[go: up one dir, main page]

JP2003151546A - Positive electrode active substance for lithium ion secondary battery and its manufacturing method - Google Patents

Positive electrode active substance for lithium ion secondary battery and its manufacturing method

Info

Publication number
JP2003151546A
JP2003151546A JP2001343331A JP2001343331A JP2003151546A JP 2003151546 A JP2003151546 A JP 2003151546A JP 2001343331 A JP2001343331 A JP 2001343331A JP 2001343331 A JP2001343331 A JP 2001343331A JP 2003151546 A JP2003151546 A JP 2003151546A
Authority
JP
Japan
Prior art keywords
positive electrode
electrode active
active material
ion secondary
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001343331A
Other languages
Japanese (ja)
Inventor
Takeshi Takahashi
武志 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP2001343331A priority Critical patent/JP2003151546A/en
Publication of JP2003151546A publication Critical patent/JP2003151546A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a positive electrode active substance which is superior especially in a filling property, which has a high capacity and which is superior in a load property and a charging-discharging cycle property, and provide its manufacturing method. SOLUTION: This substance leas such a constitution that the positive electrode active substance for a lithium ion secondary battery has a particle shape of a hexagonal pillar and satisfies 0.5<=(2c)/(a+b)<=1 (in the formula, a shows the average longer shaft diameter of the base face, b shows the average shorter shaft diameter and c shows the average particle height). Further, the positive electrode active substance for the lithium ion secondary battery can be manufactured by a method of baking a raw material mixture in an atmosphere of oxygen density 0.5 to 5 vol.% or by a method of baking the raw material mixture at 700 deg.C or less and of carrying out a process of baking and crushing twice or more.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はリチウムイオン二次
電池の正極活物質に係り、特に充填性に優れ、高容量
で、かつ負荷特性、サイクル充放電特性に優れた正極活
物質及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a positive electrode active material for a lithium ion secondary battery, and particularly to a positive electrode active material having excellent filling properties, high capacity, and excellent load characteristics and cycle charge / discharge characteristics, and a method for producing the same. Regarding

【0002】[0002]

【従来の技術】リチウムイオン二次電池は作動電圧が約
3.5Vと高く、かつエネルギー密度が高いという特徴
がある。携帯電話やノート型パソコンに代表されるモバ
イル電子機器は小型、軽量であることが要求されるた
め、リチウムイオン二次電池はモバイル電子機器の電源
として広く利用されている。近年、携帯電話等のモバイ
ル電子機器には様々な機能が付与されており、これに伴
い電源となるリチウムイオン二次電池は更なる高容量
化、負荷特性、サイクル充放電特性などの電池特性の向
上が要求されている。
2. Description of the Related Art Lithium ion secondary batteries are characterized by a high operating voltage of about 3.5 V and a high energy density. Since mobile electronic devices typified by mobile phones and notebook computers are required to be small and lightweight, lithium ion secondary batteries are widely used as power sources for mobile electronic devices. In recent years, various functions have been added to mobile electronic devices such as mobile phones, and along with this, the lithium ion secondary battery as a power source has further improved capacity, load characteristics, cycle characteristics such as cycle charge / discharge characteristics. Improvement is required.

【0003】リチウムイオン二次電池の正極活物質とし
てはコバルト酸リチウムに代表されるリチウム遷移金属
複合酸化物(LiMO(Mは遷移金属元素))が挙げ
られる。リチウム遷移金属複合酸化物は六方晶の結晶構
造を有しており、充放電に伴い結晶構造のa,b軸方向
からLiイオンが挿入脱離する。このリチウム遷移金属
複合酸化物はa,b軸方向に選択的に結晶成長しやす
く、図1(a)に示したように板状の粒子となりやす
い。粒子形状は結晶構造を反映しており、板状粒子の高
さ方向が結晶構造のc軸方向と対応し、板状粒子の底面
の面内方向が結晶構造のa,b軸方向と対応していると
考えられる。
As a positive electrode active material of a lithium ion secondary battery, there is a lithium transition metal composite oxide represented by lithium cobalt oxide (LiMO 2 (M is a transition metal element)). The lithium-transition metal composite oxide has a hexagonal crystal structure, and Li ions are inserted and desorbed from the a and b axis directions of the crystal structure with charge and discharge. This lithium-transition metal composite oxide is likely to undergo selective crystal growth in the a and b axis directions, and tends to form plate-like particles as shown in FIG. The grain shape reflects the crystal structure. The height direction of the plate-like particles corresponds to the c-axis direction of the crystal structure, and the in-plane direction of the bottom surface of the plate-like particles corresponds to the a and b-axis directions of the crystal structure. It is thought that

【0004】板状粒子は正極板としたとき、図1(b)
に示したように結晶構造のa,b軸方向が正極板の面内
方向となるように配向しやすい。このため板状粒子は粒
子同士がa,b軸方向で接することとなるためLiイオ
ンの挿入脱離が困難となり、粒子界面でのLiイオンの
移動抵抗が高くなると考えられる。これにより負荷特
性、サイクル充放電特性が悪化する問題があった。
When the plate-like particles are used as a positive electrode plate, they are shown in FIG.
As shown in (3), the a and b axis directions of the crystal structure are easily oriented so as to be the in-plane direction of the positive electrode plate. For this reason, it is considered that the plate-like particles come into contact with each other in the a-axis and b-axis directions, so that it becomes difficult to insert and release Li ions, and the Li ion migration resistance at the particle interface becomes high. This causes a problem that load characteristics and cycle charge / discharge characteristics are deteriorated.

【0005】一般に正極活物質は多結晶体の球状粒子と
すると、結晶構造のa,b軸方向が粒子形状に依存せず
粒子表面全面に分布することとなり、Liイオンの挿入
脱離が粒子表面全面で行えると考えられる。このため球
状粒子とすることで粒子界面でのLiイオンの拡散が向
上し、サイクル充放電特性が改善できる。しかしながら
球状粒子は充填性が悪く、正極板としたとき極板密度が
上がりにくい問題があった。所定の極板密度とするため
には強い圧力で正極板をプレスする必要があり、プレス
により粒子の割れや欠けが生じたり、結晶に応力がかか
ると考えられ、初期放電容量が低下することとなる。
Generally, when the positive electrode active material is made of polycrystalline spherical particles, the a and b axis directions of the crystal structure are distributed on the entire surface of the particle without depending on the particle shape, and the insertion and desorption of Li ions are carried out on the surface of the particle. It can be done on the whole surface. Therefore, by using spherical particles, the diffusion of Li ions at the particle interface is improved and the cycle charge / discharge characteristics can be improved. However, the spherical particles have a poor filling property, and when used as a positive electrode plate, there is a problem that the density of the electrode plate is difficult to increase. It is necessary to press the positive electrode plate with a strong pressure in order to obtain a predetermined electrode plate density, and it is considered that the pressing causes cracks or chips of particles, or stress is applied to the crystal, which lowers the initial discharge capacity. Become.

【0006】[0006]

【発明が解決しようとする課題】上記したように負荷特
性、サイクル充放電特性の改善と放電容量の高容量化の
双方を満足する技術は、十分に確立されていないのが現
状である。従って本発明の目的は上記した事情に鑑みな
されたものである。すなわち充填性に優れ、高容量で、
かつ負荷特性、サイクル充放電特性に優れた正極活物質
及びその製造方法を提供することにある。
As described above, the technology that satisfies both the improvement of the load characteristics and the cycle charge / discharge characteristics and the increase of the discharge capacity as described above has not been sufficiently established at present. Therefore, the object of the present invention has been made in view of the above circumstances. That is, it has excellent filling properties, high capacity,
Another object of the present invention is to provide a positive electrode active material having excellent load characteristics and cycle charge / discharge characteristics and a method for producing the same.

【0007】[0007]

【課題を解決するための手段】本発明者は上記した問題
を解決するために鋭意検討した結果、正極活物質の粒子
形状を六角柱状とし、粒子形状、粒子サイズを最適化す
ることによって、上記した問題点を改善できることを見
い出し、本発明を完成するに至った。
Means for Solving the Problems As a result of intensive studies for solving the above-mentioned problems, the present inventor has found that the positive electrode active material has a hexagonal columnar shape and the particle shape and the particle size are optimized. The inventors have found that the above problems can be improved, and completed the present invention.

【0008】すなわち本発明の目的は、下記(1)〜
(6)の構成によって達成することができる。
That is, the object of the present invention is to:
This can be achieved by the configuration of (6).

【0009】(1)粒子形状が六角柱状であり、かつ
0.5≦(2c)/(a+b)≦1(式中のaは底面の
平均長軸径、bは底面の平均短軸径、cは平均粒子高さ
を示す。)であることを特徴とするリチウムイオン二次
電池用正極活物質。
(1) The particle shape is a hexagonal column, and 0.5 ≦ (2c) / (a + b) ≦ 1 (wherein a is the average major axis diameter of the bottom surface, b is the average minor axis diameter of the bottom surface, c is the average particle height.) is a positive electrode active material for a lithium ion secondary battery.

【0010】(2)0.5≦b/a≦1であることを特
徴とする前記(1)に記載のリチウムイオン二次電池用
正極活物質。
(2) The positive electrode active material for a lithium ion secondary battery according to (1) above, wherein 0.5 ≦ b / a ≦ 1.

【0011】(3)底面の平均長軸径、底面の平均短軸
径、及び平均粒子高さは1〜20μmであることを特徴
とする前記(1)又は(2)に記載のリチウムイオン二
次電池用正極活物質。
(3) The lithium ion ion according to the above (1) or (2), wherein the average major axis diameter of the bottom surface, the average minor axis diameter of the bottom surface, and the average particle height are 1 to 20 μm. Positive electrode active material for secondary batteries.

【0012】(4)タップ密度は2.2g/cm以上
であることを特徴とする前記(1)及至(3)のいずれ
かに記載のリチウムイオン二次電池用正極活物質。
(4) The positive electrode active material for a lithium ion secondary battery according to any one of (1) to (3) above, which has a tap density of 2.2 g / cm 3 or more.

【0013】(5)原料混合物を酸素濃度0.5〜5体
積%の雰囲気中にて焼成することを特徴とする前記
(1)及至(4)のいずれかに記載のリチウムイオン二
次電池用正極活物質の製造方法。
(5) For the lithium ion secondary battery according to any one of (1) to (4), wherein the raw material mixture is fired in an atmosphere having an oxygen concentration of 0.5 to 5% by volume. Method for producing positive electrode active material.

【0014】(6)原料混合物を700℃以下で焼成
し、かつ焼成と粉砕の工程を2回以上行うことを特徴と
する前記(1)及至(4)のいずれかに記載のリチウム
イオン二次電池用正極活物質の製造方法。
(6) The lithium ion secondary battery according to any one of (1) to (4) above, wherein the raw material mixture is fired at 700 ° C. or lower, and the firing and crushing steps are performed twice or more. A method for producing a positive electrode active material for a battery.

【0015】すなわち本発明では正極活物質の粒子形状
を規格化する。前記(1)では走査型電子顕微鏡(SE
M)により正極活物質粒子を観察する。図2(a)に示
したように粒子の底面に相当する輪郭について、輪郭に
接する2本の平行線で挟んだとき最も小さい間隔を底面
の短軸径と定め、次に短軸径に直角な方向に測った間隔
を底面の長軸径と定める。また粒子の底面に垂直な方向
の粒子の厚みに相当する粒子径を粒子高さと定める。所
定点数の粒子を同様にして測定し、平均値を求め、底面
の平均長軸径(a)、底面の平均短軸径(b)、平均粒
子高さ(c)とし、(2c)/(a+b)を算出する。
That is, in the present invention, the particle shape of the positive electrode active material is standardized. In the above (1), a scanning electron microscope (SE
According to M), the positive electrode active material particles are observed. As shown in FIG. 2 (a), regarding the contour corresponding to the bottom surface of the particle, the smallest interval when sandwiched by two parallel lines in contact with the contour is defined as the minor axis diameter of the bottom surface, and then perpendicular to the minor axis diameter. The distance measured in this direction is defined as the major axis diameter of the bottom surface. Further, the particle diameter corresponding to the thickness of the particle in the direction perpendicular to the bottom surface of the particle is defined as the particle height. Particles at a predetermined number of points were measured in the same manner, and the average value was calculated to obtain the average major axis diameter of the bottom surface (a), the average minor axis diameter of the bottom surface (b), and the average particle height (c), and (2c) / ( Calculate a + b).

【0016】前記(1)に記載したように粒子形状を六
角柱状とし、(2c)/(a+b)を0.5〜1と規格
化することによって、充填性に優れ高容量で、かつ負荷
特性、サイクル特性に優れた正極活物質とすることがで
きる。
As described in (1) above, the particle shape is a hexagonal column shape, and (2c) / (a + b) is standardized to 0.5 to 1, whereby the packing property is excellent, the capacity is high, and the load characteristics are high. A positive electrode active material having excellent cycle characteristics can be obtained.

【0017】前記(2)ではb/aを0.5〜1と規格
化し、粒子性状が整い結晶性に優れた粒子とすることに
よって、放電容量とサイクル充放電特性を更に向上する
ことができる。
In the above (2), the b / a is standardized to 0.5 to 1 so that the particles have uniform particle properties and excellent crystallinity, whereby the discharge capacity and the cycle charge / discharge characteristics can be further improved. .

【0018】また前記(3)では前述した方法で求めた
底面の平均長軸径、底面の平均短軸径、平均粒子高さを
1〜20μmと規格化し、十分に粒成長した粒子とする
ことによって、放電容量とサイクル充放電特性を更に向
上することができる。
In the above (3), the average major axis diameter of the bottom surface, the average minor axis diameter of the bottom surface, and the average particle height obtained by the above-described method are standardized to 1 to 20 μm to obtain sufficiently grain-grown particles. Thereby, the discharge capacity and the cycle charge / discharge characteristics can be further improved.

【0019】更に前記(4)では、A.B.D粉体測定
器を用いてタップ密度を測定する。正極活物質粉末をふ
るいに通し、漏斗状のジョイントを取り付けた100c
cステンレス容器に入れ、200回落下タップし、正極
活物質粉末をすり切って100ccの粉体重量を測定
し、密度を求める。前記(4)に記載したようにタップ
密度を2.2g/cm以上と規格化し、充填性に優れ
た粉体とすることによって、更なる放電容量の高容量化
が可能となる。
Further, in the above (4), A. B. D Tap density is measured using a powder measuring instrument. 100c with positive electrode active material powder passed through a sieve and a funnel-shaped joint attached
c Put in a stainless steel container, drop tap 200 times, scrape off the positive electrode active material powder, measure the powder weight of 100 cc, and obtain the density. As described in (4) above, by standardizing the tap density to 2.2 g / cm 3 or more and making the powder excellent in filling property, it is possible to further increase the discharge capacity.

【0020】また本発明では前記(5)に記載したよう
に原料混合物を酸素濃度0.5〜5体積%の雰囲気中に
て焼成する方法、又は前記(6)に記載したように原料
混合物を700℃以下で焼成し、かつ焼成と粉砕の工程
を2回以上行う方法によって、前記(1)〜(4)に記
載の正極活物質を製造できる。
In the present invention, the raw material mixture is fired in an atmosphere having an oxygen concentration of 0.5 to 5% by volume as described in (5) above, or the raw material mixture is prepared as described in (6) above. The positive electrode active material described in (1) to (4) above can be produced by a method of firing at 700 ° C. or lower and performing the firing and pulverization steps twice or more.

【0021】[0021]

【発明の実施の形態】次に本発明のリチウムイオン二次
電池用正極活物質について詳細に説明する。本発明の正
極活物質は一般式LiMO(MはCo,Ni,Fe,
Mn,Crで表される少なくとも一種)で表され、六方
晶の結晶構造を有する。構成元素の一部を他の元素で置
換した組成でも構わない。
BEST MODE FOR CARRYING OUT THE INVENTION Next, the positive electrode active material for a lithium ion secondary battery of the present invention will be described in detail. The positive electrode active material of the present invention has the general formula LiMO 2 (M is Co, Ni, Fe,
At least one of Mn and Cr) and has a hexagonal crystal structure. A composition in which a part of the constituent elements is replaced with another element may be used.

【0022】特に本発明の正極活物質は図2(a)に示
したように粒子形状が六角柱状である。角や辺が一部欠
けた不定形状の粒子を一部含有していても構わない。前
述したように本発明では幾何学的粒子径である底面の平
均長軸径(a)、底面の平均短軸径(b)、平均粒子高
さ(c)によって粒子形状を規格化する。粒子形状は画
像解析法によって観察し評価する。観察用試料の作製は
乾式振りかけ法、湿式分散法、フィルタろ過法などが適
用でき、粒子の重なり、粒子の配向、凝集体の分散・解
砕に留意して行う。次に走査型電子顕微鏡(SEM)に
よって粒子形状を観察する。粒子形状を写真に撮り、手
作業で前述した幾何学的粒子径を測定してもよく、また
画像解析ソフトにて二値化処理、粒子の切り離しを行
い、幾何学的粒子径を測定しても構わない。
In particular, the positive electrode active material of the present invention has a hexagonal columnar particle shape as shown in FIG. 2 (a). It may contain a part of irregularly shaped particles with some corners and sides missing. As described above, in the present invention, the particle shape is standardized by the average major axis diameter of the bottom surface (a), the average minor axis diameter of the bottom surface (b), and the average particle height (c), which are geometric particle diameters. The particle shape is observed and evaluated by an image analysis method. For the preparation of the observation sample, a dry sprinkling method, a wet dispersion method, a filter filtration method, or the like can be applied, and attention is paid to overlapping particles, orientation of particles, and dispersion / crushing of aggregates. Next, the particle shape is observed with a scanning electron microscope (SEM). You may take a picture of the particle shape and manually measure the above-mentioned geometric particle diameter.Also, you can perform the binarization processing with image analysis software, separate the particles, and measure the geometric particle diameter. I don't mind.

【0023】実施例にて作製した試験電池の負荷特性、
サイクル充放電特性と正極活物質の2c/(a+b)と
の関係を図3に示した。2c/(a+b)が0.5〜1
のとき優れた負荷特性とサイクル充放電特性が得られる
ことが分かる。粒子形状は六方晶の結晶構造を反映して
いると考えられ、粒子の高さ方向が六方晶の結晶構造の
c軸方向と対応し、底面の面内方向が結晶構造のa,b
軸方向と対応していると考えられる。本発明の六角柱状
の粒子は正極板となったとき、図2(b)に示したよう
に底面の面内方向が極板表面を向いた粒子も多数存在す
ると考えられる。充放電の際、結晶構造のa,b軸方向
からLiイオンが挿入脱離するため、図2(b)のよう
に充填することでLiイオンが正極板表面で挿入脱離し
やすく、Liイオンの移動抵抗が低減できると考えられ
る。このため図3に示したように本発明の六角柱状の粒
子は負荷特性と共にサイクル充放電特性に優れる。
The load characteristics of the test battery prepared in the example,
The relationship between the cycle charge / discharge characteristics and 2c / (a + b) of the positive electrode active material is shown in FIG. 2c / (a + b) is 0.5 to 1
It can be seen that excellent load characteristics and cycle charge / discharge characteristics can be obtained at. It is considered that the grain shape reflects the hexagonal crystal structure, and the height direction of the grain corresponds to the c-axis direction of the hexagonal crystal structure, and the in-plane direction of the bottom surface is a, b of the crystal structure.
It is considered to correspond to the axial direction. When the hexagonal columnar particles of the present invention are used as a positive electrode plate, it is considered that there are many particles whose bottom surface in-plane direction faces the surface of the electrode plate as shown in FIG. 2 (b). During charge and discharge, Li ions are inserted and desorbed from the a and b axis directions of the crystal structure. Therefore, by filling as shown in FIG. 2B, Li ions are easily inserted and desorbed on the surface of the positive electrode plate, and It is considered that the movement resistance can be reduced. Therefore, as shown in FIG. 3, the hexagonal columnar particles of the present invention are excellent in load charge characteristics and cycle charge / discharge characteristics.

【0024】また2c/(a+b)が0.5〜1のと
き、図4に示したようにタップ密度が高く、充填性に優
れた粒子であることが分かる。正極活物質は導電剤、結
着剤と混合し、集電体に塗布、乾燥後、プレスし、正極
板となる。正極活物質のタップ密度が高い場合、所定の
圧力でプレスしたとき図5に示したように極板密度の高
い正極板が得られることが分かる。このため弱い圧力で
も所定の極板密度とすることができ、プレスによる結
晶、粒子へのダメージを最小限に抑えられる。これによ
り電池としたとき優れた放電容量を実現できる。図5に
示したようにタップ密度は2.2g/cm以上が好ま
しく、このとき充填性に優れ、特に高い極板密度が得ら
れ、電池としたとき優れた初期放電容量が得られる。
Further, when 2c / (a + b) is 0.5 to 1, it can be seen that the particles have a high tap density and excellent filling properties as shown in FIG. The positive electrode active material is mixed with a conductive agent and a binder, coated on a current collector, dried, and pressed to form a positive electrode plate. It can be seen that when the positive electrode active material has a high tap density, a positive electrode plate having a high electrode plate density can be obtained as shown in FIG. 5 when pressed at a predetermined pressure. For this reason, it is possible to obtain a predetermined electrode plate density even with a weak pressure, and it is possible to minimize damage to crystals and particles due to pressing. This makes it possible to achieve an excellent discharge capacity when used as a battery. As shown in FIG. 5, the tap density is preferably 2.2 g / cm 3 or more. At this time, the filling property is excellent, a particularly high electrode plate density is obtained, and an excellent initial discharge capacity is obtained in a battery.

【0025】2c/(a+b)が0.5未満では、粒子
は図1(a)に示したように板状となる。前述したよう
に板状粒子は正極板となったとき、図1(b)のように
充填する。粒子同士がa,b軸方向で接することとなる
ためLiイオンの挿入脱離が困難となり、粒子界面での
Liイオンの移動抵抗が高くなると考えられる。これに
より図3に示したように負荷特性、サイクル充放電特性
が悪くなり好ましくない。
When 2c / (a + b) is less than 0.5, the particles have a plate shape as shown in FIG. 1 (a). As described above, when the plate-like particles become the positive electrode plate, they are filled as shown in FIG. It is considered that since the particles come into contact with each other in the a-axis direction and the b-axis direction, it becomes difficult to insert and release Li ions, and the migration resistance of Li ions at the particle interface increases. As a result, as shown in FIG. 3, the load characteristics and cycle charge / discharge characteristics deteriorate, which is not preferable.

【0026】2c/(a+b)が1よりも大きい場合、
粒子高さ方向の粒成長を十分行う必要があり、長時間焼
成しなければならない。一般に粒成長と共に粗大粒子が
生成する。粗大粒子が多いと正極板としたとき極板表面
に凸凹ができてしまう。極板表面の平滑性が悪いとき極
板表面でのLiイオンの挿入脱離が不均一に行われるこ
ととなり、負極表面へのデンドライト生成を促進するこ
ととなる。このため2c/(a+b)が1よりも大きい
とき、粗大粒子を多く含有し、正極板としたときの表面
平滑性が悪く、図3に示したように特に負荷特性、サイ
クル充放電特性が悪化し好ましくない。また図4に示し
たように2c/(a+b)が1よりも大きい場合、粗大
粒子を多く含有するためタップ密度が小さく、これによ
り極板密度が小さく、初期放電容量が小さくなるため、
好ましくない。
If 2c / (a + b) is greater than 1, then
Grain growth in the grain height direction must be sufficiently performed, and firing must be performed for a long time. In general, coarse particles are formed with grain growth. When the number of coarse particles is large, when the positive electrode plate is formed, irregularities are formed on the surface of the electrode plate. When the surface of the electrode plate is poor in smoothness, insertion and desorption of Li ions on the surface of the electrode plate are unevenly performed, which promotes the generation of dendrites on the surface of the negative electrode. For this reason, when 2c / (a + b) is larger than 1, it contains a large amount of coarse particles and the surface smoothness when used as a positive electrode plate is poor, and as shown in FIG. However, it is not preferable. Further, as shown in FIG. 4, when 2c / (a + b) is larger than 1, the tap density is small because a large amount of coarse particles are contained, and thus the electrode plate density is small and the initial discharge capacity is small.
Not preferable.

【0027】試験電池の初期放電容量、サイクル充放電
特性と正極活物質のb/aとの関係を図6に示した。b
/aは0.5〜1が好ましく、このとき優れた初期放電
容量とサイクル充放電特性を実現できる。b/aが0.
5以上のとき、粒子性状が整い、結晶性に優れた粒子と
なる。このため初期放電容量が大きく、かつ繰り返し充
放電を行っても結晶が崩壊しにくく、優れたサイクル充
放電特性が実現できる。
The relationship between the initial discharge capacity and cycle charge / discharge characteristics of the test battery and b / a of the positive electrode active material is shown in FIG. b
/ A is preferably 0.5 to 1, at which time excellent initial discharge capacity and cycle charge / discharge characteristics can be realized. b / a is 0.
When it is 5 or more, the particle properties are adjusted and the particles have excellent crystallinity. Therefore, the initial discharge capacity is large, and the crystals are less likely to collapse even after repeated charge / discharge, and excellent cycle charge / discharge characteristics can be realized.

【0028】本実施例で得られた正極活物質の各特性を
表1,2に示した。底面の平均長軸径、底面の平均短軸
径、及び平均粒子高さは1〜20μmが好ましく、この
ときタップ密度が高く充填性に優れ、かつ優れた初期放
電容量、負荷特性、サイクル充放電特性が得られること
が分かる。
The characteristics of the positive electrode active material obtained in this example are shown in Tables 1 and 2. The average major axis diameter of the bottom surface, the average minor axis diameter of the bottom surface, and the average particle height are preferably 1 to 20 μm, and at this time, the tap density is high and the filling property is excellent, and the initial discharge capacity, load characteristics, and cycle charge / discharge are excellent. It can be seen that the characteristics can be obtained.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【表2】 [Table 2]

【0031】底面の平均長軸径、底面の平均短軸径、又
は平均粒子高さのいずれかが1μmよりも小さいとき、
粒成長が十分でなく、特に粒子高さ(c)が小さい。こ
のため板状粒子となってしまい、充填性が悪く、また初
期放電容量、負荷特性、サイクル充放電特性が悪く好ま
しくない。底面の平均長軸径、底面の平均短軸径、又は
平均粒子高さのいずれかが20μmよりも大きいとき、
粒成長に伴い生成した粗大粒子を多く含有してしまい、
前述したように初期放電容量の低下や、正極板としたと
きの極板表面の平滑性が悪く、特に負荷特性、サイクル
充放電特性が悪くなるため、好ましくない。
When either the average major axis diameter of the bottom surface, the average minor axis diameter of the bottom surface, or the average particle height is smaller than 1 μm,
Grain growth is not sufficient and the grain height (c) is particularly small. As a result, the particles become plate-like particles, the filling property is poor, and the initial discharge capacity, load characteristics, and cycle charge / discharge characteristics are poor, which is not preferable. When either the average major axis diameter of the bottom surface, the average minor axis diameter of the bottom surface, or the average particle height is greater than 20 μm,
It contains a large amount of coarse particles generated with grain growth,
As described above, the initial discharge capacity is lowered and the surface of the electrode plate when used as a positive electrode plate is poor in smoothness, and in particular, load characteristics and cycle charge / discharge characteristics are deteriorated, which is not preferable.

【0032】本実施例にて作製した球状粒子の各特性を
表3に示した。表1の本発明の六角柱状の粒子に比べ
て、球状粒子はタップ密度が小さく充填性が悪い。正極
板とするときに強い圧力でプレスする必要があり、これ
により初期放電容量が小さいことが分かる。このため球
状の正極活物質では、高容量でかつ、サイクル充放電特
性、負荷特性に優れたリチウムイオン二次電池を実現で
きない。
Table 3 shows the characteristics of the spherical particles produced in this example. Compared with the hexagonal columnar particles of the present invention in Table 1, the spherical particles have a small tap density and poor packing properties. It is necessary to press with a strong pressure when forming the positive electrode plate, which shows that the initial discharge capacity is small. Therefore, a spherical positive electrode active material cannot realize a lithium ion secondary battery having high capacity and excellent cycle charge / discharge characteristics and load characteristics.

【0033】[0033]

【表3】 [Table 3]

【0034】次に本発明の正極活物質であるリチウム遷
移金属複合酸化物粉末の製造方法について説明する。
Next, a method for producing the lithium-transition metal composite oxide powder, which is the positive electrode active material of the present invention, will be described.

【0035】(原料混合物の作製)原料混合物は目的と
する組成を構成する元素に応じて選択される。リチウム
化合物と、Co,Ni,Fe,Mn,Crで表される少
なくとも一種の金属元素の化合物、更に他の元素で置換
する場合は、置換元素の化合物とを原料として使用す
る。
(Production of Raw Material Mixture) The raw material mixture is selected according to the elements constituting the desired composition. A lithium compound, a compound of at least one metal element represented by Co, Ni, Fe, Mn, and Cr, and in the case of substituting with another element, a compound of a substituting element is used as a raw material.

【0036】本発明において原料となる前記リチウム化
合物は特に限定されないが、例えばLiCO、Li
OH、LiOH・HO、LiO、LiCl、LiN
、LiSO、LiHCO、Li(CHCO
O)等が用いられる。
The lithium compound used as a raw material in the present invention is not particularly limited, but for example, Li 2 CO 3 or Li
OH, LiOH · H 2 O, Li 2 O, LiCl, LiN
O 3 , Li 2 SO 4 , LiHCO 3 , Li (CH 3 CO
O) or the like is used.

【0037】前記Co,Ni,Fe,Mn,Crで表さ
れる少なくとも一種の金属元素の化合物、及び置換元素
の化合物としては、焼成によって目的とする金属元素を
含有する複合酸化物となる化合物、例えば水酸化物、硝
酸塩、炭酸塩、塩化物塩等が使用できる。ここで複数の
金属元素を使用する場合、原料となる金属化合物は各金
属元素の化合物の混合物でも、共沈殿物のように複数の
金属元素を含有する化合物でも構わない。
As the compound of at least one metal element represented by Co, Ni, Fe, Mn, and Cr and the compound of the substitution element, a compound which becomes a composite oxide containing the target metal element by firing, For example, hydroxides, nitrates, carbonates, chloride salts and the like can be used. When a plurality of metal elements are used here, the metal compound as a raw material may be a mixture of compounds of each metal element or a compound containing a plurality of metal elements such as a coprecipitate.

【0038】また一般に融剤として使用されるホウ素化
合物、リン化合物、硫黄化合物を原料となる化合物に添
加し、使用しても構わない。ホウ素化合物としてはB
、HBOが使用できる。リン化合物としてはリ
ン酸が使用できる。硫黄化合物としては、Li
、MnSO、(NHSO、Al(SO
、MgSOなどが好ましく用いられる。また粒
子性状を改善するために、ハロゲン元素を含む化合物も
使用できる。ハロゲン元素を含む化合物としてはNH
F、NHCl、NHBr、NHI、LiF、Li
Cl、LiBr、LiI、MnF、MnCl、Mn
Br、MnI等が使用できる。
Further, a boron compound, a phosphorus compound or a sulfur compound which is generally used as a flux may be added to a raw material compound and used. B 2 as a boron compound
O 3 , H 3 BO 3 can be used. Phosphoric acid can be used as the phosphorus compound. As the sulfur compound, Li 2 S
O 4 , MnSO 4 , (NH 4 ) 2 SO 4 , Al 2 (SO
4 ) 3 , MgSO 4 and the like are preferably used. In addition, a compound containing a halogen element can be used to improve the particle properties. NH 4 as a compound containing a halogen element
F, NH 4 Cl, NH 4 Br, NH 4 I, LiF, Li
Cl, LiBr, LiI, MnF 2 , MnCl 2 , Mn
Br 2 , MnI 2 or the like can be used.

【0039】上記した化合物を各構成元素が所定の組成
比となるように混合する。このとき粉末状の化合物をそ
のまま混合しても良く、水又は有機溶媒を用いてスラリ
ー状として混合しても良い。スラリー状の混合物は乾燥
して原料混合物とする。
The above compounds are mixed so that the constituent elements have a predetermined composition ratio. At this time, the powdery compound may be mixed as it is, or may be mixed as a slurry by using water or an organic solvent. The slurry-like mixture is dried to obtain a raw material mixture.

【0040】(原料混合物の焼成、粉砕)次に上記した
方法で得られる原料混合物を焼成する。ここで2種類の
方法が適用できる。1つは酸素濃度が0.5〜5体積%
の雰囲気中にて焼成する方法である。酸素濃度を0.5
〜5体積%とするために炉内にN,Arガスなどの不
活性性ガスを導入しても良く、またあらかじめ所定の酸
素濃度に調製したOガスと不活性ガスとの混合ガスを
使用しても構わない。焼成温度は特に限定されず、製造
する正極活物質の組成、特性、使用用途などに応じて適
宜決定できる。また焼成後粉砕しても構わない。
(Firing and Grinding of Raw Material Mixture) Next, the raw material mixture obtained by the above method is fired. Two types of methods can be applied here. One has an oxygen concentration of 0.5 to 5% by volume.
It is a method of firing in the atmosphere. Oxygen concentration of 0.5
An inert gas such as N 2 or Ar gas may be introduced into the furnace in order to adjust the content to ˜5% by volume, or a mixed gas of O 2 gas and an inert gas adjusted to a predetermined oxygen concentration in advance may be used. You can use it. The firing temperature is not particularly limited and can be appropriately determined depending on the composition, characteristics, intended use, etc. of the positive electrode active material to be produced. Further, it may be crushed after firing.

【0041】もう1つの方法は700℃未満で焼成し、
かつ焼成と粉砕の工程を2回以上行う方法である。焼成
雰囲気は酸素が供給される条件であれば特に限定され
ず、大気、又はOガスなどの酸化性ガス、N,Ar
ガスなどの不活性ガスを使用しても構わない。前記した
条件で焼成後、らいかい乳鉢やボールミル、振動ミル、
ジェットミルなどにより粉砕する。上記した焼成と粉砕
の工程を2回以上行うことで結晶性に優れ、粒子形状の
整った粒子とすることができる。
Another method is to bake below 700 ° C.,
Moreover, it is a method in which the steps of firing and crushing are performed twice or more. The firing atmosphere is not particularly limited as long as oxygen is supplied, and the atmosphere or an oxidizing gas such as O 2 gas, N 2 , Ar
An inert gas such as gas may be used. After firing under the conditions described above, a raft mortar, ball mill, vibration mill,
Grind with a jet mill. By performing the above-mentioned firing and crushing steps twice or more, particles having excellent crystallinity and a regular particle shape can be obtained.

【0042】上記した2種類の方法のうち少なくとも1
種の方法で製造することによって、リチウム遷移金属複
合酸化物の六方晶の結晶構造のうちa,b軸方向への結
晶成長が抑えられると考えられ、表1,2に示したよう
に本発明の六角柱状粒子が生成できる。
At least one of the above two methods
It is considered that crystal growth in the a- and b-axis directions of the hexagonal crystal structure of the lithium-transition metal composite oxide can be suppressed by the production according to the method of the present invention. Hexagonal columnar particles can be generated.

【0043】[0043]

【実施例】以下、本発明の実施例について説明するが、
本発明は具体的実施例のみに限定されるものではない。 〔実施例1〕原料となる化合物として炭酸リチウム(L
CO)、四酸化三コバルト(Co)をLi
CoOの組成比となるように秤量し、乾式混合し原料
混合物を作製した。酸素濃度が3体積%のN/O
合ガスを炉内にフローさせながら、原料混合物を900
℃で10時間焼成した。焼成後、ライカイ機にて粉砕
し、#200のふるいを通し、本発明の六角柱状のLi
CoO粉末を作製した。
EXAMPLES Examples of the present invention will be described below.
The present invention is not limited to the specific examples. [Example 1] Lithium carbonate (L
i 2 CO 3 ) and tricobalt tetroxide (Co 3 O 4 ) as Li
The raw material mixture was prepared by weighing so as to have a composition ratio of CoO 2 and dry-mixing. While flowing a N 2 / O 2 mixed gas having an oxygen concentration of 3% by volume into the furnace, the raw material mixture was mixed with 900
It was baked at 10 ° C for 10 hours. After firing, the mixture was crushed with a raikai machine and passed through a # 200 sieve to obtain the hexagonal columnar Li of the present invention.
CoO 2 powder was prepared.

【0044】〔実施例2〕実施例1と同様にして原料混
合物を作製した。原料混合物を大気中670℃で5時間
焼成した。焼成後、ライカイ機にて粉砕した。前記焼成
と粉砕の工程を5回行った。#200のふるいを通し、
本発明の六角柱状のLiCoO粉末を作製した。
Example 2 A raw material mixture was prepared in the same manner as in Example 1. The raw material mixture was fired in the air at 670 ° C. for 5 hours. After firing, it was crushed with a raikai machine. The firing and crushing steps were performed 5 times. Through a # 200 sieve,
A hexagonal columnar LiCoO 2 powder of the present invention was produced.

【0045】〔実施例3〜10〕炉内にフローするN
/O混合ガスの酸素濃度、焼成温度、焼成と粉砕の工
程回数を所定の値とする以外は実施例1又は2と同様に
して、種々の六角柱状のLiCoO粉末を作製した。
なおN/O混合ガスを炉内にフローする場合、酸素
濃度は0.5〜5体積%とした。また大気中で焼成する
場合、焼成温度は700℃以下、かつ焼成と粉砕の工程
は2回以上となるようにして行った。
[Examples 3 to 10] N 2 flowing into the furnace
Various hexagonal columnar LiCoO 2 powders were produced in the same manner as in Example 1 or 2 except that the oxygen concentration of the / O 2 mixed gas, the firing temperature, and the number of firing and crushing steps were set to predetermined values.
In the case that the flow of N 2 / O 2 gas mixture in the furnace, the oxygen concentration was 0.5 to 5% by volume. When firing in air, the firing temperature was 700 ° C. or lower, and the firing and crushing steps were performed twice or more.

【0046】〔比較例1〕酸素濃度が20体積%のN
/O混合ガスを炉内にフローしながら原料混合物を9
00℃で6時間焼成する以外は実施例1と同様にしてL
iCoO粉末を作製した。
[Comparative Example 1] N 2 having an oxygen concentration of 20% by volume
While flowing the / O 2 mixed gas into the furnace,
L was prepared in the same manner as in Example 1 except that firing was performed at 00 ° C. for 6 hours.
An iCoO 2 powder was prepared.

【0047】〔比較例2〕原料混合物を大気中800℃
で2.5時間焼成する以外は実施例2と同様にしてLi
CoO粉末を作製した。
[Comparative Example 2] A raw material mixture was placed in the atmosphere at 800 ° C.
Li in the same manner as in Example 2 except that firing is performed for 2.5 hours.
CoO 2 powder was prepared.

【0048】〔比較例3〜8〕炉内にフローするN
混合ガスの酸素濃度、焼成温度、焼成と粉砕の工程
回数を所定の値とする以外は比較例1又は2と同様にし
て、種々のLiCoO 粉末を作製した。なお炉内の酸
素濃度は5体積%よりも高く、かつ焼成温度は700℃
よりも高くして行った。
[Comparative Examples 3 to 8] N flowing into the furnaceTwo/
OTwoOxygen concentration of mixed gas, firing temperature, firing and crushing process
Similar to Comparative Example 1 or 2 except that the number of times is set to a predetermined value.
Various LiCoO TwoA powder was made. The acid in the furnace
Elemental concentration is higher than 5% by volume and firing temperature is 700 ° C
Went higher than.

【0049】〔比較例9〜12〕二次粒子の形状がほぼ
球状で単分散の四酸化三コバルト(Co)粉末を
原料として使用する以外は比較例3〜8と同様にして、
種々の球状LiCoO粉末を作製した。
[Comparative Examples 9 to 12] Comparative Examples 3 to 8 were carried out in the same manner as Comparative Examples 3 to 8 except that monodisperse tricobalt tetroxide (Co 3 O 4 ) powder having secondary particles of substantially spherical shape was used as a raw material.
Various spherical LiCoO 2 powders were made.

【0050】得られたLiCoO粉末は以下の方法に
て粒子形状、タップ密度の測定を行った。また試験電池
を作製し、各評価を行った。 (粒子形状の評価)走査型電子顕微鏡(SEM)により
粒子形状の観察を行った。SEM装置に付属した画像処
理ソフトを用いて粒子形状の評価を行った。測定する粒
子を選択し、六角形状の底面に相当する粒子輪郭より、
短軸径、長軸径を測定した。なお前述したように短軸径
は図2(a)の輪郭に接する2本の平行線で挟んだとき
最も小さい間隔と定め、また短軸径に直角な方向に測っ
た間隔を底面の長軸径と定めた。次に粒子の底面に垂直
な方向の粒子径を粒子高さとして測定した。粒子100
個を任意に選択し、短軸径、長軸径、粒子高さを測定し
た。測定した短軸径、長軸径、粒子高さの各平均値を求
め、底面の平均長軸径(a)、底面の平均短軸径
(b)、平均粒子高さ(c)とした。次に(2c)/
(a+b)、b/aを算出した。また比較例9〜12に
て得られた球状粒子についても画像処理ソフトを用いて
短軸径、長軸径を測定した。
The particle shape and tap density of the obtained LiCoO 2 powder were measured by the following methods. A test battery was prepared and each evaluation was performed. (Evaluation of particle shape) The particle shape was observed with a scanning electron microscope (SEM). The particle shape was evaluated using the image processing software attached to the SEM device. Select the particles to be measured, and from the particle outline corresponding to the bottom of the hexagon,
The minor axis diameter and the major axis diameter were measured. As described above, the minor axis diameter is defined as the smallest interval when sandwiched by two parallel lines in contact with the contour of FIG. 2 (a), and the interval measured in the direction perpendicular to the minor axis diameter is the major axis of the bottom surface. Specified as the diameter. Next, the particle diameter in the direction perpendicular to the bottom surface of the particle was measured as the particle height. Particle 100
Individually selected, the minor axis diameter, major axis diameter, and particle height were measured. The average values of the measured minor axis diameter, major axis diameter, and particle height were determined, and they were defined as the average major axis diameter of the bottom surface (a), the average minor axis diameter of the bottom surface (b), and the average particle height (c). Then (2c) /
(A + b) and b / a were calculated. The minor axis diameter and major axis diameter of the spherical particles obtained in Comparative Examples 9 to 12 were also measured using image processing software.

【0051】(タップ密度の測定)タップ密度の測定は
A.B.D粉体測定器(筒井理化学器機株式会社製、
A.B.D−72型)を用いて行った。LiCoO
末をふるいに通し、漏斗状のジョイントを取り付けた1
00ccステンレス容器に入れた。ストローク19m
m、タップ1回/秒で200回落下タップした。正極活
物質粉末をすり切って100ccのLiCoO粉末の
重量を測定し、密度を求めタップ密度とした。
(Measurement of Tap Density) The measurement of tap density is performed by B. D powder measuring device (manufactured by Tsutsui Rikagakuki Co., Ltd.,
A. B. D-72 type). Pass the LiCoO 2 powder through a sieve and attach a funnel-shaped joint 1
It was put in a 00cc stainless steel container. Stroke 19m
m, tapped once per second and dropped 200 times. The positive electrode active material powder was ground and the weight of 100 cc of LiCoO 2 powder was measured to determine the density, which was defined as the tap density.

【0052】(正極板の作製)正極活物質であるLiC
oO粉末90重量部、及び導電剤として炭素粉末5重
量部、並びにポリフッ化ビニリデン5重量部を含有した
ノルマルメチルピロリドン溶液とを混練してペーストを
調製し、これを正極集電体に塗布し、乾燥して正極板と
した。
(Production of Positive Electrode Plate) LiC as a positive electrode active material
90 parts by weight of oO 2 powder, 5 parts by weight of carbon powder as a conductive agent, and a solution of normal methylpyrrolidone containing 5 parts by weight of polyvinylidene fluoride were kneaded to prepare a paste, which was applied to a positive electrode current collector. Then, it was dried to obtain a positive electrode plate.

【0053】(極板密度の測定)圧力1トン/cm
ロールプレス機にて正極板を2回プレスした。得られた
正極板を5cm切り取り、極板重量、極板厚さを測定
した。そしてプレス後の正極板の塗膜面の密度を算出
し、極板密度とした。次に正極板を更にプレスし、所定
の厚さとし、試験電池用の正極板とした。
(Measurement of Density of Electrode Plate) The positive electrode plate was pressed twice with a roll press machine at a pressure of 1 ton / cm 2 . The obtained positive electrode plate was cut into a size of 5 cm 2 , and the electrode plate weight and the electrode plate thickness were measured. Then, the density of the coated surface of the positive electrode plate after pressing was calculated and used as the electrode plate density. Next, the positive electrode plate was further pressed to a predetermined thickness to prepare a positive electrode plate for a test battery.

【0054】(試験用リチウムイオン二次電池の作製)
シート状に成形した正極板、負極板及びセパレーターを
巻回し、金属円筒形の電池ケースに収納し、円筒形リチ
ウムイオン二次電池を作製した。なお負極活物質に炭素
材料、セパレーターに多孔性プロピレンフィルムを用
い、電解液としてエチレンカーボネイト:ジエチルカー
ボネイト=1:1(体積比)の混合溶媒にLiPF
1mol/lの濃度で溶解した溶液を用いた。
(Preparation of test lithium-ion secondary battery)
The sheet-shaped positive electrode plate, negative electrode plate, and separator were wound and housed in a metal cylindrical battery case to produce a cylindrical lithium ion secondary battery. A carbon material was used as the negative electrode active material, a porous propylene film was used as the separator, and a solution prepared by dissolving LiPF 6 at a concentration of 1 mol / l in a mixed solvent of ethylene carbonate: diethyl carbonate = 1: 1 (volume ratio) was used as an electrolytic solution. Using.

【0055】(初期放電容量の測定)試験電池を所定の
条件でエージング充放電した。次に25℃にて電流1.
6Aで4.2Vまで定電流定電圧充電後、電流1.6A
で2.75Vまで放電した。このとき得られた放電容量
を初期放電容量とした。
(Measurement of Initial Discharge Capacity) The test battery was subjected to aging charge / discharge under predetermined conditions. Next, at 25 ° C, the current was 1.
Constant current constant voltage charging up to 4.2V at 6A, current 1.6A
Discharged to 2.75V. The discharge capacity obtained at this time was defined as the initial discharge capacity.

【0056】(負荷特性の測定)25℃にて電流1.6
Aで4.2Vまで定電流定電圧充電後、電流3.2Aで
2.75Vまで放電した。このとき得られた放電容量を
負荷特性とした。
(Measurement of load characteristics) Current of 1.6 at 25 ° C.
A was charged at a constant current and a constant voltage up to 4.2 V, and then discharged at a current of 3.2 A to 2.75 V. The discharge capacity obtained at this time was defined as the load characteristic.

【0057】(サイクル充放電特性の測定)試験電池を
25℃にて電流1.6Aで4.2Vまで定電流定電圧充
電後、電流1.6Aで2.75Vまで放電する充放電を
300サイクル行い、300サイクル目の容量維持率
(%)を下記の式(I)から求めた。
(Measurement of Cycle Charge / Discharge Characteristics) The test battery was charged at a constant current of 1.6 A at a constant current of 1.6 A at 25 ° C. and then discharged at a constant current of 1.6 A to 2.75 V for 300 cycles. Then, the capacity retention rate (%) at the 300th cycle was calculated from the following formula (I).

【0058】[0058]

【数1】 [Equation 1]

【0059】[0059]

【発明の効果】以上説明したように、本発明の六角柱状
の正極活物質粉末は、充填性に優れ、高い放電容量を有
し、かつ優れたサイクル充放電特性、負荷特性を実現で
きた。これにより従来達成できなかった高放電容量のリ
チウムイオン二次電池を実用化することができ、種々の
分野への応用が可能となる。また本発明の製造方法によ
って、この優れた電池特性を有する正極活物質粉末を容
易に提供することができる。
As described above, the hexagonal column-shaped positive electrode active material powder of the present invention has excellent filling properties, high discharge capacity, and excellent cycle charge / discharge characteristics and load characteristics. As a result, a lithium-ion secondary battery with a high discharge capacity, which could not be achieved in the past, can be put to practical use and can be applied to various fields. The positive electrode active material powder having the excellent battery characteristics can be easily provided by the manufacturing method of the present invention.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)板状の正極活物質粒子を示す概略図。 (b)板状の正極活物質粒子が充填した状態を示す概略
図。
FIG. 1A is a schematic view showing plate-shaped positive electrode active material particles. (B) A schematic view showing a state in which plate-shaped positive electrode active material particles are filled.

【図2】(a)本発明の六角柱状の正極活物質粒子を示
す概略図。 (b)本発明の六角柱状の正極活物質粒子が充填した状
態を示す概略図。
FIG. 2 (a) is a schematic view showing hexagonal columnar positive electrode active material particles of the present invention. (B) A schematic view showing a state in which the hexagonal columnar positive electrode active material particles of the present invention are filled.

【図3】負荷特性、サイクル充放電特性と2c/(a+
b)との関係を示す図。
FIG. 3 shows load characteristics, cycle charge / discharge characteristics and 2c / (a +
The figure which shows the relationship with b).

【図4】タップ密度と2c/(a+b)との関係を示す
図。
FIG. 4 is a diagram showing a relationship between tap density and 2c / (a + b).

【図5】極板密度、初期放電容量とタップ密度との関係
を示す図。
FIG. 5 is a diagram showing a relationship between electrode plate density, initial discharge capacity and tap density.

【図6】初期放電容量、サイクル充放電特性とb/aと
の関係を示す図。
FIG. 6 is a diagram showing a relationship between initial discharge capacity, cycle charge / discharge characteristics, and b / a.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】粒子形状が六角柱状であり、かつ0.5≦
(2c)/(a+b)≦1(式中のaは底面の平均長軸
径、bは底面の平均短軸径、cは平均粒子高さを示
す。)であることを特徴とするリチウムイオン二次電池
用正極活物質。
1. The particle shape is hexagonal columnar, and 0.5 ≦
(2c) / (a + b) ≦ 1 (wherein a is the average major axis diameter of the bottom surface, b is the average minor axis diameter of the bottom surface, and c is the average particle height). Positive electrode active material for secondary batteries.
【請求項2】0.5≦b/a≦1であることを特徴とす
る請求項1に記載のリチウムイオン二次電池用正極活物
質。
2. The positive electrode active material for a lithium ion secondary battery according to claim 1, wherein 0.5 ≦ b / a ≦ 1.
【請求項3】底面の平均長軸径、底面の平均短軸径、及
び平均粒子高さは1〜20μmであることを特徴とする
請求項1又は2に記載のリチウムイオン二次電池用正極
活物質。
3. The positive electrode for a lithium ion secondary battery according to claim 1, wherein the average major axis diameter of the bottom surface, the average minor axis diameter of the bottom surface, and the average particle height are 1 to 20 μm. Active material.
【請求項4】タップ密度は2.2g/cm以上である
ことを特徴とする請求項1及至3のいずれかに記載のリ
チウムイオン二次電池用正極活物質。
4. The positive electrode active material for a lithium ion secondary battery according to claim 1, wherein the tap density is 2.2 g / cm 3 or more.
【請求項5】原料混合物を酸素濃度0.5〜5体積%の
雰囲気中にて焼成することを特徴とする請求項1及至4
のいずれかに記載のリチウムイオン二次電池用正極活物
質の製造方法。
5. The raw material mixture is fired in an atmosphere having an oxygen concentration of 0.5 to 5% by volume.
5. The method for producing a positive electrode active material for a lithium ion secondary battery according to any one of 1.
【請求項6】原料混合物を700℃以下で焼成し、かつ
焼成と粉砕の工程を2回以上行うことを特徴とする請求
項1及至4のいずれかに記載のリチウムイオン二次電池
用正極活物質の製造方法。
6. The positive electrode active material for a lithium ion secondary battery according to claim 1, wherein the raw material mixture is fired at 700 ° C. or lower, and the steps of firing and crushing are performed twice or more. Method of manufacturing substance.
JP2001343331A 2001-11-08 2001-11-08 Positive electrode active substance for lithium ion secondary battery and its manufacturing method Pending JP2003151546A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001343331A JP2003151546A (en) 2001-11-08 2001-11-08 Positive electrode active substance for lithium ion secondary battery and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001343331A JP2003151546A (en) 2001-11-08 2001-11-08 Positive electrode active substance for lithium ion secondary battery and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2003151546A true JP2003151546A (en) 2003-05-23

Family

ID=19157039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001343331A Pending JP2003151546A (en) 2001-11-08 2001-11-08 Positive electrode active substance for lithium ion secondary battery and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2003151546A (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008233170A (en) * 2007-03-16 2008-10-02 Konica Minolta Business Technologies Inc Nonspherical resin particle connected body and manufacturing method thereof
WO2010110402A1 (en) * 2009-03-23 2010-09-30 住友化学株式会社 Process for producing lithium composite metal oxide having layered structure
WO2011071094A1 (en) * 2009-12-07 2011-06-16 住友化学株式会社 Method for producing lithium composite metal oxide, lithium composite metal oxide, and nonaqueous electrolyte secondary battery
WO2011077932A1 (en) * 2009-12-22 2011-06-30 Jx日鉱日石金属株式会社 Positive electrode active material for a lithium-ion battery, positive electrode for a lithium-ion battery, lithium-ion battery using same, and precursor to a positive electrode active material for a lithium-ion battery
WO2011083648A1 (en) * 2010-01-06 2011-07-14 Jx日鉱日石金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery using same
JP2012109191A (en) * 2010-10-19 2012-06-07 Sumitomo Chemical Co Ltd Lithium complex metal oxide and nonaqueous electrolytic secondary battery
JP2013065472A (en) * 2011-09-16 2013-04-11 Gs Yuasa Corp Active material for nonaqueous electrolyte secondary battery, method for manufacturing active material for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
US8623551B2 (en) 2010-03-05 2014-01-07 Jx Nippon Mining & Metals Corporation Positive-electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US8748041B2 (en) 2009-03-31 2014-06-10 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery
JP2014523383A (en) * 2011-05-31 2014-09-11 オーエムジー・コッコラ・ケミカルズ・オイ Lithium cobalt oxide material
US8993160B2 (en) 2009-12-18 2015-03-31 Jx Nippon Mining & Metals Corporation Positive electrode for lithium ion battery, method for producing said positive electrode, and lithium ion battery
US9090481B2 (en) 2010-03-04 2015-07-28 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
US9118076B2 (en) 2010-02-05 2015-08-25 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery
US9214676B2 (en) 2011-03-31 2015-12-15 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9216913B2 (en) 2010-03-04 2015-12-22 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9225020B2 (en) 2010-03-04 2015-12-29 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9224514B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Corporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
US9221693B2 (en) 2011-03-29 2015-12-29 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion batteries and positive electrode active material for lithium ion batteries
US9224515B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Coporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
US9231249B2 (en) 2010-02-05 2016-01-05 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US9240594B2 (en) 2010-03-04 2016-01-19 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9327996B2 (en) 2011-01-21 2016-05-03 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion battery and positive electrode active material for lithium ion battery
US9911518B2 (en) 2012-09-28 2018-03-06 Jx Nippon Mining & Metals Corporation Cathode active material for lithium-ion battery, cathode for lithium-ion battery and lithium-ion battery
KR20180059753A (en) 2015-09-30 2018-06-05 스미토모 긴조쿠 고잔 가부시키가이샤 Nickel manganese complex hydroxides and methods for their preparation
US10122012B2 (en) 2010-12-03 2018-11-06 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, a positive electrode for lithium-ion battery, and lithium-ion battery
WO2020208918A1 (en) * 2019-04-10 2020-10-15 パナソニックIpマネジメント株式会社 Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP7561973B2 (en) 2020-12-24 2024-10-04 東莞新能源科技有限公司 Positive Electrode and Electrochemical Device

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008233170A (en) * 2007-03-16 2008-10-02 Konica Minolta Business Technologies Inc Nonspherical resin particle connected body and manufacturing method thereof
CN102361821A (en) * 2009-03-23 2012-02-22 住友化学株式会社 Process for producing lithium composite metal oxide having layered structure
WO2010110402A1 (en) * 2009-03-23 2010-09-30 住友化学株式会社 Process for producing lithium composite metal oxide having layered structure
US8758455B2 (en) 2009-03-23 2014-06-24 Sumitomo Chemical Company, Limited Process for producing lithium composite metal oxide having layered structure
JP2011142064A (en) * 2009-03-23 2011-07-21 Sumitomo Chemical Co Ltd Manufacturing method of layered structure lithium complex metal oxide
US8748041B2 (en) 2009-03-31 2014-06-10 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery
CN102639443A (en) * 2009-12-07 2012-08-15 住友化学株式会社 Method for producing lithium composite metal oxide, lithium composite metal oxide, and nonaqueous electrolyte secondary battery
US9822015B2 (en) 2009-12-07 2017-11-21 Sumitomo Chemical Company, Limited Method for producing lithium composite metal oxide, lithium composite metal oxide, and nonaqueous electrolyte secondary battery
WO2011071094A1 (en) * 2009-12-07 2011-06-16 住友化学株式会社 Method for producing lithium composite metal oxide, lithium composite metal oxide, and nonaqueous electrolyte secondary battery
US8993160B2 (en) 2009-12-18 2015-03-31 Jx Nippon Mining & Metals Corporation Positive electrode for lithium ion battery, method for producing said positive electrode, and lithium ion battery
JPWO2011077932A1 (en) * 2009-12-22 2013-05-02 Jx日鉱日石金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, lithium ion battery using the same, and positive electrode active material precursor for lithium ion battery
US9263732B2 (en) 2009-12-22 2016-02-16 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for a lithium-ion battery, lithium-ion battery using same, and precursor to a positive electrode active material for a lithium-ion battery
WO2011077932A1 (en) * 2009-12-22 2011-06-30 Jx日鉱日石金属株式会社 Positive electrode active material for a lithium-ion battery, positive electrode for a lithium-ion battery, lithium-ion battery using same, and precursor to a positive electrode active material for a lithium-ion battery
JP5973167B2 (en) * 2010-01-06 2016-08-23 Jx金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery using the same
WO2011083648A1 (en) * 2010-01-06 2011-07-14 Jx日鉱日石金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery using same
US9231249B2 (en) 2010-02-05 2016-01-05 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US9118076B2 (en) 2010-02-05 2015-08-25 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery
US9225020B2 (en) 2010-03-04 2015-12-29 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9090481B2 (en) 2010-03-04 2015-07-28 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
US9216913B2 (en) 2010-03-04 2015-12-22 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9240594B2 (en) 2010-03-04 2016-01-19 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US8623551B2 (en) 2010-03-05 2014-01-07 Jx Nippon Mining & Metals Corporation Positive-electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP2012109191A (en) * 2010-10-19 2012-06-07 Sumitomo Chemical Co Ltd Lithium complex metal oxide and nonaqueous electrolytic secondary battery
US10122012B2 (en) 2010-12-03 2018-11-06 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, a positive electrode for lithium-ion battery, and lithium-ion battery
US9327996B2 (en) 2011-01-21 2016-05-03 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion battery and positive electrode active material for lithium ion battery
US9221693B2 (en) 2011-03-29 2015-12-29 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion batteries and positive electrode active material for lithium ion batteries
US9214676B2 (en) 2011-03-31 2015-12-15 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
JP2014523383A (en) * 2011-05-31 2014-09-11 オーエムジー・コッコラ・ケミカルズ・オイ Lithium cobalt oxide material
JP2013065472A (en) * 2011-09-16 2013-04-11 Gs Yuasa Corp Active material for nonaqueous electrolyte secondary battery, method for manufacturing active material for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
US9224515B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Coporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
US9224514B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Corporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
US9911518B2 (en) 2012-09-28 2018-03-06 Jx Nippon Mining & Metals Corporation Cathode active material for lithium-ion battery, cathode for lithium-ion battery and lithium-ion battery
KR20180059753A (en) 2015-09-30 2018-06-05 스미토모 긴조쿠 고잔 가부시키가이샤 Nickel manganese complex hydroxides and methods for their preparation
US10553870B2 (en) 2015-09-30 2020-02-04 Sumitomo Metal Mining Co., Ltd. Nickel manganese containing composite hydroxide and manufacturing method for producing same
WO2020208918A1 (en) * 2019-04-10 2020-10-15 パナソニックIpマネジメント株式会社 Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JPWO2020208918A1 (en) * 2019-04-10 2020-10-15
JP7466211B2 (en) 2019-04-10 2024-04-12 パナソニックIpマネジメント株式会社 Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP7561973B2 (en) 2020-12-24 2024-10-04 東莞新能源科技有限公司 Positive Electrode and Electrochemical Device
EP4207354A4 (en) * 2020-12-24 2025-02-19 Dongguan Amperex Tech Ltd POSITIVE ELECTRODE AND ELECTROCHEMICAL DEVICE

Similar Documents

Publication Publication Date Title
JP2003151546A (en) Positive electrode active substance for lithium ion secondary battery and its manufacturing method
US11682762B2 (en) Nanocrystals of polycrystalline layered lithium nickel metal oxides
JP7120012B2 (en) Nickel-manganese composite hydroxide and method for producing same, positive electrode active material for non-aqueous electrolyte secondary battery and method for producing same, and non-aqueous electrolyte secondary battery
JP6250853B2 (en) Cathode active material for non-aqueous electrolyte secondary battery
JP3362564B2 (en) Non-aqueous electrolyte secondary battery, and its positive electrode active material and method for producing positive electrode plate
US20120258358A1 (en) Cathode active material for a lithium ion secondary battery and a lithium ion secondary battery
JP2018530140A (en) Nickel-based positive electroactive material
JP2012254889A (en) Nickel/manganese composite hydroxide particle and method of manufacturing the same, cathode active material for nonaqueous electrolyte secondary cell and method of manufacturing the same, and nonaqueous electrolyte secondary cell
JPWO2012131881A1 (en) Nickel-manganese composite hydroxide particles and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery
KR20230098502A (en) Single-crystal type multi-component cathode material and manufacturing method and application thereof
JP2002216760A (en) Positive electrode active material for lithium secondary battery and method for manufacturing the same
JP2002279985A (en) Positive electrode active material for non-aqueous lithium secondary battery and the non-aqueous lithium secondary battery using the active material
JP6614202B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
KR20110044936A (en) Method for producing lithium manganese composite oxide for lithium ion battery, lithium manganese composite oxide for lithium ion battery manufactured by the method, and lithium ion secondary battery comprising same
CN116581283B (en) A high-performance lithium manganese oxide positive electrode material with low oxygen vacancies and a preparation method thereof
CN111009656A (en) Preparation method of rare earth metal doped high-nickel ternary battery positive electrode material
JP2008235157A (en) Positive electrode active material for lithium secondary battery
JP2004006277A (en) Positive electrode material for lithium secondary batteries, rechargeable battery therewith and manufacturing process thereof
CN115020697B (en) Positive electrode material and preparation method and application thereof
CN108511749A (en) Copper doped lithium nickelate positive electrode and preparation method thereof and lithium ion battery
JP4543474B2 (en) Positive electrode active material, method for producing the same, and non-aqueous secondary battery using the same
JP2020035605A (en) Production method of positive electrode active material for lithium ion secondary battery, and manufacturing method of lithium ion secondary battery
US20240076201A1 (en) Process for producing lithiated transition metal oxides
JP2004155631A (en) Lithium manganese-based double oxide particles for non-aqueous lithium secondary battery, method for producing the same, and non-aqueous lithium secondary battery
CN115832241A (en) Blended lithium ion battery cathode material, preparation method thereof and lithium ion battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070821