上シリンダの
吸入側の圧力変動を示す図である。
16 is a diagram showing pressure fluctuations on the suction side of the upper cylinder of the rotary compressor of FIG.

【図17】図1のロータリコンプレッサの回転軸の連結
部の形状を説明するための断面図である。
FIG. 17 is a cross-sectional view for explaining the shape of the connecting portion of the rotary shaft of the rotary compressor of FIG.

【図18】図1のロータリコンプレッサを適用した給湯
装置の冷媒回路図である。
18 is a refrigerant circuit diagram of a hot water supply device to which the rotary compressor of FIG. 1 is applied.

【図19】図1のロータリコンプレッサの第2の回転圧
縮要素のプラグ部分の拡大断面図である。
19 is an enlarged cross-sectional view of the plug portion of the second rotary compression element of the rotary compressor of FIG.

【符号の説明】[Explanation of symbols]

10 ロータリコンプレッサ 12 密閉容器 14 電動要素 16 回転軸 18 回転圧縮機構部 20 ターミナル 32 第1の回転圧縮要素 34 第2の回転圧縮要素 36 中間仕切板 38、40 上下シリンダ 39、41 吐出ポート 42 偏心部 44 偏心部 46 ローラ 48 ローラ 50 ベーン 54 上部支持部材 56 下部支持部材 62 吐出消音室 64 吐出消音室 66 上部カバー 68 下部カバー 70 案内溝 70A 収納部 76 スプリング(バネ部材) 90 連結部 92、94 冷媒導入管 96 冷媒吐出管 131 貫通孔(給油路) 132 封止材 133、134 連通孔 137 プラグ 138 Oリング 153 給湯装置 154 ガスクーラ 156 膨張弁 157 蒸発器 158 デフロスト管 159 電磁弁 201 係止部 10 Rotary compressor 12 airtight container 14 Electric elements 16 rotation axes 18 Rotary compression mechanism 20 terminals 32 First rotary compression element 34 Second rotary compression element 36 Intermediate partition plate 38, 40 Vertical cylinder 39, 41 Discharge port 42 Eccentric part 44 Eccentric part 46 Laura 48 Roller 50 vanes 54 Upper support member 56 Lower support member 62 Discharge silencer 64 discharge silencer 66 Top cover 68 Lower cover 70 Guide groove 70A storage 76 Spring (Spring member) 90 Connection 92,94 Refrigerant introduction pipe 96 Refrigerant discharge pipe 131 Through hole (oil supply passage) 132 sealing material 133,134 communication holes 137 plug 138 O-ring 153 water heater 154 gas cooler 156 expansion valve 157 evaporator 158 Defrost Tube 159 Solenoid valve 201 Locking part

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松浦 大 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 斎藤 隆泰 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 只野 昌也 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 山崎 晴久 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 Fターム(参考) 3H029 AA05 AA13 AB03 AB08 BB32   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Dai Matsuura             2-5-3 Keihan Hondori, Moriguchi City, Osaka Prefecture             Within Yo Denki Co., Ltd. (72) Inventor Takayasu Saito             2-5-3 Keihan Hondori, Moriguchi City, Osaka Prefecture             Within Yo Denki Co., Ltd. (72) Inventor Masaya Tadano             2-5-3 Keihan Hondori, Moriguchi City, Osaka Prefecture             Within Yo Denki Co., Ltd. (72) Inventor Haruhisa Yamazaki             2-5-3 Keihan Hondori, Moriguchi City, Osaka Prefecture             Within Yo Denki Co., Ltd. F-term (reference) 3H029 AA05 AA13 AB03 AB08 BB32

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 密閉容器内に電動要素と、該電動要素に
て駆動される第1及び第2の回転圧縮要素を備え、前記
第1の回転圧縮要素で圧縮されたガスを前記密閉容器内
に吐出し、更にこの吐出された中間圧のガスを前記第2
の回転圧縮要素で圧縮するロータリコンプレッサにおい
て、 前記第2の回転圧縮要素を構成するためのシリンダ及び
前記電動要素の回転軸に形成された偏心部に嵌合されて
前記シリンダ内で偏心回転するローラと、 該ローラに当接して前記シリンダ内を低圧室側と高圧室
側に区画するベーンと、 該ベーンを常時前記ローラ側に付勢するためのバネ部材
と、 前記シリンダに形成され、前記ベーン側と前記密閉容器
側に開口した前記バネ部材の収納部と、 前記バネ部材の前記密閉容器側に位置して前記収納部内
に設けられ、当該収納部を封止するためのプラグとを備
え、 該プラグの前記バネ部材側に位置する前記収納部の内壁
には、前記プラグが所定位置にて当接する係止部を形成
したことを特徴とするロータリコンプレッサ。
1. A hermetic container provided with an electric element and first and second rotary compression elements driven by the electric element, wherein the gas compressed by the first rotary compression element is contained in the hermetic container. Is discharged to the second, and the discharged intermediate pressure gas is discharged to the second
In the rotary compressor for compressing with the rotary compression element, a roller for eccentrically rotating in the cylinder, which is fitted to a cylinder for forming the second rotary compression element, and an eccentric portion formed on a rotation shaft of the electric element. A vane that abuts on the roller and divides the inside of the cylinder into a low pressure chamber side and a high pressure chamber side; a spring member for constantly biasing the vane toward the roller side; and a vane formed on the cylinder. Side and the storage portion of the spring member opened to the closed container side, and provided in the storage portion located on the closed container side of the spring member, and a plug for sealing the storage portion, A rotary compressor characterized in that an engaging portion with which the plug abuts at a predetermined position is formed on an inner wall of the accommodating portion located on the spring member side of the plug.
【請求項2】 前記プラグの外径は、当該プラグを前記
収納部内に挿入した場合に、前記シリンダが変形しない
範囲で前記収納部の内径よりも大きく設定されているこ
とを特徴とする請求項1のロータリコンプレッサ。
2. The outer diameter of the plug is set to be larger than the inner diameter of the accommodating portion within a range in which the cylinder is not deformed when the plug is inserted into the accommodating portion. 1 rotary compressor.
【請求項3】 前記プラグの外径は、前記収納部の内径
よりも小さく設定されていることを特徴とする請求項1
のロータリコンプレッサ。
3. The outer diameter of the plug is set smaller than the inner diameter of the housing portion.
Rotary compressor.
【請求項4】 前記係止部は、前記収納部の内周壁を段
差状に縮径させて形成されていることを特徴とする請求
項1、請求項2又は請求項3のロータリコンプレッサ。
4. The rotary compressor according to claim 1, wherein the locking portion is formed by reducing the inner peripheral wall of the storage portion in a stepped shape.
【請求項5】 前記第1及び第2の回転圧縮要素は、C
2ガスを冷媒として圧縮することを特徴とする請求項
1、請求項2、請求項3又は請求項4のロータリコンプ
レッサ。
5. The first and second rotary compression elements are C
The rotary compressor according to claim 1, claim 2, claim 3 or claim 4, wherein O 2 gas is compressed as a refrigerant.
JP2001359131A 2001-11-19 2001-11-26 Rotary compressor Expired - Fee Related JP3762690B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2001359131A JP3762690B2 (en) 2001-11-26 2001-11-26 Rotary compressor
TW091116969A TW568996B (en) 2001-11-19 2002-07-30 Defroster of refrigerant circuit and rotary compressor for refrigerant circuit
CNB021422982A CN1245600C (en) 2001-11-19 2002-08-28 Defrosting device of refrigerant loop and rotary compressor for refrigerant loop
CNB2005100966959A CN100390421C (en) 2001-11-19 2002-08-28 Defroster of refrigerant circuit and rotary compressor
US10/288,586 US6732542B2 (en) 2001-11-19 2002-11-06 Defroster of refrigerant circuit and rotary compressor
EP20020257672 EP1312880A3 (en) 2001-11-19 2002-11-06 Rotary compressor and refrigeration circuit
KR1020020071461A KR100889202B1 (en) 2001-11-19 2002-11-18 Refrigerant circuit possible for defrost driving
KR1020080098428A KR100908376B1 (en) 2001-11-19 2008-10-08 Rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001359131A JP3762690B2 (en) 2001-11-26 2001-11-26 Rotary compressor

Publications (2)

Publication Number Publication Date
JP2003161279A true JP2003161279A (en) 2003-06-06
JP3762690B2 JP3762690B2 (en) 2006-04-05

Family

ID=19170193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001359131A Expired - Fee Related JP3762690B2 (en) 2001-11-19 2001-11-26 Rotary compressor

Country Status (1)

Country Link
JP (1) JP3762690B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW568996B (en) * 2001-11-19 2004-01-01 Sanyo Electric Co Defroster of refrigerant circuit and rotary compressor for refrigerant circuit

Also Published As

Publication number Publication date
JP3762690B2 (en) 2006-04-05

Similar Documents

Publication Publication Date Title
US6732542B2 (en) Defroster of refrigerant circuit and rotary compressor
JP3728227B2 (en) Rotary compressor
JP3963740B2 (en) Rotary compressor
JP2006214445A (en) Rotary compressor
JP4004278B2 (en) Rotary compressor
JP4024056B2 (en) Rotary compressor
JP4020612B2 (en) Rotary compressor
JP2003201982A (en) Rotary compressor
JP2003176796A (en) Rotary compressor
JP2003161279A (en) Rotary compressor
JP3963695B2 (en) Manufacturing method of rotary compressor
JP3913507B2 (en) Rotary compressor
JP4401365B2 (en) Rotary compressor
JP4236400B2 (en) Defroster for refrigerant circuit
JP2003201981A (en) Rotary compressor
JP3963691B2 (en) Hermetic electric compressor
JP3986283B2 (en) Rotary compressor
JP3963703B2 (en) Electric compressor
JP2003206879A (en) Rotary compressor
JP2006200541A (en) Hermetic electric compressor
JP4401364B2 (en) Rotary compressor
JP2003120561A (en) Sealed electric compressor
JP2003129958A (en) Rotary compressor
JP2003097472A (en) Rotary compressor
JP3825670B2 (en) Electric compressor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100120

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100120

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120120

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140120

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees