[go: up one dir, main page]

JP2003147629A - Method for producing hollow fiber membrane and hollow fiber membrane - Google Patents

Method for producing hollow fiber membrane and hollow fiber membrane

Info

Publication number
JP2003147629A
JP2003147629A JP2001341759A JP2001341759A JP2003147629A JP 2003147629 A JP2003147629 A JP 2003147629A JP 2001341759 A JP2001341759 A JP 2001341759A JP 2001341759 A JP2001341759 A JP 2001341759A JP 2003147629 A JP2003147629 A JP 2003147629A
Authority
JP
Japan
Prior art keywords
hollow fiber
fiber membrane
solvent
producing
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001341759A
Other languages
Japanese (ja)
Other versions
JP3760838B2 (en
Inventor
Toshiyuki Ishizaki
利之 石崎
Shinichi Minegishi
進一 峯岸
Koichi Tan
浩一 旦
Masahiro Henmi
昌弘 辺見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2001341759A priority Critical patent/JP3760838B2/en
Publication of JP2003147629A publication Critical patent/JP2003147629A/en
Application granted granted Critical
Publication of JP3760838B2 publication Critical patent/JP3760838B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Artificial Filaments (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a hollow fiber membrane, by which the hollow fiber membrane having a high strength and a high water- penetrable performance can be produced from a polyvinylidene fluoride-based resin having high chemical resistance at a low cost in a state scarcely giving loads to the environments. SOLUTION: The method for producing the hollow fiber membrane is characterized by extruding and coagulating a solution containing at least a polyvinylidene fluoride-based resin and having a viscosity of 10 to 200 Pa.s into a cooling bath.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、河川水や地下水な
どの除濁や工業用水の清澄化に好適に使用できる分離用
中空糸膜とその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hollow fiber membrane for separation, which can be suitably used for clarification of river water, groundwater, etc. and clarification of industrial water, and a method for producing the same.

【0002】[0002]

【従来の技術】膜分離法は省エネルギー、省スペース、
省力化などの特長を有するために様々な分野で利用され
ている技術で、精密ろ過膜、限外ろ過膜および逆浸透膜
などの平膜や中空糸膜などを使用する。従来、精密ろ過
の分野では、家庭用小型浄水器のように使い捨てを前提
としたカートリッジタイプのものが多く使用されてき
た。近年、精密ろ過用、或いは限外ろ過用の分離膜とし
て、河川水や地下水除濁、工業用水の清澄化、或いは排
水の高度処理などの分野に中空糸膜を適用しようとする
動きが活発に行われている。しかし、使い捨てではなく
長期運転を目的とするような浄水処理分野への適用に
は、透水性、機械的特性、耐薬品性、除菌性などに高い
特性が要求される。ポリビニリデンフルオライド系樹脂
を素材として用いた場合、耐薬品性、耐熱性、機械的特
性など優れた諸特性を持つために分離膜としての期待が
高い。従来、ポリビニリデンフルオライド系樹脂からな
る中空糸膜の製造方法としては、例えば特公平1−22
003号公報に開示されているポリビニリデンフルオラ
イド系樹脂を溶媒に溶解させ相分離させるにあたり界面
活性剤を利用する湿式紡糸法が開示されている。しか
し、膜内部にマクロボイドが発生し機械的強度が不十分
であった。次に特許2899903号公報に開示されて
いるように溶融成形物から溶媒や無機微粉体を抽出する
方法が提案されているが、孔隙を形成させる無機微粉体
の抽出に手間がかかり、また使用される溶媒にも環境上
の影響に懸念が残る。
2. Description of the Related Art Membrane separation method is energy saving, space saving,
It is a technology used in various fields because it has features such as labor saving. It uses flat membranes such as microfiltration membranes, ultrafiltration membranes and reverse osmosis membranes, and hollow fiber membranes. Conventionally, in the field of microfiltration, a cartridge type that is premised on being disposable, such as a small-sized household water purifier, has been widely used. In recent years, as a separation membrane for microfiltration or ultrafiltration, there has been active movement to apply hollow fiber membranes to fields such as river water and groundwater clarification, clarification of industrial water, and advanced treatment of wastewater. Has been done. However, when applied to the field of water purification treatment intended for long-term operation instead of being disposable, high properties such as water permeability, mechanical properties, chemical resistance, and sterilization properties are required. When a polyvinylidene fluoride resin is used as a material, it is highly expected as a separation membrane because it has excellent properties such as chemical resistance, heat resistance, and mechanical properties. Conventional methods for producing hollow fiber membranes made of polyvinylidene fluoride resin include, for example, Japanese Patent Publication No. 1-22.
A wet spinning method is disclosed in Japanese Patent Laid-Open No. 003, which uses a surfactant to dissolve the polyvinylidene fluoride resin in a solvent and cause phase separation. However, mechanical voids were insufficient due to the generation of macrovoids inside the film. Next, as disclosed in Japanese Patent No. 2899903, a method of extracting a solvent or an inorganic fine powder from a melt-molded product has been proposed, but it takes a lot of time to extract the inorganic fine powder to form pores, and it is used. There is concern about the environmental impact of the solvents used.

【0003】[0003]

【発明が解決しようとする課題】本発明は、上記の問題
点に鑑み、簡素なプロセスで優れた特性を示すポリビニ
リデンフルオライド系樹脂を使った中空糸膜を提供する
ものである。
SUMMARY OF THE INVENTION In view of the above problems, the present invention provides a hollow fiber membrane using a polyvinylidene fluoride resin which exhibits excellent characteristics in a simple process.

【0004】[0004]

【課題を解決するための手段】上記の課題を達成するた
めに以下の構成からなる。すなわち本発明の中空糸膜の
製造方法は、少なくともポリビニリデンフルオライド系
樹脂を含む粘度10〜200Pa・sの範囲の溶液を、
冷却浴へ吐出させて凝固させることを特徴とするもので
ある。また本発明は、純水透過量が1.6m3/m2・h
・100kPa以上であって、引張り強度4MN/m2
以上、かつ伸度が50%以上である本発明の製造方法で
製造された中空糸膜および、該中空糸膜を用いてなる浄
水用中空糸膜エレメントである。
[Means for Solving the Problems] In order to achieve the above-mentioned object, it has the following constitution. That is, the method for producing a hollow fiber membrane of the present invention uses a solution containing at least a polyvinylidene fluoride resin and having a viscosity in the range of 10 to 200 Pa · s,
It is characterized by being discharged into a cooling bath to solidify. Further, the present invention has a pure water permeation amount of 1.6 m 3 / m 2 · h.
・ 100 kPa or more and tensile strength of 4 MN / m 2
The hollow fiber membrane produced by the production method of the present invention having the elongation of 50% or more and the hollow fiber membrane element for water purification using the hollow fiber membrane.

【0005】[0005]

【発明の実施の形態】本発明におけるポリビニリデンフ
ルオライド系樹脂とは、ビニリデンフルオライドホモポ
リマー、ビニリデンフルオライド共重合体あるいは、両
者の混合物等が挙げられるが、好ましくは、ビニリデン
フルオライドホモポリマーを85重量%以上(より好ま
しくは90重量%以上、更に好ましくは95重量%以
上)含むものである。ビニリデンフルオライド共重合体
としては、ポリマー構造にビニリデンフルオライドモノ
マー残基構造を有するようなポリマーがあり、ビニリデ
ンフルオライド−テトラフルオロエチレン共重合体、ビ
ニリデンフルオライド−6フッ化プロピレン共重合体等
のビニリデンフルオライドを原料モノマーとして製造し
得るポリマーの他、エチレン−4フッ化エチレン共重合
体のように、ビニリデンフルオライド以外の原料モノマ
ーから製造し得るものも挙げられる。また、ポリビニリ
デンフルオライド系樹脂の重量平均分子量は、中空糸膜
の機械的特性や透水性を考慮すると5万〜70万が好ま
しく、溶媒の溶解性や紡糸性を考慮した場合、10万〜
50万が好ましい。より好ましくは15万〜45万であ
る。
BEST MODE FOR CARRYING OUT THE INVENTION The polyvinylidene fluoride resin in the present invention includes vinylidene fluoride homopolymer, vinylidene fluoride copolymer, a mixture of both, and the like, but vinylidene fluoride homopolymer is preferable. Is contained in an amount of 85% by weight or more (more preferably 90% by weight or more, further preferably 95% by weight or more). As the vinylidene fluoride copolymer, there is a polymer having a vinylidene fluoride monomer residue structure in the polymer structure, such as vinylidene fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-6-fluorinated propylene copolymer and the like. In addition to the polymer which can be produced using vinylidene fluoride as the raw material monomer, those which can be produced from a raw material monomer other than vinylidene fluoride, such as an ethylene-4 fluoroethylene copolymer, are also included. The weight average molecular weight of the polyvinylidene fluoride resin is preferably 50,000 to 700,000 in consideration of the mechanical properties and water permeability of the hollow fiber membrane, and 100,000 to 100,000 in consideration of the solvent solubility and spinnability.
500,000 is preferable. More preferably, it is 150,000 to 450,000.

【0006】本発明において、ポリビニリデンフルオラ
イド系樹脂を含む溶液の溶媒としては、ジメチルスルホ
キシド、N−メチル−2ピロリドン、ジメチルアセトア
ミド、ジメチルホルムアミド、メチルエチルケトン、ア
セトン、テトラヒドロフランなどの非プロトン性溶媒の
有機溶媒を例示することができるが、融点の高いジメチ
ルスルホキシドが好ましく用いられる。
In the present invention, the solvent of the solution containing the polyvinylidene fluoride resin is an organic aprotic solvent such as dimethylsulfoxide, N-methyl-2pyrrolidone, dimethylacetamide, dimethylformamide, methylethylketone, acetone or tetrahydrofuran. Examples of the solvent include dimethyl sulfoxide, which has a high melting point, and is preferably used.

【0007】前記ポリビニリデンフルオライド系樹脂は
前記溶媒に完全に溶解することが好ましいが、例え溶け
切れなかった固形物が残ってもフィルタ濾過により除去
すれば問題ない。また、このように調製されたポリビニ
リデンフルオライド系樹脂を含む溶液(以下、単にポリ
マー溶液ともいう)の粘度は、10〜200(好ましく
は20〜180、より好ましくは30〜150)Pa・
sである必要がある。ここで前記溶液粘度が200Pa
・sを超えていると製膜時にメルトフラクチャーやノズ
ル詰まりが発生し易くなる。また粘度が10Pa・sよ
り低いと固化が遅れ糸切れなどの押し出し不良が起こり
易い。なお、粘度は回転式のB型粘度計を使用して80
℃で測定した。溶媒としては単独或いは複数の組み合わ
せであっても何らかまわない。
It is preferable that the polyvinylidene fluoride resin is completely dissolved in the solvent, but even if undissolved solid matter remains, there is no problem if it is removed by filter filtration. Moreover, the viscosity of the solution containing the polyvinylidene fluoride resin thus prepared (hereinafter, also simply referred to as a polymer solution) has a viscosity of 10 to 200 (preferably 20 to 180, more preferably 30 to 150) Pa.
must be s. Here, the solution viscosity is 200 Pa
If it exceeds s, melt fracture and nozzle clogging tend to occur during film formation. Further, if the viscosity is lower than 10 Pa · s, the solidification is delayed, and extrusion failure such as yarn breakage easily occurs. The viscosity is 80 using a rotary type B viscometer.
It was measured at ° C. The solvent may be a single solvent or a combination of two or more solvents.

【0008】次に、前記の通り調製されたポリマー溶液
は、好ましくは5〜100μmのステンレス製フィルタ
ー等で濾過した後、中空糸状に成形する。例えば、チュ
ーブインオリフィスを使った湿式、或いは乾湿式の紡糸
方法等で中空糸膜に製造することができる。ここでチュ
ーブインオリフィスとは、金属製等の円形ノズル内に円
形チューブ(パイプ)が挿入されおり、円形ノズルと円
形チューブに一定の隙間を設けた2重管状のノズルをい
う。使用する前記チューブインオリフィスの寸法は、製
造する中空糸膜の寸法と膜構造により適宜選択すればよ
いが、おおよそオリフィス外径0.7〜10mm、チュ
ーブ管外径0.5〜4mm、チューブ管内径0.25〜
2mmの範囲であることが好ましい。このオリフィス外
径とチューブ管外径の間隙にポリマー溶液を流し、チュ
ーブ管内径内に中空部形成用液体などを流すものであ
る。また、紡糸ドラフト(引取り速度/原液の口金吐出
線速度)は好ましくは0.8〜100、より好ましくは
0.9〜50、更に好ましくは1〜30、乾式長は好ま
しくは10〜1000mm、より好ましくは15〜80
0mm、更に好ましくは15〜600mmの範囲であ
る。
Next, the polymer solution prepared as described above is filtered through a stainless filter having a thickness of preferably 5 to 100 μm, and then shaped into a hollow fiber. For example, a hollow fiber membrane can be produced by a wet or dry-wet spinning method using a tube-in orifice. Here, the tube-in-orifice means a double tube-shaped nozzle in which a circular tube (pipe) is inserted in a circular nozzle made of metal or the like, and a constant gap is provided between the circular nozzle and the circular tube. The size of the tube-in-orifice to be used may be appropriately selected depending on the size of the hollow fiber membrane to be manufactured and the membrane structure, but the outer diameter of the orifice is approximately 0.7 to 10 mm, the outer diameter of the tube is 0.5 to 4 mm, and the tube is Inner diameter 0.25
It is preferably in the range of 2 mm. The polymer solution is caused to flow in the gap between the outer diameter of the orifice and the outer diameter of the tube, and the liquid for forming a hollow portion is caused to flow in the inner diameter of the tube. In addition, the spinning draft (take-off speed / the linear discharge speed of the stock solution) is preferably 0.8 to 100, more preferably 0.9 to 50, still more preferably 1 to 30, and the dry length is preferably 10 to 1000 mm, More preferably 15-80
It is 0 mm, more preferably 15 to 600 mm.

【0009】またオリフィスの温度すなわち紡糸温度
は、溶解温度と同様、60〜160℃、好ましくは70
〜140℃の範囲が好ましく、口金温度と溶解温度が異
なっても構わない。溶解温度については、溶解を短時間
に均一に行うという点から、口金温度より高い温度に設
定することも好ましく採用できる。
The temperature of the orifice, that is, the spinning temperature is 60 to 160 ° C., preferably 70, like the melting temperature.
The temperature is preferably in the range of to 140 ° C., and the die temperature and the melting temperature may be different. Regarding the melting temperature, it is also preferable to set the melting temperature to a temperature higher than the die temperature from the viewpoint of uniformly melting in a short time.

【0010】前記の通り、オリフィスからポリマー溶液
から吐出させるなどして、ポリマー溶液を中空糸状に製
膜する際、中空糸膜の中空部を形成する中空部形成用液
体を用いることが好ましく、これには低凝固性液体が好
適である。ここで、低凝固性液体とは、75〜95重量
%の範囲の上述した溶媒を含む溶媒と非溶媒との混合液
が好ましく用いられる。なお、非溶媒としては、水、ヘ
キサン、ペンタン、ベンゼン、メタノール、エタノー
ル、トルエンなどのプロトン性溶媒乃至は非極性溶媒が
例示できるが、取り扱い容易な水が好ましく用いられ
る。該チューブに低凝固性液体を注入するに際して、溶
媒濃度が75重量%を下回ると凝集が速く、膜内表面の
緻密化で透水性低下の傾向を示す。また、溶媒が95重
量%を上回ると重合体の凝集が遅く糸状形成が難しくな
る。また、溶媒又は非溶媒において、単独或いは複数の
組み合わせであっても何らかまわない。この様な低凝固
性液体として、特に75〜95重量%の範囲のジメチル
スルホキシドを含むジメチルスルホキシド水系液が好ま
しく用いられる。本発明において、中空部形成用液体と
して、このような低凝固液体を好ましくは30℃以下、
より好ましくは20℃以下に、さらに好ましくは15℃
以下で使用することができる。チューブインオリフィス
のチューブに前記温度条件の低凝固液体を注入すると中
空状の溶液内部の温度を効果的に下げて固化させること
ができる。
As described above, when the polymer solution is formed into a hollow fiber film by discharging the polymer solution from the orifice, it is preferable to use a hollow portion forming liquid that forms the hollow portion of the hollow fiber membrane. A low coagulating liquid is suitable for this. Here, the low-coagulable liquid is preferably a mixed liquid of a solvent containing the above-mentioned solvent in the range of 75 to 95% by weight and a non-solvent. Examples of the non-solvent include water, hexane, pentane, benzene, methanol, ethanol, toluene and other protic or non-polar solvents, but water that is easy to handle is preferably used. When injecting a low-coagulable liquid into the tube, if the solvent concentration is less than 75% by weight, agglomeration is rapid and the inner surface of the membrane is densified, which tends to decrease water permeability. On the other hand, when the solvent content exceeds 95% by weight, aggregation of the polymer is slow and it becomes difficult to form filaments. The solvent or non-solvent may be used alone or in combination of two or more. As such a low-coagulable liquid, a dimethyl sulfoxide aqueous solution containing dimethyl sulfoxide in the range of 75 to 95% by weight is preferably used. In the present invention, such a low-coagulation liquid is preferably used at 30 ° C. or lower as the hollow part forming liquid.
More preferably below 20 ° C, even more preferably 15 ° C
It can be used below. By injecting the low coagulation liquid under the above temperature conditions into the tube of the tube-in-orifice, the temperature inside the hollow solution can be effectively lowered and solidified.

【0011】前記の通り、中空糸状に成形されたポリマ
ーは、冷却浴へ吐出して凝固し中空糸膜とする。前記凝
固工程は、球晶が発達しやすい冷却凝固が支配的である
ことが求められ、本発明では冷却浴を用いているもので
ある。
As described above, the hollow fiber-shaped polymer is discharged into a cooling bath and solidified to form a hollow fiber membrane. The solidification step is required to be predominantly the cooling solidification in which spherulites easily develop, and the present invention uses a cooling bath.

【0012】なお、前記冷却浴の形態としては、冷却液
体と中空糸状に成形されたポリマー溶液とが十分に接触
して冷却等が可能であるならば、特に限定されるもので
はなく、文字通り冷却液体が貯留された液槽形態であっ
ても良いし、さらに必要により前記液槽は、温度や組成
が調製された液体が循環乃至は更新されても良い。前記
形態が最も好適ではあるが、場合によっては、冷却液体
が管内を流動している形態であっても良いし、冷却液体
が空中に走向等している中空糸膜に噴射される形態であ
っても良い。
The form of the cooling bath is not particularly limited as long as the cooling liquid and the polymer solution formed into a hollow fiber are sufficiently brought into contact with each other for cooling and the like. It may be in the form of a liquid tank in which a liquid is stored, or if necessary, the liquid tank may be circulated or renewed with a liquid whose temperature and composition are adjusted. The above-mentioned form is the most preferable, but in some cases, the cooling liquid may be flowing in the pipe, or the cooling liquid may be jetted to the hollow fiber membrane which is striking in the air. May be.

【0013】冷却液体としては、前記の低凝固液体が好
ましい。冷却用液体と中空部形成用液体は、同一の溶
媒、非溶媒の組み合わせであったり、同一の混合組成で
あっても良いし、そうでなくても良いが、溶媒回収など
の工程管理面からは、溶媒、非溶媒、および混合組成が
同一である方が好ましい。低凝固液体を用いて、ポリマ
ー溶液を30℃以下に冷却すると相分離が誘起され、溶
液中の重合体の相分離が進み核化して好ましい球状粒子
構造を形成する。30℃を超える低凝固液体を使用する
と、溶液中の重合体が粒子状に相分離する以前に凝固す
るために粒子構造を形成しない。つまり粒子構造をとる
には、溶液を冷却する過程で相分離が誘起して、核化す
るための温度と時間が重要であり、上述した方法で容易
に制御することができる。
As the cooling liquid, the above-mentioned low solidification liquid is preferable. The cooling liquid and the hollow part forming liquid may be the same solvent or a combination of non-solvents, or may have the same mixed composition, or may not have the same composition, but in terms of process control such as solvent recovery. Are preferably the same in solvent, non-solvent, and mixed composition. When the polymer solution is cooled to 30 ° C. or lower using a low coagulation liquid, phase separation is induced, and the phase separation of the polymer in the solution proceeds to nucleate to form a preferable spherical particle structure. With low coagulation liquids above 30 ° C., the polymer in solution does not form a particle structure due to coagulation before phase separation into particles. That is, in order to take a particle structure, phase separation is induced in the process of cooling the solution and the temperature and time for nucleation are important, and the temperature and time for nucleation can be easily controlled by the method described above.

【0014】さらに本発明の製造方法において、凝固し
た後に、中空糸膜を1.1〜3(より好ましくは1.1
〜2.5、更に好ましくは1.1〜2)倍の範囲で延伸
を施すとことで透水性や阻止率などの特性を容易に制御
することができるので好ましい。延伸倍率が3倍を超す
と中空糸膜の機械的強度が低下傾向を示す。また、図1
〜4は本発明によって得られる中空糸膜の膜壁構造を詳
細に説明するための走査電子顕微鏡写真の一例である。
図1、4は本発明の製造方法による中空糸膜の内表面形
態を示す図面代用写真(倍率6000、1000倍)で
あり、球状の粒子が重なって接合し、また一部に球状の
粒子間で筋状に接合して連結した形態を示している。図
2は同じく中空糸膜の割断面形態を示す図面代用写真
(倍率5000倍)であり、複数の粒子同士が面状に接
合して連結している。図3はさらに同じ中空糸膜の外表
面形態を示す図面代用写真(倍率3000倍)である
が、塊状の部分の周りに球状の粒子が接合して形成され
ている。ここで粒子の形状は、球状、或いは楕円状であ
って、実質的には粒子の一部が隣接する粒子と接合して
連結されているものである。このような粒子の平均粒径
は、0.5〜10μmの範囲が好ましく、粒径が10μ
mを超えると形成する空隙が粗くなる。また粒径が0.
5μm未満である場合、粒子間の接合で形成される空隙
(間隔)が狭くなり透水性が低下する。前記平均粒径はよ
り好ましくは0.5〜5μm、更に好ましくは0.5〜
2μmである。このような粒子構造については、中空糸
膜の内表面又は、割断面(作用機構的観点からは、割断
面がより厳密であると推定されるが、内表面でも代用可
能と考えられる)において、好ましくは0.01mm2
当たり3〜3000(より好ましくは300〜300
0、更に好ましくは1000〜3000)個の範囲に粒
子が存在するものであり、粒子の連結によって形成され
る連通する間隙の長さは、好ましくは0.05〜30
(より好ましくは0.1〜5、更に好ましくは0.1〜
1)μmの範囲である。間隙の長さが0.05μm未満
では、十分な透水性を得ることができない。また、30
μmを越す孔隙の長さでは菌体などの阻止率などに不安
がある。このような粒子構造が形成する空隙率は好まし
くは40〜75(より好ましくは45〜70、更に好ま
しくは50〜65)%の範囲である。空隙率が40%未
満である場合、機械的強度は高いが膜構造の緻密化によ
り高い透水性が望めない。また空隙率が75%を超える
と機械的強度の低下傾向を示す。
Further, in the production method of the present invention, after coagulation, the hollow fiber membrane is made to have a thickness of 1.1 to 3 (more preferably 1.1).
It is preferable to perform stretching in the range of up to 2.5 times, more preferably 1.1 to 2 times, because the properties such as water permeability and blocking rate can be easily controlled. If the draw ratio exceeds 3 times, the mechanical strength of the hollow fiber membrane tends to decrease. Also, FIG.
4 to 4 are examples of scanning electron micrographs for explaining the membrane wall structure of the hollow fiber membrane obtained by the present invention in detail.
1 and 4 are drawings-substituting photographs (magnification: 6000, 1000 times) showing the inner surface morphology of the hollow fiber membrane according to the production method of the present invention, in which spherical particles are superposed and joined, and a part between spherical particles is used. Shows a form in which they are joined and connected in a streak shape. FIG. 2 is a drawing-substituting photograph (magnification: 5000 times) showing a fractured cross-sectional shape of the hollow fiber membrane, in which a plurality of particles are joined in a planar shape and connected. FIG. 3 is a drawing-substituting photograph (magnification: 3000 times) showing the outer surface morphology of the same hollow fiber membrane, in which spherical particles are formed around a lump-shaped portion. Here, the shape of the particles is spherical or elliptical, and substantially a part of the particles is joined and connected to the adjacent particles. The average particle size of such particles is preferably in the range of 0.5 to 10 μm, and the particle size is 10 μm.
If it exceeds m, the voids to be formed become rough. The particle size is 0.
When it is less than 5 μm, voids formed by joining between particles
The (interval) becomes narrow and the water permeability decreases. The average particle diameter is more preferably 0.5 to 5 μm, further preferably 0.5 to
2 μm. Regarding such a particle structure, on the inner surface of the hollow fiber membrane or on the fractured surface (from the viewpoint of the mechanism of action, the fractured surface is presumed to be more strict, but it is considered that the inner surface can be substituted). Preferably 0.01 mm 2
3 to 3000 (more preferably 300 to 300)
Particles are present in the range of 0, more preferably 1000 to 3000), and the length of the communicating gap formed by the connection of the particles is preferably 0.05 to 30.
(More preferably 0.1 to 5, and even more preferably 0.1 to
1) It is in the range of μm. If the length of the gap is less than 0.05 μm, sufficient water permeability cannot be obtained. Also, 30
When the pore length exceeds μm, there is concern about the rejection rate of bacterial cells. The porosity formed by such a particle structure is preferably in the range of 40 to 75 (more preferably 45 to 70, further preferably 50 to 65)%. When the porosity is less than 40%, mechanical strength is high, but high water permeability cannot be expected due to the densification of the membrane structure. If the porosity exceeds 75%, the mechanical strength tends to decrease.

【0015】本発明の製造方法により得られた中空糸膜
においては、このような隣接する粒子の少なくとも一部
が筋状、面状、或いは塊状等の形状に接合して連結した
膜壁構造を形成することで、好適には、純水透過量が
1.6(より好適には1.8)m3/(m2・h・100
kPa)以上であり、引張り強度4(より好適には5)
MN/m2以上で伸度が50(より好適には60)%以
上を発現する。この範囲に引張り強度と伸度があれば、
中空糸膜を扱う際のハンドリング性が良好となり、かつ
ろ過時における膜の破断や圧壊が起こりにくくなる。
The hollow fiber membrane obtained by the production method of the present invention has a membrane wall structure in which at least a part of such adjoining particles are joined and connected in a streak-like, plane-like, or block-like shape. When formed, the pure water permeation amount is preferably 1.6 (more preferably 1.8) m 3 / (m 2 · h · 100).
kPa) or more and tensile strength 4 (more preferably 5)
It exhibits an elongation of 50 (more preferably 60)% or more at MN / m 2 or more. If there is tensile strength and elongation in this range,
The handling property of the hollow fiber membrane is improved, and the membrane is less likely to be broken or crushed during filtration.

【0016】なお、本発明の中空糸膜の外径と膜厚は、
膜の強度を損なわない範囲で、中空糸膜内部長手方向の
圧力損失を考慮し、膜モジュールとして透水量が目標値
になるように決めればよい。即ち、外径が、太ければ圧
力損失の点で有利になるが、充填本数が減り、膜面積の
点で不利になる。一方、外径が細い場合は充填本数を増
やせるので膜面積の点で有利になるが、圧力損失の点で
不利になる。また、膜厚は強度を損なわない範囲で薄い
方が好ましい。従って、おおよその目安を示すならば、
中空糸膜の外径は、好ましくは0.3〜3mm、より好
ましくは0.4〜2.5mm、更に好ましくは、0.5
〜2mmである。また、膜厚は、好ましくは外径の0.
08〜0.4倍、より好ましくは0.1〜0.35倍、
更に好ましくは0.12〜0.3倍である。
The outer diameter and thickness of the hollow fiber membrane of the present invention are
As long as the strength of the membrane is not impaired, pressure loss in the longitudinal direction inside the hollow fiber membrane may be taken into consideration so that the membrane module may be determined so that the water permeation amount becomes a target value. That is, if the outer diameter is large, it is advantageous in terms of pressure loss, but the number of filling is reduced, which is disadvantageous in terms of membrane area. On the other hand, when the outer diameter is small, the number of filling tubes can be increased, which is advantageous in terms of the membrane area, but is disadvantageous in terms of pressure loss. Further, the film thickness is preferably as thin as possible without impairing the strength. Therefore, if you give a rough guide,
The outer diameter of the hollow fiber membrane is preferably 0.3 to 3 mm, more preferably 0.4 to 2.5 mm, and further preferably 0.5.
~ 2 mm. The film thickness is preferably 0.
08-0.4 times, more preferably 0.1-0.35 times,
More preferably, it is 0.12-0.3 times.

【0017】又、本発明の中空糸膜は実質上、マクロボ
イドを有しないことが好ましい。ここで、マクロボイド
とは、中空糸膜横断面において、膜実質部分に観察され
る長径が50μm以上の空孔である。実質上有しないと
は、横断面において10個/mm2以下、より好ましく
は5個/mm2以下、であり、全く有しないことが、も
っとも好ましい。
The hollow fiber membrane of the present invention preferably has substantially no macrovoids. Here, the macrovoids are pores having a major axis of 50 μm or more observed in the substantial part of the membrane in the cross section of the hollow fiber membrane. The term “substantially not having” means 10 pieces / mm 2 or less, more preferably 5 pieces / mm 2 or less in a cross section, and it is most preferable not to have it at all.

【0018】さらに上記の製造方法で製造された中空糸
膜を用いた、中空糸膜モジュールも浄水処理、排水処
理、工業用水製造に活用できるので好ましい。
Further, a hollow fiber membrane module using the hollow fiber membrane produced by the above-mentioned production method is also preferable because it can be utilized for water purification treatment, wastewater treatment and industrial water production.

【0019】以下に具体的実施例を挙げて説明する。Specific examples will be described below.

【0020】ここで本発明の中空糸膜の形態を次のよう
に評価した。 (1)粒子の平均粒径は、膜内表面の走査電子顕微鏡写
真から粒子の長径と短径を測定して次式で求めたものを
20個の平均で求めた。 平均粒径=(粒子長径+粒子短径)/2 (2)粒子数は、膜内表面の走査電子顕微鏡写真から
0.01mm2当たりの粒子数を求めた。 (3)膜の間隙長さの範囲の測定は、膜表面或いは断面
の走査顕微鏡写真から任意に倍率及び領域の広さを選
び、任意の長さに等間隔で中空糸膜の長手方向と垂直な
方向に平行な30本の直線を描き、線分が空隙部を横切
る箇所のうち任意に選んだ50カ所の長さを測定し、そ
の最大値(Max)と最小値(Min)を膜の間隙長さの範囲とし
た。 (4)膜の空隙率の測定方法は、膜内表面から粒子また
は粒子構造が形成する空隙の割合を画像解析システムで
画像データとして定量化して求めた。 (5)純水透過量(m3/m2・h・100kPa)は、
中空糸膜2本からなる長さ200mmのミニチュアモジ
ュールを作製し、温度25℃、ろ過差圧16kPaの条
件下に、実質的に微粒子などの固形分を含まない純水の
外圧全ろ過を30分間行い、その透過量(m3)を単位
時間(h)及び有効膜面積(m2)あたりの値に圧力
(100kPa)換算した値とした。 (6)引張り強度・伸度は、引張り試験機(TENSI
LON/RTM−100)(東洋ボールドウィン社製)
を用いて、長さ50mmの試料を引張り速度50mm/
分で試料を代えて30回測定し、その平均を測定値とし
た。
Here, the morphology of the hollow fiber membrane of the present invention was evaluated as follows. (1) The average particle size of the particles was obtained by measuring the major axis and the minor axis of the particles from the scanning electron micrograph of the inner surface of the film and using the following formula to find the average of 20 particles. Average particle size = (particle major axis + particle minor axis) / 2 (2) The number of particles was determined from the number of particles per 0.01 mm 2 from the scanning electron micrograph of the inner surface of the film. (3) The range of the gap length of the membrane is measured by arbitrarily selecting the magnification and the width of the region from the scanning micrograph of the membrane surface or cross section, and perpendicular to the longitudinal direction of the hollow fiber membrane at regular intervals at arbitrary lengths. Draw 30 straight lines parallel to different directions, measure the length of 50 points selected arbitrarily among the points where the line segment crosses the void, and determine the maximum value (Max) and minimum value (Min) of the membrane. It was set to the range of the gap length. (4) The method of measuring the porosity of the film was obtained by quantifying the ratio of the voids formed by the particles or the particle structure from the inner surface of the film as image data using an image analysis system. (5) Pure water permeation rate (m 3 / m 2 · h · 100 kPa)
A miniature module having a length of 200 mm composed of two hollow fiber membranes was produced, and under the conditions of a temperature of 25 ° C. and a filtration pressure difference of 16 kPa, external pressure full filtration of pure water containing substantially no solid matter such as fine particles was performed for 30 minutes. The amount of permeation (m 3 ) was converted into a value per unit time (h) and effective membrane area (m 2 ) and converted into pressure (100 kPa). (6) Tensile strength and elongation are measured by a tensile tester (TENSI
LON / RTM-100) (manufactured by Toyo Baldwin)
A sample with a length of 50 mm and a pulling speed of 50 mm /
The sample was changed for 30 minutes and measurement was performed 30 times, and the average thereof was used as the measurement value.

【0021】[0021]

【実施例】実施例1 分子量36万のビニリデンフルオライドホモポリマー4
0重量部とジメチルスルホキシド65重量部を90℃で
溶解させ、粘度113Pa・sの紡糸溶液を得た。この
紡糸溶液をチューブインオリフィス(オリフィス外径
2.1mm、チューブ外径0.7mm)のオリフィスの
間隙から押し出し、同時にチューブに中空部形成用液体
として20℃の90重量%ジメチルスルホキシド水系液
を注入して中空糸状に、冷却液体である10℃で90重
量%ジメチルスルホキシド水系液を有する冷却浴槽に押
し出して冷却固化させた。引き続き8℃の水洗浴槽と6
0℃の温水浴槽で脱溶媒して中空糸膜を得た。この中空
糸膜は、内径0.89mm、外径1.61mm、透水量
1.8m3/(m2・h・100kPa)、強度6.2M
N/m2、伸度123%であった。
Example 1 Vinylidene fluoride homopolymer 4 having a molecular weight of 360,000
0 parts by weight and 65 parts by weight of dimethyl sulfoxide were dissolved at 90 ° C. to obtain a spinning solution having a viscosity of 113 Pa · s. This spinning solution is extruded through the orifice gap of the tube-in-orifice (orifice outer diameter 2.1 mm, tube outer diameter 0.7 mm), and at the same time, 90% by weight dimethyl sulfoxide aqueous solution at 20 ° C. is injected as a hollow part forming liquid into the tube. Then, it was extruded into a hollow fiber into a cooling bath having a 90% by weight dimethylsulfoxide aqueous solution as a cooling liquid at 10 ° C. to be cooled and solidified. Continue to wash bath at 8 ℃ and 6
The solvent was removed in a warm water bath at 0 ° C to obtain a hollow fiber membrane. This hollow fiber membrane has an inner diameter of 0.89 mm, an outer diameter of 1.61 mm, a water permeability of 1.8 m 3 / (m 2 · h · 100 kPa), and a strength of 6.2 M.
It was N / m 2 and the elongation was 123%.

【0022】実施例2 実施例1の中空糸膜を90℃で1.5倍に延伸して、図
4の内表面を形成する中空糸膜を得た。この中空糸膜
は、内径0.88mm、外径1.52mm、透水量2.
8m3/(m2・h・100kPa)、強度6.7MN/
2、伸度88%であって、平均粒径1.5μm、粒子
数が0.01mm2当たり2240個、連通孔の平均間
隙長さ0.1〜16μm範囲であり、空隙率62%であ
った。
Example 2 The hollow fiber membrane of Example 1 was stretched 1.5 times at 90 ° C. to obtain a hollow fiber membrane forming the inner surface of FIG. This hollow fiber membrane has an inner diameter of 0.88 mm, an outer diameter of 1.52 mm, and a water permeability of 2.
8m 3 / (m 2 · h · 100kPa), strength 6.7MN /
m 2 , elongation 88%, average particle size 1.5 μm, number of particles 2240 per 0.01 mm 2 , average gap length of communication holes in the range of 0.1 to 16 μm, and porosity 62%. there were.

【0023】実施例3 分子量36万のビニリデンフルオライドホモポリマー2
5重量部とジメチルスルホキシド75重量部を80℃で
溶解させ、粘度38Pa・sの紡糸溶液を得た。この紡
糸溶液をチューブインオリフィス(オリフィス外径2.
1mm、チューブ外径0.7mm)のオリフィスの間隙
から押し出し、同時にチューブに中空部形成用液体とし
て7℃の88重量%ジメチルスルホキシド水系液を注入
して中空糸状に、冷却液体である10℃で88重量%ジ
メチルスルホキシド水系液を有する冷却浴槽に押し出し
て冷却固化させた。引き続き10℃の水洗浴槽で脱溶媒
した後、80℃で1.8倍に延伸して、中空糸膜を得
た。この中空糸膜は、内径0.87mm、外径1.62
mm、透水量6.2m3/(m2・h・100kPa)、
強度5.2MN/m2、伸度68%であって、平均粒径
1.5μm、粒子数が0.01mm2当たり1890
個、連通孔の間隙長さ0.1〜26μm範囲であり、空
隙率71%であった。 比較例1 紡糸溶液を分子量36万のビニリデンフルオライドホモ
ポリマー48重量部とジメチルスルホキシド52重量部
を120℃で溶解させ粘度326Pa・sの紡糸溶液を
得た。この紡糸溶液をチューブインオリフィス(オリフ
ィス外径2.9mm、チューブ外径0.7mm)のオリ
フィスの間隙から押し出し、同時にチューブに中空部形
成用液体として25℃の85重量%ジメチルスルホキシ
ド水系液を注入して中空糸状に、冷却液体である20℃
で85重量%ジメチルスルホキシド水系液を有する冷却
浴槽に押し出して冷却固化させた。その後70℃の温水
で脱溶媒したて中空糸膜を得た。この中空糸膜は、内径
0.87mm、外径1.88mmで、強度9.2MN/
2、伸度78%であったが透水量0.01m3/(m2
・h・100kPa)と低い値を示した。 比較例2 比較例1に示した中空糸膜を90℃で1.5倍に延伸し
たが、透水量0.01m 3/(m2・h・100kPa)
と変化がなかった。 比較例3 紡糸溶液を分子量26万のビニリデンフルオライドホモ
ポリマー12重量部とジメチルスルホキシド88重量部
を70℃で溶解させ、粘度6Pa・sの溶液を用いた以
外は、実施例3と同じ紡糸条件で中空糸状に賦形して冷
却固化を試みたが、冷却浴表面に溶液が凝集して糸状形
成ができなかった。
Example 3 Vinylidene fluoride homopolymer with a molecular weight of 360,000 2
5 parts by weight and 75 parts by weight of dimethyl sulfoxide at 80 ° C
It was dissolved to obtain a spinning solution having a viscosity of 38 Pa · s. This spinning
The thread solution was added to the tube-in orifice (orifice outer diameter 2.
1 mm, tube outer diameter 0.7 mm) orifice gap
Extruded from the tube and at the same time used as a hollow part forming liquid in the tube.
Inject 88% by weight dimethylsulfoxide aqueous solution at 7 ℃
Then, in the form of a hollow fiber, 88% by weight of dilute at 10 ° C. which is a cooling liquid.
Extrusion into a cooling bath containing methyl sulfoxide aqueous solution
It was cooled and solidified. Continue to desolvate in a water bath at 10 ° C
And then stretched 1.8 times at 80 ° C. to obtain a hollow fiber membrane.
It was This hollow fiber membrane has an inner diameter of 0.87 mm and an outer diameter of 1.62.
mm, water permeability 6.2 m3/ (M2・ H ・ 100kPa),
Strength 5.2MN / m2, Elongation 68%, average particle size
1.5 μm, particle number 0.01 mm2Per 1890
Individual, the gap length of the communication hole is in the range of 0.1 to 26 μm,
The porosity was 71%. Comparative Example 1 The spinning solution was made into vinylidene fluoride homo with a molecular weight of 360,000.
48 parts by weight of polymer and 52 parts by weight of dimethyl sulfoxide
Is melted at 120 ° C. to prepare a spinning solution having a viscosity of 326 Pa · s.
Obtained. This spinning solution was added to the tube-in orifice (orif
Of 2.9 mm outer diameter and 0.7 mm tube outer diameter)
Extruded from the gap of the fiss, and at the same time, the hollow part is formed on the tube.
85% by weight dimethyl sulfoxy at 25 ° C as a working liquid
Injecting a water-based liquid into a hollow fiber, a cooling liquid of 20 ° C
With 85% by weight dimethylsulfoxide aqueous solution
It was extruded into a bath and cooled and solidified. Then warm water at 70 ℃
The solvent was removed in to obtain a hollow fiber membrane. This hollow fiber membrane has an inner diameter
0.87mm, outer diameter 1.88mm, strength 9.2MN /
m2, Elongation was 78%, but water permeability was 0.01 m3/ (M2
・ H · 100 kPa) was a low value. Comparative example 2 The hollow fiber membrane shown in Comparative Example 1 was stretched 1.5 times at 90 ° C.
Water permeability 0.01m 3/ (M2・ H ・ 100kPa)
And there was no change. Comparative Example 3 Spin the spinning solution into vinylidene fluoride homo with a molecular weight of 260,000.
12 parts by weight of polymer and 88 parts by weight of dimethyl sulfoxide
Was dissolved at 70 ° C. and a solution having a viscosity of 6 Pa · s was used.
The outside is shaped into a hollow fiber under the same spinning conditions as in Example 3 and cooled.
Attempted solidification, but the solution aggregated on the surface of the cooling bath and formed into a filamentous shape.
I couldn't succeed.

【0024】[0024]

【発明の効果】本発明の中空糸膜は、透水性、機械的特
性、及び耐薬品性に優れた精密ろ過膜、限外ろ過膜、各
種フィルターなどの使用分野に好適に使用される。
INDUSTRIAL APPLICABILITY The hollow fiber membrane of the present invention is suitably used in fields of use such as microfiltration membranes, ultrafiltration membranes and various filters having excellent water permeability, mechanical properties and chemical resistance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施態様に係わる中空糸膜の内表面に
おける粒子形状を示す走査型電子顕微鏡写真である。
FIG. 1 is a scanning electron micrograph showing the particle shape on the inner surface of a hollow fiber membrane according to an embodiment of the present invention.

【図2】本発明の実施態様に係わる中空糸膜の割断面に
おける粒子形状を示す走査型電子顕微鏡写真である。
FIG. 2 is a scanning electron micrograph showing a particle shape on a split cross section of a hollow fiber membrane according to an embodiment of the present invention.

【図3】本発明の実施態様に係わる中空糸膜の外表面面
における粒子形状を示す走査型電子顕微鏡写真である。
FIG. 3 is a scanning electron micrograph showing the particle shape on the outer surface of the hollow fiber membrane according to the embodiment of the present invention.

【図4】本発明の実施態様に係わる中空糸膜の内表面に
おける粒子形状を示す倍率を変えた走査型電子顕微鏡写
真である。
FIG. 4 is a scanning electron micrograph showing the particle shape on the inner surface of the hollow fiber membrane according to the embodiment of the present invention, the magnification being changed.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) D01F 1/08 D01F 1/08 (72)発明者 辺見 昌弘 滋賀県大津市園山1丁目1番1号東レ株式 会社滋賀事業場内 Fターム(参考) 4D006 GA07 HA01 MA01 MA33 MB02 MB16 MC29X NA04 NA05 NA10 NA18 NA29 NA34 NA52 PA01 PB04 PB05 4L035 BB03 BB15 BB72 DD03 FF01 MB15 Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) D01F 1/08 D01F 1/08 (72) Inventor Masahiro Hemi 1-1-1, Sonoyama, Otsu City, Shiga Toray Co., Ltd. Shiga F-term in business site (reference) 4D006 GA07 HA01 MA01 MA33 MB02 MB16 MC29X NA04 NA05 NA10 NA18 NA29 NA34 NA52 PA01 PB04 PB05 4L035 BB03 BB15 BB72 DD03 FF01 MB15

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】少なくともポリビニリデンフルオライド系
樹脂を含む粘度10〜200Pa・sの範囲の溶液を、
冷却浴へ吐出して凝固させることを特徴とする中空糸膜
の製造方法。
1. A solution containing at least a polyvinylidene fluoride resin and having a viscosity in the range of 10 to 200 Pa · s,
A method for producing a hollow fiber membrane, which comprises discharging into a cooling bath to solidify.
【請求項2】中空糸膜の中空部を形成する中空部形成用
液体として、30℃以下の液体を用いる請求項1に記載
の中空糸膜の製造方法。
2. The method for producing a hollow fiber membrane according to claim 1, wherein a liquid at 30 ° C. or lower is used as the hollow portion forming liquid for forming the hollow portion of the hollow fiber membrane.
【請求項3】冷却浴は、30℃以下の液体を有するもの
である請求項1または2に記載の中空糸膜の製造方法。
3. The method for producing a hollow fiber membrane according to claim 1, wherein the cooling bath contains a liquid at 30 ° C. or lower.
【請求項4】液体が75〜95重量%の範囲の溶媒を含
む溶媒と非溶媒との混合液である請求項2または3に記
載の中空糸膜の製造方法。
4. The method for producing a hollow fiber membrane according to claim 2, wherein the liquid is a mixed solution of a solvent containing a solvent in the range of 75 to 95% by weight and a non-solvent.
【請求項5】ポリビニリデンフロオライド系樹脂は85
重量%以上のビニリデンフロオライドホモポリマーを有
するものである請求項1〜4のいずれかに記載の中空糸
膜の製造方法。
5. A polyvinylidene fluoride resin is 85
The method for producing a hollow fiber membrane according to any one of claims 1 to 4, which comprises a vinylidene fluoride homopolymer in an amount of not less than 5% by weight.
【請求項6】溶液の溶媒がジメチルスルホキシドである
請求項1〜5のいずれかに記載の中空糸膜の製造方法。
6. The method for producing a hollow fiber membrane according to claim 1, wherein the solvent of the solution is dimethyl sulfoxide.
【請求項7】溶媒がジメチルスルホキシドであり、非溶
媒が水である請求項4に記載の中空糸膜の製造方法。
7. The method for producing a hollow fiber membrane according to claim 4, wherein the solvent is dimethyl sulfoxide and the non-solvent is water.
【請求項8】純水透過量が1.6m3/(m2・h・10
0kPa)以上であって、引張り強度4MN/m2
上、かつ伸度が50%以上である請求項1〜7のいずれ
かに記載の製造方法で製造された中空糸膜。
8. A pure water permeation amount of 1.6 m 3 / (m 2 · h · 10)
The hollow fiber membrane produced by the production method according to claim 1, having a tensile strength of 4 MN / m 2 or more and an elongation of 50% or more.
【請求項9】請求項8に記載の中空糸膜を有してなるも
のである浄水用中空糸膜エレメント。
9. A hollow fiber membrane element for water purification, which comprises the hollow fiber membrane according to claim 8.
JP2001341759A 2001-11-07 2001-11-07 Method for producing hollow fiber membrane and hollow fiber membrane Expired - Fee Related JP3760838B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001341759A JP3760838B2 (en) 2001-11-07 2001-11-07 Method for producing hollow fiber membrane and hollow fiber membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001341759A JP3760838B2 (en) 2001-11-07 2001-11-07 Method for producing hollow fiber membrane and hollow fiber membrane

Publications (2)

Publication Number Publication Date
JP2003147629A true JP2003147629A (en) 2003-05-21
JP3760838B2 JP3760838B2 (en) 2006-03-29

Family

ID=19155732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001341759A Expired - Fee Related JP3760838B2 (en) 2001-11-07 2001-11-07 Method for producing hollow fiber membrane and hollow fiber membrane

Country Status (1)

Country Link
JP (1) JP3760838B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100438959C (en) * 2003-10-03 2008-12-03 株式会社吴羽 1,1-Difluoroethylene resin porous hollow fiber and method for producing the same
WO2011004786A1 (en) 2009-07-06 2011-01-13 積水化学工業株式会社 Polymer membrane for water treatment
WO2011108579A1 (en) 2010-03-04 2011-09-09 積水化学工業株式会社 Macromolecular water-treatment membrane, manufacturing method therefor, and water treatment method
US9193815B2 (en) 2010-03-04 2015-11-24 Sekisui Chemical Co., Ltd. Polymer membrane for water treatment and method for manufacture of same
KR20190076393A (en) * 2017-12-22 2019-07-02 울산과학기술원 Method for manufacturing polyvinylidene fluoride nano fiber including graphene oxide and method for manufacturing smart textile using the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101025754B1 (en) * 2008-12-30 2011-04-04 허준혁 Hollow fiber membrane without macropore and manufacturing method
CN106232212B (en) 2014-04-25 2018-09-04 东丽株式会社 Method for operating purification thin-film module

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100438959C (en) * 2003-10-03 2008-12-03 株式会社吴羽 1,1-Difluoroethylene resin porous hollow fiber and method for producing the same
WO2011004786A1 (en) 2009-07-06 2011-01-13 積水化学工業株式会社 Polymer membrane for water treatment
US8181795B2 (en) 2009-07-06 2012-05-22 Sekisui Chemical Co., Ltd. Polymer membrane for water treatment
WO2011108579A1 (en) 2010-03-04 2011-09-09 積水化学工業株式会社 Macromolecular water-treatment membrane, manufacturing method therefor, and water treatment method
US9193815B2 (en) 2010-03-04 2015-11-24 Sekisui Chemical Co., Ltd. Polymer membrane for water treatment and method for manufacture of same
US9855531B2 (en) 2010-03-04 2018-01-02 Sekisui Chemical Co., Ltd. Polymer membrane for water treatment and method for manufacture of same, and water treatment method
KR20190076393A (en) * 2017-12-22 2019-07-02 울산과학기술원 Method for manufacturing polyvinylidene fluoride nano fiber including graphene oxide and method for manufacturing smart textile using the same
KR102083007B1 (en) * 2017-12-22 2020-02-28 울산과학기술원 Method for manufacturing polyvinylidene fluoride nano fiber including graphene oxide and method for manufacturing smart textile using the same

Also Published As

Publication number Publication date
JP3760838B2 (en) 2006-03-29

Similar Documents

Publication Publication Date Title
JP3232117B2 (en) Polysulfone porous hollow fiber
CN100443148C (en) Hollow fiber membrane and its manufacturing method
JP5305296B2 (en) Polyamide hollow fiber membrane and method for producing the same
JP4599787B2 (en) Method for producing hollow fiber membrane and hollow fiber membrane
JP2013075294A (en) Highly durable pvdf porous membrane, method for manufacturing the same, and washing method and filtering method using the membrane
JP4835221B2 (en) Hollow fiber membrane and method for producing the same
WO2010029908A1 (en) Hollow-fiber membrane and process for production of hollow-fiber membrane
EP3147024A1 (en) Hollow-fibre polymer membrane
JPWO2008117740A1 (en) Vinylidene fluoride resin hollow fiber porous membrane and method for producing the same
JP3724412B2 (en) Hollow fiber membrane manufacturing method and hollow fiber membrane module
JP2003147629A (en) Method for producing hollow fiber membrane and hollow fiber membrane
KR20060089226A (en) Vinylidene fluoride resin porous hollow fiber and manufacturing method thereof
JP4269576B2 (en) Method for producing microporous membrane
US20010047959A1 (en) Polyacrylonitrile-based filtration membrane in a hollow fiber state
JP2006281202A (en) Hollow fiber membrane, dipped type membrane module using it, separating apparatus, and production method of hollow fiber membrane
JP3317975B2 (en) Polyacrylonitrile hollow fiber filtration membrane
JP6097818B2 (en) Porous hollow fiber membrane and method for producing porous hollow fiber membrane
JP7095072B2 (en) Hollow fiber membrane and method for manufacturing hollow fiber membrane
KR102524285B1 (en) porous hollow fiber membrane
US20100258504A1 (en) Fabrication of asymmetric polysulfone membrane for drinking water purification
JP2006000810A (en) Method for manufacturing hollow fiber membrane, hollow fiber membrane and hollow fiber membrane module prepared by using the same
JP3473202B2 (en) Manufacturing method of hollow fiber membrane
JPH11179174A (en) Hollow fiber membrane for separation and manufacture thereof
JP3294783B2 (en) Stock solution
KR20070031330A (en) Polyvinylidene fluoride resin hollow fiber porous filtration membrane and manufacturing method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060102

R151 Written notification of patent or utility model registration

Ref document number: 3760838

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100120

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100120

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120120

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140120

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees