[go: up one dir, main page]

JP2003132949A - Non-aqueous secondary battery and method of manufacturing the same - Google Patents

Non-aqueous secondary battery and method of manufacturing the same

Info

Publication number
JP2003132949A
JP2003132949A JP2001331157A JP2001331157A JP2003132949A JP 2003132949 A JP2003132949 A JP 2003132949A JP 2001331157 A JP2001331157 A JP 2001331157A JP 2001331157 A JP2001331157 A JP 2001331157A JP 2003132949 A JP2003132949 A JP 2003132949A
Authority
JP
Japan
Prior art keywords
aqueous secondary
secondary battery
positive electrode
compound
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001331157A
Other languages
Japanese (ja)
Inventor
Fusaji Kita
房次 喜多
Hideo Sakata
英郎 坂田
Haruki Kamisori
春樹 上剃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2001331157A priority Critical patent/JP2003132949A/en
Publication of JP2003132949A publication Critical patent/JP2003132949A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

(57)【要約】 【課題】 過充電安全性にすぐれ、しかも高温貯蔵時の
自己放電が低減された、高温貯蔵後の信頼性を確保でき
る非水二次電池を提供する。 【解決手段】 正極活物質として金属酸化物または金属
硫化物を用い、負極に炭素材料またはLi挿入可能な材
料を用いた非水二次電池の製造方法において、電池ケー
ス内に注入する有機電解液中に、A)ベンゼン環にアル
キル基および/またはハロゲン原子が結合した化合物を
含ませておくとともに、この有機電解液中または正極中
に、B)電池組み立て後の予備充電により正極表面に導
電性高分子を形成するモノマー物質を含ませておくこと
を特徴とする非水二次電池の製造方法。
(57) [Problem] To provide a non-aqueous secondary battery excellent in overcharge safety, reduced in self-discharge during high-temperature storage, and capable of securing reliability after high-temperature storage. SOLUTION: In a method for manufacturing a non-aqueous secondary battery using a metal oxide or a metal sulfide as a positive electrode active material and using a carbon material or a Li-insertable material for a negative electrode, an organic electrolyte injected into a battery case. A) a compound in which an alkyl group and / or a halogen atom is bonded to a benzene ring is contained therein; A method for manufacturing a non-aqueous secondary battery, characterized by including a monomer material forming a polymer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、過充電安全性にす
ぐれるとともに、高温貯蔵後の信頼性を確保できる非水
二次電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous secondary battery having excellent overcharge safety and ensuring reliability after high temperature storage.

【0002】[0002]

【従来の技術】正極活物質として金属酸化物や金属硫化
物を用い、負極に炭素材料またはLi挿入可能な材料を
用いたリチウムイオン電池に代表される非水二次電池
は、高電圧、高エネルギー密度であるため、その需要が
ますます増えている。しかし、高エネルギー密度になる
につれて安全性が低下してくるため、安全性の向上も重
要である。通常の安全対策ではエネルギー密度が低下す
る傾向にあるため、エネルギー密度を維持しつつ安全性
を改善することが望まれる。
2. Description of the Related Art A non-aqueous secondary battery represented by a lithium ion battery using a metal oxide or a metal sulfide as a positive electrode active material and a carbon material or a material capable of inserting Li into a negative electrode has a high voltage and a high voltage. Due to its energy density, its demand is increasing. However, as the energy density increases, the safety decreases, so improving safety is also important. Since the energy density tends to decrease in the usual safety measures, it is desirable to improve the safety while maintaining the energy density.

【0003】これまで、電池内に、ビフェニル(特開平
9−171840号公報)やシクロヘキシルベンゼン
(特開2001−015155号公報)を添加して、過
充電時の安全性を改善することが提案されている。これ
らは、上記添加剤によると過充電時にガスが発生して電
流遮断弁が作動しやすくなり、この電流遮断弁との組み
合わせにより、安全性を確保するものである。
Hitherto, it has been proposed to add biphenyl (Japanese Unexamined Patent Publication No. 9-171840) or cyclohexylbenzene (Japanese Unexamined Patent Publication No. 2001-015155) into a battery to improve safety during overcharge. ing. According to these additives, gas is generated during overcharging and the current cutoff valve is likely to operate, and in combination with this current cutoff valve, safety is ensured.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、本発明
者らの検討により、上記のような添加剤を添加した非水
二次電池、とくに角型やラミネート型などの電池では、
これを充電状態で長時間貯蔵する、とくに高温下で長時
間貯蔵すると、自己放電が大きくなり、電池の信頼性を
確保できなくなるという問題があることがわかった。
However, as a result of investigations by the present inventors, in the non-aqueous secondary batteries containing the above-mentioned additives, particularly the batteries of the prismatic type or the laminate type,
It has been found that when this is stored for a long time in a charged state, particularly when it is stored at a high temperature for a long time, self-discharge becomes large and the reliability of the battery cannot be ensured.

【0005】本発明は、このような事情に照らし、過充
電安全性にすぐれるとともに、高温貯蔵時の自己放電が
低減された、高温貯蔵後の信頼性を十分に確保できる非
水二次電池を提供することを目的としている。
In view of such circumstances, the present invention is a non-aqueous secondary battery which is excellent in overcharge safety and has reduced self-discharge during high temperature storage and can sufficiently secure reliability after high temperature storage. Is intended to provide.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記の目
的に対し、鋭意検討した結果、有機電解液中にシクロヘ
キシルベンゼンなどの添加剤を添加するとともに、この
電解液中または正極中に電池組み立て後の予備充電によ
り重合化するモノマー物質を添加して、正極表面に導電
性高分子の皮膜を形成すると、過充電安全性にすぐれ、
かつ高温貯蔵時の自己放電が低減された、高温貯蔵後の
信頼性を十分に確保できる非水二次電池が得られること
を見い出し、本発明を完成するに至った。
Means for Solving the Problems The inventors of the present invention have made earnest studies on the above-mentioned object, and as a result, added an additive such as cyclohexylbenzene to an organic electrolytic solution, and added it to the electrolytic solution or the positive electrode. By adding a monomer substance that is polymerized by precharging after battery assembly and forming a conductive polymer film on the positive electrode surface, it is excellent in overcharge safety,
Further, they have found that a non-aqueous secondary battery in which self-discharge during high temperature storage is reduced and which can sufficiently secure reliability after high temperature storage can be obtained, and thus the present invention has been completed.

【0007】すなわち、本発明は、正極活物質として金
属酸化物または金属硫化物を用い、負極に炭素材料また
はLi挿入可能な材料を用いた非水二次電池において、
有機電解液中に、A)ベンゼン環にアルキル基および/
またはハロゲン原子が結合した化合物を含み、かつ正極
表面に導電性高分子が形成されていることを特徴とする
非水二次電池に係るものである。とくに、本発明では、
上記A成分がベンゼン環にアルキル基が結合した化合物
であり、有機電解液中、3〜7重量%である上記構成の
非水二次電池、また上記の導電性高分子がポリピロー
ル、ポリアニリンまたはこれらの誘導体である上記構成
の非水二次電池、さらに電池形状が角型またはラミネー
ト型である上記構成の非水二次電池、をそれぞれ提供す
ることができるものである。
That is, the present invention provides a non-aqueous secondary battery in which a metal oxide or a metal sulfide is used as a positive electrode active material and a carbon material or a Li-intercalable material is used in a negative electrode.
A) benzene ring has an alkyl group and /
Alternatively, the present invention relates to a non-aqueous secondary battery including a compound to which a halogen atom is bound and having a conductive polymer formed on the surface of the positive electrode. Particularly, in the present invention,
The component A is a compound in which an alkyl group is bonded to a benzene ring, and is 3 to 7% by weight in an organic electrolytic solution. The non-aqueous secondary battery having the above structure, and the conductive polymer being polypyrrole, polyaniline, or these It is possible to provide the non-aqueous secondary battery having the above-mentioned structure, which is a derivative of, and the non-aqueous secondary battery having the above-mentioned structure, which has a prismatic or laminated battery shape.

【0008】また、本発明は、上記各構成の非水二次電
池の製造方法として、電池ケース内に注入する有機電解
液中に、A)ベンゼン環にアルキル基および/またはハ
ロゲン原子が結合した化合物を含ませておくとともに、
この有機電解液中または正極中に、B)電池組み立て後
の予備充電により正極表面に導電性高分子を形成するモ
ノマー物質を含ませておくことを特徴とする非水二次電
池の製造方法に係るものである。とくに、本発明は、上
記B成分のモノマー物質がピロール、アニリンまたはこ
れらの誘導体である上記構成の非水二次電池の製造方
法、上記B成分のモノマー物質が、A成分のベンゼン環
にアルキル基および/またはハロゲン原子が結合した化
合物に対して、30重量%以下である上記構成の非水二
次電池の製造方法、をそれぞれ提供できるものである。
Further, the present invention provides a method for producing a non-aqueous secondary battery having the above-mentioned constitution, in which A) an alkyl group and / or a halogen atom is bonded to a benzene ring in an organic electrolyte injected into a battery case. Including the compound,
A method for producing a non-aqueous secondary battery, characterized in that B) a monomer substance that forms a conductive polymer on the surface of the positive electrode by precharging after battery assembly is included in the organic electrolyte or the positive electrode. It is related. In particular, the present invention relates to a method for producing a non-aqueous secondary battery having the above-mentioned constitution in which the monomer component of the B component is pyrrole, aniline or a derivative thereof, and the monomer substance of the B component is an alkyl group on the benzene ring of the A component. And / or a method for producing a non-aqueous secondary battery having the above structure, which is 30% by weight or less with respect to a compound to which a halogen atom is bound.

【0009】[0009]

【発明の実施の形態】本発明におけるA成分のうち、ベ
ンゼン環にアルキル基が結合した化合物は、上記アルキ
ル基を構成する炭素のうち、ベンゼン環と直接結合した
炭素に水素が結合されたものが、過充電安全性の向上の
ため、とくに望ましい。具体的には、シクロヘキシルベ
ンゼン、イソプロピルベンゼン、nーブチルベンゼン、
オクチルベンゼン、トルエン、キシレンなどが挙げられ
る。これらの中でも、とくに、ベンゼン環に結合したア
ルキル基が炭素数4以上と長いものが望ましく、また、
上記アルキル基が分岐構造などを有して立体的にかさば
る構造であるものが望ましく、とりわけシクロヘキシル
ベンゼンが望ましい。また、ベンゼン環にハロゲン原子
が結合した化合物には、フルオロベンゼン、ジフルオロ
ベンゼンなどや、前記したベンゼン環にアルキル基が結
合した化合物にさらにフッ素原子や塩素原子などのハロ
ゲン原子が結合したものなどがあり、とくにフッ素原子
が結合した化合物が望ましい。
BEST MODE FOR CARRYING OUT THE INVENTION In the component A of the present invention, a compound in which an alkyl group is bonded to a benzene ring is a compound in which hydrogen is bonded to a carbon directly bonded to the benzene ring among the carbons constituting the alkyl group. However, it is particularly desirable because it improves the safety of overcharge. Specifically, cyclohexylbenzene, isopropylbenzene, n-butylbenzene,
Examples include octylbenzene, toluene, xylene and the like. Among these, it is particularly desirable that the alkyl group bonded to the benzene ring has a long carbon number of 4 or more.
The alkyl group having a branched structure or the like and having a sterically bulky structure is preferable, and cyclohexylbenzene is particularly preferable. Further, the compound having a halogen atom bonded to the benzene ring may be fluorobenzene, difluorobenzene, or the like, or the compound having a halogen atom such as a fluorine atom or a chlorine atom further bonded to the compound having an alkyl group bonded to the benzene ring. In particular, a compound having a fluorine atom bonded is desirable.

【0010】このようなA成分の化合物の添加量として
は、過充電安全性に好結果を得るため、有機電解液中、
1重量%以上、好ましくは2.5重量%以上、より好ま
しくは3重量%以上、さらに好ましくは4重量%以上で
あるのがよい。また、高温貯蔵時の自己放電の低減のた
め、有機電解液中、10重量%以下、好ましくは7重量
%以下、より好ましくは6重量%以下であるのがよい。
The amount of the compound of the component A to be added in the organic electrolyte is
The amount is 1% by weight or more, preferably 2.5% by weight or more, more preferably 3% by weight or more, and further preferably 4% by weight or more. Further, in order to reduce self-discharge during high temperature storage, it is preferably 10% by weight or less, preferably 7% by weight or less, more preferably 6% by weight or less in the organic electrolyte.

【0011】本発明者らの検討により、本発明の電池構
成にあっては、上記A成分の化合物を、とくにベンゼン
環にアルキル基が結合した化合物を、有機電解液中、3
〜7重量%の範囲、とくに4〜6重量%の範囲で添加す
ると、過充電安全性と高温貯蔵時の低自己放電性をとも
に高度に満足させることができ、とくに過充電安全性に
ついては、電流遮断弁を通常持たない角型やラミネート
型の電池形状の非水二次電池であっても、過充電安全性
を十分に確保できるという、すぐれた効果が奏されるも
のであることがわかった。
According to the studies by the present inventors, in the battery constitution of the present invention, the compound of the above-mentioned component A, in particular, the compound in which an alkyl group is bonded to the benzene ring is added in an organic electrolytic solution to
Addition in the range of ~ 7 wt%, especially in the range of 4-6 wt%, it is possible to highly satisfy both overcharge safety and low self-discharge property during high temperature storage. In particular, regarding overcharge safety, It was found that even non-aqueous secondary batteries in the shape of prismatic or laminated batteries, which normally do not have a current cutoff valve, can provide sufficient overcharge safety. It was

【0012】本発明においては、有機電解液中に上記A
成分の化合物を上記割合で含ませる一方、正極表面に導
電性高分子を形成したことを特徴としており、この導電
性高分子により、高温貯蔵時の自己放電が低減された、
高温貯蔵後の信頼性を十分に確保できる非水二次電池を
得ることが可能となる。上記導電性高分子としては、ポ
リピロール、ポリアニリンまたはこれらの誘導体が挙げ
られる。このような導電性高分子の形成により、上記効
果が奏される理由は明らかではないが、正極表面の活性
部位が上記導電性高分子で覆われて、上記A成分の化合
物が正極表面で反応して自己放電する現象を抑制するた
めと思われる。
In the present invention, the above-mentioned A is added to the organic electrolytic solution.
While containing the compound of the component in the above proportion, it is characterized by forming a conductive polymer on the surface of the positive electrode, by this conductive polymer, self-discharge during high temperature storage was reduced,
It is possible to obtain a non-aqueous secondary battery that can sufficiently secure reliability after high temperature storage. Examples of the conductive polymer include polypyrrole, polyaniline, and derivatives thereof. Although the reason why the above effect is achieved by the formation of such a conductive polymer is not clear, the active site on the positive electrode surface is covered with the conductive polymer, and the compound of the component A reacts on the positive electrode surface. It seems that this is to suppress the phenomenon of self-discharge.

【0013】本発明において、正極表面に導電性高分子
を形成する方法は、とくに限定されず、任意の方法を採
用できるが、好ましくは、有機電解液中または正極中に
B成分として導電性高分子形成用のモノマー物質を含ま
せておき、これを電池組み立て後の予備充電により重合
化する方法を採用するのがよい。上記導電性高分子がポ
リピロール、ポリアニリンまたはこれらの誘導体であれ
ば、上記モノマー物質として、ピロール、アニリンまた
はこれらの誘導体が用いられる。上記の誘導体には、メ
チルピロール、フェニルピロール、ジメチルアニリン、
フェニルアニリン、ジフェニルアニリンなどがある。こ
れらの中でも、重合時にガス発生の少ないものが望まし
く、とりわけ、窒素原子がガス発生などを伴わない水素
原子以外の原子や基で置換されたもの、とくに芳香族置
換体が望ましい。
In the present invention, the method for forming the conductive polymer on the surface of the positive electrode is not particularly limited, and any method can be adopted, but it is preferable to use a high conductive material as the B component in the organic electrolyte or the positive electrode. It is advisable to employ a method in which a monomer substance for forming a molecule is included, and this is polymerized by preliminary charging after battery assembly. If the conductive polymer is polypyrrole, polyaniline or a derivative thereof, pyrrole, aniline or a derivative thereof is used as the monomer substance. The above derivatives include methylpyrrole, phenylpyrrole, dimethylaniline,
Examples include phenylaniline and diphenylaniline. Among these, those that generate little gas during polymerization are preferable, and those in which the nitrogen atom is replaced by an atom or group other than hydrogen atom that does not generate gas, and particularly aromatic substitution products are preferable.

【0014】このようなB成分のモノマー物質は、これ
が多すぎると電池の膨れやインピーダンス上昇の原因と
なるため、A成分の化合物に対して、好ましくは30重
量%以下、より好ましくは10重量%以下、最も好まし
くは2.5重量%以下であるのがよい。また、少なすぎ
ると前記効果が得られないため、A成分の化合物に対し
て、好ましくは0.1重量%以上、より好ましくは1重
量%以上、最も好ましくは2重量%以上であるのがよ
い。なお、このようなモノマー物質の重合化後、電池を
分解して正極表面を観察し分析すると、正極表面に導電
性高分子の皮膜が形成されていることを確認できる。
Such a monomer component of the B component causes swelling of the battery and an increase in impedance if too much thereof is contained, so that it is preferably 30% by weight or less, more preferably 10% by weight, based on the compound of the A component. The following is most preferable and it is 2.5% by weight or less. If the amount is too small, the above effect cannot be obtained. Therefore, the amount is preferably 0.1% by weight or more, more preferably 1% by weight or more, and most preferably 2% by weight or more based on the compound of the component A. . After the polymerization of such a monomer substance, the battery is disassembled and the surface of the positive electrode is observed and analyzed, whereby it can be confirmed that a film of a conductive polymer is formed on the surface of the positive electrode.

【0015】本発明において、上記A成分の化合物また
はこれと上記B成分のモノマー物質とを含ませる有機電
解液としては、有機溶媒に電解質としてリチウム塩を溶
解させたものが用いられる。電解質としては、場合によ
り、高分子や固体を使用することもできる。上記の有機
溶媒には、エチレンカーボネート、ピロピレンカーボネ
ート、ブチレンカーボネート、ジメチルカーボネート、
メチルエチルカーボネート、ジエチルカーボネートなど
の炭酸エステルや、γ−ブチロラクトン酢酸メチルなど
のエステル類が、主溶媒として用いられる。
In the present invention, as the organic electrolytic solution containing the compound of the component A or the monomer substance of the component B, a solution prepared by dissolving a lithium salt as an electrolyte in an organic solvent is used. As the electrolyte, a polymer or solid may be used depending on the case. The organic solvent, ethylene carbonate, pyropyrene carbonate, butylene carbonate, dimethyl carbonate,
Carbonic acid esters such as methyl ethyl carbonate and diethyl carbonate, and esters such as methyl γ-butyrolactone acetate are used as the main solvent.

【0016】他の溶媒として、1,3−ジオキソラン、
1,2−ジメトキシエタンなどのエーテル類、スルホラ
ンなどの硫黄化合物、含窒素化合物、含珪素化合物、含
フツ素化合物、含リン化合物などの有機溶媒も用いられ
る。また、これらの有機溶媒には、さらに−SO2 結合
を有する化合物、とくに−O−SO2 結合を有する化合
物を溶解させておくのが望ましい。具体的には、1,3
−プロパンスルトン、メチルエチルスルフォネート、ジ
エチルサルフェートなどである。これらの化合物は、有
機溶媒中、0.5〜10重量%の使用量とするのがよ
く、とくに好ましくは1〜5重量%の使用量とするのが
よい。
Other solvents include 1,3-dioxolane,
Organic solvents such as ethers such as 1,2-dimethoxyethane, sulfur compounds such as sulfolane, nitrogen-containing compounds, silicon-containing compounds, fluorine-containing compounds and phosphorus-containing compounds can also be used. Further, it is desirable to dissolve a compound having a —SO 2 bond, particularly a compound having a —O—SO 2 bond, in these organic solvents. Specifically, 1,3
-Propane sultone, methyl ethyl sulphonate, diethyl sulphate etc. These compounds are preferably used in an organic solvent in an amount of 0.5 to 10% by weight, particularly preferably 1 to 5% by weight.

【0017】電解質であるリチウム塩には、LiP
6 、LiCn 2n+1SO3 (n>1)、LiCl
4 、LiBF4 、LiAsF6 、(Cn 2n+1
2 )(Cm 2m +1SO2 )NLi(m,n≧1)など
がある。他に、(RfOSO2 2 NLi〔Rfは炭素
数2以上のハロゲンを含むアルキル基で、2個のRfは
同一であっても異なっていてもよく、またRf同士が互
いに結合、たとえばポリマー状に結合していてもよい〕
も使用でき、例として{CH2 (CF2 4 CH2 OS
2N(Li)SO2 O}n(n:整数)が挙げられ
る。これらの中で、とくに、LiPF6 や炭素数2以上
の含フッ素有機リチウム塩が望ましい。リチウム塩は、
有機溶媒中、通常0.1〜2モル/リットルの割合で用
いられる。
The lithium salt which is the electrolyte contains LiP
F 6 , LiC n F 2n + 1 SO 3 (n> 1), LiCl
O 4 , LiBF 4 , LiAsF 6 , (C n F 2n + 1 S
O 2 ) (C m F 2m +1 SO 2 ) NLi (m, n ≧ 1). In addition, (RfOSO 2 ) 2 NLi [Rf is an alkyl group containing a halogen having 2 or more carbon atoms, two Rf's may be the same or different, and Rf's are bonded to each other, for example, in a polymer form. May be bound to
Can also be used, for example {CH 2 (CF 2 ) 4 CH 2 OS
O 2 N (Li) SO 2 O} n (n: integer) and the like. Of these, LiPF 6 and fluorine-containing organic lithium salts having 2 or more carbon atoms are particularly preferable. Lithium salt
It is usually used at a rate of 0.1 to 2 mol / liter in an organic solvent.

【0018】本発明において、正極活物質には、LiC
oO2 などのリチウムコバルト酸化物、LiMn2 4
などのリチウムマンガン酸化物、LiNiO2 などのリ
チウムニッケル酸化物、二酸化マンガン、五酸化バナジ
ウム、クロム酸化物などの金属酸化物や、二硫化チタ
ン、二硫化モリブデンなどの金属硫化物が用いられる。
正極は、これらの正極活物質に導電助剤やポリフッ化ビ
ニリデンなどの結着剤などを適宜添加した正極合剤を、
アルミ箔などの集電材料を芯材として成形体に仕上げた
ものが用いられる。とくにLiNiO2 、LiCo
2 、LiMn2 4などのように、充電したときにL
i基準で4.2V以上となる正極活物質を使用したもの
が望ましい。また、充電終了後の開路電圧がLi基準で
4.3V以上を示すリチウム複合酸化物を正極活物質と
したものが望ましい。
In the present invention, the positive electrode active material is LiC.
lithium cobalt oxide such as oO 2 , LiMn 2 O 4
Lithium manganese oxides such as, lithium nickel oxides such as LiNiO 2 , metal oxides such as manganese dioxide, vanadium pentoxide, and chromium oxide, and metal sulfides such as titanium disulfide and molybdenum disulfide are used.
The positive electrode is a positive electrode mixture prepared by appropriately adding a conductive auxiliary agent or a binder such as polyvinylidene fluoride to these positive electrode active materials,
A molded product is used as a core material of a current collector such as aluminum foil. Especially LiNiO 2 and LiCo
Like O 2 and LiMn 2 O 4 , L when charged
It is desirable to use a positive electrode active material having a voltage of 4.2 V or higher on the basis of i. Further, it is desirable that the positive electrode active material be a lithium composite oxide showing an open circuit voltage after charging of 4.3 V or more on the Li basis.

【0019】正極の導電助剤には、結晶性の高いKS6
などの黒鉛と、結晶性の低いカーボンブラックなどの炭
素が用いられる。導電助剤の量は、少ない方が充電状態
での有機電解液との反応性を低減できるが、少なすぎる
と電池特性が低下し、多すぎるとガス発生の原因となる
ため、正極合剤中、1〜5重量%、好ましくは1.5〜
3重量%、より好ましくは2〜2.5重量%であるのが
よい。結晶性の低い炭素の割合は、導電助剤全体中、5
0〜90重量%、好ましくは70〜80重量%であるの
がよい。導電助剤の量が少ない場合、結晶性の高い黒鉛
の使用比率が高いと電気特性が低下する傾向にある。
KS6 having high crystallinity is used as the conductive additive for the positive electrode.
And graphite such as carbon black having low crystallinity are used. If the amount of the conductive additive is small, the reactivity with the organic electrolyte in the charged state can be reduced, but if it is too small, the battery characteristics deteriorate, and if it is too large, it causes gas generation. , 1 to 5% by weight, preferably 1.5 to
It is good to be 3% by weight, more preferably 2 to 2.5% by weight. The ratio of carbon with low crystallinity is 5 in the entire conductive additive.
It should be 0 to 90% by weight, preferably 70 to 80% by weight. When the amount of the conductive additive is small and the ratio of graphite having high crystallinity is high, the electrical characteristics tend to be deteriorated.

【0020】本発明において、負極は、炭素材料または
Li挿入可能な材料を用いてなるものであり、通常は、
上記材料に結着剤、場合により導電助剤を加えたものを
溶媒に分散し、これを銅箔などの集電材料に塗布し乾燥
後、成形体に仕上げたものが用いられる。上記のLi挿
入可能な材料には、金属酸化物として、スズやシリコン
を含む金属化合物(たとえば、SnOx 、SiOx
ど)が用いられ、また、金属窒化物として、Li2.6
0.4 Nなどが用いられる。
In the present invention, the negative electrode is made of a carbon material or a material into which Li can be inserted.
A material obtained by dispersing a binder, optionally a conductive auxiliary agent, in the above-mentioned material in a solvent, applying this to a current collecting material such as a copper foil, drying, and finishing into a molded body is used. In the above Li insertable material, a metal compound containing tin or silicon (for example, SnO x , SiO x, etc.) is used as a metal oxide, and Li 2.6 C is used as a metal nitride.
o 0.4 N or the like is used.

【0021】本発明においては、上記の正極と負極とを
両極間に公知の各種セパレータを介在させて電池ケース
内に装填し、かつこれに注入する有機電解液中にA成分
の化合物を含ませ、さらにこの有機電解液中または正極
中にB成分のモノマー物質を含ませて電池を組み立てた
のち、予備充電して上記モノマー物質を重合化して、正
極表面に導電性高分子が形成された非水二次電池とす
る。
In the present invention, the positive electrode and the negative electrode described above are loaded into a battery case with various known separators interposed between both electrodes, and the organic electrolyte injected into the battery case contains the compound of the component A. Further, after assembling the battery by including the monomer substance of the component B in the organic electrolyte or in the positive electrode, the battery is preliminarily charged to polymerize the monomer substance to form a non-conductive polymer on the surface of the positive electrode. Use a water secondary battery.

【0022】本発明の非水二次電池は、角型やラミネー
ト型の電池形態としたときに、本発明の効果がとくに大
きい。しかし、筒型、ボタン型、コイン型などの他の各
種の形態としてもよく、電池形態にはとくに限定はな
い。
The non-aqueous secondary battery of the present invention is particularly effective when it is formed into a prismatic type or a laminated type. However, various other forms such as a cylinder type, a button type, and a coin type may be used, and the battery form is not particularly limited.

【0023】[0023]

【実施例】以下に、本発明の実施例を記載して、より具
体的に説明する。ただし、本発明は、以下の実施例にの
み限定されるものではない。
EXAMPLES The present invention will be described in more detail below by way of its examples. However, the present invention is not limited to the following examples.

【0024】実施例1 まず、LiPF6 をエチレンカーボネートに溶解させた
のち、メチルエチルカーボネートを加えて混合し、エチ
レンカーボネートとメチルエチルカーボネートとの体積
比1/2の混合溶媒にLiPF6 を1.2モル/リット
ル溶解させた。これにさらに添加剤としてシクロヘキシ
ルベンゼン(A成分の化合物)を4重量%、フェニルピ
ロール(B成分のモノマー物質)を0.2重量%、さら
に1,3−プロパンスルトンを2重量%溶解させ、有機
電解液を調製した。
[0024] Example 1 First, after obtained by dissolving LiPF 6 in ethylene carbonate, added and mixed methyl ethyl carbonate, a LiPF 6 in a mixed solvent of a volume ratio of 1/2 of ethylene carbonate and methyl ethyl carbonate 1. 2 mol / l was dissolved. 4% by weight of cyclohexylbenzene (compound of component A), 0.2% by weight of phenylpyrrole (monomer substance of component B), and 2% by weight of 1,3-propane sultone as additives were added to the mixture to prepare an organic compound. An electrolytic solution was prepared.

【0025】つぎに、LiCoO2 93.5重量%に黒
鉛0.5重量%とカーボンブラック2重量%を加えて混
合し、これをあらかじめ4重量%のポリフッ化ビニリデ
ンをN−メチルピロリドンに溶解させた溶液に分散させ
て正極合剤スラリーとした。この正極合剤スラリーを、
正極集電体としての厚さ15μmのアルミニウム箔の両
面に均一に塗布したのち(ただし、負極と対向しない最
内周内面側には塗布しなかった)、乾燥し、その後、ロ
ーラープレス機により圧縮成形し、所定の大きさに切断
後、リード体の溶接を行い、帯状の正極を作製した。
Next, 0.5% by weight of graphite and 2% by weight of carbon black were added to 93.5% by weight of LiCoO 2 and mixed, and 4% by weight of polyvinylidene fluoride was dissolved in N-methylpyrrolidone in advance. It was dispersed in the above solution to obtain a positive electrode mixture slurry. This positive electrode mixture slurry,
It was evenly applied to both sides of an aluminum foil having a thickness of 15 μm as a positive electrode current collector (however, it was not applied to the innermost peripheral inner surface side not facing the negative electrode), dried, and then compressed by a roller press machine. After molding and cutting into a predetermined size, the lead body was welded to produce a strip-shaped positive electrode.

【0026】また、これとは別に、メソカーボンマイク
ロビーズ焼成体95重量%を、あらかじめ5重量%のポ
リフッ化ビニリデンをN−メチルピロリドンに溶解させ
た溶液に分散させて負極合剤スラリーとした。これを、
負極集電体としての厚さ10μmの帯状の銅箔の両面に
塗布したのち(ただし、正極と対向しない最外周外面側
には塗布しなかった)、乾燥し、その後、ローラープレ
ス機により圧縮成形し、所定の大きさに切断後、リード
体の溶接を行い、帯状の負極を作製した。
Separately from this, 95% by weight of the mesocarbon microbead fired body was dispersed in a solution in which 5% by weight of polyvinylidene fluoride was dissolved in N-methylpyrrolidone in advance to prepare a negative electrode mixture slurry. this,
After applying it to both sides of a strip-shaped copper foil having a thickness of 10 μm as a negative electrode current collector (however, it was not applied to the outermost peripheral outer surface side not facing the positive electrode), then drying, and then compression molding with a roller press machine. Then, after cutting into a predetermined size, the lead body was welded to produce a strip-shaped negative electrode.

【0027】つぎに、上記の正極と負極とのそれぞれに
集電タブを取り付け、それらの正極と負極とを厚さ20
μmの微孔性ポリエチレンフィルムからなるセパレータ
を介して重ね、捲回して、電極体とした。これに絶縁テ
ープを取り付けて、サイズが5mm×30mm×48mmの電
池ケース内に挿入し、リード体の溶接と、電池ケースの
開口端部への電池蓋のレーザー溶接を行った。しかるの
ち、電池蓋に設けた電解液注入口から、前記の有機電解
液を電池ケース内に注入し、この注入後、上記の電解液
注入口を封止して、電池内部を密閉状態にしたのち、予
備充電を行い、角型の非水二次電池を作製した。
Next, a current collecting tab is attached to each of the positive electrode and the negative electrode, and the positive electrode and the negative electrode have a thickness of 20.
An electrode body was obtained by stacking and winding via a separator made of a microporous polyethylene film of μm. An insulating tape was attached to this, and it was inserted into a battery case having a size of 5 mm × 30 mm × 48 mm, and the lead body was welded and the battery lid was laser-welded to the open end of the battery case. Then, the organic electrolyte solution was injected into the battery case from the electrolyte solution inlet provided in the battery lid, and after this injection, the electrolyte solution inlet was sealed to make the inside of the battery hermetically sealed. After that, preliminary charging was performed to manufacture a rectangular non-aqueous secondary battery.

【0028】図1は、このように作製した角型の非水二
次電池の模式図である。図中、1は正極、2は負極、3
はセパレータである。繁雑化をさけるため、正極1や負
極2の作製にあたり、使用した集電体などは図示してい
ない。4はアルミニウム製の電池ケースであり、負極端
子を兼ねている。正極1、負極2およびセパレータ3か
らなる扁平状渦巻構造の電極体と有機電解液とが上記電
池ケース4内に収納されている。電池ケース4の底部に
は、ポリテトラフルオロエチレンシートからなる絶縁体
5が配置され、前記の正極1、負極2およびセパレータ
3からなる扁平状渦巻構造の電極体6からは、正極1お
よび負極2のそれぞれ一端に接続された正極リード体7
と負極リード体8が引き出されている。電池ケース4の
開口部を封口するアルミニウム合金製の蓋板9には、ポ
リプロピレン製の絶縁パッキング10を介してステンレ
ス鋼製の端子11が取り付けられ、この端子11には絶
縁体12を介してステンレス鋼製のリード板13が取り
付けられている。上記蓋板9は電池ケース4の開口部に
挿入され、両者の接合部を溶接することにより、電池ケ
ース4の開口部が封口され、電池内部が密閉されてい
る。この非水二次電池を分解し、上記電極の一部の皮膜
を分析した結果から、導電性高分子が形成されているこ
とを確認した。
FIG. 1 is a schematic view of the prismatic non-aqueous secondary battery thus manufactured. In the figure, 1 is a positive electrode, 2 is a negative electrode, and 3
Is a separator. In order to avoid complexity, the current collectors used in the production of the positive electrode 1 and the negative electrode 2 are not shown. Reference numeral 4 is a battery case made of aluminum, which also serves as a negative electrode terminal. An electrode body having a flat spiral structure composed of a positive electrode 1, a negative electrode 2 and a separator 3 and an organic electrolytic solution are housed in the battery case 4. An insulator 5 made of a polytetrafluoroethylene sheet is arranged at the bottom of the battery case 4, and the positive electrode 1 and the negative electrode 2 are made from the flat spiral structure electrode body 6 made of the positive electrode 1, the negative electrode 2 and the separator 3. Positive electrode lead body 7 connected to one end of each
And the negative electrode lead body 8 are pulled out. A terminal plate 11 made of stainless steel is attached to a cover plate 9 made of an aluminum alloy that seals the opening of the battery case 4 via an insulating packing 10 made of polypropylene, and a stainless steel terminal 11 is attached to the terminal 11 via an insulator 12. A steel lead plate 13 is attached. The lid plate 9 is inserted into the opening of the battery case 4, and the joint between the two is welded to seal the opening of the battery case 4 and seal the inside of the battery. It was confirmed from the result of disassembling this non-aqueous secondary battery and analyzing a part of the film of the above electrode that a conductive polymer was formed.

【0029】比較例1 有機電解液中にフェニルピロールを添加しなかった以外
は、実施例1と同様にして、角型の非水二次電池を作製
した。
Comparative Example 1 A prismatic non-aqueous secondary battery was produced in the same manner as in Example 1 except that phenylpyrrole was not added to the organic electrolytic solution.

【0030】比較例2 有機電解液中にシクロヘキシルベンゼンを添加しなかっ
た以外は、実施例1と同様にして、角型の非水二次電池
を作製した。
Comparative Example 2 A prismatic non-aqueous secondary battery was produced in the same manner as in Example 1 except that cyclohexylbenzene was not added to the organic electrolytic solution.

【0031】上記の実施例1および比較例1,2の各非
水二次電池について、下記の方法により、過充電安全試
験および貯蔵試験を行い、電池性能を評価した。これら
の結果は、表1に示されるとおりであった。
With respect to each of the non-aqueous secondary batteries of Example 1 and Comparative Examples 1 and 2 above, an overcharge safety test and a storage test were conducted by the following methods to evaluate the battery performance. The results are shown in Table 1.

【0032】<過充電安全試験>まず、各電池を室温で
1CmAで3.0Vまで放電させ、1Cで4.2V、C
CCVで2.5時間充電後、0.2CmAで3.0まで
放電させた。4.2Vまで充電したときの正極電位は、
Li基準で4.3Vであった。過充電安全試験として、
電池を1CmAで4.2V、CCCVで2.5時間充電
後、6Vを上限電圧として、0.5A、1A、2A、5
Aで過充電した。電池の表面温度が135℃以下であっ
た最大電流を、過充電安全電流値とした。
<Overcharge Safety Test> First, each battery was discharged at room temperature at 1 CmA to 3.0 V, and at 1 C, 4.2 V, C
After charging with CCV for 2.5 hours, the battery was discharged with 0.2 CmA to 3.0. The positive electrode potential when charged to 4.2V is
It was 4.3 V based on Li. As an overcharge safety test,
After charging the battery at 1 CmA to 4.2V and CCCV for 2.5 hours, 0.5V, 1A, 2A, 5A with 6V as the upper limit voltage.
Overcharged with A. The maximum current at which the surface temperature of the battery was 135 ° C. or lower was defined as the overcharge safe current value.

【0033】<貯蔵試験>電池を1CmAで4.2V、
CCCVで2.5時間充電後、1CmAで3.0Vまで
放電させた(このときの容量をXとする)。その後、1
CmAで4.2V、CCCVで2.5時間充電を行っ
た。さらにその後、60℃の恒温槽に20日間貯蔵後、
1CmAで3.0Vまで放電させた(このときの容量を
Yとする)。これらの容量X,Yより、自己放電率
(%)=〔(X−Y)/X〕×100、を計算により求
めた。
<Storage Test> The battery was 4.2 V at 1 CmA,
After charging at CCCV for 2.5 hours, the battery was discharged at 1 CmA to 3.0V (the capacity at this time is X). Then 1
Charging was performed at 4.2 V with CmA and 2.5 hours with CCCV. After that, after storing for 20 days in a constant temperature bath at 60 ° C,
It was discharged to 3.0 V at 1 CmA (the capacity at this time is Y). From these capacities X and Y, the self-discharge rate (%) = [(X−Y) / X] × 100 was calculated.

【0034】 [0034]

【0035】上記の表1の結果から、実施例1の電池
は、B成分のモノマー物質だけを含ませ、A成分の化合
物を含ませなかった比較例2の電池に比べて、過充電安
全性を10倍以上高めつつ、高温貯蔵時の自己放電を抑
えることができ、高温貯蔵後の信頼性も確保できるもの
であることがわかる。これに対して、A成分の化合物だ
けを含ませ、B成分のモノマー物質を含ませなかった比
較例1の電池は、過充電安全性は満足できても、高温貯
蔵時の自己放電が増加し、高温貯蔵後の信頼性を確保で
きなかった。
From the results of Table 1 above, the battery of Example 1 has a higher overcharge safety than the battery of Comparative Example 2 in which only the monomer substance of component B was included and the compound of component A was not included. It can be seen that the self-discharge during high temperature storage can be suppressed and the reliability after high temperature storage can be ensured while increasing the value 10 times or more. On the other hand, the battery of Comparative Example 1 containing only the compound of the component A and not containing the monomer substance of the component B had an increased self-discharge during high temperature storage even though the overcharge safety was satisfied. , Reliability after high temperature storage could not be secured.

【0036】[0036]

【発明の効果】以上のように、本発明は、正極活物質と
して金属酸化物または金属硫化物を用い、負極に炭素材
料またはLi挿入可能な材料を用い、有機電解液中にA
成分としてベンゼン環にアルキル基および/またはハロ
ゲン原子が結合した化合物を含ませるとともに、正極表
面に導電性高分子を形成するという構成としたことによ
り、過充電安全性にすぐれ、しかも高温貯蔵後の信頼性
にすぐれる非水二次電池を提供することができる。
As described above, according to the present invention, a metal oxide or a metal sulfide is used as a positive electrode active material, a carbon material or a Li insertable material is used for a negative electrode, and
By including a compound in which an alkyl group and / or a halogen atom is bonded to the benzene ring as a component and forming a conductive polymer on the surface of the positive electrode, it is excellent in overcharge safety, and moreover, after being stored at high temperature. A non-aqueous secondary battery with excellent reliability can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の非水二次電池の構成例を示す縦断面図
である。
FIG. 1 is a vertical cross-sectional view showing a configuration example of a non-aqueous secondary battery of the present invention.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 セパレータ 4 電池ケース 1 positive electrode 2 Negative electrode 3 separator 4 battery case

───────────────────────────────────────────────────── フロントページの続き (72)発明者 上剃 春樹 大阪府茨木市丑寅一丁目1番88号 日立マ クセル株式会社内 Fターム(参考) 5H029 AJ12 AK02 AK03 AK05 AL01 AL02 AL06 AL07 AL08 AM03 AM04 AM05 AM07 BJ02 BJ04 BJ14 DJ09 EJ13 HJ01 5H050 AA10 AA15 BA17 CA02 CA07 CA08 CA09 CA11 CB01 CB02 CB07 CB08 CB09 DA09 DA13 EA26 FA05 GA13 GA18 HA01   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Haruki Kamizure             Hitachima, 1-88, Torora, Ibaraki City, Osaka Prefecture             Within Kucsel Co., Ltd. F term (reference) 5H029 AJ12 AK02 AK03 AK05 AL01                       AL02 AL06 AL07 AL08 AM03                       AM04 AM05 AM07 BJ02 BJ04                       BJ14 DJ09 EJ13 HJ01                 5H050 AA10 AA15 BA17 CA02 CA07                       CA08 CA09 CA11 CB01 CB02                       CB07 CB08 CB09 DA09 DA13                       EA26 FA05 GA13 GA18 HA01

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 正極活物質として金属酸化物または金属
硫化物を用い、負極に炭素材料またはLi挿入可能な材
料を用いた非水二次電池において、有機電解液中に、
A)ベンゼン環にアルキル基および/またはハロゲン原
子が結合した化合物を含み、かつ正極表面に導電性高分
子が形成されていることを特徴とする非水二次電池。
1. A non-aqueous secondary battery using a metal oxide or a metal sulfide as a positive electrode active material and using a carbon material or a Li-intercalable material for a negative electrode in an organic electrolyte solution.
A) A non-aqueous secondary battery comprising a compound in which an alkyl group and / or a halogen atom is bonded to a benzene ring and having a conductive polymer formed on the surface of the positive electrode.
【請求項2】 A成分がベンゼン環にアルキル基が結合
した化合物であり、有機電解液中、3〜7重量%である
請求項1に記載の非水二次電池。
2. The non-aqueous secondary battery according to claim 1, wherein the component A is a compound in which an alkyl group is bonded to a benzene ring, and is 3 to 7% by weight in the organic electrolytic solution.
【請求項3】 導電性高分子がポリピロール、ポリアニ
リンまたはこれらの誘導体である請求項1または2に記
載の非水二次電池。
3. The non-aqueous secondary battery according to claim 1, wherein the conductive polymer is polypyrrole, polyaniline or a derivative thereof.
【請求項4】 電池形状が角型またはラミネート型であ
る請求項1〜3のいずれかに記載の非水二次電池。
4. The non-aqueous secondary battery according to claim 1, wherein the battery has a rectangular shape or a laminated shape.
【請求項5】 請求項1〜4のいずれかに記載の非水二
次電池の製造方法であって、電池ケース内に注入する有
機電解液中に、A)ベンゼン環にアルキル基および/ま
たはハロゲン原子が結合した化合物を含ませておくとと
もに、この有機電解液中または正極中に、B)電池組み
立て後の予備充電により正極表面に導電性高分子を形成
するモノマー物質を含ませておくことを特徴とする非水
二次電池の製造方法。
5. The method for producing a non-aqueous secondary battery according to claim 1, wherein A) a benzene ring has an alkyl group and / or an organic group in the organic electrolyte injected into the battery case. In addition to containing a compound to which a halogen atom is bound, B) a monomer substance that forms a conductive polymer on the surface of the positive electrode by precharging after battery assembly is included in the organic electrolyte or the positive electrode. A method for manufacturing a non-aqueous secondary battery, comprising:
【請求項6】 B成分のモノマー物質がピロール、アニ
リンまたはこれらの誘導体である請求項5に記載の非水
二次電池の製造方法。
6. The method for producing a non-aqueous secondary battery according to claim 5, wherein the monomer substance of the component B is pyrrole, aniline or a derivative thereof.
【請求項7】 B成分のモノマー物質が、A成分のベン
ゼン環にアルキル基および/またはハロゲン原子が結合
した化合物に対して、30重量%以下である請求項5ま
たは6に記載の非水二次電池の製造方法。
7. The non-aqueous diamine according to claim 5, wherein the content of the monomer component of the component B is 30% by weight or less based on the compound in which the benzene ring of the component A is bonded with an alkyl group and / or a halogen atom. Next battery manufacturing method.
JP2001331157A 2001-10-29 2001-10-29 Non-aqueous secondary battery and method of manufacturing the same Pending JP2003132949A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001331157A JP2003132949A (en) 2001-10-29 2001-10-29 Non-aqueous secondary battery and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001331157A JP2003132949A (en) 2001-10-29 2001-10-29 Non-aqueous secondary battery and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2003132949A true JP2003132949A (en) 2003-05-09

Family

ID=19146778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001331157A Pending JP2003132949A (en) 2001-10-29 2001-10-29 Non-aqueous secondary battery and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2003132949A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004012295A1 (en) * 2002-07-31 2004-02-05 Ube Industries, Ltd. Lithium secondary battery
WO2005048391A1 (en) 2003-11-13 2005-05-26 Ube Industries, Ltd. Nonaqueous electrolyte solution and lithium secondary battery
JP2006278260A (en) * 2005-03-30 2006-10-12 Ngk Insulators Ltd Lithium secondary battery
JP2008226606A (en) * 2007-03-12 2008-09-25 Denso Corp Manufacturing method of lithium secondary battery
JP2012138314A (en) * 2010-12-28 2012-07-19 Hitachi Ltd Nonaqueous electrolyte and secondary battery
JP2012138327A (en) * 2010-12-28 2012-07-19 Hitachi Ltd Nonaqueous electrolyte and nonaqueous secondary battery including the same
CN114665061A (en) * 2022-02-24 2022-06-24 江苏中兴派能电池有限公司 Thermal cracking composite microsphere, positive plate containing composite microsphere and lithium ion battery

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7537861B2 (en) * 2002-07-31 2009-05-26 Ube Industries, Ltd. Lithium secondary battery employing fluorine-substituted cyclohexylbenzene containing electrolytic solution
JP4552188B2 (en) * 2002-07-31 2010-09-29 宇部興産株式会社 Lithium secondary battery
JPWO2004012295A1 (en) * 2002-07-31 2005-11-24 宇部興産株式会社 Lithium secondary battery
JP2010182685A (en) * 2002-07-31 2010-08-19 Ube Ind Ltd Lithium secondary battery, and method of charging/discharging the same
WO2004012295A1 (en) * 2002-07-31 2004-02-05 Ube Industries, Ltd. Lithium secondary battery
EP1691441A4 (en) * 2003-11-13 2009-11-18 Ube Industries NONAQUEOUS ELECTROLYTIC SOLUTION AND LITHIUM ACCUMULATOR
US7794885B2 (en) 2003-11-13 2010-09-14 Ube Industries, Ltd. Non-aqueous electrolytic solution and lithium secondary battery
WO2005048391A1 (en) 2003-11-13 2005-05-26 Ube Industries, Ltd. Nonaqueous electrolyte solution and lithium secondary battery
JP2006278260A (en) * 2005-03-30 2006-10-12 Ngk Insulators Ltd Lithium secondary battery
JP2008226606A (en) * 2007-03-12 2008-09-25 Denso Corp Manufacturing method of lithium secondary battery
JP2012138314A (en) * 2010-12-28 2012-07-19 Hitachi Ltd Nonaqueous electrolyte and secondary battery
JP2012138327A (en) * 2010-12-28 2012-07-19 Hitachi Ltd Nonaqueous electrolyte and nonaqueous secondary battery including the same
CN114665061A (en) * 2022-02-24 2022-06-24 江苏中兴派能电池有限公司 Thermal cracking composite microsphere, positive plate containing composite microsphere and lithium ion battery

Similar Documents

Publication Publication Date Title
US8795893B2 (en) Nonaqueous secondary battery electrode, nonaqueous secondary battery including the same, and assembled battery
JP4092618B2 (en) Nonaqueous electrolyte secondary battery
JP5666287B2 (en) Nonaqueous electrolyte secondary battery
JP5094084B2 (en) Nonaqueous electrolyte secondary battery
JP2006344390A (en) Non-aqueous electrolyte secondary battery
JP2008300180A (en) Nonaqueous electrolyte secondary battery
JP2002358999A (en) Non-aqueous electrolyte secondary battery
JP3914048B2 (en) Non-aqueous secondary battery and portable device using the same
JP2008091236A (en) Nonaqueous electrolyte secondary battery
JPH09147913A (en) Nonaqueous electrolyte battery
JP5279045B2 (en) Non-aqueous electrolyte secondary battery
JP4306858B2 (en) Solute for non-aqueous electrolyte battery and non-aqueous electrolyte battery
JP2004119350A (en) Lithium secondary battery
JP3748843B2 (en) Organic electrolyte secondary battery
JP2003123764A (en) Non-aqueous secondary battery
JP2003132949A (en) Non-aqueous secondary battery and method of manufacturing the same
JP5474224B2 (en) Non-aqueous electrolyte secondary battery system
JP2002313416A (en) Non-aqueous electrolyte secondary battery
JP7200465B2 (en) Non-aqueous electrolyte for batteries and lithium secondary batteries
JP2014017136A (en) Nonaqueous electrolyte secondary battery
JP5786137B2 (en) Cylindrical lithium ion secondary battery
JP2018133284A (en) Nonaqueous electrolyte and nonaqueous electrolyte battery using the same
JP4439205B2 (en) Nonaqueous electrolyte secondary battery
JP2003187863A (en) Organic electrolyte secondary battery
JP2006318839A (en) Non-aqueous secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080703

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080916