[go: up one dir, main page]

JP2003149308A - Magnetic field measurement device - Google Patents

Magnetic field measurement device

Info

Publication number
JP2003149308A
JP2003149308A JP2001350540A JP2001350540A JP2003149308A JP 2003149308 A JP2003149308 A JP 2003149308A JP 2001350540 A JP2001350540 A JP 2001350540A JP 2001350540 A JP2001350540 A JP 2001350540A JP 2003149308 A JP2003149308 A JP 2003149308A
Authority
JP
Japan
Prior art keywords
magnetic field
frequency
detecting means
integration
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001350540A
Other languages
Japanese (ja)
Inventor
Masaaki Ubara
正昭 茆原
Kenichi Yamazaki
健一 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PHOTONICS KK
Central Research Institute of Electric Power Industry
Original Assignee
PHOTONICS KK
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PHOTONICS KK, Central Research Institute of Electric Power Industry filed Critical PHOTONICS KK
Priority to JP2001350540A priority Critical patent/JP2003149308A/en
Publication of JP2003149308A publication Critical patent/JP2003149308A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily detect a magnetic field ranged from dozens of Hz to hundreds of kHz. SOLUTION: The apparatus comprises a magnetic field detecting means 1 wherein at least three coils 2, 3 and 4 are arranged in a direction of three axes orthogonally crossed one another so as to have a common center point; and a CR integration means 11 having an integration characteristic with respect to integration output bands of coils 2, 3 and 4.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、商用電源程度から
100kHz程度の磁界を測定する装置に関する。 【0002】 【従来の技術】生活環境下では送電線、トランス、電磁
調理器などから商用周波数程度から数十乃至百kHz程
度の非常に周波数帯域が広い交番電磁界が不特定の方向
に放射されている。このような電磁界は、微弱ではある
ものの生体に対する安全性が懸念されていて、このよう
な電磁界を簡便に測定できる装置が求められている。 【0003】 【発明が解決しようとする課題】このような磁界をホー
ル素子や磁気抵抗素子等の固体素子で検出する場合に
は、検出する磁界の方向を規定する必要上、シールド部
材が必要となり、特に低周波の磁界に対してはシールド
構造が大型化するという問題がある。このような問題を
避けようとして、固体素子を同一位置に位置決めしなが
ら、各方向の磁界を測定しようとすると、固体素子を所
定位置に保持するための装置が必要となり構造が複雑化
するという問題がある。 【0004】一方、線輪を相互に直交するように3方向
に配置した磁界検出手段によれば、特定位置の磁界を3
方向に分離して検出することができるものの、線輪の微
分特性に起因して検出出力が周波数より大きく変化し、
検出精度が低いという問題がある。本発明はこのような
事情に鑑みてなされたものであって、その目的とすると
ころは商用周波数から数百kHz程度の磁界を線輪を使
用した磁界検出手段を用いて測定することができる磁界
測定装置を提供することである。 【0005】 【課題を解決するための手段】このような課題を達成す
るために本発明においては、互いに直交する3軸方向に
それぞれ少なくとも3つの線輪を、共通の中心点を持つ
ように配置した磁界検出手段と、前記線輪の微分出力帯
域に対して積分特性を有するCR積分手段と、を備える
ようにした。 【0006】 【作用】線輪の低周波領域での微分特性をCR積分手段
の周波数効果により打ち消して、線輪による起電力を平
坦化する。 【0007】 【発明の実施の形態】そこで以下に本発明の詳細を図示
した実施例に基づいて説明する。図1は、本発明の一実
施例を示すものであって、簡素化のため、1チャンネル
分の回路構成だけを示す。 【0008】磁界検出手段1は、互いに直交する3軸方
向X、Y、Z方向に線輪2、3、4を配置して構成され
ている。このような磁界検出手段は、図2に示したよう
に巻枠20に互いに直交する溝21、22、23を形成
し、それぞれの溝21、22、23に線輪を巻回して構
成することができる。これにより、各線輪2、3、4
は、それぞれ共通の中心を持つように配置できる。 【0009】各線輪2、3、4の信号は、リード線5、
6、7を介して、少なくと検出対象となる周波数に対し
て平坦な利得を備えた増幅手段10に出力されている。
増幅手段10からの信号は、後述するCR積分手段11
を介して出力増幅手段12に出力され、図示しない表示
装置や信号処理手段により、磁界特性の解析に供され
る。 【0010】積分手段11は、抵抗13、コンデンサ1
4、及び演算増幅器15により構成されていて、各線輪
2、3、4の微分特性が生じる周波数で積分特性を発現
するように積分定数が設定されている。 【0011】すなわち、線輪2、3、4からの出力電圧
V1は、 V1=Kbnf (ただし、Kは定数、bは磁束密度、fは交番周波数)
となり、図3(a)に示したようにピークの磁束密度b
が一定の場合であっても、交番周波数に比例して大きく
なるという微分特性のために出力電圧V1が大きくな
る。 【0012】一方、CR積分手段の出力電圧V2は、 V2=1/CR*∫V0dt (だだしCRは積分定数、V0は入力電圧を表わす)
と、図3(b)に示したように電圧が一定の入力信号の
積分値が交番周波数とともに出力が低下する。 【0013】この実施例において、磁界検出手段1を測
定領域にセットすると、共通の中心を持つ3つ線輪2、
3、4に磁界が交叉し、各線輪2、3、4から各方向の
磁界に比例した出力電圧Vs1、Vs2、Vs3が出力す
る。これらの出力電圧Vs1、Vs2、Vs3の値は、交
番周波数に大きく依存しているものの、CR積分手段1
1に入力してCR積分手段11の周波数効果により平坦
化される。 【0014】したがって、磁界検出手段1の位置を変え
ることなく、線輪2、3、4の中心点近傍での数十乃至
100kHz程度の磁界の強度を検出することができ
る。 【0015】図4は、同上磁界測定装置によりピークの
磁束密度が一定で、かつ交番周波数が変化する磁束発生
源からの磁束を測定した結果を示すもので、40Hz程
度から100kHz程度まで、交番周波数の影響を受け
ることなく略一定の感度で測定することができた。 【0016】 【発明の効果】以上説明したように本発明によれば、磁
界検出手段の位置決めに特別な装置を必要とすることな
く、特定位置の広い周波数帯域の磁界を高い精度で検出
することができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring a magnetic field of about 100 kHz from a commercial power supply. 2. Description of the Related Art In a living environment, a transmission line, a transformer, an electromagnetic cooker or the like emits an alternating electromagnetic field having a very wide frequency band from a commercial frequency to several tens to 100 kHz in an unspecified direction. ing. Although such an electromagnetic field is weak, there is a concern about safety for a living body, and there is a demand for a device that can easily measure such an electromagnetic field. When such a magnetic field is detected by a solid-state element such as a Hall element or a magnetoresistive element, a shield member is required because the direction of the magnetic field to be detected must be defined. In particular, there is a problem that the shield structure becomes large for a low-frequency magnetic field. If the magnetic field in each direction is measured while positioning the solid state element at the same position in order to avoid such a problem, a device for holding the solid state element at a predetermined position is required, and the structure becomes complicated. There is. On the other hand, according to the magnetic field detecting means in which the wires are arranged in three directions so as to be orthogonal to each other, the magnetic field at a specific position is
Although it can be detected separately in the direction, the detection output changes more than the frequency due to the differential characteristics of the wire loop,
There is a problem that detection accuracy is low. The present invention has been made in view of such circumstances, and a purpose thereof is to provide a magnetic field capable of measuring a magnetic field of about several hundred kHz from a commercial frequency using a magnetic field detecting means using a wire loop. It is to provide a measuring device. According to the present invention, at least three wire loops are arranged so as to have a common center point in three axial directions orthogonal to each other. And a CR integrator having an integral characteristic with respect to the differential output band of the wire loop. The differential characteristic of the wire loop in the low frequency region is canceled out by the frequency effect of the CR integration means, and the electromotive force generated by the wire loop is flattened. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing a first embodiment of the present invention; FIG. 1 shows an embodiment of the present invention, and shows only a circuit configuration for one channel for simplification. The magnetic field detecting means 1 is constituted by arranging wires 2, 3, and 4 in three axial directions X, Y and Z orthogonal to each other. As shown in FIG. 2, such a magnetic field detecting means is formed by forming grooves 21, 22, 23 orthogonal to each other in a bobbin 20, and winding a wire loop in each of the grooves 21, 22, 23. Can be. Thereby, each wire loop 2, 3, 4
Can be arranged to have a common center. The signals of each of the loops 2, 3, and 4 are connected to a lead 5,
The signal is output to the amplifying means 10 having a flat gain at least with respect to the frequency to be detected via the signals 6 and 7.
The signal from the amplifying means 10 is supplied to a CR integrator 11 described later.
The signal is output to the output amplifying unit 12 via a display unit, and is used for analysis of magnetic field characteristics by a display device or a signal processing unit (not shown). The integrating means 11 includes a resistor 13 and a capacitor 1
4 and an operational amplifier 15, and the integration constant is set so that the integration characteristic is exhibited at the frequency at which the differential characteristic of each of the wires 2, 3, and 4 occurs. That is, the output voltage V1 from the wires 2, 3, and 4 is as follows: V1 = Kbnf (where K is a constant, b is a magnetic flux density, and f is an alternating frequency)
And the peak magnetic flux density b as shown in FIG.
Is constant, the output voltage V1 increases due to the differential characteristic of increasing in proportion to the alternating frequency. On the other hand, the output voltage V2 of the CR integrator is V2 = 1 / CR * ∫V0dt (where CR is an integration constant and V0 is an input voltage).
Then, as shown in FIG. 3B, the output of the integrated value of the input signal having a constant voltage decreases with the alternating frequency. In this embodiment, when the magnetic field detecting means 1 is set in the measurement area, three wire loops 2 having a common center,
A magnetic field intersects 3 and 4, and output voltages Vs1, Vs2 and Vs3 proportional to the magnetic field in each direction are output from each of the wires 2, 3, and 4. Although the values of these output voltages Vs1, Vs2, Vs3 greatly depend on the alternating frequency, the CR integrator 1
1 and is flattened by the frequency effect of the CR integrator 11. Therefore, it is possible to detect the intensity of the magnetic field of about several tens to 100 kHz near the center point of the wire loops 2, 3, and 4 without changing the position of the magnetic field detecting means 1. FIG. 4 shows the result of measuring the magnetic flux from a magnetic flux generating source in which the peak magnetic flux density is constant and the alternating frequency changes by the same magnetic field measuring apparatus. It was possible to measure at a substantially constant sensitivity without being affected by the above. As described above, according to the present invention, it is possible to detect a magnetic field in a wide frequency band at a specific position with high accuracy without requiring a special device for positioning the magnetic field detecting means. Can be.

【図面の簡単な説明】 【図1】本発明の磁界測定装置の一実施例を示すブロッ
ク図である。 【図2】同上装置のに使用する磁界検出手段を構成する
線輪の巻枠の一実施例を示す図である。 【図3】図(a)、(b)は、それぞれ同上装置に使用
する磁界検出手段の周波数特性と、CR積分手段の周波
数特性を示す線図である。 【図4】同上装置の周波数特性を示す線図である。 【符号の説明】 1 磁界検出手段 2、3、4 線輪 10 増幅手段 11 CR積分手段 12 出力増幅手段
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing an embodiment of a magnetic field measuring device according to the present invention. FIG. 2 is a view showing an embodiment of a winding frame of a wire loop constituting a magnetic field detecting means used in the above device. FIGS. 3 (a) and 3 (b) are diagrams showing frequency characteristics of a magnetic field detecting means and a frequency characteristic of a CR integrating means used in the same device, respectively. FIG. 4 is a diagram showing frequency characteristics of the above device. [Description of Signs] 1 Magnetic field detecting means 2, 3, 4 Wire loop 10 Amplifying means 11 CR integrating means 12 Output amplifying means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山崎 健一 千葉県我孫子市我孫子1646 財団法人電力 中央研究所 狛江研究所内 Fターム(参考) 2G017 AA01 AA15 AD02 BA05 BA16   ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Kenichi Yamazaki             1646 Abiko, Abiko-shi, Chiba Electric Power Corporation             Central Research Laboratory Komae Research Laboratory F-term (reference) 2G017 AA01 AA15 AD02 BA05 BA16

Claims (1)

【特許請求の範囲】 【請求項1】 互いに直交する3軸方向にそれぞれ少
なくとも3つの線輪を、共通の中心点を持つように配置
した磁界検出手段と、前記線輪の微分出力帯域に対して
積分特性を有するCR積分手段と、からなる磁界測定装
置。
Claims: 1. A magnetic field detecting means in which at least three wire loops are arranged in three axial directions orthogonal to each other so as to have a common center point, and a differential output band of the wire loop is provided. And a CR integrating means having integral characteristics.
JP2001350540A 2001-11-15 2001-11-15 Magnetic field measurement device Pending JP2003149308A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001350540A JP2003149308A (en) 2001-11-15 2001-11-15 Magnetic field measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001350540A JP2003149308A (en) 2001-11-15 2001-11-15 Magnetic field measurement device

Publications (1)

Publication Number Publication Date
JP2003149308A true JP2003149308A (en) 2003-05-21

Family

ID=19163018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001350540A Pending JP2003149308A (en) 2001-11-15 2001-11-15 Magnetic field measurement device

Country Status (1)

Country Link
JP (1) JP2003149308A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102820118A (en) * 2012-08-29 2012-12-12 中国科学院电工研究所 Rotating magnetic field generation system and rotating magnetic field implementation method thereof
CN102867612A (en) * 2012-09-06 2013-01-09 中国科学院电工研究所 Rotating magnetic field generating device and implementation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102820118A (en) * 2012-08-29 2012-12-12 中国科学院电工研究所 Rotating magnetic field generation system and rotating magnetic field implementation method thereof
CN102867612A (en) * 2012-09-06 2013-01-09 中国科学院电工研究所 Rotating magnetic field generating device and implementation method thereof

Similar Documents

Publication Publication Date Title
KR101965977B1 (en) Apparatus for measuring current
US10539701B2 (en) Minute magnetic body detecting sensor and foreign substance detecting device
US6885183B2 (en) Current probe
KR100566547B1 (en) Magnetic detector
US6989666B2 (en) Current sensor and current detection unit using the same
US9638823B2 (en) Metal sensor
JP3888427B2 (en) Displacement sensor
CN107271933B (en) A kind of three axis fluxgate sensor of spherical
CN108732404A (en) A kind of current sensor and its more balance of flux control circuits
JP2017062122A (en) Magnetic field detector
JP2816175B2 (en) DC current measuring device
JPH1152036A (en) Method and apparatus calibrating sensitivity of field detecting element
JP3764834B2 (en) Current sensor and current detection device
JP2003149308A (en) Magnetic field measurement device
CN101408596A (en) Method and device for measuring electrical pure iron coercive force and relative magnetic permeability of weak magnetic material
JP2006105955A (en) Device for sensing energization of electrical equipment
JP3972116B2 (en) Magnetic attractive force measuring device for magnet body
JPH0618568A (en) Current sensor
JPS6332391A (en) Magnetic flux detector
JPH0224476B2 (en)
JPH073345Y2 (en) DC current detector
KR102656037B1 (en) Magnetic-field detecting apparatus
JP2001141756A (en) Current sensor
SU546024A1 (en) Device for measuring electron beam current
SU1265627A1 (en) Device for contactless measurement of current intensity

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040414

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040804