[go: up one dir, main page]

JP2003158190A - Semiconductor device and its manufacturing method - Google Patents

Semiconductor device and its manufacturing method

Info

Publication number
JP2003158190A
JP2003158190A JP2001356973A JP2001356973A JP2003158190A JP 2003158190 A JP2003158190 A JP 2003158190A JP 2001356973 A JP2001356973 A JP 2001356973A JP 2001356973 A JP2001356973 A JP 2001356973A JP 2003158190 A JP2003158190 A JP 2003158190A
Authority
JP
Japan
Prior art keywords
film
insulating film
semiconductor device
antireflection
wiring layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001356973A
Other languages
Japanese (ja)
Inventor
Hiroyuki Hiyakunou
寛之 百濃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2001356973A priority Critical patent/JP2003158190A/en
Publication of JP2003158190A publication Critical patent/JP2003158190A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily manufacture a semiconductor device with high reliability by forming a lower electrode of an MIM capacitor element at the same time with a wiring layer and then eliminating a leak current between an upper electrode and the lower electrode. SOLUTION: The MIM capacitor element is obtained by forming a 1st metal film 11, a reflection preventive film 12, an insulating film 13, and a 2nd metal film 14 one after another on a semiconductor substrate, patterning the 2nd metal film 14 and insulating film 13 and then patterning the 1st metal film 11 by using the reflection preventive film 12 to form a wiring layer 11a, and forming a pattern of a reflection preventive film (dielectric film lower-layer part) 12b and a 1st metal film (lower electrode) 11b below a pattern of the 2nd metal film (upper electrode) 14 and an insulating film (dielectric upper-layer part) 13.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は半導体装置に関
し、特に、金属−絶縁膜−金属(MIM)構造の容量素
子を有する半導体集積回路装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device, and more particularly to a semiconductor integrated circuit device having a capacitive element having a metal-insulating film-metal (MIM) structure.

【0002】[0002]

【従来の技術】図6は、MIM構造の容量素子(以下、
MIMキャパシタと称す)を備えた従来の半導体装置の
構造を示す断面図である。なお、便宜上、MIMキャパ
シタより下層部分の図示は省略するものとする。図にお
いて、1a、1bは、トランジスタなどが素子構成され
た半導体基板(図示せず)上に形成された第1の金属膜
から成り、特に1aは配線層、1bはMIMキャパシタ
の下部電極、2は下部電極1b上に形成されたMIMキ
ャパシタの誘電体膜、3は誘電体膜2上に形成されたM
IMキャパシタの上部電極、4は誘電体膜2および上部
電極3の側壁に形成されたサイドウォール、5aは配線
層1a上に形成され、配線層1a形成のための写真製版
工程で反射防止膜として用いるP−SiON膜(プラズ
マシリコン酸化窒化膜)、5bはMIMキャパシタ(上
部電極3/誘電体膜2/下部電極1b)を覆うように、
反射防止膜5aと同時形成されたP−SiON膜、6は
層間絶縁膜、7a、7b、7cは、それぞれ配線層1
a、下部電極1bおよび上部電極3に達するように層間
絶縁膜6に設けられた接続孔である。
2. Description of the Related Art FIG. 6 shows a capacitive element having an MIM structure (hereinafter referred to as
FIG. 11 is a cross-sectional view showing the structure of a conventional semiconductor device including a MIM capacitor). For the sake of convenience, the illustration of the lower layer portion below the MIM capacitor is omitted. In the figure, 1a and 1b are made of a first metal film formed on a semiconductor substrate (not shown) in which transistors and the like are formed. Particularly, 1a is a wiring layer, 1b is a lower electrode of a MIM capacitor, and 2b. Is a dielectric film of the MIM capacitor formed on the lower electrode 1b, and 3 is an M film formed on the dielectric film 2.
The upper electrodes of the IM capacitor, 4 are sidewalls formed on the side walls of the dielectric film 2 and the upper electrode 3, and 5a are formed on the wiring layer 1a, and serve as an antireflection film in the photolithography process for forming the wiring layer 1a. The P-SiON film (plasma silicon oxynitride film) 5b to be used covers the MIM capacitor (upper electrode 3 / dielectric film 2 / lower electrode 1b).
A P-SiON film formed simultaneously with the antireflection film 5a, 6 is an interlayer insulating film, and 7a, 7b and 7c are wiring layers 1 respectively.
a, a connection hole provided in the interlayer insulating film 6 so as to reach the lower electrode 1b and the upper electrode 3.

【0003】このように構成される従来の半導体装置の
製造方法を図7〜図9に基づいて以下に説明する。まず
図7に示すように、トランジスタなどが素子構成された
半導体基板(図示せず)上に第1の金属膜1、誘電体膜
2、上部電極となる第2の金属膜3、エッチング保護膜
8を順次成膜し(図7(a))、レジストマスクを用い
てエッチング保護膜8および第2の金属膜3を順次エッ
チングして上部電極(第2の金属膜)3をパターニング
する(図7(b))。次に図8に示すように、全面にサ
イドウォール4形成のための膜9を成膜し(図8
(a))、異方性エッチングによる全面エッチバックに
より、上部電極3下層の誘電体膜2をパターニングする
と共に、該誘電体膜2および上部電極3の側壁にサイド
ウォール4を形成する。なお、上部電極3上のエッチン
グ保護膜8は、サイドウォール4形成のためのエッチン
グにおいて、上部電極3がエッチングにより薄くなるの
を防止する(図8(b))。
A conventional method of manufacturing a semiconductor device having such a structure will be described below with reference to FIGS. First, as shown in FIG. 7, a first metal film 1, a dielectric film 2, a second metal film 3 serving as an upper electrode, an etching protection film are formed on a semiconductor substrate (not shown) in which elements such as transistors are formed. 8 is sequentially formed (FIG. 7A), and the etching protection film 8 and the second metal film 3 are sequentially etched using a resist mask to pattern the upper electrode (second metal film) 3 (FIG. 7A). 7 (b)). Next, as shown in FIG. 8, a film 9 for forming the sidewalls 4 is formed on the entire surface (see FIG.
(A)) The dielectric film 2 under the upper electrode 3 is patterned by the entire surface etch back by anisotropic etching, and the sidewalls 4 are formed on the side walls of the dielectric film 2 and the upper electrode 3. The etching protection film 8 on the upper electrode 3 prevents the upper electrode 3 from being thinned by etching in the etching for forming the sidewall 4 (FIG. 8B).

【0004】次に図9に示すように、全面に、配線層1
a形成のための反射防止膜となるP−SiON膜5をプ
ラズマCVD法により成膜し、写真製版工程により形成
されたレジストマスクを用いて、P−SiON膜5およ
び第1の金属膜1をエッチングして、配線層1aおよび
下部電極1bをパターニングし、表面にP−SiON膜
(反射防止膜)5aが形成された配線層1aと、P−S
iON膜5bで覆われたMIMキャパシタ(上部電極3
/誘電体膜2/下部電極1b)とを得る。次に、全面に
層間絶縁膜6を堆積し、この層間絶縁膜6に、配線層1
a、下部電極1bおよび上部電極3にそれぞれ達するよ
うに接続孔7a、7b、7cを形成する(図6参照)。
この後、接続孔7a、7b、7cを介して配線層1a、
下部電極1bおよび上部電極3にそれぞれ接続する電
極、上層配線層(図示せず)を形成し、所定の処理を施
して半導体装置を完成する。
Next, as shown in FIG. 9, the wiring layer 1 is formed on the entire surface.
The P-SiON film 5 serving as an antireflection film for forming a is formed by the plasma CVD method, and the P-SiON film 5 and the first metal film 1 are formed by using the resist mask formed by the photoengraving process. The wiring layer 1a and the lower electrode 1b are patterned by etching, and the wiring layer 1a having a P-SiON film (antireflection film) 5a formed on its surface and PS
MIM capacitor (upper electrode 3 covered with iON film 5b
/ Dielectric film 2 / lower electrode 1b) is obtained. Next, the interlayer insulating film 6 is deposited on the entire surface, and the wiring layer 1 is formed on the interlayer insulating film 6.
Connection holes 7a, 7b and 7c are formed so as to reach a, the lower electrode 1b and the upper electrode 3, respectively (see FIG. 6).
After this, the wiring layer 1a, via the connection holes 7a, 7b, 7c,
An electrode and an upper wiring layer (not shown) respectively connected to the lower electrode 1b and the upper electrode 3 are formed, and a predetermined process is performed to complete the semiconductor device.

【0005】従来の半導体装置は、上記のように、MI
Mキャパシタの下部電極1bが配線層1aを構成する金
属膜1から成り、配線層1a上に配線層1a形成のため
のP−SiON膜(反射防止膜)5aを形成する際に、
上部電極3上から下部電極1b上に渡ってMIMキャパ
シタを覆うP−SiON膜5bが形成される。このP−
SiON膜5(5a、5b)は、低反射率を有し、寸法
精度が要求される微細な配線層などのパターン形成時の
写真製版時に反射防止膜として用いられる膜であるが、
高抵抗ながら若干の導電性を有するものである。このた
め、MIMキャパシタでは、サイドウォール4を形成す
ることにより、上部電極3上から下部電極1b上に渡っ
て形成されるP−SiON膜5bの長さを大きくして、
このP−SiON膜5bの抵抗を高め、MIMキャパシ
タの上部電極3と下部電極1bとの間に流れるリーク電
流を極力低減していた。
As described above, the conventional semiconductor device has the MI
The lower electrode 1b of the M capacitor is made of the metal film 1 forming the wiring layer 1a, and when the P-SiON film (antireflection film) 5a for forming the wiring layer 1a is formed on the wiring layer 1a,
A P-SiON film 5b covering the MIM capacitor is formed over the upper electrode 3 and the lower electrode 1b. This P-
The SiON film 5 (5a, 5b) is a film that has a low reflectance and is used as an antireflection film during photolithography during pattern formation of a fine wiring layer or the like that requires dimensional accuracy.
Although it has high resistance, it has some conductivity. Therefore, in the MIM capacitor, by forming the sidewall 4, the length of the P-SiON film 5b formed over the upper electrode 3 and the lower electrode 1b is increased,
The resistance of the P-SiON film 5b is increased to reduce the leak current flowing between the upper electrode 3 and the lower electrode 1b of the MIM capacitor as much as possible.

【0006】[0006]

【発明が解決しようとする課題】従来の半導体装置は、
以上のように構成されるため、MIMキャパシタの上部
電極3上から下部電極1b上に渡って、若干の導電性を
有するP−SiON膜5bが形成されている。このP−
SiON膜5bは、サイドウォール4の形成により長さ
寸法を大きくし、上部電極3と下部電極1bとの間に流
れるリーク電流は抑制されてはいるが、完全に無くすこ
とはできなかった。また、サイドウォール4形成のため
に製造方法が複雑となるとともに、サイドウォール4形
成時のエッチングで上部電極3の膜減りを防止するため
にエッチング保護膜8を形成する必要があり、さらに工
程が煩雑となる。このMIMキャパシタの上部電極3
は、平坦性の観点から、通常の配線よりも膜厚が薄いも
のであり、上部電極3上に接続孔7cを形成する際に
も、オーバエッチングにより突き抜ける懸念があり、信
頼性良く良好なコンタクトを形成するのは困難であっ
た。また、このようなオーバエッチングを防止する対策
として、エッチングストッパ膜を所望の領域に形成する
方法もあるが、工程数、マスク数を増大させて製造方法
が一層複雑となる。さらに、上部電極3上にはP−Si
ON膜5bが形成されているが、反射防止のために薄く
形成された膜であるために、エッチングストッパとして
の機能は果たさないものであった。
The conventional semiconductor device is
Due to the above-mentioned structure, the P-SiON film 5b having a slight conductivity is formed over the upper electrode 3 and the lower electrode 1b of the MIM capacitor. This P-
Although the length dimension of the SiON film 5b was increased by forming the sidewall 4, the leak current flowing between the upper electrode 3 and the lower electrode 1b was suppressed, but it could not be completely eliminated. In addition, the manufacturing method is complicated because the sidewalls 4 are formed, and it is necessary to form the etching protection film 8 in order to prevent the film thickness of the upper electrode 3 from being reduced by etching when the sidewalls 4 are formed. It becomes complicated. Upper electrode 3 of this MIM capacitor
Is thinner than a normal wiring from the viewpoint of flatness, and there is a concern that it may penetrate due to over-etching even when the connection hole 7c is formed on the upper electrode 3. Was difficult to form. Further, as a measure for preventing such over-etching, there is a method of forming an etching stopper film in a desired region, but the manufacturing method becomes more complicated by increasing the number of steps and the number of masks. Furthermore, P-Si is formed on the upper electrode 3.
Although the ON film 5b is formed, since it is a thin film formed to prevent reflection, it does not function as an etching stopper.

【0007】この発明は、上記のような問題点を解消す
るために成されたものであって、下部電極と配線層とが
同時形成される金属膜で構成されるMIMキャパシタに
おける、上部電極と下部電極との間のリーク電流をゼロ
にして信頼性の高い半導体装置を簡易に実現できること
を目的とする。また、MIMキャパシタの上部電極上に
接続孔を安定して信頼性良く形成して、上部電極と上層
配線との信頼性の高い良好なコンタクト形成を可能にす
ることを目的とする。
The present invention has been made in order to solve the above-mentioned problems, and in an MIM capacitor composed of a metal film in which a lower electrode and a wiring layer are simultaneously formed, an upper electrode and An object of the present invention is to easily realize a highly reliable semiconductor device with zero leakage current between the lower electrode and the lower electrode. It is another object of the present invention to stably and reliably form a connection hole on the upper electrode of the MIM capacitor and to form a reliable and favorable contact between the upper electrode and the upper layer wiring.

【0008】[0008]

【課題を解決するための手段】この発明に係る請求項1
記載の半導体装置は、半導体基板上に、第1の金属膜か
ら成る下部電極およびその上に誘電体膜を介して形成さ
れた第2の金属膜から成る上部電極で構成された容量素
子と、上記第1の金属膜から成る配線層とを備えた装置
構成であって、上記第1の金属膜上に上記配線層形成の
ための反射防止膜を備え、該反射防止膜を上記容量素子
の上記誘電体膜に用いたものである。
[Means for Solving the Problems] Claim 1 according to the present invention
The semiconductor device described above is a capacitive element including, on a semiconductor substrate, a lower electrode made of a first metal film and an upper electrode made of a second metal film formed on the lower electrode via a dielectric film; A device structure comprising a wiring layer made of the first metal film, wherein an antireflection film for forming the wiring layer is provided on the first metal film, and the antireflection film is provided in the capacitive element. It is used for the dielectric film.

【0009】またこの発明に係る請求項2記載の半導体
装置は、請求項1において、反射防止膜がP−SiON
膜(プラズマシリコン酸化窒化膜)から成り、誘電体膜
が上記反射防止膜とその上に形成された絶縁膜との積層
構造である。
A semiconductor device according to a second aspect of the present invention is the semiconductor device according to the first aspect, wherein the antireflection film is a P-SiON.
The dielectric film has a laminated structure of the antireflection film and the insulating film formed thereon, which is made of a film (plasma silicon oxynitride film).

【0010】またこの発明に係る請求項3記載の半導体
装置は、請求項1または2において、容量素子および配
線層上の全面に形成された層間絶縁膜と、上記容量素子
の上部電極、下部電極および上記配線層のそれぞれに達
するように上記層間絶縁膜に設けられた接続孔とを備
え、上記上部電極表面にのみ上記層間絶縁膜とエッチン
グ選択性を有する絶縁膜を配設したものである。
A semiconductor device according to a third aspect of the present invention is the semiconductor device according to the first or second aspect, wherein an interlayer insulating film formed over the entire surface of the capacitor element and the wiring layer, and an upper electrode and a lower electrode of the capacitor element. And a connection hole provided in the interlayer insulating film so as to reach each of the wiring layers, and the insulating film having etching selectivity with the interlayer insulating film is provided only on the surface of the upper electrode.

【0011】またこの発明に係る請求項4記載の半導体
装置は、請求項3において、容量素子の上部電極表面に
配設された絶縁膜が、反射防止膜と同じ材料から成る膜
である。
According to a fourth aspect of the present invention, in the third aspect, the insulating film provided on the surface of the upper electrode of the capacitor is a film made of the same material as the antireflection film.

【0012】またこの発明に係る請求項5記載の半導体
装置の製造方法は、層間絶縁膜に接続孔を形成する際、
レジストマスクを用い、上記上部電極表面の絶縁膜をエ
ッチングストッパとして、該絶縁膜と、上記下部電極上
および上記配線層上の反射防止膜とをそれぞれ露出する
ように上記層間絶縁膜をエッチングして上記接続孔を形
成し、続いて該接続孔底部の上記絶縁膜および上記反射
防止膜をエッチング除去するものである。
According to a fifth aspect of the present invention, there is provided a method of manufacturing a semiconductor device, wherein when forming a connection hole in an interlayer insulating film,
Using the resist mask, the insulating film on the surface of the upper electrode is used as an etching stopper to etch the interlayer insulating film so as to expose the insulating film and the antireflection film on the lower electrode and the wiring layer, respectively. The connection hole is formed, and then the insulating film and the antireflection film at the bottom of the connection hole are removed by etching.

【0013】またこの発明に係る請求項6記載の半導体
装置の製造方法は、半導体基板上に第1の金属膜、反射
防止膜、絶縁膜および第2の金属膜を順次成膜する第1
の工程と、上記第2の金属膜および上記絶縁膜をレジス
トマスクを用いて順次エッチングし、パターニングする
第2の工程と、上記反射防止膜を用いたパターン転写に
より形成されたレジストマスクを用いて、上記反射防止
膜および上記第1の金属膜を順次エッチングし、配線層
を形成すると共に、上記第2の金属膜および上記絶縁膜
のパターンの下層に上記第1の金属膜から成る容量素子
の下部電極を形成し、該下部電極上に上記反射防止膜お
よび上記絶縁膜から成る誘電体膜を形成する第3の工程
とを有するものである。
According to a sixth aspect of the present invention, in the method of manufacturing a semiconductor device, the first metal film, the antireflection film, the insulating film and the second metal film are sequentially formed on the semiconductor substrate.
And the second step of sequentially etching and patterning the second metal film and the insulating film using a resist mask, and a resist mask formed by pattern transfer using the antireflection film. The antireflection film and the first metal film are sequentially etched to form a wiring layer, and a capacitor element including the first metal film under the pattern of the second metal film and the insulating film is formed. And a third step of forming a lower electrode and forming a dielectric film including the antireflection film and the insulating film on the lower electrode.

【0014】またこの発明に係る請求項7記載の半導体
装置の製造方法は、請求項6において、第1の工程にて
成膜する反射防止膜の膜厚は、第2の工程における、絶
縁膜エッチング時のオーバーエッチによる上記反射防止
膜のエッチング厚みを、第3の工程にて反射防止機能に
用いられる厚みに予め加算して設定するものである。
According to a seventh aspect of the present invention, in the method of manufacturing a semiconductor device according to the sixth aspect, the thickness of the antireflection film formed in the first step is the insulating film in the second step. The etching thickness of the antireflection film due to overetching at the time of etching is set by adding in advance to the thickness used for the antireflection function in the third step.

【0015】[0015]

【発明の実施の形態】実施の形態1.以下、この発明の
実施の形態1について図について説明する。図1は、こ
の発明の実施の形態1による、MIM構造の容量素子
(MIMキャパシタ)を備えた半導体装置の構造を示す
断面図である。なお、便宜上、MIMキャパシタより下
層部分の図示は省略するものとする。図において、11
a、11bは、トランジスタなどが素子構成された半導
体基板(図示せず)上に形成された第1の金属膜から成
り、特に11aは配線層、11bはMIMキャパシタの
下部電極、12aは配線層11a上に形成され、配線層
11a形成のための写真製版工程で反射防止膜として用
いるP−SiON膜(プラズマシリコン酸化窒化膜)、
12bは下部電極11a上にP−SiON膜12aと同
時形成され、MIMキャパシタの誘電体膜の下層部分を
構成するP−SiON膜、13はP−SiON膜12b上
に形成され、MIMキャパシタの誘電体膜の上層部分を
構成する例えばSiO膜から成る絶縁膜、14は絶縁
膜13上に形成されたMIMキャパシタの上部電極、1
5は上部電極14上に形成され、上部電極14上に後述
する接続孔を形成する際のエッチングストッパとなる絶
縁膜としてのP−SiON膜、16は層間絶縁膜、17
a、17b、17cは、それぞれ配線層11a、下部電
極11bおよび上部電極14に達するように層間絶縁膜
16に設けられた接続孔である。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiment 1. Embodiment 1 of the present invention will be described below with reference to the drawings. 1 is a cross-sectional view showing a structure of a semiconductor device including a capacitive element (MIM capacitor) having an MIM structure according to a first embodiment of the present invention. For the sake of convenience, the illustration of the lower layer portion below the MIM capacitor is omitted. In the figure, 11
Reference numerals a and 11b are made of a first metal film formed on a semiconductor substrate (not shown) in which elements such as transistors are formed. In particular, 11a is a wiring layer, 11b is a lower electrode of the MIM capacitor, and 12a is a wiring layer. A P-SiON film (plasma silicon oxynitride film) formed on 11a and used as an antireflection film in the photolithography process for forming the wiring layer 11a,
12b is formed on the lower electrode 11a at the same time as the P-SiON film 12a and forms a lower layer of the dielectric film of the MIM capacitor, and P is formed on the P-SiON film 12b. An insulating film made of, for example, a SiO 2 film forming an upper layer portion of the body film, 14 is an upper electrode of the MIM capacitor formed on the insulating film 13, 1
5 is formed on the upper electrode 14, a P-SiON film as an insulating film serving as an etching stopper when forming a connection hole described later on the upper electrode 14, 16 is an interlayer insulating film, 17
Reference numerals a, 17b, and 17c are connection holes provided in the interlayer insulating film 16 so as to reach the wiring layer 11a, the lower electrode 11b, and the upper electrode 14, respectively.

【0016】このように構成される半導体装置の製造方
法を図2〜図5に基づいて以下に説明する。なお、図
2、図3および図4は、この発明の実施の形態1による
半導体装置の製造方法の第1、第2および第3の工程を
それぞれ示す断面図である。まず、トランジスタなどが
素子構成された半導体基板(図示せず)上に第1の金属
膜11を成膜し(図2(a))、続いて全面に、配線層
11a形成のための反射防止膜となるP−SiON膜1
2を、プラズマCVD法により例えば、約55nmの膜
厚で成膜し(図2(b))、さらに全面に例えばSiO
膜から成る絶縁膜13を例えば約15nmの膜厚で成
膜し、上部電極となる第2の金属膜14を例えば約0.
1μmの膜厚で成膜した後、続いてエッチングストッパ
となる絶縁膜としてのP−SiON膜15を例えば約
0.11μmの膜厚で成膜する(図2(c))。
A method of manufacturing the semiconductor device having the above structure will be described below with reference to FIGS. 2, 3 and 4 are cross-sectional views showing the first, second and third steps of the method for manufacturing a semiconductor device according to the first embodiment of the present invention, respectively. First, a first metal film 11 is formed on a semiconductor substrate (not shown) on which elements such as transistors are formed (FIG. 2A), and subsequently, antireflection for forming a wiring layer 11a is formed on the entire surface. P-SiON film 1 as a film
2 is formed into a film with a film thickness of, for example, about 55 nm by the plasma CVD method (FIG. 2 (b)), and further, for example, SiO 2
The insulating film 13 composed of two films is formed with a film thickness of, for example, about 15 nm, and the second metal film 14 serving as the upper electrode is formed with, for example, about 0.
After the film is formed with a film thickness of 1 μm, a P-SiON film 15 as an insulating film serving as an etching stopper is then formed with a film thickness of, for example, about 0.11 μm (FIG. 2C).

【0017】次に、レジストマスクを用いてP−SiO
N膜15、第2の金属膜14および絶縁膜13を順次エ
ッチングしてパターニングする。この絶縁膜13のエッ
チングの際、例えば100%のオーバエッチングでエッ
チングする。このSiO膜から成る絶縁膜13は下地
のP−SiON膜12とのエッチング選択比が3程度で
あるため、P−SiON膜12は約5nmの膜厚でオー
バエッチングにより膜減りする(図3)。このオーバエ
ッチングによる膜減り分は、P−SiON膜12の成膜
時に、反射防止膜としての所望の膜厚(50nm程度)
に予め加算して成膜しておく(図2(b)参照)。次
に、P−SiON膜12を反射防止膜として写真製版工
程により形成されたレジストマスクを用いて、P−Si
ON膜12および第1の金属膜11をエッチングして、
表面にP−SiON膜12aが形成された配線層11a
をパターニングすると共に、P−SiON膜15/第2
の金属膜14/絶縁膜13のパターンの下層に、表面に
P−SiON膜12bが形成された下部電極11bをパ
ターニングする。これにより、P−SiON膜12bと
その上の絶縁膜13とで構成される膜を上下電極14、
11bで挟む誘電体膜としたMIMキャパシタが形成さ
れる(図4)。
Next, using a resist mask, P-SiO
The N film 15, the second metal film 14 and the insulating film 13 are sequentially etched and patterned. When the insulating film 13 is etched, it is etched by, for example, 100% over etching. Since the insulating film 13 made of this SiO 2 film has an etching selection ratio of about 3 to the underlying P-SiON film 12, the P-SiON film 12 is thinned by over-etching at a film thickness of about 5 nm (see FIG. 3). ). The film loss due to this over-etching is a desired film thickness (about 50 nm) as an antireflection film when the P-SiON film 12 is formed.
Is added in advance to form a film (see FIG. 2B). Next, the P-SiON film 12 is used as an antireflection film and the resist mask formed by the photolithography process is used to remove the P-SiON film.
By etching the ON film 12 and the first metal film 11,
Wiring layer 11a having P-SiON film 12a formed on the surface
Patterning the P-SiON film 15 / second
A lower electrode 11b having a P-SiON film 12b formed on the surface thereof is patterned as a lower layer of the metal film 14 / insulating film 13 pattern. As a result, a film composed of the P-SiON film 12b and the insulating film 13 thereon is formed on the upper and lower electrodes 14,
An MIM capacitor having a dielectric film sandwiched between 11b is formed (FIG. 4).

【0018】次に、全面に層間絶縁膜16を例えば0.
7μmの膜厚で堆積し、この層間絶縁膜16の所定の領
域をエッチングにより開口して、配線層11a、下部電
極11bおよび上部電極14上にそれぞれ接続孔17
a、17b、17cを形成する。このとき、上部電極1
4上の層間絶縁膜16は、上部電極14の厚み(約0.
1μm)だけ薄く、さらに膜厚のばらつきを±0.1μ
mとすると、最薄0.5μmとなる。一方、接続孔17
a、17b、17c形成のための層間絶縁膜16のエッ
チングは、層間絶縁膜16の膜厚のばらつきを考慮して
オーバエッチングするため、約0.8μmの膜厚でエッ
チングする。従って、上部電極14上では、約0.3μ
mのオーバエッチングとなるが、層間絶縁膜16とのエ
ッチング選択比が約3であるP−SiON膜15が0.
1μm以上の膜厚(約0.11μm)で形成されている
ため、接続孔17c底部にはP−SiON膜15が残存
する。また、配線層11aおよび下部電極11b上にも
P−SiON膜12a、12bが形成されており、それ
ぞれ接続孔17a、17b底部に露出される(図5)。
Next, an interlayer insulating film 16 is formed on the entire surface by, for example, 0.
The interlayer insulating film 16 is deposited with a film thickness of 7 μm, and a predetermined region of the interlayer insulating film 16 is opened by etching to form connection holes 17 on the wiring layer 11a, the lower electrode 11b and the upper electrode 14, respectively.
a, 17b, 17c are formed. At this time, the upper electrode 1
4 has a thickness (about 0.
1 μm), and the film thickness variation is ± 0.1 μ
When the thickness is m, the thickness becomes 0.5 μm. On the other hand, the connection hole 17
Since the interlayer insulating film 16 for forming a, 17b, and 17c is over-etched in consideration of the variation in the film thickness of the interlayer insulating film 16, the etching is performed with a film thickness of about 0.8 μm. Therefore, on the upper electrode 14, about 0.3 μ
However, the P-SiON film 15 having an etching selection ratio to the interlayer insulating film 16 of about 3 has a thickness of 0.
Since the film is formed with a film thickness of 1 μm or more (about 0.11 μm), the P-SiON film 15 remains at the bottom of the connection hole 17c. Further, P-SiON films 12a and 12b are also formed on the wiring layer 11a and the lower electrode 11b, and exposed at the bottoms of the connection holes 17a and 17b, respectively (FIG. 5).

【0019】次に、エッチング条件を変更して、さらに
接続孔17a、17b、17c形成のための追加エッチ
ングを行い、接続孔17a、17b、17c底部のP−
SiON膜12a、12b、15を除去して、接続孔1
7a、17b、17cを配線層11a、下部電極11b
および上部電極14上にそれぞれ到達させる(図1参
照)。この後、接続孔17a、17b、17cを介して
配線層11a、下部電極11bおよび上部電極15にそ
れぞれ接続する電極、上層配線層(図示せず)を形成
し、所定の処理を施して半導体装置を完成する。
Next, the etching conditions are changed, and additional etching for forming the connection holes 17a, 17b, 17c is further performed, and P- at the bottom of the connection holes 17a, 17b, 17c is formed.
The SiON films 12a, 12b, 15 are removed to form the connection hole 1
7a, 17b and 17c are wiring layers 11a and lower electrodes 11b
And on the upper electrode 14 (see FIG. 1). Thereafter, electrodes and upper wiring layers (not shown) respectively connected to the wiring layer 11a, the lower electrode 11b, and the upper electrode 15 through the connection holes 17a, 17b, 17c, and an upper wiring layer (not shown) are formed, and a predetermined process is applied to the semiconductor device. To complete.

【0020】この実施の形態では、配線層11a形成の
ための反射防止膜となるP−SiON膜12をMIMキ
ャパシタの誘電体膜に用いるため、P−SiON膜5を
MIMキャパシタ全体に覆うように形成した従来のもの
では容易に形成できなかった、接続孔17c開口のため
のエッチングストッパ(P−SiON膜)15を、上部
電極14上にのみ容易に形成できる。このためMIMキ
ャパシタの上部電極14上に接続孔17cを安定して信
頼性良く形成でき、上部電極14と上層配線との信頼性
の高い良好なコンタクトが得られる。また、P−SiO
N膜12b上に絶縁性の良好な絶縁膜13を形成して、
絶縁膜13/P−SiON膜12bで誘電体膜を構成し
たため、P−SiON膜12bが若干の導電性を有して
も、上部電極14と下部電極11bとの間に流れるリー
ク電流を完全に無くすことができ、電気的特性および信
頼性の向上した半導体装置が得られる。また、従来のよ
うに製造工程が煩雑となるサイドウォール4形成の必要
がなく、容易な製造方法で上記効果が実現できる。
In this embodiment, since the P-SiON film 12 serving as an antireflection film for forming the wiring layer 11a is used as the dielectric film of the MIM capacitor, the P-SiON film 5 is covered over the entire MIM capacitor. The etching stopper (P-SiON film) 15 for opening the connection hole 17c, which could not be easily formed by the conventional one formed, can be easily formed only on the upper electrode 14. Therefore, the connection hole 17c can be stably and reliably formed on the upper electrode 14 of the MIM capacitor, and a highly reliable and good contact between the upper electrode 14 and the upper wiring can be obtained. In addition, P-SiO
An insulating film 13 having a good insulating property is formed on the N film 12b,
Since the dielectric film is composed of the insulating film 13 / P-SiON film 12b, even if the P-SiON film 12b has some conductivity, the leak current flowing between the upper electrode 14 and the lower electrode 11b is completely eliminated. A semiconductor device that can be eliminated and has improved electrical characteristics and reliability can be obtained. Further, unlike the conventional case, it is not necessary to form the sidewall 4 which complicates the manufacturing process, and the above effect can be realized by a simple manufacturing method.

【0021】また、上記実施の形態では、上部電極14
上のエッチングストッパ(P−SiON膜)15を第1
の金属膜11上に形成するP−SiON膜12と同じ材
料から成る膜としたため、接続孔17a、17b、17
c形成のための追加エッチング時に、接続孔17a、1
7b、17c底部のP−SiON膜12a、12b、1
5を容易に同時除去して、接続孔17a、17b、17
cを配線層11a、下部電極11bおよび上部電極14
上に信頼性良く到達させることができる。
In the above embodiment, the upper electrode 14
First, the upper etching stopper (P-SiON film) 15 is formed.
Since the film is made of the same material as the P-SiON film 12 formed on the metal film 11 of FIG.
During the additional etching for forming c, the connection holes 17a, 1
7b, 17c P-SiON films 12a, 12b, 1 at the bottom
5 can be easily removed at the same time to form the connection holes 17a, 17b, 17
c is the wiring layer 11a, the lower electrode 11b, and the upper electrode 14
You can reach the top reliably.

【0022】なお、MIMキャパシタの誘電体膜は、絶
縁膜13/P−SiON膜12bの2層構造としたが、
P−SiON膜12b上に2層以上の異なる材料から成
る絶縁膜を形成して3層以上の積層膜としても良い。さ
らに、反射防止膜として機能し絶縁性の良好な膜であれ
ば、配線層11aの反射防止膜を、その膜のみでMIM
キャパシタの誘電体膜に用いても良く製造方法が格段と
容易になる。
Although the dielectric film of the MIM capacitor has a two-layer structure of the insulating film 13 / P-SiON film 12b,
An insulating film made of two or more different materials may be formed on the P-SiON film 12b to form a laminated film having three or more layers. Furthermore, if it is a film that functions as an antireflection film and has a good insulating property, the antireflection film of the wiring layer 11a can be formed only by the MIM.
It may be used for the dielectric film of the capacitor, and the manufacturing method becomes much easier.

【0023】[0023]

【発明の効果】以上のようにこの発明に係る請求項1記
載の半導体装置は、半導体基板上に、第1の金属膜から
成る下部電極およびその上に誘電体膜を介して形成され
た第2の金属膜から成る上部電極で構成された容量素子
と、上記第1の金属膜から成る配線層とを備えた装置構
成であって、上記第1の金属膜上に上記配線層形成のた
めの反射防止膜を備え、該反射防止膜を上記容量素子の
上記誘電体膜に用いたため、容易な製造方法で信頼性の
高い半導体装置が得られる。
As described above, in the semiconductor device according to the first aspect of the present invention, the lower electrode made of the first metal film and the first electrode formed on the lower electrode via the dielectric film are provided. 2 is a device configuration including a capacitive element formed of an upper electrode formed of a metal film, and a wiring layer formed of the first metal film, for forming the wiring layer on the first metal film. Since the antireflection film of 1) is provided and the antireflection film is used as the dielectric film of the capacitive element, a highly reliable semiconductor device can be obtained by an easy manufacturing method.

【0024】またこの発明に係る請求項2記載の半導体
装置は、請求項1において、反射防止膜がP−SiON
膜(プラズマシリコン酸化窒化膜)から成り、誘電体膜
が上記反射防止膜とその上に形成された絶縁膜との積層
構造であるため、容易な製造方法で、容量素子の上下電
極間のリーク電流をゼロにできて信頼性の高い半導体装
置が得られる。
A semiconductor device according to a second aspect of the present invention is the semiconductor device according to the first aspect, wherein the antireflection film is P-SiON.
Since the dielectric film is made of a film (plasma silicon oxynitride film) and the dielectric film has a laminated structure of the antireflection film and the insulating film formed thereon, the leak between the upper and lower electrodes of the capacitive element can be easily performed. It is possible to obtain a highly reliable semiconductor device that can reduce the current to zero.

【0025】またこの発明に係る請求項3記載の半導体
装置は、請求項1または2において、容量素子および配
線層上の全面に形成された層間絶縁膜と、上記容量素子
の上部電極、下部電極および上記配線層のそれぞれに達
するように上記層間絶縁膜に設けられた接続孔とを備
え、上記上部電極表面にのみ上記層間絶縁膜とエッチン
グ選択性を有する絶縁膜を配設したため、接続孔を安定
して信頼性良く形成でき、上層配線との信頼性の高い良
好なコンタクトが得られる。
A semiconductor device according to a third aspect of the present invention is the semiconductor device according to the first or second aspect, wherein an interlayer insulating film formed on the entire surface of the capacitance element and the wiring layer, and an upper electrode and a lower electrode of the capacitance element. And a connecting hole provided in the interlayer insulating film so as to reach each of the wiring layers, and the insulating film having etching selectivity with the interlayer insulating film is provided only on the surface of the upper electrode. Stable and reliable formation is possible, and a highly reliable and good contact with the upper wiring can be obtained.

【0026】またこの発明に係る請求項4記載の半導体
装置は、請求項3において、容量素子の上部電極表面に
配設された絶縁膜が、反射防止膜と同じ材料から成る膜
であるため、接続孔の形成が容易で、信頼性良く下地に
到達させることができる。
According to a fourth aspect of the present invention, in the third aspect, the insulating film provided on the surface of the upper electrode of the capacitor is a film made of the same material as the antireflection film. The formation of the connection hole is easy, and it is possible to reach the base with high reliability.

【0027】またこの発明に係る請求項5記載の半導体
装置の製造方法は、層間絶縁膜に接続孔を形成する際、
レジストマスクを用い、上記上部電極表面の絶縁膜をエ
ッチングストッパとして、該絶縁膜と、上記下部電極上
および上記配線層上の反射防止膜とをそれぞれ露出する
ように上記層間絶縁膜をエッチングして上記接続孔を形
成し、続いて該接続孔底部の上記絶縁膜および上記反射
防止膜をエッチング除去するため、接続孔を安定して信
頼性良く形成でき、上層配線との信頼性の高い良好なコ
ンタクトが容易に得られる。
According to a fifth aspect of the present invention, there is provided a method of manufacturing a semiconductor device, wherein when forming a connection hole in an interlayer insulating film,
Using the resist mask, the insulating film on the surface of the upper electrode is used as an etching stopper to etch the interlayer insulating film so as to expose the insulating film and the antireflection film on the lower electrode and the wiring layer, respectively. Since the connection hole is formed and then the insulating film and the antireflection film at the bottom of the connection hole are removed by etching, the connection hole can be stably and reliably formed, and the reliability with the upper layer wiring is high. Contact can be easily obtained.

【0028】またこの発明に係る請求項6記載の半導体
装置の製造方法は、半導体基板上に第1の金属膜、反射
防止膜、絶縁膜および第2の金属膜を順次成膜する第1
の工程と、上記第2の金属膜および上記絶縁膜をレジス
トマスクを用いて順次エッチングし、パターニングする
第2の工程と、上記反射防止膜を用いたパターン転写に
より形成されたレジストマスクを用いて、上記反射防止
膜および上記第1の金属膜を順次エッチングし、配線層
を形成すると共に、上記第2の金属膜および上記絶縁膜
のパターンの下層に上記第1の金属膜から成る容量素子
の下部電極を形成し、該下部電極上に上記反射防止膜お
よび上記絶縁膜から成る誘電体膜を形成する第3の工程
とを有するため、容量素子の上下電極間のリーク電流を
ゼロにできて信頼性の高い半導体装置が容易で確実に得
られる。
According to a sixth aspect of the present invention, in the method of manufacturing a semiconductor device, the first metal film, the antireflection film, the insulating film and the second metal film are sequentially formed on the semiconductor substrate.
And the second step of sequentially etching and patterning the second metal film and the insulating film using a resist mask, and a resist mask formed by pattern transfer using the antireflection film. The antireflection film and the first metal film are sequentially etched to form a wiring layer, and a capacitor element including the first metal film under the pattern of the second metal film and the insulating film is formed. The third step of forming a lower electrode and forming a dielectric film composed of the antireflection film and the insulating film on the lower electrode has the effect of reducing the leak current between the upper and lower electrodes of the capacitive element to zero. A highly reliable semiconductor device can be obtained easily and surely.

【0029】またこの発明に係る請求項7記載の半導体
装置の製造方法は、請求項6において、第1の工程にて
成膜する反射防止膜の膜厚は、第2の工程における、絶
縁膜エッチング時のオーバーエッチによる上記反射防止
膜のエッチング厚みを、第3の工程にて反射防止機能に
用いられる厚みに予め加算して設定するため、反射防止
膜をその機能を損なわずに容量素子の誘電体膜に利用で
き、信頼性の高い半導体装置が得られる。
According to a seventh aspect of the present invention, in the method of manufacturing a semiconductor device according to the sixth aspect, the thickness of the antireflection film formed in the first step is the insulating film in the second step. Since the etching thickness of the antireflection film due to overetching at the time of etching is set in advance by adding to the thickness used for the antireflection function in the third step, the antireflection film of the capacitive element can be formed without impairing its function. A highly reliable semiconductor device that can be used as a dielectric film can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】 この発明の実施の形態1による半導体装置の
構造を示す断面図である。
FIG. 1 is a sectional view showing a structure of a semiconductor device according to a first embodiment of the present invention.

【図2】 この発明の実施の形態1による半導体装置の
製造方法の第1の工程を示す断面図である。
FIG. 2 is a sectional view showing a first step of the method for manufacturing the semiconductor device according to the first embodiment of the present invention.

【図3】 この発明の実施の形態1による半導体装置の
製造方法の第2の工程を示す断面図である。
FIG. 3 is a sectional view showing a second step of the method for manufacturing the semiconductor device according to the first embodiment of the present invention.

【図4】 この発明の実施の形態1による半導体装置の
製造方法の第3の工程を示す断面図である。
FIG. 4 is a sectional view showing a third step of the method for manufacturing the semiconductor device according to the first embodiment of the present invention.

【図5】 この発明の実施の形態1による半導体装置の
製造方法の一工程を示す断面図である。
FIG. 5 is a cross sectional view showing a step in the method for manufacturing the semiconductor device according to the first embodiment of the present invention.

【図6】 従来の半導体装置の構造を示す断面図であ
る。
FIG. 6 is a cross-sectional view showing the structure of a conventional semiconductor device.

【図7】 従来の半導体装置の製造方法の一工程を示す
断面図である。
FIG. 7 is a cross-sectional view showing a step in a conventional method for manufacturing a semiconductor device.

【図8】 従来の半導体装置の製造方法の一工程を示す
断面図である。
FIG. 8 is a cross-sectional view showing a step in a conventional method for manufacturing a semiconductor device.

【図9】 従来の半導体装置の製造方法の一工程を示す
断面図である。
FIG. 9 is a cross-sectional view showing a step in the conventional method for manufacturing a semiconductor device.

【符号の説明】[Explanation of symbols]

11 第1の金属膜、11a 配線層、11b 下部電
極、12,12a,12b P−SiON膜(反射防止
膜)、13 絶縁膜、14 上部電極(第2の金属
膜)、15 絶縁膜としてのP−SiON膜(エッチン
グストッパ膜)、16 層間絶縁膜、17a,17b,
17c 接続孔。
11 first metal film, 11a wiring layer, 11b lower electrode, 12, 12a, 12b P-SiON film (antireflection film), 13 insulating film, 14 upper electrode (second metal film), 15 as insulating film P-SiON film (etching stopper film), 16 interlayer insulating film, 17a, 17b,
17c Connection hole.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5F004 DB00 DB03 EA22 EA23 EB01 EB02 EB08 5F033 MM15 QQ04 QQ08 QQ09 QQ10 QQ21 QQ25 QQ35 QQ37 QQ39 RR04 RR08 SS15 TT02 VV10 XX00 5F038 AC05 AC09 AC15 AC16 AC18 EZ15 EZ20    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 5F004 DB00 DB03 EA22 EA23 EB01                       EB02 EB08                 5F033 MM15 QQ04 QQ08 QQ09 QQ10                       QQ21 QQ25 QQ35 QQ37 QQ39                       RR04 RR08 SS15 TT02 VV10                       XX00                 5F038 AC05 AC09 AC15 AC16 AC18                       EZ15 EZ20

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上に、第1の金属膜から成る
下部電極およびその上に誘電体膜を介して形成された第
2の金属膜から成る上部電極で構成された容量素子と、
上記第1の金属膜から成る配線層とを備えた半導体装置
において、上記第1の金属膜上に上記配線層形成のため
の反射防止膜を備え、該反射防止膜を上記容量素子の上
記誘電体膜に用いたことを特徴とする半導体装置。
1. A capacitive element including a lower electrode made of a first metal film and an upper electrode made of a second metal film formed on the semiconductor substrate via a dielectric film,
In a semiconductor device having a wiring layer made of the first metal film, an antireflection film for forming the wiring layer is provided on the first metal film, and the antireflection film is used as the dielectric layer of the capacitive element. A semiconductor device characterized by being used as a body film.
【請求項2】 反射防止膜がP−SiON膜(プラズマ
シリコン酸化窒化膜)から成り、誘電体膜が上記反射防
止膜とその上に形成された絶縁膜との積層構造であるこ
とを特徴とする請求項1記載の半導体装置。
2. The antireflection film is made of a P-SiON film (plasma silicon oxynitride film), and the dielectric film has a laminated structure of the antireflection film and an insulating film formed thereon. The semiconductor device according to claim 1.
【請求項3】 容量素子および配線層上の全面に形成さ
れた層間絶縁膜と、上記容量素子の上部電極、下部電極
および上記配線層のそれぞれに達するように上記層間絶
縁膜に設けられた接続孔とを備え、上記上部電極表面に
のみ上記層間絶縁膜とエッチング選択性を有する絶縁膜
を配設したことを特徴とする請求項1または2記載の半
導体装置。
3. An interlayer insulating film formed over the entire surface of the capacitor and the wiring layer, and a connection provided in the interlayer insulating film so as to reach the upper electrode, the lower electrode of the capacitor and the wiring layer, respectively. 3. The semiconductor device according to claim 1, further comprising a hole, wherein the insulating film having etching selectivity with the interlayer insulating film is provided only on the surface of the upper electrode.
【請求項4】 容量素子の上部電極表面に配設された絶
縁膜が、反射防止膜と同じ材料から成る膜であることを
特徴とする請求項3記載の半導体装置。
4. The semiconductor device according to claim 3, wherein the insulating film provided on the surface of the upper electrode of the capacitive element is a film made of the same material as the antireflection film.
【請求項5】 層間絶縁膜に接続孔を形成する際、レジ
ストマスクを用い、上記上部電極表面の絶縁膜をエッチ
ングストッパとして、該絶縁膜と、上記下部電極上およ
び上記配線層上の反射防止膜とをそれぞれ露出するよう
に上記層間絶縁膜をエッチングして上記接続孔を形成
し、続いて該接続孔底部の上記絶縁膜および上記反射防
止膜をエッチング除去することを特徴とする請求項3ま
たは4記載の半導体装置の製造方法。
5. An antireflection coating on the insulating film, the lower electrode and the wiring layer using a resist mask when forming a connection hole in an interlayer insulating film and using the insulating film on the surface of the upper electrode as an etching stopper. 4. The interlayer insulating film is etched to expose the film and the connection hole, so that the connection hole is formed, and then the insulating film and the antireflection film at the bottom of the connection hole are removed by etching. Alternatively, the method for manufacturing a semiconductor device according to the item 4 above.
【請求項6】 半導体基板上に第1の金属膜、反射防止
膜、絶縁膜および第2の金属膜を順次成膜する第1の工
程と、上記第2の金属膜および上記絶縁膜をレジストマ
スクを用いて順次エッチングし、パターニングする第2
の工程と、上記反射防止膜を用いたパターン転写により
形成されたレジストマスクを用いて、上記反射防止膜お
よび上記第1の金属膜を順次エッチングし、配線層を形
成すると共に、上記第2の金属膜および上記絶縁膜のパ
ターンの下層に上記第1の金属膜から成る容量素子の下
部電極を形成し、該下部電極上に上記反射防止膜および
上記絶縁膜から成る誘電体膜を形成する第3の工程とを
有することを特徴とする請求項2記載の半導体装置の製
造方法。
6. A first step of sequentially forming a first metal film, an antireflection film, an insulating film and a second metal film on a semiconductor substrate, and a resist of the second metal film and the insulating film. Second patterning using a mask for sequential etching and patterning
And the resist mask formed by pattern transfer using the antireflection film, the antireflection film and the first metal film are sequentially etched to form a wiring layer, and the second film is formed. A lower electrode of the capacitive element made of the first metal film is formed under the pattern of the metal film and the insulating film, and a dielectric film made of the antireflection film and the insulating film is formed on the lower electrode. 3. The method of manufacturing a semiconductor device according to claim 2, further comprising the step 3).
【請求項7】 第1の工程にて成膜する反射防止膜の膜
厚は、第2の工程における、絶縁膜エッチング時のオー
バーエッチによる上記反射防止膜のエッチング厚みを、
第3の工程にて反射防止機能に用いられる厚みに予め加
算して設定することを特徴とする請求項6記載の半導体
装置の製造方法。
7. The film thickness of the antireflection film formed in the first step is the etching thickness of the antireflection film due to overetching during the etching of the insulating film in the second step,
7. The method for manufacturing a semiconductor device according to claim 6, wherein the thickness used for the antireflection function is added in advance and set in the third step.
JP2001356973A 2001-11-22 2001-11-22 Semiconductor device and its manufacturing method Pending JP2003158190A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001356973A JP2003158190A (en) 2001-11-22 2001-11-22 Semiconductor device and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001356973A JP2003158190A (en) 2001-11-22 2001-11-22 Semiconductor device and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2003158190A true JP2003158190A (en) 2003-05-30

Family

ID=19168388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001356973A Pending JP2003158190A (en) 2001-11-22 2001-11-22 Semiconductor device and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2003158190A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005191182A (en) * 2003-12-25 2005-07-14 Nec Electronics Corp Semiconductor device and manufacturing method thereof
US7005343B2 (en) 2003-06-20 2006-02-28 Seiko Epson Corporation Semiconductor device and method of manufacturing the same
JP2006173319A (en) * 2004-12-15 2006-06-29 Sharp Corp Capacitor and method of manufacturing semiconductor apparatus equipped with same
WO2006098991A2 (en) 2005-03-10 2006-09-21 Texas Instruments Incorporated Integrated circuit capacitor having antireflective dielectric
KR100778228B1 (en) * 2006-08-24 2007-11-20 동부일렉트로닉스 주식회사 Semiconductor device and manufacturing method thereof
JP2008502144A (en) * 2004-06-04 2008-01-24 インターナショナル・ビジネス・マシーンズ・コーポレーション Metal-Insulator-Metal Capacitor Structure and Method of Forming It (Metal-Insulator-Metal Capacitor Formation Simultaneous with Aluminum Base Metal Wiring Level Using Hard Mask)
JP2009524257A (en) * 2006-01-19 2009-06-25 インターナショナル・ビジネス・マシーンズ・コーポレーション Thick wire structure and dual damascene method for forming it (dual damascene process for forming thick wire structure)
KR101044386B1 (en) 2004-07-20 2011-06-27 매그나칩 반도체 유한회사 MM capacitor formation method
JP2013191764A (en) * 2012-03-14 2013-09-26 Lapis Semiconductor Co Ltd Method for manufacturing semiconductor device, and semiconductor device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7005343B2 (en) 2003-06-20 2006-02-28 Seiko Epson Corporation Semiconductor device and method of manufacturing the same
JP2005191182A (en) * 2003-12-25 2005-07-14 Nec Electronics Corp Semiconductor device and manufacturing method thereof
US7432170B2 (en) 2003-12-25 2008-10-07 Nec Electronics Corporation Semiconductor device and fabrication method thereof
JP2008502144A (en) * 2004-06-04 2008-01-24 インターナショナル・ビジネス・マシーンズ・コーポレーション Metal-Insulator-Metal Capacitor Structure and Method of Forming It (Metal-Insulator-Metal Capacitor Formation Simultaneous with Aluminum Base Metal Wiring Level Using Hard Mask)
JP4900831B2 (en) * 2004-06-04 2012-03-21 インターナショナル・ビジネス・マシーンズ・コーポレーション Metal-Insulator-Metal Capacitor Structure and Method of Forming It (Metal-Insulator-Metal Capacitor Formation Simultaneous with Aluminum Ingot Wire Level Using Hard Mask)
KR101044386B1 (en) 2004-07-20 2011-06-27 매그나칩 반도체 유한회사 MM capacitor formation method
JP2006173319A (en) * 2004-12-15 2006-06-29 Sharp Corp Capacitor and method of manufacturing semiconductor apparatus equipped with same
EP1861875A2 (en) * 2005-03-10 2007-12-05 Texas Instruments Incorporated Integrated circuit capacitor having antireflective dielectric
WO2006098991A2 (en) 2005-03-10 2006-09-21 Texas Instruments Incorporated Integrated circuit capacitor having antireflective dielectric
EP1861875A4 (en) * 2005-03-10 2011-09-14 Texas Instruments Inc CAPACITOR WITH INTEGRATED CIRCUIT AND ANTI-REFLECTION DIELECTRIC
JP2009524257A (en) * 2006-01-19 2009-06-25 インターナショナル・ビジネス・マシーンズ・コーポレーション Thick wire structure and dual damascene method for forming it (dual damascene process for forming thick wire structure)
US8753950B2 (en) 2006-01-19 2014-06-17 International Business Machines Corporation Dual-damascene process to fabricate thick wire structure
KR100778228B1 (en) * 2006-08-24 2007-11-20 동부일렉트로닉스 주식회사 Semiconductor device and manufacturing method thereof
JP2013191764A (en) * 2012-03-14 2013-09-26 Lapis Semiconductor Co Ltd Method for manufacturing semiconductor device, and semiconductor device

Similar Documents

Publication Publication Date Title
KR100398015B1 (en) A semiconductor deⅴice and manufacturing method thereof
TWI307138B (en) Semiconductor device
JP3895126B2 (en) Manufacturing method of semiconductor device
JP2004063667A (en) Semiconductor device having a capacitor formed in a multilayer wiring layer
CN101246910A (en) Metal-insulation-metal type capacitor and manufacturing method thereof
KR100306202B1 (en) Semiconductor device and manufacturing method thereof
JP3700460B2 (en) Semiconductor device and manufacturing method thereof
KR100699865B1 (en) Method for forming self-aligned contact pads using chemical mechanical polishing
JP2003158190A (en) Semiconductor device and its manufacturing method
US20030231458A1 (en) Metal-insulator-metal (MIM) capacitor and method for fabricating the same
US20120309164A1 (en) Method for manufacturing semiconductor device
JP2001185614A (en) Semiconductor device and its manufacturing method
JP2005079513A (en) Semiconductor device and manufacturing method thereof
JPH11330251A (en) Manufacture of semiconductor device
JP2001036010A (en) Manufacture of semiconductor device
JP2004079924A (en) Semiconductor device
JP2000311939A (en) Semiconductor device and manufacture of the same
JP3040500B2 (en) Method for manufacturing semiconductor device
JP2004039724A (en) Semiconductor device and its manufacturing method
KR100772073B1 (en) MM capacitor manufacturing method
JP3209209B2 (en) Method for manufacturing semiconductor device having capacitance contact hole
JP2002141472A (en) Semiconductor device and manufacturing method therefor
KR20010065145A (en) Method of forming a metal wiring in a semiconductor device
JP2000188375A (en) Manufacture of semiconductor device
CN116782758A (en) Semiconductor device and method for manufacturing the same