[go: up one dir, main page]

JP2003158124A - Method for forming carbon-based thin film on compound semiconductor - Google Patents

Method for forming carbon-based thin film on compound semiconductor

Info

Publication number
JP2003158124A
JP2003158124A JP2001353902A JP2001353902A JP2003158124A JP 2003158124 A JP2003158124 A JP 2003158124A JP 2001353902 A JP2001353902 A JP 2001353902A JP 2001353902 A JP2001353902 A JP 2001353902A JP 2003158124 A JP2003158124 A JP 2003158124A
Authority
JP
Japan
Prior art keywords
carbon
film
thin film
compound semiconductor
based thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001353902A
Other languages
Japanese (ja)
Other versions
JP2003158124A5 (en
Inventor
Minoru Tokuchi
實 渡久地
Akira Higa
晃 比嘉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2001353902A priority Critical patent/JP2003158124A/en
Publication of JP2003158124A publication Critical patent/JP2003158124A/en
Publication of JP2003158124A5 publication Critical patent/JP2003158124A5/ja
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

(57)【要約】 【課題】 活性水素に化学的に敏感な化合物半導体上へ
の絶縁膜、保護膜およびヒートシンク膜の形成におい
て、均一で付着強度の高い炭素系薄膜の形成方法を提供
することを目的とする。 【解決手段】 活性水素に化学的に敏感な化合物半導体
表面に、固体炭素をターゲット16とし、反応室6にお
いて、不活性ガス雰囲気下で行うスパッタ法により炭素
あるいは炭素を主成分とした炭素系薄膜を形成する。
(57) Abstract: To provide a method for forming a carbon-based thin film with uniform and high adhesion strength in forming an insulating film, a protective film, and a heat sink film on a compound semiconductor chemically sensitive to active hydrogen. With the goal. SOLUTION: A carbon-based thin film containing carbon or carbon as a main component is formed on a surface of a compound semiconductor chemically sensitive to active hydrogen by a sputtering method in a reaction chamber 6 in an inert gas atmosphere using solid carbon as a target 16. To form

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、化合物半導体デバ
イス(FET,放射線検出器など)に用いられる化合物
半導体上への絶縁膜または保護膜の形成方法に係り、特
に炭素膜または炭素を主成分とする膜の形成方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming an insulating film or a protective film on a compound semiconductor used in a compound semiconductor device (FET, radiation detector, etc.), and more particularly to a carbon film or carbon as a main component. The present invention relates to a method for forming a film.

【0002】[0002]

【従来の技術】化合物半導体の絶縁膜または保護膜は、
シリコン上のSiO2 のように熱酸化で形成することが
困難であり、従来、二酸化珪素、窒化珪素、窒化アルミ
等の薄膜をCVD法、スパッタ法等を用いることで形成
している。しかし、こうした保護膜および絶縁膜(二酸
化珪素、窒化珪素、窒化アルミ)は、200℃〜500
℃の温度でしか、形成することができず、化合半導体の
種類によっては、このプロセスで結晶が熱的ダメージを
受け、デバイスの性能に悪影響を与える場合がある。
2. Description of the Related Art A compound semiconductor insulating film or protective film is
Since it is difficult to form it by thermal oxidation like SiO 2 on silicon, conventionally, a thin film of silicon dioxide, silicon nitride, aluminum nitride or the like is formed by using a CVD method, a sputtering method or the like. However, such a protective film and an insulating film (silicon dioxide, silicon nitride, aluminum nitride) have a temperature of 200 ° C to 500 ° C.
It can be formed only at a temperature of ° C, and depending on the type of the compound semiconductor, the crystal may be thermally damaged in this process, which may adversely affect the performance of the device.

【0003】また、上記に挙げたような絶縁膜または保
護膜が結晶性の場合は、これらの膜と基板である化合物
半導体との格子定数のミスマッチ、熱膨張の違いなどに
より、膜と基板との界面で欠陥が生じ、デバイスの性能
を劣化させる要因になるなどの問題もある。
When the above-mentioned insulating film or protective film is crystalline, the film and the substrate may be separated from each other due to a mismatch in lattice constant between the film and the compound semiconductor as the substrate, a difference in thermal expansion, or the like. There is also a problem that defects occur at the interface of the device and cause deterioration of the device performance.

【0004】さらに、先に挙げた保護膜は、CVD法で
形成する場合、シラン、ジシランなど有毒なガスを用い
ることが一般的であり、成膜プロセスにおいてその安全
性に常に留意しなければならず、その工程も複雑になり
製造コストも高価になりがちである。
Further, when the above-mentioned protective film is formed by the CVD method, it is common to use a toxic gas such as silane and disilane, and the safety must always be taken into consideration in the film forming process. However, the process is complicated and the manufacturing cost tends to be high.

【0005】したがって、デバイス作製において、熱処
理などの加熱するプロセスを必要としない場合には、上
記したような面を考慮すると、必ずしも窒化珪素膜や二
酸化珪素膜が実用的であるとは言い切れず、より低温
で、ある程度の機械的強度と付着強度を有し、また、そ
の成膜プロセスが安全かつ簡便な方法で形成できる絶縁
膜または保護膜が望まれる。
Therefore, if a heating process such as a heat treatment is not required in device fabrication, the silicon nitride film or the silicon dioxide film cannot always be said to be practical in view of the above-mentioned aspects. An insulating film or a protective film which has a mechanical strength and an adhesive strength to some extent at a lower temperature and which can be formed by a safe and simple film forming process is desired.

【0006】これまで、絶縁膜また保護膜に利用されて
いる材料として、低温で形成できるものの中に、アモル
ファス炭素膜またはダイヤモンドライクカーボン(DL
C)と呼ばれる、アモルファス構造を有する炭素膜また
は、これらの膜に数%から数十%、水素、酸素、窒素等
を含む炭素を主成分とする膜がある。
Amorphous carbon film or diamond-like carbon (DL) has been used as a material used for an insulating film or a protective film up to now.
There is a carbon film having an amorphous structure, which is called C), or a film containing carbon containing hydrogen, oxygen, nitrogen, etc. as a main component in the range of several% to several tens%.

【0007】これらの膜は、酸、アルカリに対して安定
(耐薬品性)で、耐摩耗性、摺動性、電気絶縁性等に優
れ、切削工具、機械の駆動部品、スピーカの振動板等に
応用され、また、通常の膜厚では光を透過する性質を有
することから装飾品、光学部品等へのコーティングにも
用いられている。
These films are stable (chemical resistance) to acids and alkalis, have excellent wear resistance, slidability, electrical insulation, etc., and are used as cutting tools, drive parts for machines, diaphragms for speakers, etc. It is also used for coating decorative articles, optical parts, etc. because it has a property of transmitting light at a normal film thickness.

【0008】これらの膜は、アモルファス材料であるた
め、基板との格子不整合などの問題がなく、また比較的
簡便な装置で有毒なガスを用いることなく、さらに室温
から100℃程度の低温で形成できるなど、実用の面で
優位な点がある。
Since these films are amorphous materials, there are no problems such as lattice mismatch with the substrate, no poisonous gas is used in a relatively simple device, and the temperature is low from room temperature to about 100 ° C. It has advantages in practical use such as formation.

【0009】したがって、化合物半導体上への絶縁膜ま
たは保護膜としての適用も十分に期待できる。実際、G
aAs基板上へのヒートシンク膜としての適用が試みら
れている。
Therefore, application as an insulating film or a protective film on the compound semiconductor can be expected sufficiently. In fact, G
Attempts have been made to apply it as a heat sink film on an aAs substrate.

【0010】これらの炭素または炭素を主成分とする膜
は、炭素を含んだガスを原料としたプラズマCVD法や
炭素を含む固体を原料としたスパッタ法により形成する
ことが一般的である。しかし、このような膜の形成にお
いて問題となるのは、膜の付着強度である。炭素または
炭素を主成分とする膜は、sp3 結合の炭素を含むアモ
ルファス構造を有し、一般にその割合が増加すると、電
気絶縁性、熱伝導性、硬度等の絶縁膜および保護膜とし
ての性能が向上する一方、膜中の内部応力が増加するた
め基板からの剥離が見られる。そのため、実際の成膜に
おいては、薄膜形成時に水素を添加し、膜中に水素を導
入することにより薄膜の終端構造を制御して膜中の内部
応力を緩和させ、膜の付着強度を保持するなどの方策が
とられる。
The carbon or the film containing carbon as a main component is generally formed by a plasma CVD method using a gas containing carbon as a raw material or a sputtering method using a solid containing carbon as a raw material. However, a problem in forming such a film is the adhesion strength of the film. Carbon or a film containing carbon as a main component has an amorphous structure containing sp 3 -bonded carbon, and generally, when the proportion thereof increases, the performance as an insulating film and a protective film such as electric insulation, thermal conductivity, and hardness. While the film thickness is improved, the internal stress in the film is increased, so that peeling from the substrate is observed. Therefore, in the actual film formation, hydrogen is added at the time of forming the thin film, and hydrogen is introduced into the film to control the terminal structure of the thin film to relieve the internal stress in the film and maintain the adhesive strength of the film. Such measures are taken.

【0011】[0011]

【発明が解決しようとする課題】しかしながら、上記し
た従来の方法は、シリコンやGaAsなど水素に対して
比較的反応が緩やかな半導体材料に関しては特に問題は
ないが、化合物半導体の中でも水素と容易に反応するC
dTe半導体基板のような場合には、ガス中に含まれる
活性水素によって結晶表面の変質またはエッチングが起
こり、結晶にダメージを与えるとともに表面が凹凸の激
しい状態になるため、均一で付着強度の高い炭素膜を形
成することは困難である。
However, the above-mentioned conventional method has no particular problem with semiconductor materials such as silicon and GaAs, which have a relatively slow reaction with hydrogen, but can easily be used with hydrogen among compound semiconductors. C to react
In the case of a dTe semiconductor substrate, the active hydrogen contained in the gas causes alteration or etching of the crystal surface, which damages the crystal and causes the surface to become rough, resulting in a uniform and highly adherent carbon. It is difficult to form a film.

【0012】したがって、現状では、こうした活性水素
に化学的に敏感な化合物半導体(CdTe等)上へのア
モルファス炭素の形成については、その形成条件も含め
て確立していない。
Therefore, at present, formation of amorphous carbon on such a compound semiconductor (CdTe or the like) that is chemically sensitive to active hydrogen has not been established, including the formation conditions.

【0013】本発明は、上記状況に鑑みて、活性水素に
化学的に敏感な化合物半導体上への絶縁膜、保護膜およ
びヒートシンク膜の形成において、均一で付着強度の高
い炭素系薄膜の形成方法を提供することを目的とする。
In view of the above situation, the present invention provides a method for forming a uniform carbon-based thin film having high adhesion strength in forming an insulating film, a protective film and a heat sink film on a compound semiconductor which is chemically sensitive to active hydrogen. The purpose is to provide.

【0014】[0014]

【課題を解決するための手段】本発明は、上記目的を達
成するために、 〔1〕化合物半導体上への炭素系薄膜の形成方法であっ
て、活性水素に化学的に敏感な化合物半導体表面に、固
体炭素をターゲットとし、不活性ガス雰囲気下で行うス
パッタ法により炭素または炭素を主成分とした膜を形成
する。
In order to achieve the above object, the present invention provides [1] a method for forming a carbon-based thin film on a compound semiconductor, the surface of which is chemically sensitive to active hydrogen. First, carbon or a film containing carbon as a main component is formed by sputtering using solid carbon as a target in an inert gas atmosphere.

【0015】〔2〕上記〔1〕記載の化合物半導体上へ
の炭素系薄膜の形成方法であって、前記活性水素に化学
的に敏感な半導体材料はCdTeである。
[2] In the method for forming a carbon-based thin film on the compound semiconductor according to the above [1], the semiconductor material that is chemically sensitive to active hydrogen is CdTe.

【0016】〔3〕上記〔2〕記載の化合物半導体上へ
の炭素系薄膜の形成方法であって、前記CdTe結晶表
面上へ、不活性ガスと水素ガスの混合ガス雰囲気下で行
うスパッタ法を用いる。
[3] The method for forming a carbon-based thin film on a compound semiconductor according to the above [2], which comprises performing sputtering on the surface of the CdTe crystal in a mixed gas atmosphere of an inert gas and a hydrogen gas. To use.

【0017】〔4〕上記〔3〕記載の化合物半導体上へ
の炭素系薄膜の形成方法であって、前記不活性ガスと水
素ガスの混合ガス雰囲気下で行う。
[4] The method for forming a carbon-based thin film on a compound semiconductor according to the above [3], which is performed in a mixed gas atmosphere of the above-mentioned inert gas and hydrogen gas.

【0018】〔5〕上記〔4〕記載の化合物半導体上へ
の炭素系薄膜の形成方法であって、前記水素ガスの微量
制御を行う。
[5] The method for forming a carbon-based thin film on a compound semiconductor according to the above [4], wherein a trace amount of the hydrogen gas is controlled.

【0019】〔6〕上記〔5〕記載の化合物半導体上へ
の炭素系薄膜の形成方法であって、前記水素ガスの水素
分圧比が0.02%〜0.1%である。
[6] The method for forming a carbon-based thin film on a compound semiconductor according to the above [5], wherein the hydrogen partial pressure ratio of the hydrogen gas is 0.02% to 0.1%.

【0020】本発明では、従来例で述べたような背景
で、十分な付着強度、機械的強度(硬度)ならびに絶縁
性を備える絶縁膜または保護膜として炭素膜または炭素
を主成分とする膜を、特に活性水素に化学的に敏感な化
合物半導体(CdTe等)上へ低温(室温〜150℃以
下)で形成する手法を開発したものである。
In the present invention, in the background as described in the conventional example, a carbon film or a film containing carbon as a main component is used as an insulating film or a protective film having sufficient adhesive strength, mechanical strength (hardness) and insulating property. , A method of forming a compound semiconductor (CdTe or the like) which is chemically sensitive to active hydrogen at a low temperature (room temperature to 150 ° C. or lower).

【0021】当該化合物半導体上への炭素膜または炭素
を主成分とする膜(以下、炭素系薄膜と呼ぶ)の形成に
おいては、上記述べたような理由で、従来の手法で行わ
れていた水素分圧の制御範囲では均一で付着強度の高い
膜を得ることは困難である。また、水素フリーの雰囲気
下で成膜した場合にも、炭素膜の内部応力が増大し、膜
の剥離が起こる。すなわち、絶縁膜および保護膜とし
て、当該化合物半導体上へ炭素系薄膜を形成するには、
膜中の内部応力を緩和し適当な付着強度を保ちつつ、被
形成面である当該化合物半導体表面との反応を極力抑え
る必要がある。
The formation of a carbon film or a film containing carbon as a main component (hereinafter referred to as a carbon-based thin film) on the compound semiconductor has been carried out by the conventional method for the reason described above. It is difficult to obtain a uniform film having high adhesion strength within the control range of partial pressure. Further, even when the film is formed in a hydrogen-free atmosphere, the internal stress of the carbon film increases and the film peels off. That is, to form a carbon-based thin film on the compound semiconductor as an insulating film and a protective film,
It is necessary to alleviate the reaction with the surface of the compound semiconductor, which is the formation surface, while relaxing the internal stress in the film and maintaining an appropriate adhesion strength.

【0022】また、本発明によれば、これらの問題を解
決するため、従来技術では行われなかった水素量の微量
制御を行うことによって、十分な付着強度、機械的強度
(硬度)を有する炭素系薄膜の当該化合物半導体上への
形成が可能になることを見いだし本発明を完成するに至
った。
Further, according to the present invention, in order to solve these problems, the carbon having a sufficient adhesion strength and mechanical strength (hardness) is obtained by controlling a minute amount of hydrogen, which has not been carried out in the prior art. The inventors have found that it is possible to form a system thin film on the compound semiconductor, and have completed the present invention.

【0023】本発明では、炭素系薄膜形成をスパッタ法
を用いて行う。これは、上述したように成膜時の水素量
の微量制御が可能でなければならないからである。CV
D法による炭素系薄膜形成の場合においては、原料ガス
として主に炭化水素系ガスが用いられており、水素量の
制御がこの原料ガスに含まれる炭素/水素の比で制限さ
れるため微量な水素添加あるいは水素フリー環境下での
膜形成は不可能である。
In the present invention, the carbon thin film is formed by the sputtering method. This is because it is necessary to control the amount of hydrogen at the time of film formation in a minute amount as described above. CV
In the case of forming a carbon-based thin film by the D method, a hydrocarbon-based gas is mainly used as a raw material gas, and the control of the amount of hydrogen is limited by the ratio of carbon / hydrogen contained in the raw material gas, so that a very small amount of carbon is used. Film formation under hydrogenation or hydrogen-free environment is impossible.

【0024】また、希ガスと炭化水素系ガスの混合ガス
で希ガスの割合を高めることによって成膜時の水素量を
微量化した場合には、原料ガスの量を少なくすることに
なるため、成膜速度が減少し所望の膜厚を形成するため
には相当の時間を要する。これは、結果として水素と被
形成面である当該化合物半導体表面とが反応する確率を
高めることになるため問題の解決にはならない。
Further, when the amount of hydrogen during film formation is made minute by increasing the ratio of the rare gas with the mixed gas of the rare gas and the hydrocarbon-based gas, the amount of the raw material gas is reduced. It takes a considerable amount of time to reduce the film forming speed and form a desired film thickness. This does not solve the problem because it increases the probability that hydrogen reacts with the surface of the compound semiconductor, which is the formation surface, as a result.

【0025】一方、スパッタ法は炭素単体の固体原料を
用い、水素量は、導入する希ガスとの混合比を独立に制
御できるため、水素フリーの状態あるいは微量水素量の
領域から高水素量領域まで任意に制御可能である。これ
は、水素量以外の成膜条件(高周波電力、反応圧力、基
板バイアス電圧等)を変えたときに、膜形成に関して最
適な水素量が僅かに変化した場合にも容易に対応できる
ことを意味している。すなわち、スパッタ法は、微量水
素制御に特に有効な成膜手法であり、本発明に最も適し
た手法である。
On the other hand, the sputtering method uses a solid raw material of simple carbon, and the amount of hydrogen can be controlled independently of the mixing ratio with the rare gas to be introduced. Can be controlled arbitrarily. This means that when the film forming conditions other than the hydrogen amount (high-frequency power, reaction pressure, substrate bias voltage, etc.) are changed, the optimum hydrogen amount for film formation can be easily changed. ing. That is, the sputtering method is a film forming method that is particularly effective for controlling a small amount of hydrogen, and is the most suitable method for the present invention.

【0026】本発明におけるスパッタ法による炭素系薄
膜の形成において水素量の微量制御は、具体的には成膜
時に導入する希ガス(ヘリウムガス等)と水素ガスの混
合比を調整することによって最適化した(水素分圧比:
0.02%〜0.1%.ここで、水素分圧比とは、成膜
時の全ガス圧に対する水素分圧の比である)。さらに、
この最適化によって、膜厚を10nmから100nm程
度で要求する機械的強度、絶縁性、付着強度が得られる
ことを明らかにした。
In forming the carbon thin film by the sputtering method in the present invention, the minute amount of hydrogen is optimally controlled by adjusting the mixing ratio of the rare gas (helium gas or the like) and hydrogen gas introduced during film formation. (Hydrogen partial pressure ratio:
0.02% -0.1%. Here, the hydrogen partial pressure ratio is the ratio of the hydrogen partial pressure to the total gas pressure during film formation). further,
By this optimization, it was clarified that the required mechanical strength, insulating property, and adhesion strength can be obtained at a film thickness of about 10 nm to 100 nm.

【0027】[0027]

【発明の実施の形態】以下、本発明の実施の形態につい
て詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below.

【0028】図1は本発明の実施例を示す炭素系薄膜形
成装置の構成図であり、ここでは、炭素膜または炭素を
主成分とする膜を形成するための一例である高周波マグ
ネトロンスパッタリング装置を示している。
FIG. 1 is a block diagram of a carbon-based thin film forming apparatus showing an embodiment of the present invention. Here, a high frequency magnetron sputtering apparatus as an example for forming a carbon film or a film containing carbon as a main component is used. Shows.

【0029】この図に示すように、導入ガス系1におい
て、ヘリウムガスを第1の導入口2より、水素ガスを第
2の導入口3よりそれぞれ、流量計4A,4B、バルブ
5A,5Bを経て反応室6中にノズル7より導入する。
As shown in this figure, in the introduction gas system 1, helium gas is supplied from the first introduction port 2, hydrogen gas is supplied from the second introduction port 3, flowmeters 4A and 4B, and valves 5A and 5B are connected. After that, it is introduced into the reaction chamber 6 through the nozzle 7.

【0030】反応室6には第1電極8と第2電極9を設
けた。第2電極9は通常、反応室6と同電位で接地され
ている。一対の第1電極8と第2電極9間には高周波電
源10からマッチング回路11を介して電気エネルギー
が加えられ、プラズマを発生する。
The reaction chamber 6 was provided with a first electrode 8 and a second electrode 9. The second electrode 9 is normally grounded at the same potential as the reaction chamber 6. Electrical energy is applied between the pair of first electrode 8 and second electrode 9 from the high-frequency power source 10 through the matching circuit 11 to generate plasma.

【0031】排気系12は圧力調整バルブ13、油拡散
ポンプ14、ロータリーポンプ15を経て不要気体を排
気する。反応室6に導入されたガスは、圧力が0.00
1〜1Torr、代表的には、0.01〜0.5Tor
rの下で高周波エネルギーにより、0.1〜1kWにエ
ネルギーが加えられる。高周波エネルギーを得て発生し
たプラズマ中の電子が第2電極9に蓄積されることによ
って、セルフバイアスが生じ、それによって第1電極8
へ正イオン(例えばHe+ ,H+ )が加速され、第1電
極8に設置されたグラファイトターゲット16に衝突す
る。
The exhaust system 12 exhausts unnecessary gas through a pressure adjusting valve 13, an oil diffusion pump 14, and a rotary pump 15. The gas introduced into the reaction chamber 6 has a pressure of 0.00
1-1 Torr, typically 0.01-0.5 Torr
Energy is added to 0.1-1 kW by high frequency energy under r. Electrons in the plasma generated by obtaining high-frequency energy are accumulated in the second electrode 9 to cause self-bias, which causes the first electrode 8
Positive ions (for example, He + , H + ) are accelerated and collide with the graphite target 16 installed on the first electrode 8.

【0032】この衝突によってグラファイトターゲット
16を構成する炭素または炭素と水素が結合した粒子が
反応空間中に叩き出され、第2電極9に設置されている
基板17へ到達し、基板17上でC−C結合、C−H結
合、C=C結合を含むアモルファス構造の炭素系薄膜が
形成される。
By this collision, carbon or particles in which carbon and hydrogen are bonded, which compose the graphite target 16, are knocked out into the reaction space, reach the substrate 17 installed on the second electrode 9, and C on the substrate 17 is reached. A carbon-based thin film having an amorphous structure including -C bond, C-H bond, and C = C bond is formed.

【0033】本発明の一例として、II−VI化合物半導体
であるCdTe結晶へ炭素系薄膜を保護膜とし形成した
例を示す。
As an example of the present invention, an example in which a carbon-based thin film is formed as a protective film on a CdTe crystal which is a II-VI compound semiconductor will be shown.

【0034】このように構成される炭素系薄膜形成にお
いて、第2電極9にCdTeからなる半導体基板17を
設置した。反応室6は排気装置によって高真空に排気し
た。CdTe半導体は、水素ガスと反応し、基板表面が
荒れるため、付着強度の高い膜を形成するにはヘリウム
ガスと水素ガスの混合比を最適化する必要がある。
In forming the carbon-based thin film thus configured, the semiconductor substrate 17 made of CdTe was placed on the second electrode 9. The reaction chamber 6 was evacuated to a high vacuum by an exhaust device. Since the CdTe semiconductor reacts with hydrogen gas and the surface of the substrate is roughened, it is necessary to optimize the mixing ratio of helium gas and hydrogen gas in order to form a film having high adhesion strength.

【0035】そこで、第2電極9にCdTeからなる半
導体基板17を設置し、反応室6を排気装置によって高
真空に排気した後、反応室6内の真空度を0.4Tor
r,全ガス流量を40SCCMに保った状態で反応室6
内の水素分圧比が0.03%〜0.065%となるよう
に流量計4A,4Bによりヘリウムおよび水素ガスを導
入した。第2電極9は、反応室6と同電位(接地)に
し、特に冷却または加熱は行わない。
Therefore, the semiconductor substrate 17 made of CdTe is installed on the second electrode 9, and the reaction chamber 6 is evacuated to a high vacuum by an exhaust device, and then the degree of vacuum in the reaction chamber 6 is 0.4 Tor.
r, the reaction chamber 6 with the total gas flow rate kept at 40 SCCM
Helium and hydrogen gas were introduced by the flowmeters 4A and 4B so that the hydrogen partial pressure ratio inside was 0.03% to 0.065%. The second electrode 9 has the same potential (ground) as the reaction chamber 6 and is not particularly cooled or heated.

【0036】このような状態で、高周波マグネトロンス
パッタリング装置を運転して反応室6内にプラズマを発
生させて、スパッタリングを行うことによってCdTe
基板17の表面に膜厚10〜100nm程度の炭素系薄
膜を形成する。
In such a state, the high-frequency magnetron sputtering device is operated to generate plasma in the reaction chamber 6 to perform sputtering, thereby performing CdTe.
A carbon-based thin film having a film thickness of about 10 to 100 nm is formed on the surface of the substrate 17.

【0037】このとき基板は、特に加熱を行わないが、
成膜中はプラズマ中のイオン(Heイオンなど)やター
ゲットよりスパッタされた炭素粒子などが基板へ衝突す
るため、基板温度は約50〜100℃程度になるが、こ
の程度の温度ではCdTe基板へ与える熱的ダメージは
ない。
At this time, the substrate is not particularly heated,
Ions (such as He ions) in plasma and carbon particles sputtered from the target collide with the substrate during film formation, so the substrate temperature is about 50 to 100 ° C., but at this temperature, the CdTe substrate is No thermal damage done.

【0038】図2は本発明の化合物半導体上への炭素系
薄膜の形成方法によって形成された炭素系薄膜の水素分
圧比に対する硬度の特性図であり、横軸に水素分圧比
(%)、縦軸に硬度(GPa)を示し、全ガス圧が0.
4Torrの場合である。
FIG. 2 is a characteristic diagram of hardness of a carbon-based thin film formed by the method for forming a carbon-based thin film on a compound semiconductor according to the present invention with respect to a hydrogen partial pressure ratio. The axis shows hardness (GPa) and the total gas pressure is 0.
This is the case of 4 Torr.

【0039】本発明によって形成された炭素系薄膜は、
図2に示すように、硬度が10−12GPaであり、光
学ギャップ1.0eV、抵抗率1×105 Ω・cmを有
し、付着強度についても粘着テープ剥離試験により、剥
離は観察されず、密着性が十分良いことが確認された。
The carbon-based thin film formed by the present invention is
As shown in FIG. 2, the hardness was 10-12 GPa, the optical gap was 1.0 eV, the resistivity was 1 × 10 5 Ω · cm, and the adhesive strength was not observed by the adhesive tape peeling test. It was confirmed that the adhesion was sufficiently good.

【0040】以上の結果より、低温(室温〜100℃以
下)で、CdTe基板上に十分な硬度と付着強度を有す
る炭素系保護膜を形成することができた。
From the above results, it was possible to form a carbon-based protective film having sufficient hardness and adhesive strength on a CdTe substrate at a low temperature (room temperature to 100 ° C. or lower).

【0041】この実施例で最も重要な点は、成膜時の水
素量の微量添加にある。上記の条件では、水素分圧比は
0.03%〜0.065%と非常に微量の水素量の制御
を行っている。
The most important point in this example is the addition of a small amount of hydrogen during film formation. Under the above conditions, the hydrogen partial pressure ratio is 0.03% to 0.065%, and a very small amount of hydrogen is controlled.

【0042】これは、先に述べたように従来行われてき
た水素分圧比の範囲(1%〜100%)では、CdTe
基板の表面が荒れるため付着強度の強い炭素系薄膜を形
成することができないためである。実際、水素分圧比を
0.1%より高くして形成された薄膜は、テープ試験に
より容易に剥離した。
As described above, in the range of hydrogen partial pressure ratio (1% to 100%) which has been conventionally performed, CdTe is obtained.
This is because it is not possible to form a carbon-based thin film having strong adhesion strength because the surface of the substrate becomes rough. In fact, a thin film formed with a hydrogen partial pressure ratio higher than 0.1% easily peeled off by a tape test.

【0043】なお、上記実施例で示した膜上にさらに成
膜条件(水素量、高周波電力、反応圧力、基板バイアス
電圧等)を変えて炭素系薄膜を積層することにより、膜
全体としてさらに以下に示すような範囲で物性制御なら
びに厚みの制御が可能である。
The carbon-based thin film is further laminated on the film shown in the above embodiment by changing the film forming conditions (hydrogen amount, high frequency power, reaction pressure, substrate bias voltage, etc.), and the film as a whole is further It is possible to control the physical properties and the thickness in the range as shown in.

【0044】硬度:2GPa〜20GPa 光学ギャップ:1eV〜3.5eV 抵抗率:1×105 Ω・cm〜1×1013Ω・cm なお、本発明は上記実施例に限定されるものではなく、
本発明の趣旨に基づいて種々の変形が可能であり、これ
らを本発明の範囲から排除するものではない。
Hardness: 2 GPa to 20 GPa Optical gap: 1 eV to 3.5 eV Resistivity: 1 × 10 5 Ω · cm to 1 × 10 13 Ω · cm The present invention is not limited to the above embodiment,
Various modifications are possible based on the spirit of the present invention, and these are not excluded from the scope of the present invention.

【0045】[0045]

【発明の効果】以上、詳細に説明したように、本発明に
よれば、化合物半導体、特に、水素と敏感に反応する化
合物半導体上へ十分な付着強度、機械的硬度、絶縁性を
有する絶縁膜および保護膜として炭素系薄膜を低温(室
温〜150℃以下)で形成するものであり、化合物半導
体デバイスを作製する際に留意しなければならない。基
板の熱による変質(組成変化、表面粗さ)等のダメージ
を与えることがない。
As described above in detail, according to the present invention, an insulating film having sufficient adhesion strength, mechanical hardness, and insulating property on a compound semiconductor, particularly a compound semiconductor sensitively reacting with hydrogen. Further, a carbon-based thin film is formed as a protective film at a low temperature (room temperature to 150 ° C. or lower), and it must be noted when manufacturing a compound semiconductor device. No damage such as alteration (composition change, surface roughness) due to heat of the substrate is given.

【0046】したがって、デバイス作製プロセスが、4
00℃(炭素系薄膜が安定な状態を維持できる温度)以
下で行われる場合には、配線間や電極間の絶縁または、
電極への半田付けの際の電極以外の部分の絶縁および保
護に有効で、特に有毒なガス等を使用することがないの
で、自然にやさしい製造方法を提供することができる。
Therefore, the device manufacturing process is 4
If performed below 00 ° C (temperature at which the carbon thin film can maintain a stable state) or below, insulation between wirings or electrodes or
It is effective for insulation and protection of parts other than the electrode when soldering to the electrode, and since no particularly toxic gas or the like is used, it is possible to provide a naturally gentle manufacturing method.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す炭素系薄膜形成装置の構
成図である。
FIG. 1 is a configuration diagram of a carbon-based thin film forming apparatus showing an embodiment of the present invention.

【図2】本発明の化合物半導体上への炭素系薄膜の形成
方法によって形成された炭素系薄膜の水素分圧比に対す
る硬度の特性図である。
FIG. 2 is a characteristic diagram of hardness with respect to a hydrogen partial pressure ratio of a carbon-based thin film formed by the method for forming a carbon-based thin film on a compound semiconductor of the present invention.

【符号の説明】[Explanation of symbols]

1 導入ガス系 2 第1の導入口 3 第2の導入口 4A,4B 流量計 5A,5B バルブ 6 反応室 7 ノズル 8 第1電極 9 第2電極 10 高周波電源 11 マッチング回路 12 排気系 13 圧力調整バルブ 14 油拡散ポンプ 15 ロータリーポンプ 16 グラファイトターゲット 17 基板(CdTe) 1 Introduced gas system 2 First inlet 3 Second inlet 4A, 4B flow meter 5A, 5B valve 6 Reaction chamber 7 nozzles 8 First electrode 9 Second electrode 10 high frequency power supply 11 Matching circuit 12 Exhaust system 13 Pressure control valve 14 Oil diffusion pump 15 Rotary pump 16 Graphite target 17 Substrate (CdTe)

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4K029 AA04 BA34 BD01 CA05 DC02 DC35 DC39 EA05 5F033 GG01 RR01 SS08 5F058 BA20 BB01 BC20 BF12 BG01 BG02 BG04    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4K029 AA04 BA34 BD01 CA05 DC02                       DC35 DC39 EA05                 5F033 GG01 RR01 SS08                 5F058 BA20 BB01 BC20 BF12 BG01                       BG02 BG04

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 活性水素に化学的に敏感な化合物半導体
表面に、固体炭素をターゲットとし、不活性ガス雰囲気
下で行うスパッタ法により炭素または炭素を主成分とし
た膜を形成する化合物半導体上への炭素系薄膜の形成方
法。
1. A compound semiconductor which forms carbon or a film containing carbon as a main component on a surface of a compound semiconductor which is chemically sensitive to active hydrogen by sputtering using solid carbon as a target in an inert gas atmosphere. Of forming a carbon-based thin film of.
【請求項2】 請求項1記載の化合物半導体上への炭素
系薄膜の形成方法であって、前記活性水素に化学的に敏
感な半導体材料はCdTeである化合物半導体上への炭
素系薄膜の形成方法。
2. The method for forming a carbon-based thin film on a compound semiconductor according to claim 1, wherein the semiconductor material chemically sensitive to active hydrogen is CdTe. Method.
【請求項3】 請求項2記載の化合物半導体上への炭素
系薄膜の形成方法であって、前記CdTe結晶表面上
へ、不活性ガスと水素ガスの混合ガス雰囲気下で行うス
パッタ法を用いる化合物半導体上への炭素系薄膜の形成
方法。
3. The method for forming a carbon-based thin film on a compound semiconductor according to claim 2, wherein the compound is formed by sputtering on the surface of the CdTe crystal in a mixed gas atmosphere of an inert gas and a hydrogen gas. A method for forming a carbon-based thin film on a semiconductor.
【請求項4】 請求項3記載の化合物半導体上への炭素
系薄膜の形成方法であって、前記不活性ガスと水素ガス
の混合ガス雰囲気下で行う化合物半導体上への炭素系薄
膜の形成方法。
4. The method for forming a carbon-based thin film on a compound semiconductor according to claim 3, wherein the carbon-based thin film is formed on the compound semiconductor in a mixed gas atmosphere of the inert gas and hydrogen gas. .
【請求項5】 請求項4記載の化合物半導体上への炭素
系薄膜の形成方法であって、前記水素ガスの微量制御を
行う化合物半導体上への炭素系薄膜の形成方法。
5. The method for forming a carbon-based thin film on a compound semiconductor according to claim 4, wherein the carbon-based thin film is formed on a compound semiconductor for controlling a minute amount of the hydrogen gas.
【請求項6】 請求項5記載の化合物半導体上への炭素
系薄膜の形成方法であって、前記水素ガスの水素分圧比
が0.02%〜0.1%である化合物半導体上への炭素
系薄膜の形成方法。
6. The method for forming a carbon-based thin film on a compound semiconductor according to claim 5, wherein the carbon on the compound semiconductor has a hydrogen partial pressure ratio of the hydrogen gas of 0.02% to 0.1%. Method of forming a thin film.
JP2001353902A 2001-11-20 2001-11-20 Method for forming carbon-based thin film on compound semiconductor Pending JP2003158124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001353902A JP2003158124A (en) 2001-11-20 2001-11-20 Method for forming carbon-based thin film on compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001353902A JP2003158124A (en) 2001-11-20 2001-11-20 Method for forming carbon-based thin film on compound semiconductor

Publications (2)

Publication Number Publication Date
JP2003158124A true JP2003158124A (en) 2003-05-30
JP2003158124A5 JP2003158124A5 (en) 2004-11-18

Family

ID=19165833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001353902A Pending JP2003158124A (en) 2001-11-20 2001-11-20 Method for forming carbon-based thin film on compound semiconductor

Country Status (1)

Country Link
JP (1) JP2003158124A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007266083A (en) * 2006-03-27 2007-10-11 Renesas Technology Corp Semiconductor device and fabrication method therefor
JP2012142484A (en) * 2011-01-05 2012-07-26 National Institute Of Advanced Industrial & Technology Manufacturing method of silicon carbide semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007266083A (en) * 2006-03-27 2007-10-11 Renesas Technology Corp Semiconductor device and fabrication method therefor
JP2012142484A (en) * 2011-01-05 2012-07-26 National Institute Of Advanced Industrial & Technology Manufacturing method of silicon carbide semiconductor device

Similar Documents

Publication Publication Date Title
TWI393191B (en) Low temperature thin film transistor process, device characteristics, and device stability improvement
JP3801730B2 (en) Plasma CVD apparatus and thin film forming method using the same
JP2981102B2 (en) Method for manufacturing thin film transistor
TW200830942A (en) Contamination reducing liner for inductively coupled chamber
US4576829A (en) Low temperature growth of silicon dioxide on silicon
WO1994019509A1 (en) Film forming method and film forming apparatus
US8435882B2 (en) Film forming method for a semiconductor
WO2007053553A2 (en) Method and system for forming a nitrided germanium-containing layer using plasma processing
JP3112880B2 (en) Cleaning method for CVD equipment
WO2007053269A2 (en) Method and system for forming a nitrided germanium-containing layer using plasma processing
JP3166379B2 (en) Method and apparatus for manufacturing insulating film
JP2003158124A (en) Method for forming carbon-based thin film on compound semiconductor
JP3189056B2 (en) Semiconductor substrate pretreatment method and apparatus having its function
KR100885690B1 (en) Diamond Film Manufacturing Method and Diamond Film
JPH09148676A (en) Semiconductor laser and method of manufacturing the same
JP2000054150A (en) Plasma processing apparatus and plasma processing method
JPH0544017A (en) Formation of silicon nitride film
JPH0629222A (en) Manufacture of semiconductor device
JP2001291882A (en) Thin film manufacturing method
JP3449979B2 (en) Manufacturing method of aluminum nitride thin film using plasma treatment
Kikuchi Thin‐Film PECVD (Ulvac)
JP3235095B2 (en) Method of forming silicon oxide film
KR100372750B1 (en) Enhancem ent of the surface and bonding characteristics of Aluminum nitride (AlN) thin film
KR20180064618A (en) Method for Deposition of Thin Film
JPS59177919A (en) Selective growth of thin film

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20031210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070313