[go: up one dir, main page]

JP2003146615A - Method for manufacturing hydrogen - Google Patents

Method for manufacturing hydrogen

Info

Publication number
JP2003146615A
JP2003146615A JP2001351928A JP2001351928A JP2003146615A JP 2003146615 A JP2003146615 A JP 2003146615A JP 2001351928 A JP2001351928 A JP 2001351928A JP 2001351928 A JP2001351928 A JP 2001351928A JP 2003146615 A JP2003146615 A JP 2003146615A
Authority
JP
Japan
Prior art keywords
catalyst
hydrocarbon
alumina
air
producing hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001351928A
Other languages
Japanese (ja)
Inventor
Shigeru Nojima
野島  繁
Satonobu Yasutake
聡信 安武
Satoru Watanabe
渡邊  悟
Masanao Yonemura
将直 米村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2001351928A priority Critical patent/JP2003146615A/en
Publication of JP2003146615A publication Critical patent/JP2003146615A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress ammonia generation as a by-product of manufacture of hydrogen from hydrocarbon. SOLUTION: The method for manufacturing hydrogen is characterized by suppressing ammonia generation as the by-product by using a catalyst carrying platinum in the case of manufacturing hydrogen from hydrocarbon, steam and air through a steam reforming reaction and a partial oxidation reaction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、都市ガス等の炭化
水素から水素を製造する水素製造方法に関する。
TECHNICAL FIELD The present invention relates to a hydrogen production method for producing hydrogen from hydrocarbons such as city gas.

【0002】[0002]

【従来の技術】従来、都市ガス等の炭化水素から水素を
製造する場合、下記式(1)のような水蒸気改質反応
(吸熱反応)のみで行っている。
2. Description of the Related Art Conventionally, when hydrogen is produced from hydrocarbons such as city gas, it is carried out only by a steam reforming reaction (endothermic reaction) as represented by the following formula (1).

【0003】 CH+HO→CO+3H …(1) また、上記式(1)の他、下記式(2)のような部分酸化
反応(発熱反応)を併発させることにより、装置をコン
パクト化できる。 CH+1/2O→CO+2H …(2) しかし、この場合、式(2)において、空気中の窒素と
水素とが反応して被毒物質であるアンモニアが副生する
問題がある(下記式(3)参照)。
CH 4 + H 2 O → CO + 3H 2 (1) Further, in addition to the above formula (1), a partial oxidation reaction (exothermic reaction) such as the following formula (2) is also generated to make the apparatus compact. it can. CH 4 + 1 / 2O 2 → CO + 2H 2 (2) However, in this case, in the formula (2), there is a problem that nitrogen and hydrogen in the air react with each other to produce ammonia as a poisoning substance (see below). See formula (3)).

【0004】 N+3H2→2NH …(3)N 2 + 3H 2 → 2NH 3 (3)

【0005】[0005]

【発明が解決しようとする課題】本発明は上記の課題を
解決するためになされたもので、炭化水素と水蒸気と空
気から水蒸気改質反応と部分酸化反応で水素を製造させ
る際、担持白金触媒を用いることにより、アンモニアの
副生を抑制しえる水素製造方法を提供することを目的と
する。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and is a supported platinum catalyst when hydrogen is produced from hydrocarbons, steam and air by steam reforming reaction and partial oxidation reaction. An object of the present invention is to provide a hydrogen production method capable of suppressing by-product of ammonia by using.

【0006】[0006]

【課題を解決するための手段】本発明は、炭化水素と水
蒸気と空気から水蒸気改質反応と部分酸化反応で水素を
製造させる際、担持白金触媒を用いることを特徴とする
水素製造方法である。
The present invention is a method for producing hydrogen, which comprises using a supported platinum catalyst when producing hydrogen from a hydrocarbon, steam and air by a steam reforming reaction and a partial oxidation reaction. .

【0007】[0007]

【発明の実施の形態】以下、本発明の水素製造方法につ
いて更に詳しく説明する。本発明において、炭化水素と
水蒸気のモル比はHO/炭化水素(Cl換算)=0.
1〜10、炭化水素と空気のモル比は空気/炭化水素
(Cl換算)=0.1〜5であることが好ましい。ここ
で、炭化水素と水蒸気のモル比が0.1未満ではカーボ
ン析出による変化が顕著であり、そのモル比が10を超
えると余剰水蒸気の供給によるエネルギー効率低下が生
じる。また、炭化水素と空気のモル比が0.1未満では
上記式(2)の反応はなく上記式(1)の反応のみ起こ
り、そのモル比が5を超えると酸化雰囲気になって触媒
が劣化しやすいからである。
BEST MODE FOR CARRYING OUT THE INVENTION The hydrogen production method of the present invention will be described in more detail below. In the present invention, the molar ratio of hydrocarbon to water vapor is H 2 O / hydrocarbon (Cl conversion) = 0.
1 to 10, and the molar ratio of hydrocarbon to air is preferably air / hydrocarbon (converted to Cl) = 0.1 to 5. Here, when the molar ratio of hydrocarbon to steam is less than 0.1, the change due to carbon precipitation is remarkable, and when the molar ratio exceeds 10, the energy efficiency is lowered due to the supply of excess steam. Further, when the molar ratio of hydrocarbon to air is less than 0.1, the reaction of the above formula (2) does not occur and only the reaction of the above formula (1) occurs, and when the molar ratio exceeds 5, an oxidizing atmosphere occurs and the catalyst deteriorates. It is easy to do.

【0008】本発明において、担持白金触媒とは担体に
白金を担持させたものであり、前記担体としては、αア
ルミナ、γアルミナ、アナターゼ型チタニア、シリカ、
ジルコニア、ゼオライトの各酸化物の少なくとも1種、
又はシリカ・アルミナ、シリカ・チタニア、チタニア・
アルミナ、アルミナ・ジルコニア等の複合酸化物が挙げ
られる。前記担体に白金を担持させるのは、水蒸気改質
反応及び部分酸化反応は促進してくれるが、Nの吸着
力は少ないので、NHの副生が少ないためである。担
持白金触媒の担持方法としては、含浸法あるいはイオン
交換法が挙げられる。
In the present invention, the supported platinum catalyst is a carrier in which platinum is supported, and the carrier includes α-alumina, γ-alumina, anatase-type titania, silica,
Zirconia, at least one of zeolite oxides,
Or silica / alumina, silica / titania, titania /
Examples thereof include composite oxides such as alumina and alumina-zirconia. The reason why platinum is supported on the carrier is that the steam reforming reaction and the partial oxidation reaction are promoted, but the adsorption power of N 2 is small, so that the by-product of NH 3 is small. Examples of the method for supporting the supported platinum catalyst include an impregnation method and an ion exchange method.

【0009】ここで、含浸法とは、白金塩を水等の溶媒
に溶解させ、この白金水溶液を担体に浸漬させ、蒸発、
乾固、焼成の処理により白金を担体に担持する方法であ
る。また、イオン交換法とは例えば陽イオン交換サイト
を有する担体(ゼオライト等)を白金がジントロジアミ
ン白金のような陽イオン交換が可能な水溶液に添加し
て、担体に白金イオンを担持する方法である。
Here, the impregnation method means that a platinum salt is dissolved in a solvent such as water, the platinum aqueous solution is immersed in a carrier, and evaporation,
This is a method of supporting platinum on a carrier by a treatment of dryness and baking. The ion exchange method is a method in which a carrier having a cation exchange site (such as zeolite) is added to a cation-exchangeable aqueous solution of platinum such as gintrodiamine platinum, and platinum ions are loaded on the carrier. is there.

【0010】前記担持白金触媒は、担体に担持させる金
属触媒として白金の他に、触媒の耐久性を高めるため助
触媒を担持させることが好ましい。ここで、助触媒とし
ては、例えばタングステン(W)、モリブデン(M
o)、ボロン(B)、マグネシウム(Mg)、カルシウ
ム(Ca)、ランタン(La)、カリウム(K)のいず
れかが挙げられる。
The supported platinum catalyst preferably has a promoter as a metal catalyst to be supported on the carrier in addition to platinum in order to enhance durability of the catalyst. Here, as the co-catalyst, for example, tungsten (W), molybdenum (M
o), boron (B), magnesium (Mg), calcium (Ca), lanthanum (La), potassium (K).

【0011】本発明において、担持白金触媒からなる触
媒層には、炭化水素と水蒸気と空気を供給して水蒸気改
質反応/部分酸化反応の併発反応であるオートサーマル
反応を行わせて水素を製造させるが、前記触媒層への空
気は多段階で供給することが好ましい。本発明のように
担持白金触媒を用いることによりアンモニアの副生が無
くなる理由については未だ不明であるが、本触媒は炭化
水素、酸素、水蒸気を選択的に吸着できるが、窒素の吸
着力が乏しいためと考えられる。
In the present invention, hydrogen is produced by supplying an autothermal reaction, which is a combined reaction of steam reforming reaction / partial oxidation reaction, by supplying hydrocarbon, steam and air to the catalyst layer comprising a supported platinum catalyst. However, it is preferable to supply air to the catalyst layer in multiple stages. Although the reason why the by-product of ammonia is eliminated by using the supported platinum catalyst as in the present invention is still unknown, the present catalyst can selectively adsorb hydrocarbons, oxygen, and water vapor, but has poor nitrogen adsorption power. It is thought to be because.

【0012】本触媒を用いた炭化水素改質装置は、コン
パクトでかつ短時間起動が可能となり、車載用及び分散
電源用PEFCシステム用の改質として有効である。具
体的には、本触媒を用いた水蒸気改質/部分酸化反応か
ら製造した水素含有ガス(水素が主で、その他10pp
m程度のCOやN,HO,COを含む)とをPE
FC燃料電池セルに供給すれば、アンモニアの副生がな
いため、CO除去後の改質ガスを直接PEFCセルに供
給することができる。
The hydrocarbon reformer using this catalyst is compact and can be started for a short time, and is effective as a reformer for vehicle-mounted and distributed power PEFC systems. Specifically, a hydrogen-containing gas produced from steam reforming / partial oxidation reaction using this catalyst (mainly hydrogen, other 10 pp
m including CO, N 2 , H 2 O, and CO 2 )
If it is supplied to the FC fuel cell, the reformed gas after CO removal can be directly supplied to the PEFC cell because there is no by-product of ammonia.

【0013】[0013]

【実施例】以下、本発明の実施例について説明する。 (実施例1) 触媒1の調製:まず、担体として比表面積150m
gのγ型アルミナ粉末を蒸発皿に入れ、塩化白金水溶液
をαアルミナに滴下し、100℃のホットプレート上に
て滴下した水分を蒸発させた(含浸法にてPtを担
持)。次に、粉末を攪拌させながら均一に白金が担持さ
れるようにし、含浸法にて担体に対して1重量%の白金
(Pt)を担持した。つづいて、本γアルミナ担体Pt
触媒粉末を120℃で12時間乾燥させた後、550℃
で5時間空気雰囲気下にて焼成を行った。更に、本γア
ルミナ担持Pt触媒粉末にアルミナゾルバインダー2%
を添加して、3mmφの触媒を成型した後、500℃、
5時間焼成した。本粒状触媒を触媒1とする。
EXAMPLES Examples of the present invention will be described below. (Example 1) Preparation of catalyst 1: First, as a carrier, a specific surface area of 150 m 2 /
g of γ-type alumina powder was placed in an evaporation dish, a platinum chloride aqueous solution was dropped on α-alumina, and the dropped water was evaporated on a hot plate at 100 ° C. (Pt was carried by an impregnation method). Next, while stirring the powder, platinum was uniformly supported, and 1% by weight of platinum (Pt) was supported on the carrier by an impregnation method. Next, this γ-alumina carrier Pt
After drying the catalyst powder at 120 ° C for 12 hours, 550 ° C
Calcination was performed for 5 hours in an air atmosphere. Furthermore, 2% of alumina sol binder was added to the present Pt catalyst powder supporting γ-alumina.
Was added to mold a 3 mmφ catalyst, and then 500 ° C.,
It was baked for 5 hours. This granular catalyst is referred to as catalyst 1.

【0014】触媒2〜6の調製:上記触媒1の調製法に
おいて、γ−アルミナの代わりに、比表面積10m
gのα−アルミナ、アナターゼ型チタニア、シリカ、ジ
ルコニア、ペンタシル型ゼオライト(SiO/Al
比=200)を用いて、触媒1と同様な方法にて白
金を担持して粉末触媒2〜6を調製した。次に、触媒1
と同様な方法にて3mmφの粒状触媒を調製した後、更
に500℃、5時間焼成を行って触媒2〜6を得た。
Preparation of catalysts 2 to 6: In the preparation method of the above catalyst 1, a specific surface area of 10 m 2 / instead of γ-alumina.
g of α-alumina, anatase type titania, silica, zirconia, pentasil type zeolite (SiO 2 / Al 2
Powder catalysts 2 to 6 were prepared by carrying platinum in the same manner as the catalyst 1 using O 3 ratio = 200). Next, catalyst 1
A 3 mmφ granular catalyst was prepared by the same method as described above, and then calcined at 500 ° C. for 5 hours to obtain catalysts 2 to 6.

【0015】触媒7〜11の調製:上記触媒1の調製法
において、γ−アルミナの代わりに、TiO・SiO
複合酸化物(TiO:SiO=80:20、比表
面積150m/g)、TiO・Al2O複合酸化
物(TiO:Al=50:50、比表面積16
0m/g)、Al・ZrO複合酸化物(Al
:ZrO=90:10、比表面積200m
g)、TiO・ZrO複合酸化物(TiO :Zr
=50:50、比表面積100m/g)、SiO
・Al複合酸化物(SiO:Al=9
0:10、比表面積150m/g)を調製した。
Preparation of catalysts 7-11: Method for preparing catalyst 1 above
In place of γ-alumina,Two・ SiO
TwoComplex oxide (TiOTwo: SiOTwo= 80: 20, ratio table
Area 150mTwo/ G), TiOTwo・ Al2OThreeComplex oxidation
Thing (TiOTwo: AlTwoOThree= 50: 50, specific surface area 16
0mTwo/ G), AlTwoOThree・ ZrOTwoComplex oxide (Al
TwoOThree: ZrOTwo= 90:10, specific surface area 200 mTwo/
g), TiOTwo・ ZrOTwoComplex oxide (TiO Two: Zr
OTwo= 50: 50, specific surface area 100 mTwo/ G), SiO
Two・ AlTwoOThreeComplex oxide (SiOTwo: AlTwoOThree= 9
0:10, specific surface area 150mTwo/ G) was prepared.

【0016】調製方法は、まず各々金属硝酸塩又は塩化
物水溶液に対してアンモニアを滴下してpH=7付近に
て共沈法により、複合水酸化物を得た。次に、乾燥した
後焼成を600℃、5時間行った。つづいて、触媒1と
同様な方法にて白金を担持して粉末触媒7〜11を調製
した。更に、触媒1と同様な方法にて3mmφの粒状触
媒を調製し、触媒7〜11を得た。
The preparation method was as follows. First, ammonia was added dropwise to the aqueous metal nitrate or chloride solution, and a composite hydroxide was obtained by a coprecipitation method at about pH = 7. Next, after drying, baking was performed at 600 ° C. for 5 hours. Then, powder catalysts 7 to 11 were prepared by carrying platinum in the same manner as the catalyst 1. Further, a granular catalyst having a diameter of 3 mm was prepared in the same manner as the catalyst 1 to obtain catalysts 7 to 11.

【0017】触媒12〜17の調製:上記触媒1の調製
法において、γアルミナ担持白金粉末触媒を助触媒とし
てW、Mo、B、Ca、Mg、Kを担持するため、各ア
ンモニウム塩又は硝酸塩水溶液に浸漬して、各々金属で
0.5%担持させ、乾燥後600℃、5時間焼成を行っ
た。更に、触媒1と同様な方法にて3mmφの粒状触媒
を調製し、触媒12〜17を得た。
Preparation of catalysts 12 to 17: In the preparation method of the above catalyst 1, in order to carry W, Mo, B, Ca, Mg, and K using the γ-alumina-supported platinum powder catalyst as a co-catalyst, an aqueous ammonium salt or nitrate solution is prepared. And 0.5% of each was supported by a metal, dried and baked at 600 ° C. for 5 hours. Further, a granular catalyst having a diameter of 3 mm was prepared in the same manner as the catalyst 1 to obtain catalysts 12 to 17.

【0018】触媒18の調製:上記触媒1の調製法にお
いて、γアルミナに担持する白金の担持法としてイオン
交換法を用いた。まず、白金原料としてジニトロアミン
水溶液(0.1M溶液)100ccを用いて、γアルミ
ナを10g添加し、40℃で3時間攪拌し、陽イオン交
換を行った。次に、ろ過後イオン交換水で水洗し、触媒
1と同一方法にて乾燥焼成し、更に3mmφに調整後、
触媒18を得た。なお、本触媒18の白金担持量は1.
2重量%であった。
Preparation of catalyst 18: In the preparation method of the above catalyst 1, an ion exchange method was used as a method for supporting platinum supported on γ-alumina. First, using 100 cc of dinitroamine aqueous solution (0.1 M solution) as a platinum raw material, 10 g of γ-alumina was added and stirred at 40 ° C. for 3 hours to perform cation exchange. Next, after filtration, washing with ion-exchanged water, drying and firing in the same manner as the catalyst 1, and further adjusting to 3 mmφ,
A catalyst 18 was obtained. The amount of platinum supported on the catalyst 18 was 1.
It was 2% by weight.

【0019】触媒19,20の調製:上記触媒1の調製
法において、γアルミナに担持する白金として0.3
%、2%を担持した触媒を調製した。触媒と同様な方法
で粒状触媒を調製し、触媒19,20を得た。
Preparation of catalysts 19 and 20: In the preparation method of catalyst 1 above, 0.3 as platinum supported on γ-alumina was used.
%, 2% supported catalyst was prepared. Granular catalysts were prepared in the same manner as the catalysts to obtain catalysts 19 and 20.

【0020】比較触媒:上記触媒1の調製法において、
αアルミナに担持する触媒として、塩化白金酸の代わり
に、塩化ルテニウム、塩化ニッケルの各水溶液を各々含
浸して粉末触媒化し、各々金属でRu:1%、Ni:1
3%を担持させた。更に、触媒1と同様な方法で3mm
φの粒状触媒を調製し、比較触媒1,2を得た。
Comparative catalyst: In the method for preparing Catalyst 1 above,
As a catalyst supported on α-alumina, instead of chloroplatinic acid, each aqueous solution of ruthenium chloride and nickel chloride is impregnated to form a powder catalyst, and each metal is Ru: 1%, Ni: 1
Supported 3%. Further, in the same manner as the catalyst 1, 3 mm
Comparative catalysts 1 and 2 were obtained by preparing a granular catalyst of φ.

【0021】(実施例2) オートサーマル反応条件1:上記触媒1〜17、比較触
媒1,2を用いて、以下の条件で改質試験を行った、原
料は都市ガス13A(CH:88%、C:6
%、C:4%、C10:2%)と水蒸気、空
気を(水蒸気/都市ガス(Clベース)=2.5(モル
比)、空気/都市ガス(Clベース)=2.5(モル
比))の条件で混合させ、20cc充填した触媒層(3
mmφペレット充填、円筒形:径26mmφ、長さ25
mm)を触媒層平均温度740℃に保持し、上記原料を
GHSV1000h−1(流量200L/h)で供給し
た。反応管出口ガス組成の炭化水素はガスクロマトグラ
ムで分析した。炭化水素転化率(η)は、η=(1−出
口炭化水素/入口炭化水素(Clベース)×100にて
求めることができる。また、副生するNH量もイオン
クロマトグラム法にて求めた。上記触媒の活性評価試験
結果は、下記表1のとおりである。
[0021] (Example 2) autothermal reaction conditions 1: the catalyst 1 to 17, Comparative Catalyst 1 was used to reforming test was conducted under the following conditions, the raw material is city gas 13A (CH 4: 88 %, C 2 H 6 : 6
%, C 3 H 8 : 4%, C 4 H 10 : 2%) and steam and air (steam / city gas (Cl base) = 2.5 (molar ratio), air / city gas (Cl base) = 2.5 (molar ratio)) and 20 cc filled catalyst layer (3
mmφ pellet filling, cylindrical type: diameter 26 mmφ, length 25
mm) was maintained at a catalyst layer average temperature of 740 ° C., and the above raw materials were supplied at GHSV 1000 h −1 (flow rate 200 L / h). Hydrocarbons having a gas composition at the outlet of the reaction tube were analyzed by a gas chromatogram. The hydrocarbon conversion rate (η) can be obtained by η = (1-outlet hydrocarbon / inlet hydrocarbon (Cl base) × 100. Also, the amount of NH 3 produced as a by-product is obtained by an ion chromatogram method. The results of the activity evaluation test of the above catalyst are shown in Table 1 below.

【0022】[0022]

【表1】 [Table 1]

【0023】表1より、いずれの触媒とも都市ガス転化
率95%以上、水素濃度48%以上を生成することを確
認した。しかし、比較触媒ではアンモニアの副生が60
ppm程度認められるのに対して、試作触媒の触媒1〜
20はほとんど認められない。このことから、試作触媒
はアンモニア副生がないことから、PEFCの被毒作用
はほとんどないものと考えられる。
From Table 1, it was confirmed that all the catalysts produced a city gas conversion rate of 95% or more and a hydrogen concentration of 48% or more. However, with the comparative catalyst, the by-product of ammonia is 60
About 1 ppm is recognized, while the catalyst 1
20 is hardly recognized. From this, it is considered that the prototype catalyst has no ammonia by-product, and thus PEFC has almost no poisoning effect.

【0024】なお、触媒1〜20において、十分な水素
製造活性を有し、かつアンモニアの副生が無い理由とし
て、窒素の吸着力が弱いPtを活性金属に用い、水と酸
素の吸着力が強い担体との組み合わせが有効であると考
えられる。
The reason why the catalysts 1 to 20 have sufficient hydrogen production activity and no ammonia by-product is that Pt, which has a weak nitrogen adsorption force, is used as the active metal and the adsorption ability of water and oxygen is increased. The combination with a strong carrier is considered to be effective.

【0025】(実施例3)上記触媒1を用いて、実施例
2で行ったオートサーマル条件において、水蒸気/都市
ガス及び空気/都市ガスの組成を下記表2に示す条件で
実施した(RunNo23〜26)。
Example 3 The catalyst 1 was used under the autothermal conditions of Example 2 under the conditions shown in Table 2 below for the composition of water vapor / city gas and air / city gas (Run No23- 26).

【0026】[0026]

【表2】 [Table 2]

【0027】表2より、水蒸気/都市ガス、空気/都市
ガスが上記モル比においてもNHの副生が無く、十分
な水素製造ができることを確認した。
From Table 2, it was confirmed that steam / city gas and air / city gas have no NH 3 by-product even in the above molar ratio and can produce sufficient hydrogen.

【0028】(実施例4)実施例2のRUN No1の
試験条件において、触媒層の温度分布を測定した。その
結果、触媒層平均温度は740℃であるが、触媒入口部
に発熱が主に生じ、出口部は主に吸熱が生じるため、触
媒層温度分布は約150℃となった。そこで、上記不具
合を解消するために、触媒平均温度を740℃とした上
で、触媒層へ供給する空気量を3分割し、触媒層の上流
と1/3及び2/3中間層に各々1/3づつ供給し、触
媒層の温度分布及び活性評価試験を行った(Run N
o27)。
Example 4 The temperature distribution of the catalyst layer was measured under the test conditions of RUN No. 1 of Example 2. As a result, although the average temperature of the catalyst layer was 740 ° C., heat was mainly generated at the catalyst inlet and heat was mainly absorbed at the outlet, so that the catalyst layer temperature distribution was about 150 ° C. Therefore, in order to solve the above-mentioned problems, the catalyst average temperature is set to 740 ° C., the amount of air supplied to the catalyst layer is divided into three, and the upstream side of the catalyst layer and the 1/3 and 2/3 intermediate layers each have 1 The temperature distribution and activity evaluation test of the catalyst layer were performed (Run N
o27).

【0029】また、触媒層へ供給する空気量を5分割
し、触媒層の上流と1/5,2/5,3/5,4/5中
間層に各々1/5づつ供給した活性評価を行った(Ru
n No28)。更に、実施例2のRun1を連続的に
500時間運転し、500時間後の活性評価試験を行っ
た(Run No29)。下記表3は、Run No
1,27,28,29の炭化水素転化率(%)、NH
副生量、水素濃度(%)ドライベース、触媒層温度分布
(℃)を示す。
Further, the amount of air supplied to the catalyst layer was divided into five, and the activity evaluation was conducted by supplying 1/5 each to the upstream of the catalyst layer and the 1/5, 2/5, 3/5, 4/5 intermediate layers. I went (Ru
n No 28). Furthermore, Run1 of Example 2 was continuously operated for 500 hours, and an activity evaluation test after 500 hours was performed (Run No29). Table 3 below shows Run No.
1,27,28,29 hydrocarbon conversion (%), NH 3
The amount of by-product, hydrogen concentration (%) dry base, and catalyst layer temperature distribution (° C) are shown.

【0030】[0030]

【表3】 [Table 3]

【0031】表3より、Run No27,28より空
気分割供給にて,触媒層温度分布が小さくなることを確
認した。また、Run No29において、本触媒を用
いたオートサーマル試験において500時間経過後にも
安定な活性を示すことを確認した。
From Table 3, it was confirmed that the temperature distribution of the catalyst layer was smaller than that of Run Nos. 27 and 28 by the split air supply. In addition, it was confirmed that in Run No. 29, a stable activity is exhibited even after 500 hours have passed in the autothermal test using this catalyst.

【0032】[0032]

【発明の効果】以上詳記したように本発明によれば、炭
化水素と水蒸気と空気から水蒸気改質反応と部分酸化反
応で水素を製造させる際、担持白金触媒を用いることに
より、アンモニアの副生を抑制しえる水素製造方法を提
供できる。従って、本触媒を用いた炭化水素改質装置は
コンパクトでかつ短時間での起動が可能となり、車載用
及び分散電源用PEFCシステム用の改質として有効で
ある。
As described in detail above, according to the present invention, when a hydrogen is produced from hydrocarbons, steam and air by a steam reforming reaction and a partial oxidation reaction, by using a supported platinum catalyst, ammonia by-product It is possible to provide a method for producing hydrogen that can suppress the raw material. Therefore, the hydrocarbon reformer using this catalyst is compact and can be started in a short time, and is effective as a reformer for vehicle-mounted and distributed power PEFC systems.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 渡邊 悟 広島県広島市西区観音新町四丁目6番22号 三菱重工業株式会社広島研究所内 (72)発明者 米村 将直 広島県広島市西区観音新町四丁目6番22号 三菱重工業株式会社広島研究所内 Fターム(参考) 4G040 EA03 EA06 EA07 EB03 EB22 EC01 EC03 EC04 EC05    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Satoru Watanabe             4-6-22 Kannon Shinmachi, Nishi-ku, Hiroshima City, Hiroshima Prefecture               Mitsubishi Heavy Industries Ltd. Hiroshima Research Center (72) Inventor Masanao Yonemura             4-6-22 Kannon Shinmachi, Nishi-ku, Hiroshima City, Hiroshima Prefecture               Mitsubishi Heavy Industries Ltd. Hiroshima Research Center F term (reference) 4G040 EA03 EA06 EA07 EB03 EB22                       EC01 EC03 EC04 EC05

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 炭化水素と水蒸気と空気から水蒸気改質
反応と部分酸化反応で水素を製造させる際、担持白金触
媒を用いることを特徴とする水素製造方法。
1. A method for producing hydrogen, which comprises using a supported platinum catalyst when producing hydrogen from a hydrocarbon, steam and air by a steam reforming reaction and a partial oxidation reaction.
【請求項2】 炭化水素と水蒸気のモル比がHO/炭
化水素(Cl換算)=0.1〜10、炭化水素と空気の
モル比が空気/炭化水素(Cl換算)=0.1〜5であ
ることを特徴とする請求項1記載の水素製造方法。
2. The molar ratio of hydrocarbon to water vapor is H 2 O / hydrocarbon (converted to Cl) = 0.1 to 10, and the molar ratio of hydrocarbon to air is air / hydrocarbon (converted to Cl) = 0.1. The method for producing hydrogen according to claim 1, wherein
【請求項3】 担持白金触媒の担体がαアルミナ、γア
ルミナ、シリカ、チタニア、ジルコニア、ゼオライトの
少なくとも1種、又はシリカ・アルミナ、シリカ・チタ
ニア、チタニア・アルミナ、アルミナ・ジルコニアの少
なくとも1種であることを特徴とする請求項1又は請求
項2に記載の水素製造方法。
3. The carrier of the supported platinum catalyst is at least one of α-alumina, γ-alumina, silica, titania, zirconia and zeolite, or at least one of silica-alumina, silica-titania, titania-alumina and alumina-zirconia. The method for producing hydrogen according to claim 1 or 2, wherein the method is provided.
【請求項4】 担持白金触媒の担持方法は、含浸法ある
いはイオン交換法であることを特徴とする請求項1乃至
請求項3いずれかに記載の水素製造方法。
4. The method for producing hydrogen according to claim 1, wherein the method for supporting the supported platinum catalyst is an impregnation method or an ion exchange method.
【請求項5】 前記空気を前記担持白金触媒からなる触
媒層に多段階で供給することを特徴とする請求項1記載
乃至請求項4いずれかに記載の水素製造方法。
5. The method for producing hydrogen according to claim 1, wherein the air is supplied to the catalyst layer made of the supported platinum catalyst in multiple stages.
【請求項6】 前記担持白金触媒の助触媒として、タン
グステン、モリブデン、ボロン、マグネシウム、カルシ
ウム、ランタン、カリウムの少なくともいずれか1種を
担持させることを特徴とする請求項1記載の水素製造方
法。
6. The method for producing hydrogen according to claim 1, wherein at least one of tungsten, molybdenum, boron, magnesium, calcium, lanthanum, and potassium is supported as a cocatalyst for the supported platinum catalyst.
JP2001351928A 2001-11-16 2001-11-16 Method for manufacturing hydrogen Pending JP2003146615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001351928A JP2003146615A (en) 2001-11-16 2001-11-16 Method for manufacturing hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001351928A JP2003146615A (en) 2001-11-16 2001-11-16 Method for manufacturing hydrogen

Publications (1)

Publication Number Publication Date
JP2003146615A true JP2003146615A (en) 2003-05-21

Family

ID=19164172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001351928A Pending JP2003146615A (en) 2001-11-16 2001-11-16 Method for manufacturing hydrogen

Country Status (1)

Country Link
JP (1) JP2003146615A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006045049A (en) * 2004-06-28 2006-02-16 Osaka Gas Co Ltd Method for producing synthesis gas
JP2011210634A (en) * 2010-03-30 2011-10-20 Jx Nippon Oil & Energy Corp Fuel cell system
WO2019225715A1 (en) 2018-05-23 2019-11-28 田中貴金属工業株式会社 Steam-reforming catalyst
WO2023090930A1 (en) * 2021-11-18 2023-05-25 고려대학교 산학협력단 Pt-mo catalyst for synthesis of hydrogen, and method of preaparing hydrogen using pt-mo catalyst

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51124688A (en) * 1975-04-24 1976-10-30 Nippon Soken Inc Hydrocarbon fuel reforming catalyst
JPH069657B2 (en) * 1984-01-11 1994-02-09 東京瓦斯株式会社 Hydrocarbon steam reforming catalyst
JPH0692603A (en) * 1992-06-24 1994-04-05 Shell Internatl Res Maatschappij Bv Catalytic partial oxidation of hydrocarbons
JPH111302A (en) * 1997-06-10 1999-01-06 Toyota Motor Corp Reforming of fuel and fuel reforming unit, and fuel cell unit equipped with the same fuel reforming unit
JP2000007304A (en) * 1998-06-29 2000-01-11 Ngk Insulators Ltd Reforming reactor
JP2001190956A (en) * 2000-01-12 2001-07-17 Nikki Universal Co Ltd Methane reforming catalyst and manufacturing method of synthesis gas using it
JP2001270704A (en) * 2000-03-28 2001-10-02 Matsushita Electric Ind Co Ltd Hydrogen generator
JP2002121006A (en) * 2000-10-12 2002-04-23 Matsushita Electric Ind Co Ltd Reforming catalyst and hydrogen generator

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51124688A (en) * 1975-04-24 1976-10-30 Nippon Soken Inc Hydrocarbon fuel reforming catalyst
JPH069657B2 (en) * 1984-01-11 1994-02-09 東京瓦斯株式会社 Hydrocarbon steam reforming catalyst
JPH0692603A (en) * 1992-06-24 1994-04-05 Shell Internatl Res Maatschappij Bv Catalytic partial oxidation of hydrocarbons
JPH111302A (en) * 1997-06-10 1999-01-06 Toyota Motor Corp Reforming of fuel and fuel reforming unit, and fuel cell unit equipped with the same fuel reforming unit
JP2000007304A (en) * 1998-06-29 2000-01-11 Ngk Insulators Ltd Reforming reactor
JP2001190956A (en) * 2000-01-12 2001-07-17 Nikki Universal Co Ltd Methane reforming catalyst and manufacturing method of synthesis gas using it
JP2001270704A (en) * 2000-03-28 2001-10-02 Matsushita Electric Ind Co Ltd Hydrogen generator
JP2002121006A (en) * 2000-10-12 2002-04-23 Matsushita Electric Ind Co Ltd Reforming catalyst and hydrogen generator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006045049A (en) * 2004-06-28 2006-02-16 Osaka Gas Co Ltd Method for producing synthesis gas
JP2011210634A (en) * 2010-03-30 2011-10-20 Jx Nippon Oil & Energy Corp Fuel cell system
WO2019225715A1 (en) 2018-05-23 2019-11-28 田中貴金属工業株式会社 Steam-reforming catalyst
KR20200140894A (en) 2018-05-23 2020-12-16 다나카 기킨조쿠 고교 가부시키가이샤 Steam reforming catalyst
WO2023090930A1 (en) * 2021-11-18 2023-05-25 고려대학교 산학협력단 Pt-mo catalyst for synthesis of hydrogen, and method of preaparing hydrogen using pt-mo catalyst

Similar Documents

Publication Publication Date Title
US6913739B2 (en) Platinum group metal promoted copper oxidation catalysts and methods for carbon monoxide remediation
JP4851655B2 (en) Process for the conversion of carbon monoxide in gaseous mixtures containing hydrogen and catalysts therefor
WO2002038268A1 (en) Catalyst for hydrocarbon reforming and method of reforming hydrocarbon with the same
JP3759406B2 (en) Methanol reforming catalyst, methanol reforming apparatus and methanol reforming method
TWI294413B (en) Method for converting co and hydrogen into methane and water
WO2003092888A1 (en) Catalyst for partial oxidation of hydrocarbon, process for producing the same, process for producing hydrogen-containing gas with the use of the catalyst and method of using hydrogen-containing gas produced with the use of the catalyst
JP6305980B2 (en) High temperature combustion catalyst
CN101330973B (en) Process conditions for Pt-Re bimetallic water gas shift catalysts
JP5544634B2 (en) Platinum catalyst for oxidation / reduction reaction and its use
JP2005529824A (en) Suppression of methanation activity of platinum group metal catalysts for water-gas conversion
JP2008056539A (en) Carbon monoxide methanation method
JP5624343B2 (en) Hydrogen production method
JP2003010683A (en) Catalyst for removing carbon monoxide from modified oil gas and process using the same
JP2003146615A (en) Method for manufacturing hydrogen
WO2003051493A2 (en) Platinum group metal promoted copper oxidation catalysts and methods for carbon monoxide remediation
WO2014182020A1 (en) Monolith catalyst for carbon dioxide reforming reaction, production method for same, and production method for synthesis gas using same
JP4465478B2 (en) Catalyst for hydrogen production
JP4831800B2 (en) Dimethyl ether reforming catalyst and dimethyl ether reforming method
JP2001054734A (en) Catalyst for selectively oxidizing carbon monoxide, selective removal of carbon monoxide and catalyst and method for purifying hydrogen
JP4250971B2 (en) Inorganic material and shift catalyst using the same
JP2006239551A (en) Co methanizing catalyst, co removing catalyst device and fuel cell system
JP4175452B2 (en) Dimethyl ether reforming catalyst and dimethyl ether reforming method
JP2004244231A (en) Carbon monoxide concentration reduction method
JP4120862B2 (en) Catalyst for CO shift reaction
JP2004322001A (en) Catalyst for hydrocarbon partial oxidation, production method therefor, and production method for hydrogen-containing gas using the catalyst

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050711

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20051205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080904

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081104