JP2003128041A - Cylindrical folding structure - Google Patents
Cylindrical folding structureInfo
- Publication number
- JP2003128041A JP2003128041A JP2001322823A JP2001322823A JP2003128041A JP 2003128041 A JP2003128041 A JP 2003128041A JP 2001322823 A JP2001322823 A JP 2001322823A JP 2001322823 A JP2001322823 A JP 2001322823A JP 2003128041 A JP2003128041 A JP 2003128041A
- Authority
- JP
- Japan
- Prior art keywords
- folding
- fold
- fold lines
- fold line
- line
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000011161 development Methods 0.000 claims description 270
- 239000000470 constituent Substances 0.000 claims description 13
- 230000007423 decrease Effects 0.000 claims description 2
- 230000018109 developmental process Effects 0.000 description 268
- 238000000034 method Methods 0.000 description 132
- 238000010586 diagram Methods 0.000 description 81
- 230000014509 gene expression Effects 0.000 description 72
- 238000012937 correction Methods 0.000 description 70
- 235000013305 food Nutrition 0.000 description 60
- 238000004519 manufacturing process Methods 0.000 description 38
- 238000000465 moulding Methods 0.000 description 32
- 230000008859 change Effects 0.000 description 27
- 238000005304 joining Methods 0.000 description 15
- 239000012778 molding material Substances 0.000 description 14
- 238000005520 cutting process Methods 0.000 description 12
- 238000005452 bending Methods 0.000 description 11
- 229910052739 hydrogen Inorganic materials 0.000 description 10
- 238000011160 research Methods 0.000 description 10
- 238000004364 calculation method Methods 0.000 description 9
- 230000003252 repetitive effect Effects 0.000 description 9
- 229910003460 diamond Inorganic materials 0.000 description 7
- 239000010432 diamond Substances 0.000 description 7
- 239000004033 plastic Substances 0.000 description 7
- 238000007666 vacuum forming Methods 0.000 description 7
- 239000013598 vector Substances 0.000 description 7
- 239000000463 material Substances 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 238000013459 approach Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000002441 reversible effect Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- QNRATNLHPGXHMA-XZHTYLCXSA-N (r)-(6-ethoxyquinolin-4-yl)-[(2s,4s,5r)-5-ethyl-1-azabicyclo[2.2.2]octan-2-yl]methanol;hydrochloride Chemical compound Cl.C([C@H]([C@H](C1)CC)C2)CN1[C@@H]2[C@H](O)C1=CC=NC2=CC=C(OCC)C=C21 QNRATNLHPGXHMA-XZHTYLCXSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 235000015429 Mirabilis expansa Nutrition 0.000 description 2
- 244000294411 Mirabilis expansa Species 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 235000012054 meals Nutrition 0.000 description 2
- 235000013536 miso Nutrition 0.000 description 2
- -1 polypropylene Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 235000014347 soups Nutrition 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- PCTMTFRHKVHKIS-BMFZQQSSSA-N (1s,3r,4e,6e,8e,10e,12e,14e,16e,18s,19r,20r,21s,25r,27r,30r,31r,33s,35r,37s,38r)-3-[(2r,3s,4s,5s,6r)-4-amino-3,5-dihydroxy-6-methyloxan-2-yl]oxy-19,25,27,30,31,33,35,37-octahydroxy-18,20,21-trimethyl-23-oxo-22,39-dioxabicyclo[33.3.1]nonatriaconta-4,6,8,10 Chemical compound C1C=C2C[C@@H](OS(O)(=O)=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2.O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/C=C/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 PCTMTFRHKVHKIS-BMFZQQSSSA-N 0.000 description 1
- 101100116283 Arabidopsis thaliana DD11 gene Proteins 0.000 description 1
- 229930091051 Arenine Natural products 0.000 description 1
- 102100024522 Bladder cancer-associated protein Human genes 0.000 description 1
- 101150110835 Blcap gene Proteins 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 101100493740 Oryza sativa subsp. japonica BC10 gene Proteins 0.000 description 1
- 101100219325 Phaseolus vulgaris BA13 gene Proteins 0.000 description 1
- 229920006328 Styrofoam Polymers 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 235000008446 instant noodles Nutrition 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000007659 motor function Effects 0.000 description 1
- 238000010137 moulding (plastic) Methods 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000008261 styrofoam Substances 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 238000004154 testing of material Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B31—MAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER; WORKING PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
- B31B—MAKING CONTAINERS OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
- B31B50/00—Making rigid or semi-rigid containers, e.g. boxes or cartons
- B31B50/26—Folding sheets, blanks or webs
Landscapes
- Containers Having Bodies Formed In One Piece (AREA)
- Cartons (AREA)
- Machines For Manufacturing Corrugated Board In Mechanical Paper-Making Processes (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、外形が小さくなる
折り畳み状態と、外形が大きくなる展開状態との間で変
形するように折り畳み/展開可能な折り畳み構造物に関
し、特に、円筒状、角筒状、円錐状または角錐状の折り
畳み構造物に関する。本発明は、例えば、折りたたみ可
能なペットボトルや紙コップ、コーヒー缶等の金属製の
缶、インスタント食品の容器等に適用可能である。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a folding structure which can be folded / expanded so as to be deformed between a folded state in which the outer shape is small and a deployed state in which the outer shape is large, and more particularly, it is a cylindrical shape or a rectangular tube. -Shaped, conical or pyramidal folded structures. INDUSTRIAL APPLICABILITY The present invention is applicable to, for example, foldable plastic bottles, paper cups, metal cans such as coffee cans, and instant food containers.
【0002】[0002]
【従来の技術】折りたたみ・展開構造の開発に関する研
究は、工学的には宇宙空間で展開するためのアンテナや
太陽電池用の構造物の構築、あるいは逆に折りたたみ法
を用いた塑性座屈の研究に関連して発展した。また、こ
れらの研究は、昆虫等の羽や木の葉の折りたたみの機構
等、生物の成長や運動機能の解明を目的とした研究にも
適用されるようになってきた。これらの研究等により、
種々の折り畳み可能な筒状(円筒状、角筒状、円錐状及
び角錐状)折り畳み構造物が知られており、例えば、実
開昭59−188837号公報、実開昭57−6441
5号公報、特開平11−223299号公報記載の折り
畳み構造物が従来公知である。2. Description of the Related Art Research on the development of folding and unfolding structures is technically carried out by constructing structures for antennas and solar cells for unfolding in outer space, or by studying plastic buckling using the folding method. Developed in relation to. Moreover, these studies have also been applied to studies aimed at elucidating growth and motor functions of living things such as the mechanism of insect wings and folding of leaves. Through these researches,
Various foldable tubular (cylindrical, prismatic, conical and pyramidal) folding structures are known, for example, Japanese Utility Model Publication No. 59-188837 and Japanese Utility Model Publication 57-6441.
The folding structure disclosed in Japanese Patent Laid-Open No. 5 and Japanese Patent Laid-Open No. 11-223299 is conventionally known.
【0003】[0003]
【発明が解決しようとする課題】以前は、折り線に囲ま
れた各パーツが密着状態で折り畳むための条件である折
りたたみ条件、及び、折り線に沿って折り畳んだ時に前
記パーツが密着して、筒状折り畳み構造物が軸方向に折
り畳まれるための条件である閉じる条件が知られていな
かった。したがって、従来は、非常に限定された形状の
パーツのみによって構成された折り畳み構造物や、パー
ツどうしが密着状態で折り畳むことのできない(途中ま
でしか折り畳めない)折り畳み構造物しか製作すること
ができず、用途に応じた任意の形状の折り畳み構造物を
製作することができなかった。Previously, the folding condition which is a condition for folding each part surrounded by the fold line in a close contact state, and the parts are closely adhered when folded along the fold line, The closing condition, which is a condition for the tubular folding structure to be folded in the axial direction, has not been known. Therefore, conventionally, it is possible to manufacture only a folding structure composed of only parts with a very limited shape, and a folding structure in which the parts cannot be folded in close contact with each other (they can be folded only halfway). However, it was not possible to manufacture a folding structure having an arbitrary shape according to the application.
【0004】本発明者は前記事情に鑑み、折り畳み/展
開可能な筒状構造物について研究を重ねた結果、筒状構
造物がその側壁に形成された複数の折り線に沿って折り
畳む時に、折り線によって囲まれたパーツが密着状態で
折り畳まれるために複数の折り線が満足しなければなら
ない条件を導き出すに至った。以下、本発明者の研究の
説明を行う。In view of the above circumstances, the present inventor has conducted repeated research on a foldable / unfoldable tubular structure, and as a result, when the tubular structure is folded along a plurality of fold lines formed on its sidewall, folding is performed. We have derived the conditions that multiple folding lines must satisfy in order for parts surrounded by lines to be folded in close contact. The research conducted by the present inventor will be described below.
【0005】(本発明者の研究の説明)本発明者は、筒
状折り畳み/展開構造物の研究の結果、次のことがわか
った。
(A)多数の分割平面壁(パーツ)により側壁が形成さ
れる擬似的な円筒壁及び円錐壁(筒壁)に関し、その分
割平面壁の外側辺に形成された折り線が所定の折り畳み
条件および閉じる条件を満足する時に、前記筒壁は分割
平面壁が密着状態で折り畳み可能である。
(B)本発明者は、円筒壁、角筒壁、円錐壁及び角錐壁
の折り畳み条件及び閉じる条件をすべて明らかにした。
この折り畳み条件及び閉じる条件によると、前記分割平
面壁(パーツ)の形状は、従来公知の形状や従来研究さ
れていた形状(二等辺三角形、直角三角形、等脚台形
等)以外の種々の形状によって構成することが可能であ
る。
(C)本発明者は、前記折り畳み条件、閉じる条件及び
連続条件を満足する円筒壁、角筒壁、円錐壁、角錐壁の
展開図の一般的な作図法を明らかにした。(Explanation of Research by the Inventor) As a result of research on the tubular folding / unfolding structure, the inventor found the following. (A) Regarding a pseudo cylindrical wall and a conical wall (cylindrical wall) whose side wall is formed by a large number of divided plane walls (parts), a fold line formed on the outer side of the divided plane wall has a predetermined folding condition and When the closing condition is satisfied, the cylindrical wall is foldable with the divided plane walls in close contact with each other. (B) The present inventor has clarified all the folding conditions and closing conditions of the cylindrical wall, the prismatic wall, the conical wall, and the pyramidal wall.
According to the folding condition and the closing condition, the shape of the divided plane wall (part) may be various shapes other than the conventionally known shape and the shape that has been conventionally studied (isosceles triangle, right triangle, isosceles trapezoid, etc.). It is possible to configure. (C) The present inventor has clarified a general drawing method of a development view of a cylindrical wall, a prismatic wall, a conical wall, and a pyramidal wall that satisfy the folding condition, the closing condition, and the continuous condition.
【0006】次に、研究結果の詳細を説明する。ここで
は、折り畳みの可能性を幾何学的観点から明らかにする
ことを主眼にし、折り紙モデルを用いた折り畳み法の一
般的な議論を行い、次に折り畳み可能な筒状の構造モデ
ルについて展開図を用いて解析的に明らかにしていく。Next, the details of the research results will be described. Here, we focus on clarifying the possibility of folding from a geometrical point of view, make a general discussion of the folding method using the origami model, and then develop the foldable cylindrical structural model. It will be clarified analytically by using.
【0007】1.折り畳み方法(折り畳み条件の説明)
まず最初に、折り線によって囲まれたパーツどうしが密
着状態で折り畳まれるための条件である折り畳み条件
を、1つの節点に集まる折り線の数及び山折り線と谷折
り線の集まり方のパターンに分けて説明する。なお、以
下の折り畳み条件に関する説明は、本発明者の論文、日
本機械学会論文集66巻643号に詳細に記載されている。
(1)1節点4折り線法
図1は折り畳み構造物の折り畳まれる直線である折り線
と複数の折り線の交点である節点との代表例を示す折り
線説明図である。図1において、山折りによる折り線を
実線(M1、M2、M3)、谷折り線を破線(V1)で
表し、節点に合流する山折り、谷折り線の数を各々N
M、NVとする。前記節点におけるNMと、NVとの間には
次式が成り立つことは良く知られている。
|NM−NV|=2 …………………………………………………… (1)
全折り線数をNTと置くと、NT=NM+NVとなる。式
(1)を、例えばNM−NVとするとNT=2(1+NV)
となり、節点を構成する折り線の数は、「偶数」となる
ことがわかる。したがって、全折り線数NT≧4である
ことが分かり、NT=4が節点を構成するための最小の
全折り線数である。図1のようにX軸を山折り線(M
3)に一致させ、山折り線(M1)と(M2)に沿って
折ると、谷折り(V1)が生じる。この時、山折り線
(M1)、(M2)と前記X軸とのなす角を各々α、β
とし、谷折り線(V1)と山折り線(M2)とのなす角
をγとすると、
γ=α …………………………………………………………………… (2)
の関係が与えられる。式(2)は、Y軸方向に折り線
(M1、M2、M3、V1)で完全に折り畳んだ時の角
度の関係式(折り畳み条件式)である。1. Folding Method (Explanation of Folding Conditions) First, the folding condition that is a condition for the parts surrounded by the folding lines to be folded in close contact with each other is defined by the number of folding lines and the mountain fold lines and valleys gathering at one node. The fold lines will be explained separately for each pattern. The following description regarding the folding conditions is described in detail in the present inventor's paper, The Japan Society of Mechanical Engineers, Volume 66, No. 643. (1) 1-node 4-fold line method FIG. 1 is a fold line explanatory diagram showing a typical example of a fold line that is a straight line on which a folded structure is folded and a node that is an intersection of a plurality of fold lines. In FIG. 1, the fold lines formed by mountain folds are represented by solid lines (M1, M2, M3) and the valley fold lines are represented by broken lines (V1).
M and NV. It is well known that the following equation holds between NM and NV at the node. | NM-NV | = 2 …………………………………………………… (1) If the total number of folding lines is NT, then NT = NM + NV. If equation (1) is, for example, NM-NV, then NT = 2 (1 + NV)
Therefore, it can be seen that the number of folding lines forming the node is "even". Therefore, it is found that the total number of folding lines NT ≧ 4, and NT = 4 is the minimum total number of folding lines for forming a node. As shown in Fig. 1, the X-axis is the mountain fold line (M
When it is aligned with 3) and folded along the mountain fold lines (M1) and (M2), a valley fold (V1) occurs. At this time, the angles formed by the mountain fold lines (M1) and (M2) and the X axis are α and β, respectively.
And the angle between the valley fold line (V1) and the mountain fold line (M2) is γ, then γ = α …………………………………………………………………… ……… (2) is given. Expression (2) is a relational expression (folding condition expression) of the angle when completely folded along the Y-axis direction along the folding line (M1, M2, M3, V1).
【0008】この操作によって、帯状の紙は半折りにさ
れ、節点右方の軸方向は2α(α<βの時)、あるいは
2β(α>βの時)だけ折り曲げられる。α=βの場合
には軸方向はY軸方向に折り曲げられることはない。こ
の時、山折と谷折りを交互に行うと帯状の紙はジグザグ
に折れ曲がり、山折り(または谷折り)だけを連続的に
行うと筒状になることが容易に推察される。本明細書で
は、このように平面紙をジグザグに折り曲げ、新たな平
面に折り畳む”平面折り”については触れず、同方向に
折り曲げてY軸方向に折り畳み得る筒状の構造モデルを
製作する折り方である”筒折り”に関して述べる。By this operation, the band-shaped paper is folded in half and the axial direction to the right of the node is bent by 2α (when α <β) or 2β (when α> β). When α = β, the axial direction is not bent in the Y-axis direction. At this time, it is easily inferred that the band-shaped paper is bent zigzag when the mountain folds and the valley folds are alternately performed, and becomes cylindrical when only the mountain folds (or the valley folds) are continuously performed. In the present specification, the "planar folding" in which the flat paper is thus folded in a zigzag manner and folded in a new plane is not mentioned, but a folding method for producing a cylindrical structural model that can be folded in the same direction and folded in the Y-axis direction "Cylinder folding" will be described.
【0009】(2)1節点6折り線法(タイプ1)
図2は2本の谷折り線が4本の山折り線の対称位置に挿
入されるタイプの1節点6折り線の折り畳み条件を示す
図である。図2に示されるように、6本の折り線が1つ
の節点で交わる1節点6折り線の時には、2本の谷折り
線が4本の山折り線の対称位置に挿入される組み合わせ
がある。これは、本明細書で多用する折り線法であり、
この場合の折り畳み条件を満たす角度関係を以下に示
す。山折り線を(M1)、(M2)、(M3)、(M
4)、谷折り線を(V1)、(V2)とし、谷折り線
(V1)の延長戦をX軸とする。折り線(M1)と(V
1)、(M2)と(V1)のなす角度をα、βとし、
(M3)と(V2)、(M4)と(V2)のなす角度を
γ、δとする。そして、(V2)とX軸とがなす角度を
θとおくと、折り畳み条件式は次式(3)で表される。
β−α=δ−γ+θ ………………………………………………………(3)
前記式(3)が折り畳み条件式であることは、次のよう
に証明される。(2) 1-node 6-fold line method (type 1) FIG. 2 shows a folding condition of a 1-node 6-fold line of a type in which two valley fold lines are inserted at symmetrical positions of four mountain fold lines. FIG. As shown in FIG. 2, when there are one node and six fold lines where six fold lines intersect at one node, there are combinations in which two valley fold lines are inserted at symmetrical positions of four mountain fold lines. . This is a folding line method frequently used in this specification,
The angular relationship that satisfies the folding condition in this case is shown below. The mountain fold line is (M1), (M2), (M3), (M
4), the valley fold lines are (V1) and (V2), and the overtime of the valley fold line (V1) is the X axis. Fold line (M1) and (V
1), the angles formed by (M2) and (V1) are α and β,
The angles formed by (M3) and (V2) and between (M4) and (V2) are γ and δ. Then, when the angle formed by (V2) and the X axis is set to θ, the folding conditional expression is expressed by the following expression (3). β-α = δ-γ + θ …………………………………………………………………………………………………………………………………………………………………… (3) To be done.
【0010】図2に示された1節点6折り線法の場合
に、節点OでY軸方向に折り畳まれる条件を導く。節点
Oを原点としてX−Y軸を図2のように取る。折り線
(M1)、(V1)、(M2)とX軸への垂直線(P)
とのなす角度をp1、p2、p3とし、垂直線(Q)と
折り線(M4)、(V2)、(M3)とのなす角度をq
1、q2、q3とすると、
p1=π/2−α、
p2=π/2、
p3=π/2+β、
q1=π/2+δ+θ、
q2=π/2+θ、
q3=π/2−γ+θ、
となる。In the case of the 1-node 6-fold line method shown in FIG. 2, the condition for folding at the node O in the Y-axis direction is derived. With the node O as the origin, the XY axes are taken as shown in FIG. Fold lines (M1), (V1), (M2) and vertical line (P) to the X-axis
Let p1, p2, p3 be the angles formed by and, and q be the angle formed by the vertical line (Q) and the fold lines (M4), (V2), (M3).
1, q2, q3, p1 = π / 2-α, p2 = π / 2, p3 = π / 2 + β, q1 = π / 2 + δ + θ, q2 = π / 2 + θ, q3 = π / 2−γ + θ .
【0011】山折り線(M1)、(M2)、及び谷折り
線(V1)によって、X<0の領域のX軸対称位置(図
2の点A、点B)を基点とする同方向を向く2つのベク
トルは、p1〜p3の関係を使用すると、折り畳み後、
p1−p2+p3=−α+β+π/2の角度をなす。ま
た、X>0の領域では、山折り線(M3)、(M4)及
び谷折り線(V2)によってX軸対称位置(図2の点
C、点D)を貴店にする2つのベクトルは、折り畳み
後、q1−q2+q3=δ−γ+θ+π/2の角度をな
す。折り畳み後は、前記点A、点C及び点B、点Dは各
々同一平面状にあり、各々のベクトルは同方向を向くこ
とから、これら2つの式を等置して前記式(3)が得ら
れる。前記谷折り線(V2)とX軸とが一致する場合に
はθ=0として、次式(3′)が成立する。
β−α=δ−γ …………………………………………………………(3′)By the mountain fold lines (M1), (M2), and the valley fold line (V1), the same direction with respect to the X-axis symmetrical position (point A, point B in FIG. 2) in the region of X <0 is set. The two vectors facing, using the relation p1 to p3, after folding,
An angle of p1−p2 + p3 = −α + β + π / 2 is formed. Further, in the area of X> 0, two vectors that make the X-axis symmetrical position (point C, point D in FIG. 2) your store by the mountain fold lines (M3), (M4) and the valley fold line (V2) are: After folding, an angle of q1−q2 + q3 = δ−γ + θ + π / 2 is formed. After folding, the points A, C and B, D are on the same plane, and the respective vectors are oriented in the same direction. Therefore, these two equations are equally placed to obtain the equation (3). can get. When the valley fold line (V2) coincides with the X axis, θ = 0 is set, and the following expression (3 ′) is established. β-α = δ-γ ………………………………………………………… (3 ′)
【0012】(3)1節点6折り線法(タイプ2)
図3は山折り線(M1)、(M2)、(M3)の間に谷
折り線(V1)、(V2)が交互に挿入される場合の1
節点6折り線の折り畳み条件を示す図である。図3に示
すように、節点Oを原点としてX-Y軸をとる。そし
て、図3において、山折り線(M4)の延長線であるX
軸と山折り線(M1)及び(M3)とがなす角度を各々
α*、β*とし、各折り線間の角度をθ1〜θ4とする。節
点OでY軸方向に折り畳まれる条件を前述と同様にして
導く、X<0の領域では、X軸の対称位置(図3の点
B、点C)にある同方向を向くベクトルは、山折り線
(M4)によって折り畳み後には、角π(=Q1)だけ
回転し反対方向を向く。(3) 1-node 6-fold line method (type 2) In FIG. 3, valley fold lines (V1) and (V2) are alternately inserted between the mountain fold lines (M1), (M2) and (M3). When it is done 1
It is a figure which shows the folding conditions of the nodal point 6 folding line. As shown in FIG. 3, the XY axis is set with the node O as the origin. Then, in FIG. 3, X which is an extension of the mountain fold line (M4)
The angles formed by the axes and the mountain fold lines (M1) and (M3) are α * and β * , respectively, and the angles between the fold lines are θ1 to θ4. In the region where X <0, the condition for folding in the Y-axis direction at the node O is derived in the same manner as described above. After folding along the folding line (M4), it rotates by an angle π (= Q1) and faces in the opposite direction.
【0013】次にX>0の領域のX軸の対称位置(図3
の点D、点E)にある同方向をむくベクトルを考える。
X軸への垂線(Q)と折り線(M1)、(V1)、(M
2)、(V2)、(M3)のなす角度を図3に示すよう
にq1〜q5とすると、
q1=π/2+α*、
q2=π/2+α*、
q3=π/2+α*、
q4=π/2−β*、
q5=π/2−β*、
となる。例えば、山折り線(M1)での折り畳みによっ
て、前記ベクトルは山折り線(M1)に対して、角度2
×q1だけ回転する。したがって、これらの折り畳みに
よるこれらのベクトルのなす角Q2は、Q2 =2(q1−
q2+q3−q4+q5)=π/2+α*−(θ2+θ4)で
与えられる。折り畳み後、点B、点Dは同一平面上にあ
り、この点でのベクトルは同方向を向いているので、こ
のQ2の値とX<0の領域のQ1=πと等置すると、以下
の折り畳み条件式(4)を得る。
α*=θ2+θ4 ……………………………………………………………(4)Next, the symmetrical position of the X axis in the region of X> 0 (see FIG. 3).
Consider the vector in the same direction at points D and E).
A perpendicular line (Q) to the X axis and a fold line (M1), (V1), (M
Assuming that the angles formed by 2), (V2) and (M3) are q1 to q5 as shown in FIG. 3, q1 = π / 2 + α * , q2 = π / 2 + α * , q3 = π / 2 + α * , q4 = π / 2-β * , q5 = π / 2−β * . For example, by folding at the mountain fold line (M1), the vector is at an angle of 2 with respect to the mountain fold line (M1).
Rotate by × q1. Therefore, the angle Q2 formed by these vectors due to these folds is Q2 = 2 (q1−
q2 + q3−q4 + q5) = π / 2 + α * − (θ2 + θ4). After folding, points B and D are on the same plane, and the vectors at this point point in the same direction. Therefore, if this value of Q2 and Q1 = π of the region of X <0 are equal, The folding conditional expression (4) is obtained. α * = θ2 + θ4 …………………………………………………………… (4)
【0014】また、図3において、α*+β*=θ1+θ2
+θ3+θ4の関係が有るので、この式を前記式(4)に
用いると、
β*=θ1+θ3 ……………………………………………………………(5)
を得る。したがって、このタイプの1節点6折り線法の
折り畳み条件式は、
α*=θ2+θ4 または β*=θ1+θ3 …………………………(6)
で表される。Further, in FIG. 3, α * + β * = θ1 + θ2
Since there is a relation of + θ3 + θ4, if this formula is applied to the formula (4), β * = θ1 + θ3 ………………………………………………………… (5) obtain. Therefore, the folding conditional expression of the 1-node 6-fold line method of this type is expressed by α * = θ2 + θ4 or β * = θ1 + θ3 (6).
【0015】前述の説明から、1節点6折り線法の場合
には、中央の節点の両側で常に山折り(あるいは谷折
り)となる。この折り方を繰り返して行うと、同じ方向
に折り曲げられ、自動的に平面紙は筒状になる。したが
って、前記1節点4折り線法、及び1節点6折り線法の
折り法を使用すると、折り畳み可能な筒状折り畳み構造
物を製作できる可能性がある。From the above description, in the case of the 1-node 6-fold line method, mountain folds (or valley folds) are always made on both sides of the central node. By repeating this folding method, the flat paper is automatically bent into a tubular shape by bending in the same direction. Therefore, using the 1-node 4-fold line method and the 1-node 6-fold line method, it is possible to manufacture a foldable tubular folding structure.
【0016】2.折り線付筒状折り畳み構造物の製作
(閉じる条件及び連続条件の説明)
等角の山折りを連続的に行うと垂直方向に折り畳みが可
能な円筒を製作することができることは容易に推察され
る。以下このような操作によって折り畳み可能な円筒を
製作することを考える。なお、円筒型の筒状構造物の閉
じる条件については、前述の日本機械学会論文集66巻64
3号に記載されており、円錐型の筒状構造物の閉じる条
件については、本発明者の論文、日本機械学会論文集66
巻647号に記載されている。2. Manufacture of tubular folding structure with fold lines (Explanation of closing condition and continuous condition) It is easily inferred that a cylinder that can be folded in the vertical direction can be manufactured by continuously performing equiangular mountain folds. . Hereinafter, it will be considered to manufacture a foldable cylinder by such an operation. Regarding the closing conditions of the cylindrical tubular structure, the above-mentioned Proceedings of the Japan Society of Mechanical Engineers, Volume 66, 64
No. 3, the conditions for closing the conical tubular structure are described in the present inventor's paper, JSME Proceedings 66
Volume 647.
【0017】(1)円筒型の筒状折り畳み構造物の製作
(1−1)円筒を展開した帯板(円筒型筒状構造物の閉
じる条件の説明)
図4は帯板を折り線に沿って折りたたんだときに帯板の
両端部が接合されて円筒となる条件を説明する図であ
り、図4Aは帯板と折り線および折り線の角度を示す
図、図4Bは図4Aに示す折り線に沿って折りたたんだ
ときの基準軸の向きを変化を示す図である。図4Aのよ
うに帯板を山折り、谷折りを交互、あるいは同方向にN
回折る場合を考える(N:偶数)。N個の折り線(1),
(2),…,(N)とX軸とのなす角をθ1、θ2、…、θNと
し、折られた後の軸方向を各々X1、X2…,XNとする。
1つ目の折りの操作(折り線(1))によって、(1)の右側
部分は裏面となる。この操作によって新しい軸(X1)
はX0軸と2θ1=Θ2の角度をなす(図4B参照)。折
り線(2)で第2番目の折りを行うと、X2軸は基準軸X0
と角度Θ2=2θ1−2θ2をなす。折り(3)によってX3
軸はX0とΘ3=2(θ1−θ2+θ3)の角度となる。こ
れら一連の折りの操作によって、表裏面交互に現われ、
N回の折りの操作によって、XN軸が基準軸となす角ΘN
(N=偶数の場合)は次式で表される。
ΘN=2{θ1−θ2+θ3−…−θN} ……………………………………(7)
この帯板が折りたたまれた時、帯板の左右端が隙間なく
接合されるための条件(閉じる条件)は、nを0以外の
整数としたとき次式(8)で与えられる。
ΘN/2π =n ……………………………………………………………(8)(1) Manufacture of a cylindrical tubular fold structure (1-1) Strip plate in which a cylinder is expanded (explanation of conditions for closing the cylindrical tubular structure) FIG. 4 shows the strip plate along the fold line. FIG. 4B is a diagram for explaining the conditions under which both end portions of the strip plate are joined together to form a cylinder when folded. FIG. It is a figure which shows the change of the direction of a reference axis | shaft when folding along a line. As shown in Fig. 4A, the strips are mountain-folded and valley-folded alternately, or N in the same direction.
Consider the case of diffraction (N: even number). N fold lines (1),
The angles formed by (2), ..., (N) and the X-axis are θ1, θ2, ..., θN, and the axial directions after folding are X1, X2, ..., XN, respectively.
By the first folding operation (fold line (1)), the right side portion of (1) becomes the back surface. This operation creates a new axis (X1)
Forms an angle of 2θ1 = Θ2 with the X0 axis (see FIG. 4B). When the second fold is made at the fold line (2), the X2 axis becomes the reference axis X0.
And the angle Θ2 = 2θ1-2θ2. X3 by Fold (3)
The axis is an angle of X0 and Θ3 = 2 (θ1−θ2 + θ3). By these series of folding operations, the front and back surfaces appear alternately,
The angle ΘN formed by the XN axis and the reference axis by folding operation N times
(When N = even) is expressed by the following equation. ΘN = 2 {θ1−θ2 + θ3−… −θN} …………………………………… (7) When this strip is folded, the left and right edges of the strip are joined together without any gaps. The condition (close condition) is given by the following expression (8) when n is an integer other than 0. ΘN / 2π = n ……………………………………………………………… (8)
【0018】(1−2)1節点4折り線法の折り線群に
よって構成された折り線付円筒及び擬似円筒
次に、前記閉じる条件(式(8))を満足するように折
り畳まれた帯板の左右両端が隙間なく接合される具体例
を説明する。図5は閉じる条件を満たし且つ折り畳み方
向が同一方向(山折りまたは谷折りのいずれか一方)の
折り線により正4角形に折り畳む例の説明図で、図5A
は展開された状態の帯板の折り線を示す図、図5Bは折
り畳み途中の状態を示す図、図5Cは折り畳んだ状態を
示す図である。図5Aにおいて基準軸であるX軸方向に
延びる帯板の同一方向(山折りまたは谷折りのいずれか
一方)に折られる折り線(1),(2),(3),(4)はそれぞれX
軸に対して角度θ1,θ2,θ3,θ4をなしており、θ1
=θ3=135°、θ2=θ4=45°である。すなわ
ち、折り線(1),(2),(3),(4)はX軸に対して45°(=
π/4)でジグザグに形成されている。また、X軸の折
り線(1)より左側部分をX0軸とし、n=1,2,3,4
とした場合の各折り線(n)の右側のX軸部分をXn軸
(n=1〜4)とする。図5Cにおいて軸X2が軸X0と
なす角度Θ2はΘ2=2(θ1−θ2)=2(135°−4
5°)=2×90°=180°=πである。また、軸X
4が軸X0となす角度Θ4はΘ4=2(θ1−θ2+θ3−θ
4)=2(135°−45°+135°−45°)=2
πである。したがって、前記式(8)のnは、n=(Θ
4/2π)=1となり、軸X4は軸X0と重なる。この場
合、帯板の両端は隙間無く接合される。(1-2) Cylinder with Folding Line and Pseudo Cylinder Composed of Folding Line Group of One-node Four-Folding Line Method Next, a band folded so as to satisfy the closing condition (equation (8)). A specific example in which the left and right ends of the plate are joined together without a gap will be described. 5A and 5B are explanatory diagrams of an example of folding into a regular quadrangle along a folding line that satisfies the closing condition and the folding direction is the same direction (either mountain fold or valley fold).
FIG. 5B is a diagram showing a fold line of the strip in the unfolded state, FIG. 5B is a diagram showing a state in the middle of folding, and FIG. 5C is a diagram showing a folded state. In FIG. 5A, the folding lines (1), (2), (3), and (4) that are folded in the same direction (either mountain fold or valley fold) of the strip that extends in the X-axis direction that is the reference axis are respectively X
Angles θ1, θ2, θ3, θ4 are formed with respect to the axis, and θ1
= Θ3 = 135 °, θ2 = θ4 = 45 °. That is, the fold lines (1), (2), (3), (4) are 45 ° (=
It is formed in zigzag at π / 4). Further, the left side of the folding line (1) of the X axis is the X0 axis, and n = 1, 2, 3, 4
In this case, the X-axis portion on the right side of each folding line (n) is defined as the Xn-axis (n = 1 to 4). In FIG. 5C, the angle Θ2 formed by the axis X2 and the axis X0 is Θ2 = 2 (θ1−θ2) = 2 (135 ° -4
5 °) = 2 × 90 ° = 180 ° = π. Also, the axis X
The angle Θ4 formed by 4 with the axis X0 is Θ4 = 2 (θ1−θ2 + θ3−θ
4) = 2 (135 ° −45 ° + 135 ° −45 °) = 2
π. Therefore, n in the equation (8) is n = (Θ
4 / 2π) = 1, and the axis X4 overlaps with the axis X0. In this case, both ends of the strip plate are joined together without a gap.
【0019】前記図5の説明から、折り畳み方向が同一
方向(山折りまたは谷折りのいずれか一方)の折り線に
より帯板を同じ方向に折り曲げて正N角形(Nは偶数)
に折り畳む場合、基準軸Xに対して角度θ=π/Nの折
り線(1),(2)…,(N)を等間隔でジグザグに形成すればよ
いことが分かる。From the above description of FIG. 5, the strip plate is bent in the same direction along the folding line having the same folding direction (either mountain fold or valley fold) to form a regular N-gon (N is an even number).
It is understood that when folding is performed, folding lines (1), (2) ..., (N) having an angle θ = π / N with respect to the reference axis X may be formed in zigzag at equal intervals.
【0020】(1−2−1)主折り線が水平の折り線群
からなる折り線付円筒及び擬似円筒の具体例
前記図4Aの帯状の紙の上下端を水平の折り線と考え、
Y軸方向にこれ等が何段か連結した平面紙を想定する。
そして、平行な水平の折り線(群)を主折り線と名付け
る。このようにして形成した平面紙の垂直方向の両端を
接合すると、折り線付筒状折り畳み構造物が形成され
る。その具体例を図6〜図13に示す。図6は前記図4
Aに示す帯状の板をπ・(N−2)/Nだけ等間隔に同
方向に折り曲げて正N角形を構成する場合で且つN=6
の場合の代表的な展開図を示す図である。図6に記載さ
れた筒状構造物では、前記式(7)で折り角度θの時、
2θだけ曲げられることを考慮して水平の折り線と角度
π/6をなす6本のジグザグの山折り線(1)〜(6)を等間
隔に導入している。各々の山折り線で、π/3ずつ折曲
げられ、最終的に6角形断面形状で折りたたまれる円筒
構造物が製作される。(1-2-1) Specific Examples of Cylinder with Folding Line and Pseudo Cylinder with Main Folding Line Consisted of Horizontal Folding Lines Considering the upper and lower ends of the band-shaped paper in FIG. 4A as horizontal folding lines,
Assume a plane paper in which these are connected in several stages in the Y-axis direction.
The parallel horizontal fold line (group) is named the main fold line. When the two ends of the plane paper thus formed in the vertical direction are joined together, a tubular folding structure with folding lines is formed. Specific examples thereof are shown in FIGS. FIG. 6 is the same as FIG.
When the strip-shaped plate shown in A is bent in the same direction by π · (N−2) / N at equal intervals to form a regular N-gon, and N = 6
It is a figure which shows the typical development view in the case of. In the tubular structure shown in FIG. 6, when the folding angle is θ in the formula (7),
Considering that it can be bent by 2θ, six zigzag mountain fold lines (1) to (6) which are at an angle π / 6 with the horizontal fold line are introduced at equal intervals. Each mountain fold line is bent by π / 3, and finally a cylindrical structure is produced which is folded into a hexagonal sectional shape.
【0021】図7は前記図6の山折り線と水平の折線の
角度の2倍(π/3)をα=2π/9とβ=π/9のよ
うに分解して不等辺の台形要素で構成される疑似円筒の
展開図である。正6角形に折り畳む場合には前記角度の
分割はその合計がπ/3になる限り、任意に選択するこ
とができる。図8は前記図6のY軸方向の山折り線をα
=π/3の山折り線Iとβ=π/6の谷折り線IIに分解
した折り線の組を6個導入することによって製作される
円筒の説明図で、図8Aは展開図、図8Bは前記図8A
の展開図の両端を接合したときに製作される折り畳み円
筒の半折り状態を示す図、図8Cは前記図8Bの折り畳
み円筒をさらに折り畳んだ状態を示す図である。図8A
において、ここでα−β=π/6である限りα、βの値
は自由に選択できる。図9は前記図6の点AとBを合致
させ、水平の折り線から山折り部分をなくした図で、水
平方向に底角π/6の2等辺三角形からなるダイヤモン
ド模様((1)〜(3))の展開図である。このとき、水平の
折り線部での断面形状は正三角形になり、これは薄肉円
筒の塑性座屈におけるdiamond座屈のモデルに対
応する。FIG. 7 is a trapezoidal element of unequal sides obtained by decomposing twice the angle (π / 3) between the mountain fold line and the horizontal fold line of FIG. 6 into α = 2π / 9 and β = π / 9. It is a development view of a pseudo cylinder constituted by. In the case of folding into a regular hexagon, the angle division can be arbitrarily selected as long as the total is π / 3. 8 shows the mountain fold line in the Y-axis direction of FIG. 6 by α.
= Π / 3 mountain fold line I and β = π / 6 valley fold line II, which is an explanatory view of a cylinder produced by introducing six sets of disassembled fold lines. FIG. 8B is the same as FIG. 8A.
FIG. 8 is a diagram showing a half-folded state of a folded cylinder produced when the both ends of the developed view of FIG. 8 are joined, and FIG. 8C is a diagram showing a state where the folded cylinder of FIG. 8B is further folded. Figure 8A
In here, as long as α-β = π / 6, the values of α and β can be freely selected. FIG. 9 is a diagram in which the points A and B of FIG. 6 are matched and the mountain folds are removed from the horizontal fold line. The diamond pattern ((1) to (1) to It is a development view of (3)). At this time, the cross-sectional shape at the horizontal fold line portion becomes an equilateral triangle, which corresponds to a model of diamond buckling in plastic buckling of a thin-walled cylinder.
【0022】図10は不等辺三角形要素で構成される変
形ダイヤモンド模様による展開図である。図11は水平
の折り線に対して1つ飛びに対称で且つ折り畳みが可能
な展開図を有する疑似円筒体の説明図で、図11Aは展
開図、図11Bは前記図11の展開図の両端を接合した
ときに製作される折り畳み円筒の半折り状態を示す図、
図11Cは前記図11Bと同じものを異なる方向から見
た図である。前記図6〜図10で示された5種の展開図
は水平の全ての折り線に関して対象であるが、図11に
示す展開図でも折り畳み可能である。図11中、A点で
はその対称性から折り畳み条件式、式(3)が満たされ
ていることは勿論であるが点Bにおいても同式(3)が
成立する。図12は前記図11の点Bと同様の折り線だ
けで構成した折り畳みの展開図の例を示す図である。図
13は折り畳み線により形成された複数の形状の多角形
のパーツ(平板壁)を有する折り畳み可能な円筒壁の展
開図である。図13の展開図を有する円筒壁は、複数の
形状の多角形パーツを有する折り畳み可能な円筒体を作
成することができる。FIG. 10 is a development view of a deformed diamond pattern composed of isosceles triangular elements. FIG. 11 is an explanatory view of a pseudo-cylindrical body having a development view that is symmetrical with respect to a horizontal fold line and that can be folded. FIG. 11A is a development view, and FIG. 11B is both ends of the development view of FIG. 11. The figure which shows the half-folded state of the folding cylinder produced when joining
FIG. 11C is a view of the same thing as FIG. 11B seen from a different direction. The five types of developed views shown in FIGS. 6 to 10 are applicable to all horizontal folding lines, but the developed views shown in FIG. 11 can be folded. In FIG. 11, it is needless to say that the folding condition expression and the expression (3) are satisfied at the point A due to the symmetry, but the expression (3) is also established at the point B. FIG. 12 is a diagram showing an example of a development view of a fold formed by only folding lines similar to the point B in FIG. FIG. 13 is a development view of a foldable cylindrical wall having a plurality of polygonal parts (flat plate walls) formed by folding lines. The cylindrical wall with the exploded view of FIG. 13 can create a foldable cylinder with multiple shaped polygonal parts.
【0023】なお、筒状構造物の展開図において、複数
の折り線に囲まれたパーツが紙などの柔軟性を有する材
料で形成された場合は、折り線を伸ばした状態で筒状の
構造物は円筒となる。しかし、前記パーツが柔軟性を有
しない材料で構成された場合、折り線を延ばした状態で
は、パーツが平板状のため、筒状の構造物は表面に凹凸
を有する筒となる。本明細書では、この表面に凹凸を有
する筒状の構造物を擬似円筒と呼ぶ。In the development view of the tubular structure, when the parts surrounded by the plurality of folding lines are made of a flexible material such as paper, the tubular structure is formed with the folding lines extended. The thing becomes a cylinder. However, when the parts are made of a material that does not have flexibility, the cylindrical structure is a cylinder having unevenness on the surface because the parts are flat when the fold line is extended. In the present specification, the tubular structure having irregularities on its surface is referred to as a pseudo cylinder.
【0024】(1−2−2)主折り線が水平線に対して
傾斜している(螺旋に沿っている)折り線付円筒または
擬似円筒
図14は前記図6をπ/6傾斜させた展開図を有する疑
似円筒体の説明図で、図14Aは展開図、図14Bは前
記図14Aの展開図の両端を接合したときに製作される
折り畳み円筒の半折り状態を示す図である。図14A
は、前記図6を水平線とπ/6傾斜する直線GHで切断
し、その切断線を水平な下端とした図に対応する。図1
4Aにおいて、主折り線は、水平線に対して傾斜してお
り、筒状構造物の表面において、筒状構造物の中心軸を
中心とした螺旋に沿っている。これを螺旋型の円筒状折
り畳み構造物と呼ぶ。前記螺旋型の構造物の展開図の左
右両端で接合した時、一般に、展開図の両端で折り線の
連続性が満たされるとは限らない。図14の場合のよう
に、台形要素で展開図が与えられる場合には、台形の上
底長さLuを適正に選ぶことで連続性を保つことができ
る。(1-2-2) Cylinder with a fold line in which the main fold line is inclined with respect to the horizontal line (along the spiral) or pseudo-cylindrical FIG. 14 is a development in which FIG. 6 is inclined by π / 6. FIGS. 14A and 14B are explanatory views of the pseudo cylinder having the drawings, and FIG. 14B is a diagram showing a half-folded state of a folding cylinder manufactured when both ends of the developed view of FIG. 14A are joined. FIG. 14A
Corresponds to a view obtained by cutting FIG. 6 with a straight line GH that is inclined by π / 6 with respect to the horizontal line and using the cutting line as the horizontal lower end. Figure 1
In 4A, the main fold line is inclined with respect to the horizontal line, and extends along the spiral around the central axis of the tubular structure on the surface of the tubular structure. This is called a spiral-shaped cylindrical folded structure. When the left and right ends of the development view of the spiral type structure are joined, generally, the continuity of the fold line is not always satisfied at both ends of the development view. When the development view is given by the trapezoidal element as in the case of FIG. 14, continuity can be maintained by appropriately selecting the upper base length Lu of the trapezoid.
【0025】(1−2−3)展開図の両端で折り線が連
続しているための条件(連続条件)
図15は展開図の両端を接合したときの連続性を保つ方
法の説明図である。図15において、原点Oを基点に台
形要素を主折り線(角度ψ)方向にN個描き、点Aを定
める。台形の高さをhとすると、正N角形のとき、長さ
OA=N{(h/tanθ)+Lu}となる。N個目の
台形要素の下方にm(偶数)個の要素を描き、点Bを図
のように定める。展開図が任意のψについて連続である
ためには点BがX軸上にくることが必要である。AB=
mhであるから、tanψ=OA/OBより次式(9)
を得る。
Lu={2N−m・tanψ/tanθ}h/tanψ ………………(9)
すなわち、式(9)でLuを適正に決めると、これ等の
場合の展開図の左右端の連続性が得られる。(1-2-3) Conditions for continuous folding lines at both ends of the developed view (continuous condition) FIG. 15 is an explanatory diagram of a method for maintaining continuity when the two ends of the developed view are joined. is there. In FIG. 15, N points of trapezoidal elements are drawn in the direction of the main fold line (angle ψ) with the origin O as a base point to define a point A. When the height of the trapezoid is h, the length is OA = N {(h / tan θ) + Lu} in the case of a regular N-gon. Draw m (even number) elements below the Nth trapezoidal element, and define the point B as shown in the figure. The point B needs to be on the X-axis for the development to be continuous for any ψ. AB =
Since mh, tan ψ = OA / OB, the following equation (9)
To get Lu = {2N−m · tan ψ / tan θ} h / tan ψ (9) That is, if Lu is properly determined by the expression (9), the continuity of the left and right ends of the development diagram in these cases is determined. Is obtained.
【0026】(閉じる条件を満たすことの証明)前述し
た折り線を持つ円筒を折りたたんだ時、円周方向に閉じ
る条件(式(8)参照)が満たされるか否かは一般に不
明であるので、これを検証する。図14で与えられる円
筒においては、この展開図の最下端の帯板部分(微小幅
D)の折り線を考える。ここには18本の折り線があ
り、左側から6本毎に同じ傾きの折り線が繰り返し現れ
るので、それらは6本の折り線からなる3つの組で構成
されている。式(7)を用いると、これらの折り線によ
る軸線の回転角は、ψ(=π/6)を傾斜角として、
ΘN=2{(α+ψ)−ψ+ψ−ψ+(α+ψ)−ψ}×3=12α…(10)
となる。α=π/6としたから、式(7)のΘT=2π
となって前記式(8)を満たすので、折り畳み後、閉じ
る条件を満たすことが分かる。(Proof that the closing condition is satisfied) When the cylinder having the above-mentioned folding line is folded, it is generally unknown whether or not the closing condition in the circumferential direction (see the equation (8)) is satisfied. Verify this. In the cylinder given in FIG. 14, consider the folding line of the strip plate portion (micro width D) at the lowermost end of this development view. There are 18 fold lines here, and fold lines with the same slope appear repeatedly every 6 lines from the left side, so they are made up of 3 sets of 6 fold lines. Using Expression (7), the rotation angle of the axis line by these fold lines is ΘN = 2 {(α + ψ) −ψ + ψ−ψ + (α + ψ) −ψ} × 3, where ψ (= π / 6) is the inclination angle. = 12α ... (10). Since α = π / 6, ΘT = 2π in equation (7)
Since the above expression (8) is satisfied, it can be seen that the closing condition is satisfied after folding.
【0027】したがって、図14Aのように、1節点4
折り線で主折り線が水平な折り線群から構成された筒状
構造物において切断後の展開図の折り線が左右連続する
ように任意の角度で切断して得られた展開図による筒状
構造物も、切断前の展開図が閉じる条件を満足していれ
ば軸方向に折り畳まれる。Therefore, as shown in FIG. 14A, one node 4
A cylindrical structure that is obtained by cutting at an arbitrary angle so that the fold lines of the development view after cutting in a tubular structure composed of fold lines whose main fold lines are horizontal The structure is also folded in the axial direction if the development view before cutting satisfies the closing condition.
【0028】(1−2−4)主折り線が水平線に対して
傾斜している(螺旋に沿っている)折り線付円筒または
擬似円筒の具体例
前述のようにして形成された断面図において、主折り線
が水平線に対して傾斜している筒状構造物の具体例を図
16〜図19に示す。図16は前記図7をπ/6傾斜さ
せた展開図を有する疑似円筒体の説明図で、図16Aは
展開図、図16Bは前記図16Aの展開図の両端を接合
したときに製作される折り畳み円筒の半折り状態を示す
図である。図17は前記図8をπ/6傾斜させた展開図
である。図16、図17に示す例では、展開図の左端と
右端を接合して円筒を製作すると折り線のなす模様は一
般的には連続しないが、前述の連続条件を満足するよう
に形成した図16,図17の展開図は左右両端で連続し
ている。図18は図11の螺旋型であり、図中の点A,
Dを結ぶ直線で切断して得たものである。図18中に記
載の角(〜0.193π)はこの切断線と水平線のなす
角を示し、この場合には三角形要素の形状が与えられて
いるため谷折り線の角度は限定されたものになる。図1
9は、前記図12に示す円筒体の展開図の平行な2本の
直線AB′、C′Dにより切り取られた部分を示す図で
あり、AとB′およびDとC′が重なるように図19の
左右の両端縁を接続することにより折り畳み可能な円筒
体となるものの展開図である。図19に示す展開図を有
する円筒壁は、複数の形状の多角形パーツを有する折り
畳み可能な円筒体を作成することができる。(1-2-4) Concrete Example of Folding Line Cylinder or Pseudo Cylinder with Main Folding Line Inclining with respect to Horizontal Line (along Spiral) In the cross-sectional view formed as described above 16 to 19 show specific examples of the tubular structure in which the main fold line is inclined with respect to the horizontal line. 16 is an explanatory view of a pseudo-cylindrical body having a development view in which FIG. 7 is inclined by π / 6, FIG. 16A is a development view, and FIG. 16B is manufactured when both ends of the development view of FIG. 16A are joined. It is a figure which shows the half-folded state of a folding cylinder. FIG. 17 is a development view in which FIG. 8 is inclined by π / 6. In the examples shown in FIGS. 16 and 17, when the cylinder is manufactured by joining the left end and the right end of the developed view, the pattern formed by the fold lines is not generally continuous, but a diagram formed so as to satisfy the above-described continuity condition. 16, the development view of FIG. 17 is continuous at both left and right ends. FIG. 18 is a spiral type of FIG. 11, and points A,
It is obtained by cutting along a straight line connecting D. The angle (~ 0.193π) shown in Fig. 18 indicates the angle formed by this cutting line and the horizontal line. In this case, since the shape of the triangular element is given, the angle of the valley fold line is limited. Become. Figure 1
9 is a view showing a portion cut out by two parallel straight lines AB 'and C'D in the development view of the cylindrical body shown in FIG. 12, so that A and B'and D and C'are overlapped. FIG. 20 is a development view of what becomes a foldable cylindrical body by connecting the left and right edges of FIG. 19. The cylindrical wall with the exploded view shown in FIG. 19 can create a foldable cylinder with multiple shaped polygonal parts.
【0029】(1−2−5)その他
その他にも、前記折り畳み条件、閉じる条件および連続
条件を満足する折り線群によって形成された筒状構造物
は無数に存在する。その一例を図20に示す。図20は
任意形状の4角形要素(パーツ)を有するり畳み可能な
円筒体の展開図である。図20において、AFを延長し
た直線をAEとした場合、折り畳み条件は∠BAE=∠
DAC=αである。αの値は、α=180°/N(Nは
正の整数)として任意に定めることができる。例えばN
=8のときには、α=180°/8=22.5°とな
る。したがって、∠BAE=∠DAC=α=22.5°
として、AEの長さを適当な任意の値とすることによ
り、任意形状のパーツを有する折り畳み可能な円筒体を
作成することができる。(1-2-5) Others In addition, there are innumerable cylindrical structures formed by a group of folding lines that satisfy the folding condition, the closing condition and the continuous condition. An example thereof is shown in FIG. FIG. 20 is a development view of a collapsible cylinder having quadrangular elements (parts) of arbitrary shapes. In FIG. 20, when the straight line extending AF is AE, the folding condition is ∠BAE = ∠
DAC = α. The value of α can be arbitrarily determined as α = 180 ° / N (N is a positive integer). For example N
= 8, α = 180 ° / 8 = 22.5 °. Therefore, ∠BAE = ∠DAC = α = 22.5 °
As a result, by setting the length of AE to an appropriate arbitrary value, a foldable cylinder having parts of arbitrary shape can be created.
【0030】(1−3)1節点6折り線法の折り線群に
よって構成された折り線付円筒及び擬似円筒
(1−3−1)閉じる条件の確認
図21は閉じる条件を満たし且つ折り畳み方向が交互に
反転する(山折り方向と谷折り方向とに反転する)折り
線により正6角形に折り畳む例の説明図で、図21Aは
展開された状態の帯板の折り線(1)〜(12)を示す図、図
21B〜図21Fは折り畳み途中の状態を示す図、図2
1Gは折り畳んだ状態を示す図である。図21Aにおい
て基準軸であるX軸方向に延びる帯板の同一方向(例え
ば山折り方向)に折られる実線で示した折り線(1),(3),
…,(11)はそれぞれX軸に対して角度θ1,θ3,…,θ11を
なしており、θ1=θ3=…=θ11=60°である。ま
た、前記折り線(1),(3),…,(11)とは逆方向(例えば谷
折り方向)に折られる点線で示す折り線(2),(4),…,(1
2)はそれぞれX軸に対して角度θ2,θ4,…,θ12をなし
ており、θ2=θ4=…=θ12=30°である。なお、図
21に示す仮想線(13)は帯板を折り畳んだときに折り線
(1)と重なる線である。図21において実線で軸X12が
軸X0となす角度Θ12はΘ12=2(θ1−θ2+θ3−…+
θ11−θ12)=2(60°−30°+60°−…+60
°−30°)=2×πである。したがって、前記式
(8)のnは、n=(Θ12/2π)=1となり、軸X12
は軸X0と重なる。この場合、帯板の両端は隙間無く接
合される。(1-3) Cylinder with fold line constituted by fold line group of 1-node 6 fold line method and pseudo cylinder (1-3-1) Confirmation of closing condition FIG. 21 satisfies the closing condition and the folding direction. 21A is an explanatory view of an example of folding into a regular hexagon by folding lines that are alternately inverted (inverted in the mountain fold direction and the valley fold direction), and FIG. 21A is a fold line (1) to ( 12) and FIGS. 21B to 21F are views showing a state in the middle of folding, FIG.
FIG. 1G is a diagram showing a folded state. In FIG. 21A, folding lines (1), (3) shown by solid lines, which are folded in the same direction (for example, the mountain folding direction) of the strip extending in the X-axis direction which is the reference axis,
, (11) form angles θ1, θ3, ..., θ11 with respect to the X axis, and θ1 = θ3 = ... = θ11 = 60 °. Further, folding lines (2), (4), ..., (1 shown by dotted lines that are folded in the direction opposite to the folding lines (1), (3) ,.
2) form angles θ2, θ4, ..., θ12 with respect to the X axis, and θ2 = θ4 = ... = θ12 = 30 °. The virtual line (13) shown in FIG. 21 is a fold line when the strip is folded.
It is a line that overlaps with (1). In FIG. 21, the angle Θ12 formed by the axis X12 and the axis X0 in the solid line is Θ12 = 2 (θ1−θ2 + θ3 −... +
θ11−θ12) = 2 (60 ° −30 ° + 60 ° −... + 60
° -30 °) = 2 × π. Therefore, n in the equation (8) becomes n = (Θ12 / 2π) = 1, and the axis X12
Overlaps the axis X0. In this case, both ends of the strip plate are joined together without a gap.
【0031】前記図21の説明から、折り畳み方向が交
互に反転する(山折りまたは谷折りのいずれか一方)の
折り線により帯板を同じ方向に折り曲げて正N角形(N
は整数)に折り畳む場合、基準軸X軸に対して、(θ2m
−θ2m+1)=π/N(mは整数)を満たす山折り線及び
谷折り線(1),(2),…(2N)を等間隔でジグザグに
形成すればよいことが分かる。From the description of FIG. 21, the strip plate is bent in the same direction by a fold line in which the folding direction is alternately inverted (either mountain fold or valley fold) to form a regular N polygon (N
Is an integer), (θ2m
It is understood that the mountain fold lines and the valley fold lines (1), (2), ... (2N) that satisfy −θ2m + 1) = π / N (m is an integer) may be formed in a zigzag at equal intervals.
【0032】(1−3−2)主折り線が水平の折り線群
からなる折り線付円筒及び擬似円筒の具体例
1節点4折り線法の場合と同様に、前記図21Aの帯状
の紙の上下端を水平の折り線と考え、Y軸方向にこれ等
が何段か連結した平面紙を想定する。すると、平行な水
平の折り線(群)を主折り線となる。このようにして形
成した平面紙の垂直方向の両端を接合すると、折り線付
筒状折り畳み構造物が形成される。その具体例を図22
〜図25に示す。図22は水平の折り線に対して1つ飛
びに対称で且つ折り畳みが可能な展開図を有する疑似円
筒体の説明図で、図22Aは展開図、図22Bは前記図
22の展開図の両端を接合したときに製作される折り畳
み円筒の半折り状態を示す図である。図22に示す例で
は、展開図の左端Lと右端Rを接合して円筒を製作する
と折り線のなす模様が連続する。 そして、α=β=π
/6に設定されているので折り畳み条件を満足し、且
つ、Θ6=2(6×π/6)=2πとなり、前記式
(8)のnは、n=(Θ6/2π)となるので閉じる条
件を満足する。したがって、図22に示された円筒は折
り畳まれる。(1-3-2) Concrete Example of Cylinder with Folding Line and Pseudo Cylinder with Main Folding Line consisting of Horizontal Folding Line Group 1 Similar to the case of the nodal 4 fold line method, the band-shaped paper of FIG. 21A is used. Consider the upper and lower ends as horizontal folding lines, and assume a plane paper in which these are connected in several stages in the Y-axis direction. Then, the parallel horizontal fold line (group) becomes the main fold line. When the two ends of the plane paper thus formed in the vertical direction are joined together, a tubular folding structure with folding lines is formed. A concrete example thereof is shown in FIG.
~ Shown in FIG. 22A and 22B are explanatory views of a pseudo-cylindrical body having a development view that is symmetrical with respect to the horizontal fold line and that can be folded. FIG. 22A is a development view, and FIG. 22B is both ends of the development view of FIG. 22. It is a figure which shows the half-folded state of the folding cylinder produced when joining. In the example shown in FIG. 22, when the left end L and the right end R of the development view are joined to manufacture a cylinder, the pattern formed by the fold lines is continuous. And α = β = π
Since it is set to / 6, the folding condition is satisfied, and Θ6 = 2 (6 × π / 6) = 2π, and n in the above formula (8) becomes n = (Θ6 / 2π), so it is closed. Satisfies the conditions. Therefore, the cylinder shown in FIG. 22 is folded.
【0033】図23は前記図22を一般化した折り線を
有する折り畳み円筒体の説明図で、図23Aは展開図、
図23Bは前記図23Aの展開図の両端を接合したとき
に製作される折り畳み円筒の半折り状態を示す図であ
る。図23Aに示すように角度α、βを置き、最下端の
6つの同一の平行四辺形部分の折り線による回転角を考
えると次式を得る。
ΘT=2{(α+β)−β}×6=12α …………………………(11)
α=π/6を用いるとΘT=2πとなって閉じる条件
(式(8)参照)が満たされる。式(11)から分かる
ように、ΘTはβ値に依存しないことが分かる。すなわ
ち、この1節点6折り線型で、主折り線が水平の折り線
群からなる筒状折り線付構造物のモデルでは、正N角形
形状に折りたたむための条件はα=π/Nで、図中の角
度βは自由に選ぶことができる。即ち角度βの値には依
存しない。したがって、図23Aに示す筒状構造物の展
開図の折り線は、折り畳み条件、閉じる条件及び連続条
件を満足しているので、折り畳むことができる。FIG. 23 is an explanatory view of a folding cylindrical body having a fold line which is a generalization of FIG. 22, and FIG. 23A is a developed view.
FIG. 23B is a diagram showing a half-folded state of a folding cylinder produced when the both ends of the developed view of FIG. 23A are joined. Assuming the angles α and β as shown in FIG. 23A and considering the rotation angle by the folding line of the same six parallelogrammic parts at the lowermost end, the following formula is obtained. ΘT = 2 {(α + β) -β} × 6 = 12α (11) If α = π / 6 is used, ΘT = 2π and the condition is closed (see formula (8)). Is satisfied. As can be seen from the equation (11), it can be seen that ΘT does not depend on the β value. That is, in this model of a structure with a tubular fold line that is a 1-node 6-fold line type and the main fold line is a horizontal fold line group, the condition for folding into a regular N polygon is α = π / N, and The angle β can be freely selected. That is, it does not depend on the value of the angle β. Therefore, the fold line of the development view of the tubular structure shown in FIG. 23A satisfies the folding condition, the closing condition, and the continuous condition, and thus can be folded.
【0034】図24は前記図23Aの6段の展開図を3
段にしαを30°として1段毎にβの値を変えた場合の
展開図である。図24に示すように、βの値は1段毎に
独立して設定しても折り畳み条件等を満足することがで
きる。図25は図23Aの螺旋状の山折り線および谷折
り線を1段毎に逆転させて得られる反復螺旋型の展開図
である。この展開図はまた図8の点AとBを一致させる
ことによっても得られる。図25に示す筒状折り線付構
造物も折り畳み条件等を満足することができる。FIG. 24 is a developed view of the 6th stage of FIG.
FIG. 6 is a development view in the case where α is set to 30 ° and the value of β is changed for each stage. As shown in FIG. 24, even if the value of β is independently set for each stage, the folding condition and the like can be satisfied. FIG. 25 is a development view of a repetitive spiral type obtained by reversing the spiral mountain fold line and the valley fold line of FIG. 23A for each stage. This developed view can also be obtained by matching points A and B in FIG. The structure with the cylindrical fold line shown in FIG. 25 can also satisfy the folding conditions and the like.
【0035】(1−3−3)主折り線が傾斜している
(螺旋に沿っている)折り線群からなる折り線付円筒及
び擬似円筒
図26は図23のABを結ぶ線が水平になるように全体
を角度ψ傾斜させたものに対応した図である。図26
は、折り畳み構造物の研究者であるGuest等が検討した
筒状構造物の展開図に相当し、三角形状の分割平板で作
られ、主折り線が螺旋状になり、主折り線が1周するご
とに螺旋(1)が1段上昇する時の円筒状構造物を本発
明者が展開図で表したものである。彼らは、図26の展
開図で表される円筒が折り畳み時にどのような特性を示
すかを、螺旋間の角度(α、β)を変数として解析した
が、完全な折り畳み条件を示すことはできなかった。図
26において、主折り線は、水平線に対して傾斜してお
り、図26の展開図のように図23のABを結ぶ直線に
沿って切断した場合、展開図の両端で折り線の連続性は
満たされる。しかし、一般に、閉じる条件を満足するか
否かは不明であるので、これを検証する。(1-3-3) Cylinder with Folding Line and Pseudo-Cylinder with Folding Line Group with Main Folding Line Inclined (along Spiral) In FIG. 26, the line connecting AB in FIG. 23 is horizontal. It is a figure corresponding to what inclined the whole angle so that it becomes. FIG. 26
Is a development view of a tubular structure studied by Guest, who is a researcher of folded structures, and is made of triangular divided flat plates. The main fold line is spiral and the main fold line is one round. FIG. 3 is a developed view of the cylindrical structure when the spiral (1) rises by one step each time. They analyzed what characteristics the cylinder represented by the expanded view of FIG. 26 exhibits when folded, using the angles (α, β) between the spirals as variables, but it was not possible to show the complete folding condition. There wasn't. In FIG. 26, the main fold line is inclined with respect to the horizontal line, and when cut along a straight line connecting AB of FIG. 23 as in the developed view of FIG. 26, continuity of the fold lines at both ends of the developed view Is satisfied. However, since it is generally unknown whether or not the closing condition is satisfied, this will be verified.
【0036】(閉じる条件の検証)前述の式(7)にお
いて、
Θ6=2{6×(α+β+ψ)−6(β+ψ)+ψ−(β+ψ)}
=12α−2β
となる。これを閉じる条件式(8)に用いると、次式を
得る。
Θ6/2π=(6α−β)/π=n ……………………………………(12)
したがって、α=π/6の場合、β=0、π…となり、
閉じる条件は満足しない。この場合、α=π/5、β=
π/5とすることによって、閉じる条件を満足し、主折
り線が1段上昇する螺旋に沿った折り畳み可能な円筒状
折り線付構造物を製作することができる。また、式(1
2)を導出する過程から分かるように、最下段に配置さ
れる平行四辺形の数を、6個から7個に増やすことによ
って、
Θ7/2π=(7α−β)/π=n
となり、α=β=π/6の場合でも閉じる条件が成立す
る。即ち、最下段の平行四辺形の数を適切に設定するこ
とによって、閉じる条件を満足する主折り線が1段上昇
する螺旋に沿った折り畳み可能な円筒状折り畳み構造物
を製作することができる。さらに、主折り線が1周する
ごとに螺旋が2段上昇する場合、式(12)と同様の導
出を行うと、
Θ6=(6α−2β)/π=n
となる。したがって、一般に、最下段の平行四辺形の数
をL、主折り線がM段上昇する場合の閉じる条件の式
は、
ΘL=(L×α−M×β)/π=n ……………………………………(13)
で表される。(Verification of Closing Condition) In the above equation (7), Θ6 = 2 {6 × (α + β + ψ) -6 (β + ψ) + ψ- (β + ψ)} = 12α-2β. When this is used in the conditional expression (8) for closing, the following expression is obtained. Θ6 / 2π = (6α−β) / π = n ……………………………… (12) Therefore, when α = π / 6, β = 0, π ...
The closing condition is not satisfied. In this case, α = π / 5, β =
By setting π / 5, it is possible to manufacture a structure with a foldable cylindrical fold line that satisfies the closing condition and that can be folded along a spiral in which the main fold line rises by one step. Also, the formula (1
As can be seen from the process of deriving 2), by increasing the number of parallelograms arranged at the bottom from 6 to 7, Θ7 / 2π = (7α−β) / π = n, and α The closing condition holds even when = β = π / 6. That is, by appropriately setting the number of parallelograms in the lowermost stage, it is possible to manufacture a foldable cylindrical fold structure along a spiral in which the main fold line satisfying the closing condition is raised by one stage. Further, in the case where the spiral is raised by two steps every time the main fold line makes one turn, if the same derivation as in the equation (12) is performed, then Θ6 = (6α−2β) / π = n. Therefore, in general, the expression of the closing condition when the number of parallelograms at the bottom is L and the main folding line is raised by M steps is: ΘL = (L × α-M × β) / π = n ……………………………… (13)
【0037】(1−4)折り畳み可能な疑似円筒の製作
本発明者は、上述した展開図に従い、軸方向への折り畳
み特性を厚さ0.2mmのポリプロピレンシートで製作
した疑似円筒で調べ、それが可能であることを確認し
た。図14と図17とで示される螺旋型の折り畳みモデ
ルを材料試験機で押したたむと、下部が停止した状態で
円筒の上部が回転しながら折りたたまれる。これらの折
り畳みの進展の様子を観察した結果は提案したモデルで
良好な折り畳みが可能であることが示されるとともに、
完全に折りたたむために要する荷重は20〜40Nの極
めて低い値であることを示した(折り畳み前の円筒の直
径;約100mm)。(1-4) Manufacture of Foldable Pseudo Cylinder The present inventor investigated the folding property in the axial direction using a pseudo cylinder made of a polypropylene sheet having a thickness of 0.2 mm according to the above-mentioned development view, and I confirmed that is possible. When the spiral folding model shown in FIGS. 14 and 17 is pushed by the material testing machine, the upper part of the cylinder is folded while rotating while the lower part is stopped. The results of observing the evolution of these folds show that the proposed model is capable of good folding, and
It was shown that the load required for complete folding was an extremely low value of 20 to 40 N (diameter of the cylinder before folding; about 100 mm).
【0038】(1−5)折り線付き円筒体の研究のまと
め
前述の説明ではN=6(一部N=3,8)を例にして、
展開図を三角要素や台形要素あるいは任意形状の4角形
で分割し、正N角形形状で折りたたむ疑似円筒の製造法
を説明した。展開図の左右端の連続性を満たすことが困
難な主折り線が水平で奇数個の台形要素で構成される場
合を除くと、一つの節点での折り角度を(N−2)/N
・πとすることで、任意のN値(N≧3、整数)につい
て折り畳み構造の製作が可能である。また、式(8)を
満たすように折り線の角度を選び、折り線の長さを適正
に選択すると、正N角形形状でない折り畳み構造の製作
も可能である。円筒を薄い高分子シートで製作する場合
には、図8B、図22Bのような形状に成型加工するこ
とは容易であると思われる。それゆえこのような形状で
成型加工を行えば、折り畳み可能なPETボトルのよう
な容器の製作が可能であると考えられる。谷折り線が、
螺旋型をなす場合には、水平型のそれに比べて軸方向の
伸縮が一般に容易であった。このことは、折り畳みの構
造を改良して行く上で考慮すべきであると思われる。(1-5) Summary of Research on Cylindrical Body with Folding Line In the above description, N = 6 (partial N = 3, 8) is taken as an example,
The method of manufacturing the pseudo cylinder in which the developed view is divided into triangular elements, trapezoidal elements or quadrangular shapes of arbitrary shape and is folded into a regular N-gonal shape has been described. The folding angle at one node is (N-2) / N, except when the main folding line, which is difficult to satisfy the continuity at the left and right ends of the development view, is horizontal and is composed of an odd number of trapezoidal elements.
By setting π, it is possible to manufacture a folded structure for any N value (N ≧ 3, integer). Further, if the angle of the fold line is selected so as to satisfy the expression (8) and the length of the fold line is appropriately selected, it is possible to manufacture a folding structure that is not a regular N-gonal shape. When the cylinder is made of a thin polymer sheet, it seems that it is easy to mold it into a shape as shown in FIGS. 8B and 22B. Therefore, it is considered that a container such as a foldable PET bottle can be manufactured by performing a molding process with such a shape. The valley fold line
In the case of forming the spiral type, it is generally easier to expand and contract in the axial direction than that of the horizontal type. This seems to have to be considered in improving the folding structure.
【0039】(2)円錐型の筒状折り畳み構造物の製作
(2−1)1節点4折り線法、且つ主折り線が円周に沿
って形成された折り線群によって構成された円錐及び擬
似円錐(折り畳み条件の再検討及び閉じる条件の説明)
折り線付円錐に関しても、各節点における折り畳み条件
は前記円筒型筒状折り線付構造物と同様に、前記式
(2)、(3)、(6)であるが、円筒型の筒状折り畳
み構造物のように、明らかに成立している場合は少な
く、折り線の配置パターンごとに検証が必要である。ま
た、閉じる条件も前記円筒型筒状折り線付構造物と同様
に導き出す必要がある。なお、円錐型の筒状折り畳み構
造物に関し、折り線によって囲まれるパーツが円周方向
に沿って複数配置されている時に、この複数のパーツの
円周方向に沿って接続している折り線を主折り線と呼
ぶ。(2) Manufacture of a conical tubular fold structure (2-1) 1-node 4-fold line method, and a cone composed of a fold line group whose main fold line is formed along the circumference and Pseudo-cone (examination of re-examination of folding conditions and closing conditions) Regarding the cones with fold lines, the folding conditions at each node are the same as those of the cylindrical tubular fold line structure described above (2), (3). , (6), but it is rare in the case of a cylindrical tubular folding structure that is clearly established, and verification is required for each fold line arrangement pattern. Further, it is necessary to derive the closing condition similarly to the structure with the cylindrical tubular folding line. Regarding the conical tubular folding structure, when a plurality of parts surrounded by fold lines are arranged along the circumferential direction, the fold line connecting the plurality of parts along the circumferential direction Called the main fold line.
【0040】(2−1−1)折り畳み条件
図27は主折り線が円周に沿って形成され、パーツが台
形要素により形成された場合の円錐型筒状折り畳み構造
物の展開図の要部拡大図である。まず折り畳み条件の検
討を行う。図27において、中心Oに対して頂角2Θを
有する外辺上の点A,BからABと角度αをなす2本の
直線(AC,BD)をABの中点Iと中心Oとを結ぶ直
線OIに対称に引き、頂角φ*となるよう点C、Dを決
める。以下、頂角が2Θとφ*の間で、中心方向に点を
配置していく。このようにして、形成された折り線群に
よる台形パーツは全て相似形状になり、決まった点C、
Dを結ぶ線はABと平行になる。即ち、直線DCの延長
上に点Hを取ると、ABとCDが平行より∠ACH=α
となり、パーツが相似なので∠ECF=αとなる。した
がって、折り畳み条件式(2)を満たす。(2-1-1) Folding Condition FIG. 27 shows a main part of a development view of a conical tubular fold structure in which a main fold line is formed along the circumference and parts are formed by trapezoidal elements. FIG. First, the folding conditions are examined. In FIG. 27, two straight lines (AC, BD) which form an angle α with AB from points A, B on the outer edge having an apex angle 2Θ with respect to the center O connect the midpoint I and the center O of AB. The points C and D are determined so as to be symmetrical with respect to the straight line OI and have the apex angle φ * . Hereafter, points are arranged in the central direction with the apex angle between 2Θ and φ * . In this way, the trapezoidal parts formed by the folding line groups all have similar shapes, and the fixed point C,
The line connecting D is parallel to AB. That is, if the point H is set on the extension of the straight line DC, AB and CD are parallel and ∠ACH = α
Since the parts are similar, ∠ECF = α. Therefore, the folding conditional expression (2) is satisfied.
【0041】(2−1−2)閉じる条件
円錐型の筒状折り畳み構造物の閉じる条件は、前述の円
筒型筒状折り畳み構造物の閉じる条件と同様の考え方で
導き出せる。しかし、円錐の場合は展開図が中心角を有
しているので、この中心角を考慮に入れなければならな
い。前述の円筒型折り畳み構造物の閉じる条件と同様
に、前記図27の台形ABDC及びその右方に形成され
ている台形ACFG等によって形成される帯板を考え
る。この帯板の各折り線と円周に沿う主折り線とのなす
鋭角はαとなる。この折り線に沿う折り畳みによって、
ABとAGは2×∠CAB=2α折れ曲がる。同様にし
て、N個の台形が円周に沿って配置されている場合、折
り畳みによって2α×N折れ曲がる。この折れ曲がりに
よって変化する角度2αNと、展開図が最初から有して
いる中心角{(2Θ+φ*)N/2}との和が1周分3
60°(=2π)となれば、帯板の両端は隙間なく接合
する(閉じる)。したがって、図27の場合の閉じる条
件は以下の式(14)
2αN+(2Θ+φ*)N/2=2π…………………………………(14)
主折り線と各折り線とのなす角をθ1、θ2、…として、
式(7)を使用してΘNを用い、中心角をφ(=(2Θ
+φ*)N/2)と置くと、
ΘN+φ=2π ……………………………………………………………(15)
となり、一般の折り線の閉じる条件が導き出された。(2-1-2) Closing Conditions The closing conditions for the conical tubular folding structure can be derived in the same way as the closing conditions for the cylindrical tubular folding structure described above. However, in the case of a cone, the development view has a central angle, which must be taken into account. Similar to the above-mentioned closing condition of the cylindrical folded structure, consider a strip plate formed by the trapezoidal ABCD in FIG. 27 and the trapezoidal ACFG formed on the right side thereof. The acute angle formed by each fold line of this strip and the main fold line along the circumference is α. By folding along this fold line,
AB and AG are bent by 2 × ∠CAB = 2α. Similarly, when N trapezoids are arranged along the circumference, they are bent by 2α × N by folding. The sum of the angle 2αN that changes due to this bending and the central angle {(2Θ + φ * ) N / 2} that the development view has from the beginning is 3 for one rotation.
When it becomes 60 ° (= 2π), both ends of the strip plate are joined (closed) without a gap. Therefore, the closing condition in the case of FIG. 27 is the following expression (14) 2αN + (2Θ + φ * ) N / 2 = 2π .... Let θ1, θ2, ... be the angles formed by
Using equation (7) and using Θ N, the central angle is φ (= (2Θ
+ Φ * ) N / 2), we have ΘN + φ = 2π ……………………………………………………………… (15) It was derived.
【0042】(2−1−3)1節点4折り線法、且つ主
折り線が円周に沿って形成された折り線群によって構成
された円錐及び擬似円錐の具体例
図28は図27と同様にして折り線により等脚台形に分
割され且つ正N角錐に折り畳まれる折り線付円錐壁の、
N=6、前記図27のφ*=π/36、2Θ=π/12
の場合の展開図を有する疑似円錐壁の説明図で、図28
Aは展開図、図28Bは前記図28Aの展開図を有する
折り線付円錐壁を半折りにした状態の斜視図である。図
29は前記図28の展開図の描き方の説明図である。図
29において、点A,Gから同じ角φで線分(1)と(2)を
引き、△OAGの底辺AGに点Oから引いた垂線に対し
て対称に取った線分OB,OHとの交点をB,Hとす
る。点B,Hから反対方向にφを取り、OA,OGとの
交点をC,Iとする。このような操作で、ジグザグの折
り線ABCDE…とGHLJ…を得る。各節点での折り
たたみ条件は前述の説明で明らかにされている。また、
N=6、φ*=π/36、2Θ=π/12なので、中心
角がπ/3となり、閉じる条件の式(14)からα=5
π/36であれば、円錐型筒状折り畳み構造物が折り畳
めることが導き出される。(2-1-3) Concrete Example of Cone and Pseudo Cone Consisting of 1-node 4 Folding Line Method and Folding Line Group in which Main Folding Line is Formed along Circumference FIG. 28 and FIG. Similarly, a conical wall with a fold line that is divided into isosceles trapezoids by a fold line and is folded into a regular N pyramid,
N = 6, φ * = π / 36, 2θ = π / 12 in FIG.
28 is an explanatory view of the pseudo-conical wall having a development view in the case of FIG.
28A is a developed view, and FIG. 28B is a perspective view of a state in which the conical wall with folding line having the developed view of FIG. 28A is half-folded. FIG. 29 is an explanatory view of how to draw the development view of FIG. 28. In FIG. 29, line segments (1) and (2) are drawn from the points A and G at the same angle φ, and line segments OB and OH are taken symmetrically with respect to the perpendicular line drawn from the point O to the base AG of ΔOAG. Let B and H be the intersections of. Φ is taken in the opposite direction from the points B and H, and the intersections with OA and OG are C and I. With such an operation, zigzag folding lines ABCDE ... And GHLJ. The folding condition at each node has been clarified in the above description. Also,
Since N = 6, φ * = π / 36, 2Θ = π / 12, the central angle is π / 3, and α = 5 from the formula (14) of the closing condition.
If π / 36, it is derived that the conical tubular folding structure can be folded.
【0043】(2−2)1節点4折り線法、且つ主折り
線が円周に対して傾斜して形成された折り線群によって
構成された円錐及び擬似円錐の具体例
図30は前記図28を螺旋型にした展開図を有する疑似
円錐体の説明図で、図30Aは展開図、図30Bは前記
図30Aの展開図を有する折り線付円錐壁を半折りにし
た状態の斜視図である。図30の筒状構造物は、前記図
28において、主折り線が等角螺旋に沿って形成される
ように折り線群が構成された構造物である。図30A、
図30Bに示すように折り線が螺旋に沿って配置した台
形を形成する展開図も、折り畳み可能な円錐型筒状構造
物を形成することが可能である。各折り線が等角螺旋で
形成されているので、図28において成立している角度
関係は、図30においても成立している(等角螺旋変換
の性質)。したがって、各節点における折り線どうしの
角度関係は保存されるので、折り畳み条件は満たされて
いる。閉じる条件に関しては、各折り線間の角度関係と
中心角の関係から個別に成立しているかを確認しなけれ
ばならない。連続条件に関しては後述。(2-2) Concrete Example of Cone and Pseudo Cone Consisting of 1-node 4 Folding Line Method and Folding Line Group with Main Folding Line Inclined to Circumference FIG. FIG. 30A is an explanatory view of a pseudo cone having a development view in which 28 is made into a spiral shape. FIG. 30A is a development view, and FIG. is there. The tubular structure of FIG. 30 is a structure in which the folding line group is configured such that the main folding line is formed along the equiangular spiral in FIG. 28. FIG. 30A,
The exploded view of the trapezoid in which the fold lines are arranged along the spiral as shown in FIG. 30B can also form a foldable conical tubular structure. Since each fold line is formed by an equiangular spiral, the angular relationship established in FIG. 28 is also established in FIG. 30 (property of conformal spiral transformation). Therefore, the folding condition is satisfied because the angular relationship between the folding lines at each node is preserved. Regarding the closing condition, it is necessary to confirm whether it is individually established from the relationship between the angle between each folding line and the central angle. The continuous conditions will be described later.
【0044】(2−3)1節点6折り線法、且つ谷折り
線によって形成された主折り線が円周に沿って形成され
た折り線群によって構成された円錐及び擬似円錐
(2−3−1)折り畳み条件
図31は主折り線が円周に沿って形成された円錐におけ
る展開図が頂角2ΘのN個の二等辺三角形で構成される
場合の展開図の要部拡大図である。図31中の谷折り線
(破線)を主折り線と呼ぶ。頂点を0、外辺の点をA,
B,C,Dとし、これらの点から外辺と角αをなす直線
を作図し、各々の交点をE,F,Gとする。点E,F,
Gから上と同様に線分EF,FGと角度αをなす線を描
き、それらの交点をH,Iとする。この作図によって展
開図は2種類の二等辺三角形要素によって分割される。
対称性からO,H,B及びO,I,Cは直線をなし、直
線OFの左右に対称なダイヤモンド模様を得る。直線O
Fは外辺BCと直角をなす。節点Fを構成する折り線は
図35のそれに対応する。∠CFG=∠BFE=βと
し、節点Fにおける対称性を考慮して折り畳み条件式
(3)のδをα、γをβと置く。節点Fにおける折り畳
み条件を検討するには、谷折り線EFとFGとのなす角
が必要となる。谷折り線EFの延長線FJを仮定する
と、△OEFが二等辺三角形より、∠OFE=π/2−
Θとなり、∠OFJ=πー∠OFE=π/2+Θとな
る。△OFGも二等辺三角形なので∠OFG=π/2−
Θより、
∠GFJ=∠OFJ−∠OFG=2Θ ………………………………(16)
の関係が得られる。この∠GFJが谷折り線EFとFG
とのなす角に相当する。(2-3) A cone and a pseudo-cone (2-3 -1) Folding Condition FIG. 31 is an enlarged view of a main part of a development view in the case where a development view of a cone whose main fold line is formed along the circumference is composed of N isosceles triangles having an apex angle 2Θ. . The valley fold line (broken line) in FIG. 31 is called a main fold line. 0 for the vertex, A for the outer edge,
B, C, and D are drawn, and a straight line forming an angle α with the perimeter is drawn from these points, and the respective intersections are set to E, F, and G. Points E, F,
Similarly to the above from G, a line forming an angle α with the line segments EF and FG is drawn, and the intersections thereof are defined as H and I. With this drawing, the development view is divided by two types of isosceles triangular elements.
Due to the symmetry, O, H, B and O, I, C form a straight line, and a diamond pattern symmetrical to the left and right of the straight line OF is obtained. Straight line O
F forms a right angle with the perimeter BC. The fold line forming the node F corresponds to that in FIG. ∠CFG = ∠BFE = β, and in consideration of the symmetry at the node F, δ in the folding conditional expression (3) is set as α, and γ is set as β. To study the folding condition at the node F, the angle between the valley fold lines EF and FG is required. Assuming the extension line FJ of the valley fold line EF, ΔOEF is ∠OFE = π / 2− from the isosceles triangle.
Θ, and ∠OFJ = π−∠OFE = π / 2 + Θ. △ OFG is also an isosceles triangle, so ∠OFG = π / 2-
From Θ, the relationship of ∠GFJ = ∠OFJ−∠OFG = 2Θ ……………………………… (16) is obtained. This ∠GFJ is the valley fold line EF and FG
Corresponds to the angle between and.
【0045】また、△EFBに関して、∠EBF=π−
2βより、∠OBF=π/2−βとなる。△OBCが二
等辺三角形なので、∠OBC=π/2−Θ=∠OBF+
∠FBCより、
π/2−Θ=π/2−β+α
即ち、
β−α=Θ ………………………………………………………………(17)
の関係が得られる。式(16)、(17)の関係を、折
り畳み条件式(3)に適用すると、β−α−(δ−γ+
θ)=β−α−(α−β+2Θ)=0となる。したがっ
て、折り畳み条件が成立しており、図31の円錐型筒状
折り畳み構造物は折り畳み可能である。なお、このと
き、∠HFI=γ*と置くと、節点Fで折り畳んだ時、
谷折り線EFとFGのなす角は、γ*−2αとなる。Regarding ΔEFB, ∠EBF = π−
From 2β, ∠OBF = π / 2−β. △ OBC is an isosceles triangle, so ∠OBC = π / 2-Θ = ∠OBF +
∠ From FBC, π / 2-Θ = π / 2-β + α That is, β-α = Θ ……………………………………………………………… (17) Relationship is obtained. When the relations of Expressions (16) and (17) are applied to the folding conditional expression (3), β-α- (δ-γ +
θ) = β−α− (α−β + 2θ) = 0. Therefore, the folding condition is satisfied, and the conical tubular folding structure shown in FIG. 31 can be folded. At this time, if ∠HFI = γ * is set, when folded at the node F,
The angle formed by the valley fold lines EF and FG is γ * -2α.
【0046】図31のような各パーツが二等辺三角形で
構成されたのではなく、より一般的な場合について、折
り畳み条件を検証する。図32は折り線により不等辺三
角形要素に分割される場合の折り線付円錐壁の展開図の
要部拡大図である。図32において、外辺の点をA,
B,C,D…とし、各点で外辺と角αをなす線分を右上
方に、角δをなす線分を左上方に作図し、交点をE,
F,Gとする(∠BOF=θ*)。これらの点から線分
EF、FGと角度αで左上方に、角度δで右上方に直線
を作図し、それらの交点をH,Iとする。点O,H,B
及びO,I,Cは直線をなす。直線OFの左右に非対称
ダイヤモンド模様を得る。∠BFE=β、∠CFG=γ
とし、EFとBCの交点をJとする。△OBCと△OC
D、△OEFと△OFGは各々頂角2Θの二等辺三角形
で、∠DCJ=∠GFJ=2Θとなり、∠OFJ=∠O
CJを得る。すなわち、点O,F,C,Jは同一円上に
あり、∠CJF=∠FOC=2Θ−θ*となる。△BF
Jに注目すると次式を得る。
β−α=2Θ−θ* ……………………………………………………(18)
点F周りの角度関係より得られる∠CFJ=γ−2Θを
△CFJの角度関係から得られるδ=∠CFJ+(2Θ
−θ*)に用いると次式(19)が得られる。
δ−γ=−θ* ……………………………………………………(19)The folding condition will be verified for a more general case where each part as shown in FIG. 31 is not composed of an isosceles triangle. FIG. 32 is an enlarged view of a main part of a development view of a conical wall with a fold line when the element is divided into isosceles triangular elements by the fold line. In FIG. 32, the points on the outer side are A,
B, C, D ... At each point, the line segment forming the angle α with the outer edge is drawn in the upper right direction, and the line segment forming the angle δ is drawn in the upper left direction.
Let F and G (∠BOF = θ * ). A straight line is drawn from these points to the upper left with the line segments EF and FG at the angle α and to the upper right at the angle δ, and the intersections thereof are designated as H and I. Points O, H, B
And O, I and C form a straight line. Asymmetric diamond patterns are obtained on the left and right of the straight line OF. ∠BFE = β, ∠CFG = γ
Let J be the intersection of EF and BC. △ OBC and △ OC
D, ΔOEF and ΔOFG are isosceles triangles each having an apex angle 2θ, and ∠DCJ = ∠GFJ = 2θ, and ∠OFJ = ∠O
Get CJ. That is, the points O, F, C, and J are on the same circle, and ∠CJF = ∠FOC = 2θ−θ * . △ BF
Paying attention to J, the following equation is obtained. β-α = 2Θ-θ * ……………………………………………… (18) ∠CFJ = γ-2Θ obtained from the angular relationship around the point F Δ = ∠CFJ + (2Θ obtained from the angular relationship
When used for −θ * ), the following equation (19) is obtained. δ−γ = −θ * …………………………………………………… (19)
【0047】式(19)のθ*を式(18)に代入し
て、谷折り線EF、FGのなす角が2Θであることを考
慮すると、次に示す折りたたみ条件式(20′)が成立
つ。
β−α=δ−γ+2Θ…………………………………………………(20′)
先と同様に∠HFI=γ*とおくと、節点Fで折りたた
んだ時の谷折り線EF、FGのなす角はγ*−(α+
δ)となる。正N角形の折りたたみを考え、この値と
(N−2)/N・πを等置して、幾何学的な関係より得
られるγ*+(α+δ)=π−2Θを用いると次に示す
折りたたみ条件式(20)が得られる。
(α+δ)=π/N−Θ ……………………………………………(20)
式(20)を満たすα、δを選ぶと不等辺三角形要素か
らなる折りたたみ可能な正N角形の折り畳み構造物の展
開図が得られる。Substituting θ * in equation (19) into equation (18) and considering that the angle formed by the valley fold lines EF and FG is 2Θ, the following folding conditional expression (20 ') is established. One. β-α = δ-γ + 2Θ ……………………………………………… (20 ') If ∠HFI = γ * is set in the same way as before, when folded at the node F, The angle formed by the valley fold lines EF and FG is γ * -(α +
δ). Considering the folding of a regular N-sided polygon, equating this value with (N-2) / N · π and using γ * + (α + δ) = π-2Θ obtained from the geometrical relation The folding conditional expression (20) is obtained. (Α + δ) = π / N-Θ ……………………………………………… (20) If α and δ satisfying the equation (20) are selected, it is possible to fold it with unequal scale triangle elements. An unfolded view of a regular N-gon fold structure is obtained.
【0048】等角螺旋に沿った折り線が形成されている
展開図の場合の折り畳み条件を検証する。図33は等角
螺旋に沿った折り線を有する折り畳み可能な折り線付円
錐壁の展開図の説明図で、図33Aは全体説明図、図3
3Bは前記図33Aの要部拡大図である。図31と同様
に、一つの模様が中心Oに対して張る角を2Θとして、
一般的に図33Aのような形で表される。この図33A
は、以下のように描かれる。最初、点A,Iを起点に中
心Oからの放射線OA,OIと角度ψをなすよう右上方
向に線分(1),(2)を引く。次に点A,Mから放射線と角
度φをなすよう左上方向に線分(4),(5)を引く(ψとφ
値は図32のα,δと、ψ=π/2−Θ−α,φ=π/
2−Θ−δの関係にある)。(1)と(5),(2)と(4)の交点
を各々F,Bとすると、点B,Fは同心円上に来る。同
様に上の操作を点B,Fで行うと点C,J,Gが定めら
れ、順次点D,K,Hが定められる。すなわち、点Aか
ら右上方向に取られた点の列F,G,H…は常に半径方
向と角度ψを、また点列A,B,C,D,Eは、半径方
向と角度φをなすよう描かれる。点A.F,G,Hを結
ぶ線を新たに曲線(1)、点A,B,C,Dを結ぶ線を新
たに曲線(4)とすると、これら2つの曲線は、半径方向
と等角を成しながら中心に向かう線となる。すなわち、
これらの各々の点は中心Oから出る等角螺旋上にある。
図33A中の(1),(2),(3)は反時計周りの螺旋、(4),
(5),(6)は時計周りの螺旋になる。The folding condition in the case of the developed view in which the folding lines are formed along the equiangular spiral will be verified. 33 is an explanatory view of a development view of a conical wall with a foldable fold line having a fold line along an equiangular spiral, and FIG. 33A is an overall explanatory view, FIG.
3B is an enlarged view of a main part of FIG. 33A. Similar to FIG. 31, the angle formed by one pattern with respect to the center O is 2Θ,
Generally, it is expressed as shown in FIG. 33A. This FIG. 33A
Is drawn as follows: First, line segments (1) and (2) are drawn in the upper right direction so as to form an angle ψ with the radiation OA and OI from the center O starting from the points A and I. Next, draw line segments (4) and (5) from the points A and M in the upper left direction to form an angle φ with the radiation (ψ and φ
The values are α and δ in FIG. 32, and ψ = π / 2−Θ−α, φ = π /
2-Θ−δ). Assuming that the intersections of (1) and (5) and (2) and (4) are F and B, the points B and F come on concentric circles. Similarly, when the above operation is performed at the points B and F, the points C, J and G are determined, and the points D, K and H are sequentially determined. That is, the row of points F, G, H ... Taken in the upper right direction from the point A always forms an angle ψ with the radial direction, and the row of points A, B, C, D, E forms an angle φ with the radial direction. Is drawn as. Point A. If a line connecting F, G, and H is a new curve (1) and a line connecting points A, B, C, and D is a new curve (4), these two curves are equiangular with the radial direction. While becoming a line toward the center. That is,
Each of these points lies on a conformal helix exiting from the center O.
In FIG. 33A, (1), (2) and (3) are counterclockwise spirals, (4) and
(5) and (6) are clockwise spirals.
【0049】図33Aのように、線分AB,BC,…が
中心角に対して張る角を2Θ′と置くと、線分AF,F
G,GHが張る角は2(Θ−Θ′)である。点Fの左右
の2つの矩形の拡大図(図33B)を用いて折りたたみ
条件を調べる。これらの矩形は合同であり、線分BF,
FGは角2Θをなす。ψ,φおよびα〜δの角度関係は
図のようになる。図33Aの△OBFは頂角2Θの二等
辺三角形であるから、α+φ=π/2−Θとδ+ψ=π
/2−Θとなり、
α+δ=π−(φ+ψ)−2Θ ………………………………(21)
を得る。△ABFあるいは△MFNの内角関係より、
β+γ=π−(φ+ψ) ………………………………(22)
を得る。式(21)、(22)より次式が成立つ。
β−α=δ−γ+2Θ ………………………………(23)
線分BFとFGが角2Θをなすことを考慮すると、前記
折り畳み条件式(3)が成立つ。すなわち、等角螺旋で
折り線を描くと折りたたみ条件が自動的に成立つことが
分かる。
(連続条件)また、点B,Fの半径R1は展開図の半径
をR0として正弦法則を用いて次式で与えられる。
R1/R0=sin{2(Θ−Θ′)+ψ}=p ……………………(24)
外周より2段目の点(C,J,G…)および3段目の点
(D,K,H…)の半径は順次p2,p3…で与えられ
る。即ち、展開図の両端部でこのp,p2,p3…の値が
一致していれば、展開図の両端で折り線が連続すること
を意味する。したがって、このp,p2,p3…が円錐状
構造物における連続条件に相当する。As shown in FIG. 33A, if the angle formed by the line segments AB, BC, ...
The angle formed by G and GH is 2 (Θ-Θ ′). The folding condition is examined using an enlarged view of two rectangles on the left and right of the point F (FIG. 33B). These rectangles are congruent and the line segment BF,
FG makes an angle 2Θ. The angle relationship between ψ, φ and α to δ is as shown in the figure. Since ΔOBF in FIG. 33A is an isosceles triangle with an apex angle 2Θ, α + φ = π / 2−Θ and δ + ψ = π
/ 2-Θ, and α + δ = π- (φ + ψ) -2Θ ……………………………… (21) is obtained. From the internal angle relation of ΔABF or ΔMFN, β + γ = π− (φ + ψ) ……………………………… (22) is obtained. The following equation is established from the equations (21) and (22). [beta]-[alpha] = [delta]-[gamma] +2 [Theta] (23) Considering that the line segments BF and FG form an angle 2 [Theta], the folding conditional expression (3) is established. That is, it is understood that the folding condition is automatically established when the folding line is drawn with the equiangular spiral. (Continuity condition) Further, the radius R 1 of the points B and F is given by the following equation using the sine law with the radius of the developed view being R 0 . R 1 / R 0 = sin {2 (Θ−Θ ′) + ψ} = p …………………… (24) The second stage point (C, J, G…) and the third stage from the outer circumference. The radii of the points (D, K, H ...) Are sequentially given by p 2 , p 3 ... That is, if the values of p, p 2 , p 3 ... Are the same at both ends of the development view, it means that the fold lines are continuous at both ends of the development view. Therefore, these p, p 2 , p 3 ... Correspond to the continuous condition in the conical structure.
【0050】(2−3−2)閉じる条件
閉じる条件は、前述の(2−1−2)で述べた閉じる条
件と同一なので、説明は省略する。(2-3-2) Closing condition Since the closing condition is the same as the closing condition described in (2-1-2) above, a description thereof will be omitted.
【0051】(2−3−3)1節点6折り線法、且つ谷
折り線によって形成された主折り線が円周に沿って形成
された折り線群によって構成された円錐及び擬似円錐の
具体例図34は図31と同様の角度関係を有する折り線
群によって形成された展開図を有する円錐型筒状折り畳
み構造物の説明図で、図34Aは展開図、図34Bは前
記図34Aの展開図を有する折り線付円錐壁の半折り状
態の斜視図である。図34の円錐型筒状折り畳み構造物
は、N=3、2Θ=π/6、α=π/8とした時の展開
図であり、図31と同様の角度関係を有する折り線群に
よって形成されているので折り畳み可能である。図35
は折り線により不等辺三角形要素に分割される場合の円
錐型筒状折り線付構造物の展開図で、N=3、2Θ=π
/9、α=π/9、δ=π/6とした時の展開図(θ*
=約0.0688π)である。図35の筒状折り畳み構
造物の折り線は、図32と同様の角度関係を有する折り
線群によって形成されているので、図35の筒状折り畳
み構造物は折り畳み可能である。図36は前記図32の
点Fで右上方に角度α、左上方に角度δを取った折り線
により不等辺三角形要素に分割される場合の折り線付円
錐壁の展開図で、Θ,α,δ値を図35と同じ値とした
場合の展開図である。図36の筒状折り畳み構造物も折
り畳むことが可能である。なお、前記等角螺旋型の折り
線に当てはめると、φ=ψが前記図34A、φ≠ψの時
は図36が対応する。(2-3-3) Concrete of a cone and a pseudo-cone constituted by a folding line group in which the main folding line formed by the 1-node 6-folding line method and the valley folding line is formed along the circumference Example FIG. 34 is an explanatory view of a conical tubular folding structure having a development view formed by folding line groups having the same angular relationship as FIG. 31, FIG. 34A is a development view, and FIG. 34B is the development of FIG. 34A. It is a perspective view of a conical wall with a fold line which has a figure in a half-folded state. The conical tubular fold structure of FIG. 34 is a development view when N = 3, 2Θ = π / 6 and α = π / 8, and is formed by a fold line group having the same angular relationship as FIG. 31. It is foldable because it is designed. Fig. 35
Is a development view of the conical tubular fold line structure when divided into isosceles triangular elements by fold lines, where N = 3, 2Θ = π
/ 9, α = π / 9 , δ = π / 6 and expand view of the (theta *
= About 0.0688π). Since the folding line of the tubular folding structure in FIG. 35 is formed by the folding line group having the same angular relationship as in FIG. 32, the tubular folding structure in FIG. 35 can be folded. FIG. 36 is a development view of a conical wall with a fold line in the case of being divided into inequilateral triangular elements by a fold line having an angle α at the upper right and an angle δ at the upper left at the point F in FIG. 32. 36 is a development view when the δ values are the same as those in FIG. 35. The tubular folding structure of FIG. 36 can also be folded. When it is applied to the folding lines of the equiangular spiral type, when φ = φ is the above-mentioned FIG. 34A, and when φ ≠ φ, FIG. 36 corresponds.
【0052】(2−4)1節点6折り線法、且つ山折り
線によって形成された主折り線が円周に沿って形成され
た折り線群によって構成された円錐及び擬似円錐
(2−4−1)折り畳み条件
主折り線が円錐に沿って形成された折り線群によって構
成された円錐及び擬似円錐には、前記折り畳み条件式
(3)に対応する折り線群(タイプ1)と、折り畳み条
件式(6)に対応する折り線群(タイプ2)の2つのタ
イプがある。
(タイプ1)図37は折り畳み条件を説明するための1
段目と2段目の帯板の要部拡大図である。図37に示す
ように外周上に中心点Oに対して中心角2Θの間隔で点
A,B,Gをとり、OA、OB、OGに対して、角度ψ
*成す直線と中心角2θ*成す直線との交点をそれぞれ点
E,F,Hと取る。同様にして点I、J、Kをとり、図
37に示すように角度α〜δ、p、qをとる。このよう
にして形成された帯板は1段目の2段目の形状が相似形
状となる。(2-4) 1-node 6-fold line method, and the main fold line formed by the mountain fold line is a cone and a pseudo-cone (2-4 -1) Folding condition The main fold line includes a fold line group formed along a cone and a pseudo-cone, and a fold line group (type 1) corresponding to the fold condition expression (3) There are two types of folding line groups (type 2) corresponding to conditional expression (6). (Type 1) FIG. 37 shows 1 for explaining the folding condition.
It is a principal part enlarged view of a 2nd step strip plate. As shown in FIG. 37, points A, B, and G are set on the outer circumference at intervals of a central angle 2θ with respect to the central point O, and angles ψ are formed with respect to OA, OB, and OG.
* Forms a straight line and the center angle 2θ * each point of the intersection of the straight line that forms E, F, take the H. Similarly, points I, J and K are taken, and angles α to δ, p and q are taken as shown in FIG. The strip thus formed has a similar shape to the shape of the first stage and the second stage.
【0053】図37において、∠OAB=∠OBA=π
/2−Θを考慮すると次式を得る。
p=π/2−Θ+ψ*,β=π/2+Θ−γ−ψ*,
δ=π/2−Θ−(γ+ψ*) ………………………………(25−1)
OA上に△OCEが二等辺三角形になるように点Cを取
ると、∠OCE=π/2−θ*となるので、△AECに着
目して、∠AEC=π/2−θ*−ψ*を得る。△OCE
と△OEFが二等辺三角形であることを考慮し、点E周
りの角度関係より得られる∠AEF=q=π−(∠OE
C+∠OEF+∠AEC)を用いると次式(25−1)
を得る。
q=π/2+2θ*+ψ*+Θ,α=γ−2θ*
……………………………(25−2)
図37において、点Fを例にとり折りたたみ条件を調べ
る。式(25−1)と(25−2)より、β−α=π/
2+Θ−ψ*+2θ*−2γおよびδ−γ=π/2−Θ−
ψ*−2γを得る。すなわち次式(27)を得る。
β−α=δ−γ+(p−q)=δ−γ+2(Θ+θ*) …………(26)
図37の谷折り線(1)と(2)のなす角は周期性より2Θ、
同様に折り線(2)と(3)のなす角は2θ*である。すなわ
ち、(1)と(3)は2(Θ+θ*)の角度をなすことを考慮
すると、式(26)は節点Fで折りたたみの条件式が成
立つことを示す。In FIG. 37, ∠OAB = ∠OBA = π
Considering / 2-Θ, the following equation is obtained. p = π / 2−Θ + ψ * , β = π / 2 + Θ−γ−ψ * , δ = π / 2−Θ− (γ + ψ * ) ……………………………… (25-1) OA If we take point C so that ΔOCE becomes an isosceles triangle, then ∠OCE = π / 2−θ * , so paying attention to ΔAEC, ∠AEC = π / 2−θ * −ψ * To get △ OCE
In consideration of the fact that and OEF are isosceles triangles, ∠AEF = q = π− (∠OE
Using C + ∠OEF + ∠AEC), the following equation (25-1)
To get q = π / 2 + 2θ * + ψ * + θ, α = γ-2θ * (25-2) In FIG. 37, the folding condition is examined by taking the point F as an example. From equations (25-1) and (25-2), β-α = π /
2 + Θ−ψ * + 2θ * −2γ and δ−γ = π / 2−Θ−
ψ * −2γ is obtained. That is, the following expression (27) is obtained. β−α = δ−γ + (p−q) = δ−γ + 2 (Θ + θ * ) ………… (26) The angle formed by the valley fold lines (1) and (2) in FIG. 37 is 2Θ from the periodicity,
Similarly, the angle formed by the folding lines (2) and (3) is 2θ * . That is, considering that (1) and (3) form an angle of 2 (Θ + θ * ), Expression (26) shows that the conditional expression for folding at node F is established.
【0054】(タイプ2)図38は前記図37で2段目
の谷折り線を1段目のそれと角度γで逆方向に取った場
合の図である。この谷折り線とOA(O;中心)の交点
をKとすると、△KEOはψ*となり、新しく得られた
矩形EFIKは1段目のそれと相似である。点Fでの折
り線の様子は折り畳み条件式(6)の折り線群に対応す
る。この山折り線(1)を山折り線FHに対応させると折
り畳み条件式(6)のθ1〜θ4はθ1=δ,θ2=γ,θ
3=α,θ4=βとなる。図38の線分FHとFEは角度
2Θをなすから、折り畳み条件式(6)のα*とβ*は図
38上では、
α*=δ+γ+2Θ,β*=α+β+2Θ …………………(27−1)
となる。図38の1段目の帯板は図37の1段目の帯板
と同一なので、前記式(25−1),(25−2)を用
いる用いることが可能である。したがって、式(25−
1),(25−2)を用いると上式のα*,β*は、
α*=π/2−ψ*−Θ=β+γ
β*=π/2−ψ*−Θ−2θ*=α+δ
………………………………(27−2)
となる。これらの式にθ1=δ,θ2=γ,θ3=α,θ4
=βを用いると式(3)を得、折りたたみ条件が成立
つ。このように一段毎に逆方向に谷折り線を描くと、反
復型の折り線群による折りたたみ構造物が作られる。(Type 2) FIG. 38 is the second stage in FIG. 37.
When the valley fold line of is taken in the opposite direction to that of the first step at an angle γ
FIG. The intersection of this valley fold line and OA (O; center)
Is K, △ KEO is ψ*And was newly obtained
The rectangle EFIK is similar to that of the first stage. Fold at point F
The appearance of the line corresponds to the folding line group of the folding conditional expression (6).
It Fold this mountain fold line (1) to the mountain fold line FH
Θ of the folding condition expression (6)1~ ΘFourIs θ1= Δ, θ2= Γ, θ
3= Α, θFour= Β. The line segments FH and FE in FIG. 38 are angles
Since 2Θ is formed, α in the folding conditional expression (6) is*And β*Is a figure
On 38,
α*= Δ + γ + 2Θ, β*= Α + β + 2Θ ………………… (27-1)
Becomes The first strip in FIG. 38 is the first strip in FIG. 37.
Since it is the same as, the above equations (25-1) and (25-2) are used.
It can be used. Therefore, the equation (25−
Using 1) and (25-2), α in the above equation*, Β*Is
α*= Π / 2-ψ*−Θ = β + γ
β*= Π / 2-ψ*−θ−2θ*= Α + δ
…………………………………… (27-2)
Becomes Θ in these equations1= Δ, θ2= Γ, θ3= Α, θFour
= Β is used, equation (3) is obtained and the folding condition is satisfied.
One. In this way, if you draw a valley fold line in the opposite direction for each step,
A folding structure is created by a group of folding lines.
【0055】(2−4−2)閉じる条件
図39は二等辺三角形要素(頂角2Θ)がN個からなる
折り線付円錐壁の展開図を考え、その一段だけを湾曲し
た帯状部分として書き出した図である。1節点6折り線
法の折り線群で構成された円錐型筒状折り畳み構造物の
閉じる条件を、前述の円筒型筒状折り畳み構造物の場合
と同様に帯板で考える。ここで、山折りと谷折りが周期
的に導入されるとし、折り線が外辺AB,…となす角を
ζ,ηとする(0≦(ζ,η)≦π/2)。この帯板を
これらの折り線で折り曲げるとφ=2(ζ−η)Nだけ
円周方向に折り曲がる。元々、この帯板は角度ψ=2N
Θ曲がっていたから、折りたたみ後、この帯板の両端を
隙間なく接合するためには、折れ曲がることによって変
化する角度φと最初から曲がっていた角度(中心角)ψ
との和が1周分360°(=2π)でないといけない。
即ち、この円錐型筒状折り畳み構造物が閉じるためには
φ+ψ=2πが成立つことが必要である。これは、円錐
の閉じる条件に対応し、この条件は次式(21)で表さ
れる。
φ+ψ=2(ζ−η+Θ)N=2π ………………………………(28)(2-4-2) Closing Condition FIG. 39 is a development view of a conical wall with folding lines consisting of N isosceles triangular elements (vertical angle 2Θ), and only one step is written out as a curved strip portion. It is a figure. Similar to the case of the cylindrical tubular folding structure described above, the conditions for closing the conical tubular folding structure composed of folding lines of the 1-node 6-folding method are considered. Here, assuming that mountain folds and valley folds are periodically introduced, the angles formed by the fold lines with the outer sides AB, ... Are ζ and η (0 ≦ (ζ, η) ≦ π / 2). When this strip is bent along these folding lines, it is bent by φ = 2 (ζ−η) N in the circumferential direction. Originally, this strip had an angle ψ = 2N
Θ Since it was bent, in order to join both ends of this strip without gap after folding, the angle φ that changes due to bending and the angle (center angle) ψ that was bent from the beginning
And the sum must be 360 ° (= 2π) for one rotation.
That is, φ + ψ = 2π must be satisfied in order for the conical tubular folding structure to close. This corresponds to the conical closing condition, which is expressed by the following equation (21). φ + ψ = 2 (ζ−η + Θ) N = 2π ……………………………… (28)
【0056】(2−4−3)1節点6折り線法、且つ山
折り線によって形成された主折り線が円周に沿って形成
された折り線群によって構成された円錐及び擬似円錐の
具体例図40は、前記図37に示す折り線を有する円錐
型筒状折り畳み構造物においてN=6、γ+ψ*=π/
3、ψ*=π/6、γ=π/6とした場合の展開図(2
Θ=π/18)を有する疑似円錐壁の説明図で、図40
Aは展開図、図40Bは前記図40Aの展開図を有する
円錐型筒状折り畳み構造物を半折りにした状態の斜視図
である。図41は前記図37に示す折り線を有する円錐
型筒状折り畳み構造物においてN=6、γ+ψ*=π/
3、ψ*=π/4,γ=π/12とした場合の展開図
(2Θ=π/6)である。図42は前記図40Aの展開
図の段数を少なくして1段毎にψ*の値を大きくした場
合の展開図である。図42において、円錐型構造物の場
合、ψ*+γ=60°である。ψ*+γ=60°のもとで
ψ*とγとを分割している。各段毎にψ*およびγの値に
任意に分割することができる。等角螺旋では中心に向か
う程模様が小さくなるので、それを回避するため、ψ*
を小さくしている。図43は前記図42の展開図を有す
る折り畳み構造物と同じ円錐壁を形成する展開図であ
る。図43は前記図42と同一形状の円錐壁の展開図で
ある。図43の展開図は前記図42に比較して両側縁の
接合が容易である。(2-4-3) 1-node 6-fold line method, and a specific example of a cone and a pseudo-cone constituted by a fold line group in which a main fold line formed by mountain fold lines is formed along the circumference Example FIG. 40 shows N = 6, γ + ψ * = π / in the conical tubular fold structure having the fold line shown in FIG. 37.
3, development view when ψ * = π / 6 and γ = π / 6 (2
40 is an explanatory view of a pseudo-cone wall having Θ = π / 18), and FIG.
40A is a development view, and FIG. 40B is a perspective view of the conical tubular folding structure having the development view of FIG. FIG. 41 shows a conical tubular fold structure having fold lines shown in FIG. 37, where N = 6, γ + ψ * = π /
3 is a development view (2Θ = π / 6) when ψ * = π / 4 and γ = π / 12. FIG. 42 is a development view when the number of stages in the development view of FIG. 40A is reduced and the value of ψ * is increased for each stage. In FIG. 42, in the case of a conical structure, ψ * + γ = 60 °. Under ψ * + γ = 60 °, ψ * and γ are divided. Each stage can be arbitrarily divided into ψ * and γ values. With an equiangular spiral, the pattern becomes smaller toward the center, so to avoid this, ψ *
Is small. FIG. 43 is a development view forming the same conical wall as the folding structure having the development view of FIG. 42. FIG. 43 is a development view of a conical wall having the same shape as FIG. 42. In the developed view of FIG. 43, joining of both side edges is easier than in FIG. 42.
【0057】図44は前記図38に示す折り線を有する
疑似円錐構造物の説明図で、図44Aは展開図、図44
Bは前記図44Aの展開図を有する擬似円錐構造物を半
折りにした状態の斜視図である。図45は2Θ=π/
6,ψ*=π/6,γ=π/6として得た反復螺旋型折
り線付円錐構造物の展開図(N=6)である。FIG. 44 is an explanatory view of the pseudo-conical structure having the fold line shown in FIG. 38, FIG. 44A is a development view, and FIG.
FIG. 44B is a perspective view showing a state in which the pseudo-conical structure having the development view of FIG. 44A is half-folded. FIG. 45 shows 2Θ = π /
It is a development view (N = 6) of the repeating spiral type fold lined conical structure obtained as 6, ψ * = π / 6, γ = π / 6.
【0058】(2−4)1節点6折り線法、且つ山折り
線によって形成された主折り線が円周に対して傾斜して
(螺旋に沿って)形成された折り線群によって構成され
た円錐及び擬似円錐
図46は図40Aの円周方向の螺旋を右端で1段上昇す
るようにした折り線付きの折り畳み円錐壁の展開図であ
る。前記図46の展開図を円錐壁とする場合には、右端
の点A,B,C,…と、左端の点D,E,F,Dとが重
なるように、右側縁および左側縁を接続する。上述のよ
うに、等角螺旋あるいは反転型の等角螺旋を組合わせる
と節点での折りたたみ条件が自動的に成立つが、円周方
向の折りたたみ条件は、各点での折りたたみ角の周方向
の合計が2πになるように、前述の閉じる条件式(1
5)や(28)に基づいて設定しなければならない。ま
た、これらの展開図上の節点は、前述の連続条件の説明
で用いた式(24)で使用したp値を求めて、半径p,
p2,p3…の同心円と半径の交点より決定できる。
(2−5)製作された折りたたみ式円錐殻とその特性
厚さ0.2mmのポリプロピレンシートを用い、図51
Aで示された展開図で製作した図51Bの円錐殻および
図56Aで示された展開図で製作した図56Bの円錐殻
の折りたたみの様子を観察した。その結果、折り紙モデ
ルで予測した通り、良好な折りたたみが可能であること
が分かった。(2-4) The 1-node 6-fold line method, and the main fold line formed by the mountain fold line is formed by a fold line group formed by being inclined (along the spiral) with respect to the circumference. Cone and Pseudo-cone FIG. 46 is a development view of a folded conical wall with a fold line in which the spiral in the circumferential direction of FIG. 40A is moved up one step at the right end. When the development view of FIG. 46 is a conical wall, the right side edge and the left side edge are connected so that the right end points A, B, C, ... And the left end points D, E, F, D overlap. To do. As described above, when equiangular spirals or inverted equiangular spirals are combined, the folding condition at the node is automatically established. So that it becomes 2π, the above-mentioned conditional expression (1
5) or (28). Further, for the nodes on these developed views, the p-value used in the equation (24) used in the explanation of the continuous condition is obtained, and the radius p,
It can be determined from the intersection of the concentric circles of p 2 , p 3 ... And the radius. (2-5) Using the produced folding conical shell and its characteristic polypropylene sheet having a thickness of 0.2 mm, FIG.
The folding state of the conical shell of FIG. 51B manufactured in the developed view shown by A and the conical shell of FIG. 56B manufactured in the developed view shown in FIG. 56A was observed. As a result, it was found that good folding was possible as predicted by the origami model.
【0059】3.円筒型筒状折り畳み構造物に関する更
なる検討
前記1.節及び2.節において、以前、本発明者が発表
した論文に基づいた筒状折り畳み構造物に関する研究を
説明したが、この研究をさらに検討した結果を以下に詳
述する。
(3−1)目的
折りたたみ・展開の可能な円筒、円錐殻や円板等を合同又
は相似形状の矩形あるいは6角形要素でパターン化した
展開図は既に上述した。 これらの展開図を 2種類以上
の異なる要素の組合わせで創製することが出来れば(擬)
円筒断面とは異なる異型の断面(例えば長方形断面等)の
角筒や角錐等の製作が可能になると考えられる。以下で
は、異なる形状の要素群を組合わせて折りたたみ可能な
角筒や角錐殻を創製し、 その造形性や機能性を増やし
て、 この技法が宇宙構造のみならず工業製品や民製品
に用いられるための基本モデルを開発し、 この技法の
汎用性を高めることを目的として記述する。3. Further Study on Cylindrical Cylindrical Folding Structure 1. Section and 2. In the section, a study on a tubular folding structure based on a paper previously published by the present inventor was described, and the results of further study of this study will be described in detail below. (3-1) Purpose A development view in which a foldable / developable cylinder, a conical shell, a disc, or the like is patterned with rectangular or hexagonal elements having a congruent or similar shape has already been described above. If these development drawings can be created by combining two or more different elements (pseudo)
It is considered that it becomes possible to manufacture a rectangular tube, a pyramid, or the like having an atypical cross section different from the cylindrical cross section (for example, a rectangular cross section). In the following, we will create foldable prismatic cylinders and pyramid shells by combining different shaped element groups, increase their formability and functionality, and this technique will be used not only for space structures but also for industrial products and commercial products. The purpose of this paper is to develop a basic model for the purpose of increasing the versatility of this technique.
【0060】(3−2) 折りたたみ可能な筒状構造の
基本展開図
図47は折り畳み/展開が可能な平面紙の折り畳み方法
を説明する図で、図47Aは従来公知の折り畳み可能な
平面紙の展開図の要部説明図、図47Bは折り畳み後に
筒状となる平面紙の展開図の要部説明図である。図48
は折り畳み/展開可能な筒状構造物の展開図であり、図
48Aは同一の三角形要素(パーツ)で構成された筒状
折り畳み構造物の展開図、図48Bは同一の等脚台形要
素(パーツ)で構成された筒状折り畳み構造物の展開図
である。図49は折り畳み/展開可能な筒状構造物の展
開図であり、図49Aは異なる台形要素(パーツ)で構
成された筒状折り畳み構造物の展開図、図49Bは異な
る三角形要素(パーツ)で構成された筒状折り畳み構造
物の展開図である。簡素な展開が可能な平面紙の折りた
たみ法、あるいは折りたたみ可能な擬円筒を製作するた
めの基本的な展開図の例を図47に示す。図47Aは1
節点4折り線法の最も基本的な形で垂直方向の折り線が
全て同形で等角のジグザグ状であり、これは平面の折り
たたみを与える。 図47Bは前記図47Aの等角のジ
グザグの折り線を2種類にし、これ等を交互に導入した
ものである。図47Bの展開図を折りたたむと、水平に
沿って接続した複数の折り線(即ち主折り線)は曲線を
形成する。すなわち折りたたみ可能な円筒(角筒)の基本
形になる。(3-2) Basic development view of foldable tubular structure FIG. 47 is a diagram for explaining a folding method of a foldable / unfoldable plane paper, and FIG. 47A is a view of a conventionally known foldable plane paper. FIG. 47B is an explanatory view of an essential part of a developed paper, and FIG. 47B is an explanatory view of an essential part of a developed paper of a flat paper which is cylindrical after being folded. FIG. 48
FIG. 48A is a development view of a foldable / expandable tubular structure, FIG. 48A is a development view of a tubular foldable structure composed of the same triangular elements (parts), and FIG. 48B is the same isosceles trapezoidal element (parts). FIG. 4 is a development view of the tubular folding structure configured in FIG. FIG. 49 is an exploded view of a foldable / expandable tubular structure, FIG. 49A is an exploded view of a tubular foldable structure composed of different trapezoidal elements (parts), and FIG. 49B is a different triangular element (parts). It is a development view of the configured cylindrical folding structure. FIG. 47 shows an example of a basic development view for folding a flat paper that can be simply developed, or for manufacturing a foldable pseudo cylinder. Figure 47A is 1
The most basic form of the nodal four-fold method is that all vertical fold lines are isomorphic and equiangular in a zigzag shape, which gives a planar fold. FIG. 47B shows two types of folding lines of the equiangular zigzag of FIG. 47A, which are alternately introduced. When the exploded view of FIG. 47B is folded, a plurality of fold lines (that is, main fold lines) connected along the horizontal form a curved line. In other words, it becomes the basic form of a foldable cylinder (square tube).
【0061】図48Aは円筒を形成するための別の基本
モデルで、図48Bははその変形型である。図49Aは
図48Bの台形要素の形状を更に多様化したものであ
る。図49Bは図47Aの基本モデルを1節点6折り線
にしたもので異型モデルの基本形となる。図47A、図
48A、図48Bの展開図は同形の平行四辺形、台形要
素あるいは3角形要素からなる。一方、図48B、図4
9A、図49Bの展開図は2種類の台形要素あるいは三
角形要素からなる。水平方向の要素数をNとすると、1種
類の要素で構成される図48A、図48Bの場合には擬
似的な円筒とみなせる正N角形状の円筒(各筒)型筒状
折り畳み構造物になるが、 図47Aを除く他のモデル
では断面が正N角形ではない異型形状の筒状折り畳み構
造物になる。FIG. 48A is another basic model for forming a cylinder, and FIG. 48B is a modification thereof. FIG. 49A is a further diversification of the shape of the trapezoidal element of FIG. 48B. FIG. 49B is a basic model of a variant model in which the basic model of FIG. 47A has one node and six fold lines. The developed views of FIGS. 47A, 48A, and 48B consist of parallelograms, trapezoidal elements, or triangular elements of the same shape. Meanwhile, FIG. 48B and FIG.
The developed views of FIGS. 9A and 49B consist of two types of trapezoidal elements or triangular elements. When the number of elements in the horizontal direction is N, in the case of FIGS. 48A and 48B, which is composed of one type of element, a regular N-gonal cylinder (each cylinder) type tubular folding structure can be regarded as a pseudo cylinder. However, in other models except FIG. 47A, the cross-section is not a regular N-gonal shape but an odd-shaped tubular folded structure.
【0062】(3−3)折り畳み可能な異型角筒のモデ
ル
(3−3−1)1節点4折り線法による異型角筒のモデ
ル化
図50は断面が十文字型の筒状折り畳み構造物の説明図
であり、図50Aが展開図、図50Bが図50Aの展開
図の両端を接合して形成される構造物を折り畳んだ時の
平面図である。図51は断面が菱形の筒状折り畳み構造
物の説明図であり、図51Aは展開図、図51Bは図5
1Aの展開図の両端を接合して形成される構造物を折り
畳んだ時の平面図である。図52は断面が擬楕円型の筒
状折り畳み構造物の説明図であり、図52Aは展開図、
図52Bは図52Aの展開図の両端を接合して形成され
る構造物を折り畳んだ時の平面図である。図53は断面
が矩形型の筒状折り畳み構造物の説明図であり、図53
Aは展開図、図53Bは図53Aの展開図の両端を接合
して形成される構造物を折り畳んだ時の平面図である。(3-3) Model of foldable deformed rectangular cylinder (3-3-1) Modeling of deformed rectangular cylinder by 1-node 4-fold line method FIG. 50 shows a cylindrical folded structure having a cross-shaped cross section. 50A is an explanatory view, and FIG. 50A is a plan view when a structure formed by joining both ends of the developed view of FIG. 50A is folded. FIG. 51 is an explanatory view of a tubular folding structure having a rhombic cross section, FIG. 51A is a development view, and FIG. 51B is FIG.
It is a top view at the time of folding the structure formed by joining both ends of the development view of 1A. 52 is an explanatory view of a cylindrical folding structure having a pseudo-elliptical cross section, and FIG. 52A is a development view,
FIG. 52B is a plan view of a structure formed by joining both ends of the developed view of FIG. 52A when the structure is folded. 53 is an explanatory view of a tubular folding structure having a rectangular cross section.
53A is a developed view, and FIG. 53B is a plan view when a structure formed by joining both ends of the developed view of FIG. 53A is folded.
【0063】異型のモデルとして考えられる代表的な展
開図を図50A〜図53Aに示し、各展開図の折りたた
み後の形状を図50B〜図53Bに示す。ここで、完全
に折りたたんだ時の形状が各々、十文字型、菱型、擬楕
円型及び矩形型になるものを選択した。図50A〜図5
3Aは、図47B、図48B等の原モデルを基に得られ
た。図50Aは図47Bに対応し、図47B中2種類の
ジグザグの山及び谷折り線(水平の折り線となす角; 75
°,30°)の組が4組で構成されている。図50Aの展開
図の折り線は、2×(75−30)×4=2×360よ
り、円筒型筒状折り畳み構造物の閉じる条件式(13)
を満足している。図51B〜図53Bは図48Bから派
生するもので折りたたみ後、図51B〜図53Bの形状
を呈し、円筒型筒状折り畳み構造物として閉じる条件を
満たすよう水平線との角度が図50Aと同様に設定され
ている。Typical developed views considered as atypical models are shown in FIGS. 50A to 53A, and shapes after folding of each developed view are shown in FIGS. 50B to 53B. Here, a shape that was completely folded into a cross shape, a rhombus shape, a pseudo-elliptical shape, and a rectangular shape was selected. 50A to 5
3A was obtained based on the original models shown in FIGS. 47B and 48B. FIG. 50A corresponds to FIG. 47B, and two types of zigzag peak and valley fold lines in FIG. 47B (angles formed with horizontal fold lines; 75
There are 4 sets of (30 °). The fold line in the development view of FIG. 50A is 2 × (75-30) × 4 = 2 × 360, and the conditional expression (13) for closing the cylindrical tubular folding structure
Are satisfied. 51B to 53B are derived from FIG. 48B and have the shapes of FIGS. 51B to 53B after being folded, and the angle with the horizontal line is set in the same manner as in FIG. 50A so as to satisfy the condition of closing as a cylindrical tubular folding structure. Has been done.
【0064】(主折り線が螺旋に沿う円筒型構造物)図
54は主折り線が螺旋に沿う円筒型筒状折り畳み構造物
の展開図であり、図54Aは前記図50Aの展開図に対
応する図、図54Bは前記図51Aの展開図に対応する
図である。図55は主折り線が螺旋に沿う円筒型筒状折
り畳み構造物の展開図であり、図55Aは前記図52A
の展開図に対応する図、図55Bは前記図53Aの展開
図に対応する図である。図56は主折り線が螺旋に沿う
円筒型筒状折り畳み構造物の展開図であり、前記図49
Aに対応する図である。(Cylindrical structure whose main fold line is spiral) FIG. 54 is a development view of a cylindrical tubular fold structure whose main fold line is spiral, and FIG. 54A corresponds to the development view of FIG. 50A. 54B is a view corresponding to the development view of FIG. 51A. FIG. 55 is a development view of a cylindrical tubular folding structure having a main fold line along a spiral, and FIG. 55A is the same as FIG. 52A.
55B is a view corresponding to the development view of FIG. 53A. FIG. 56 is a development view of a cylindrical tubular folding structure having a main fold line along a spiral, and FIG.
It is a figure corresponding to A.
【0065】前記図50A〜図53Aの展開図を切断後
の展開図の折線が左右連続するよう任意の角度で切断す
ると、図54A、図54B、図55A、図55Bの主折
り線が筒の中心軸を中心とする螺旋模様を形成する展開
図を得る。例えば図54Aは図50Aの線分ABの傾斜
線で左右両端の折り線が連続するよう切断して得たもの
である。これらの切断方法による展開図で得られる異型
筒も軸方向に折りたたまれる。 また、図50A〜図5
3Aの基本パターンが円周方向に閉じる条件を満たせ
ば、 切断する傾斜線の角度に関係なく、図54、図5
5に示す螺旋型の展開図は折りたたみ後円周方向に閉じ
る条件を満たす。これらのら旋型の折りたたみ構造の展
開能(折り畳み前後の外形の収縮率:折り畳み/展開
率)は図50A〜図53Aの基本パターンに比して一般
に優れ、 折りたたむと径方向にも収縮する等の特性を
有する。図49Aの基本パターンを応用すると種々の形
状の台形要素で構成されたら旋型の擬似円筒の展開図が
得られる。これに基づき図50A〜図53Aのような水
平の折り線を持つ展開図を得た後、これを傾斜線で切断
してら旋型の展開図を作成すると、図56のような擬円
筒状構造を与える展開図が得られる。When the developed views of FIGS. 50A to 53A are cut at an arbitrary angle so that the broken lines of the developed view after cutting are continuous left and right, the main fold lines of FIGS. 54A, 54B, 55A, and 55B are cylindrical. A development view is obtained that forms a spiral pattern centered on the central axis. For example, FIG. 54A is obtained by cutting the sloping line AB of FIG. The deformed cylinders obtained from the developed views by these cutting methods are also folded in the axial direction. Also, FIGS.
If the basic pattern of 3A satisfies the condition of closing in the circumferential direction, regardless of the angle of the inclined line to be cut, the pattern shown in FIG.
The spiral development view shown in FIG. 5 satisfies the condition of closing in the circumferential direction after folding. The expandability (the contraction rate of the outer shape before and after folding: folding / expansion rate) of these spiral folding structures is generally superior to that of the basic patterns of FIGS. It has the characteristics of. When the basic pattern of FIG. 49A is applied, a development view of a pseudo pseudo-cylindrical cylinder can be obtained if it is composed of trapezoidal elements of various shapes. Based on this, after obtaining a development view having horizontal fold lines as shown in FIGS. 50A to 53A, cutting this with an inclined line to create a spiral development view, a pseudo-cylindrical structure as shown in FIG. 56 is obtained. A development drawing is given.
【0066】(3−3−2)1節点6折り線法による異
型筒のモデル化
図57は水平方向にzigzagに形成された折り線と垂直方
向にzigzagに形成された折り線とによって構成される折
り線群の角度関係を説明する図である。(折り畳み条
件、閉じる条件等の条件式について)図57に周期的に
x軸と角Θ1、 Θ2をなすzigzagの水平方向の山折り線(D
BAC)とy軸と交互に角度Θ3、Θ4となすx軸とほぼ垂直方
向の山折り線(EAF)で構成した4種類の形状の平行4辺形
要素を基に描かれた1節点6折り線による折り線図を示
す。各節点と角度を図57に示すように定める。∠BAG=
α,∠GAE=β,∠CAH=γ,∠FAH=δとおくと、図57か
ら、
α+β=π/2+Θ1-Θ3,γ+δ=π/2-Θ2-Θ4 ……………………………(29)
を得る。式(29)を前記折り畳み条件式(3)を組合
わせて、次式(30)が得られる。
β-δ=γ-α+Θ1+Θ2+Θ4-Θ3 ………………………………………(30)(3-3-2) Modeling of odd-shaped cylinder by 1-node 6-fold line method FIG. 57 is composed of a fold line formed in zigzag in the horizontal direction and a fold line formed in zigzag in the vertical direction. It is a figure explaining the angular relationship of the folding line group. (Regarding conditional expressions such as folding condition and closing condition)
Horizontal mountain fold line of zigzag that forms angle Θ1 and Θ2 with x-axis (D
BAC) and y-axis alternate angles Θ3, Θ4 and x-axis and a fold line (EAF) almost perpendicular to each other. The fold diagram by a line is shown. Each node and angle are determined as shown in FIG. ∠BAG =
If α, ∠GAE = β, ∠CAH = γ, ∠FAH = δ, then from FIG. 57, α + β = π / 2 + Θ1-Θ3, γ + δ = π / 2-Θ2-Θ4 ……… I get (29). The following expression (30) is obtained by combining the expression (29) with the folding conditional expression (3). β-δ = γ-α + Θ1 + Θ2 + Θ4-Θ3 ………………………………………… (30)
【0067】図57において、線分GAの延長線と線分AH
のなす角をθ1とすると、θ1=β+Θ3+π/2+Θ2+γ-πで
あるから、式(29)のβをこの関係式に用いるとθ1は
次式(31)で与えられる。
θ1=γ-α+Θ1+Θ2 ……………………………………………………(31)
節点Aでの折りたたみ条件式は前記折り畳み条件式
(3)からβ-α=δ-γ+θ1であるから、この折り畳み
条件式に式(31)のθ1を代入すると、
β-δ=Θ1+Θ2 …………………………………………………………(32)
が得られる。 また式(32)と式(30)より次式
(33)が成立つ。
γ-α=Θ3-Θ4 …………………………………………………………(33)
次に、谷折り線BIの延長線と谷折り線BFのなす角をθ2
とすると、 同様にθ2=γ* -α* -(Θ1+Θ2)となるか
ら、点Bでの折りたたみ条件式は次式(34)で表され
る。
γ* -α* =Θ3-Θ4, β* -δ* =-(Θ1+Θ2) …………………(34)
これらをまとめると、折りたたみ条件式(32)〜(3
4)は、
γ-α=γ* -α* =Θ3-Θ4 …………………………………………(35)
β-δ=δ* -β* =Θ1+Θ2 …………………………………………(36)
となる。In FIG. 57, the extension line of the line segment GA and the line segment AH
If the angle formed by is θ1, then θ1 = β + Θ3 + π / 2 + Θ2 + γ-π, so if β in equation (29) is used in this relational equation, θ1 is given by the following equation (31) . θ1 = γ-α + Θ1 + Θ2 ……………………………………………… (31) The folding conditional expression at node A is β-from the folding conditional expression (3). Since α = δ-γ + θ1, substituting θ1 in equation (31) into this folding conditional expression, β-δ = Θ1 + Θ2 …………………………………………………… …………… (32) is obtained. Further, the following expression (33) is established from the expressions (32) and (30). γ-α = Θ3-Θ4 …………………………………………………… (33) Next, the angle between the extension line of the valley fold line BI and the valley fold line BF. Θ2
Then, similarly, θ2 = γ * -α * -(Θ1 + Θ2). Therefore, the folding conditional expression at the point B is expressed by the following expression (34). γ * -α * = Θ3-Θ4, β * -δ * =-(Θ1 + Θ2) ……………… (34) Summarizing these, the folding conditional expressions (32) to (3
4) is γ-α = γ * -α * = Θ3-Θ4 ………………………………………… (35) β-δ = δ * -β * = Θ1 + Θ2…. …………………………………………… (36).
【0068】図57において、閉じる条件(折りたたみ
後円周方向に閉じる条件)は次式(37)、(38)で
表される(N;偶数)。
(N/2)・2(β+β*)=2π ………………………………………………(37)
(N/2)・2(δ+δ*)=2π ………………………………………………(38)
ここで、辺AB≡a,AC≡b,AF≡c,AE≡dと表すと、 正
弦定理を △ABF、△AFHに用いると、a/c=sinδ* /sin
γ*, b/c= sinδ/sinγを得る。これらの関係より、
次式(39)を得る。
a/b=sinβsinα* /(sinα・sinβ*)………………………………(39)
同様の手順で下記の関係式(39′)、(40)を得
る。
a/b=sinγsinδ* /(sinδ・sinγ*)……………………………(39′)
c/d=sinβ*sinγ/(sinα*・sinδ)
=sinγ*sinβ/(sinδ*・sinα)………………………………(40)
更に幾何学的な拘束条件として、次の関係式がある。
α-α* +β* -β=γ* -γ+δ* -δ=Θ1+Θ2……………………(41)
8個の角度(α〜δ*)を未知数として、辺の長さの比a/
b、c/dを与えると、拘束式は式(35)〜(41)の
9個あり、一般に解くことが困難である。In FIG. 57, the closing condition (closing condition in the circumferential direction after folding) is expressed by the following equations (37) and (38) (N; even number). (N / 2) ・ 2 (β + β * ) = 2π ……………………………………………… (37) (N / 2) ・ 2 (δ + δ * ) = 2π ……………………………………………… (38) Here, if the sides AB≡a, AC≡b, AF≡c, AE≡d are expressed, the sine theorem is △ ABF , ΔAFH, a / c = sin δ * / sin
Obtain γ * , b / c = sin δ / sin γ. From these relationships,
The following expression (39) is obtained. a / b = sinβsinα * / (sinα · sinβ * ) (39) The following relational expressions (39 ') and (40) are obtained by the same procedure. a / b = sinγ sinδ * / (sinδ ・ sinγ * ) ……………………………… (39 ′) c / d = sinβ * sinγ / (sinα *・ sinδ) = sinγ * sinβ / (sinδ *・ Sinα) ……………………………… (40) The following relational expression is given as a further geometric constraint condition. α-α * + β * -β = γ * -γ + δ * -δ = Θ1 + Θ2 (41) Eight angles (α to δ * ) are unknowns, and Length ratio a /
Given b and c / d, there are nine constraint equations of equations (35) to (41), and it is generally difficult to solve.
【0069】したがって、ここではΘ1+Θ2=0及びΘ3-
Θ4=0の2つの簡単な場合を考える。前者はΘ1=Θ2=0で
水平の折り線が直線、後者はΘ3=Θ4で垂直方向の折り
線が直線になる場合である。
(i)Θ1=Θ2=0の場合
水平方向の折り線が直線の場合、鉛直方向の折り線がzi
gzagの平行であるから、角度関係は、
α=α*,β=β*,γ=γ*、δ=δ*………………………………(42)
となる。またΘ1+Θ2=0とおくと、式(34),(35)
は、
β=δ,β* =δ*,γ-α=γ* -α* =Θ3-Θ4 ………………(43)
で表される。Therefore, here, Θ1 + Θ2 = 0 and Θ3-
Consider two simple cases where Θ4 = 0. The former is when Θ1 = Θ2 = 0 and the horizontal fold line is straight, and the latter is when Θ3 = Θ4 and the vertical fold line is straight. (I) When Θ1 = Θ2 = 0 When the horizontal fold line is a straight line, the vertical fold line is zi
Since gzag is parallel, the angular relationship is α = α * , β = β * , γ = γ * , δ = δ * ……………………………… (42). If Θ1 + Θ2 = 0, then equations (34) and (35)
Is represented by β = δ, β * = δ * , γ-α = γ * -α * = Θ3-Θ4 (43).
【0070】(Θ1=Θ2=0の場合の具体例)図58は
水平方向に接続する折り線が直線の折り線を有する筒状
折り畳み構造物の具体例の説明図であり、図58Aは鉛
直方向の折り線がzigzag状になる筒状構造物の展開図、
図58Bは鉛直方向の折り線が曲線状になる筒状構造物
の展開図である。図59は水平方向に接続する折り線が
直線の折り線を有する筒状折り畳み構造物の具体例の説
明図であり、前記図58Aの展開図において1段ごとに
反転させた展開図である。図58、図59に、水平方向
に並んで配置された平行4辺形要素の形状、寸法が同じ
場合の折り線図を示す。ここで角度δの値は式(37)
の水平方向に閉じる条件より決まる(δ=π/N)。2段目
のβをδと等置すると、式(37)が満たされる。式
(30)でΘ1+Θ2=0及びβ=δとおくとγ-α=Θ3-Θ4
となり、式(38)も自動的に満たされる。 すなわち
図57Bのように各段毎にβ=δ=π/Nと選び、α,γは
任意の値に選択した展開図でも折りたたみが可能にな
る。 結果として鉛直方向の山折り線はzigzag(図58
A)あるいは曲線状(図58B)になる。(Specific Example in the Case of Θ1 = Θ2 = 0) FIG. 58 is an explanatory view of a specific example of the tubular folding structure having a straight fold line connected in the horizontal direction. FIG. Development view of a cylindrical structure whose fold line in the direction becomes zigzag shape,
FIG. 58B is a development view of a tubular structure in which a vertical folding line is curved. FIG. 59 is an explanatory view of a specific example of a tubular folding structure in which the fold lines connecting in the horizontal direction have straight fold lines, and a development view in which the fold lines are inverted step by step in the development view of FIG. 58A. 58 and 59 show folding diagrams when the shapes and dimensions of the parallelogram elements arranged side by side in the horizontal direction are the same. Here, the value of the angle δ is given by the equation (37).
Is determined by the horizontal closing condition of (δ = π / N). Equation (37) is satisfied by equating β in the second stage with δ. If Θ1 + Θ2 = 0 and β = δ in equation (30), then γ-α = Θ3-Θ4
Then, the equation (38) is automatically satisfied. That is, as shown in FIG. 57B, β = δ = π / N is selected for each stage, and α and γ can be folded even in a development view in which arbitrary values are selected. As a result, the vertical mountain fold line is zigzag (Fig. 58).
A) or curved (FIG. 58B).
【0071】図59は図58Aを一つ跳びに逆方向に
し、反復型の折り線にしたもので、角度関係は図58A
のようになる。この1節点6折り線法における節点Oで
の折りたたみ条件は図58中の水平の山折り線(線分A
O)の延長線が線分OBと一致するから、α+β=α+δ,
γ+δ=β+γを同時に満たすことで与えられる。双方の
式ともに、β=δとなるから、図58A、図58Bの展
開図は自動的に折りたたみ条件、及び閉じる条件を満た
す。このことは平行4辺形で展開図を構成すると、閉じ
る条件だけを満たすように角β=δを選ぶと、各段任意
の模様で折りたたみ可能な擬円筒の展開図を設計出来る
ことを示す。前記式(39)に式(42),(43)を用いる
とa/b=1となる。これは、水平方向の折り線が直線の場
合には、水平方向の平行4辺形の寸法の異なる折りたた
み可能な異型形状の展開図を作ることが出来ないことを
示す。FIG. 59 is a repetitive fold line of FIG. 58A with one jump in the opposite direction.
become that way. The folding condition at the node O in the 1-node 6-fold line method is the horizontal mountain fold line (line segment A in FIG. 58).
Since the extended line of (O) coincides with the line segment OB, α + β = α + δ,
It is given by simultaneously satisfying γ + δ = β + γ. Since both equations satisfy β = δ, the developed views of FIGS. 58A and 58B automatically satisfy the folding condition and the closing condition. This shows that if the development view is composed of parallelograms, and if the angle β = δ is selected so that only the closing condition is satisfied, it is possible to design a development view of a pseudo-cylinder that can be folded in any pattern at each stage. If equations (42) and (43) are used in equation (39), a / b = 1. This shows that when the horizontal folding line is a straight line, it is not possible to make a development view of a collapsible irregular shape having different horizontal parallelogram dimensions.
【0072】図59の反復型の折り線を用いると 平行4
辺形の水平方向の寸法長さが異なる場合、 すなわち矩形
形状で折りたたまれる展開図が得られる。これを図60
に示す(N=4)。
図60は反復型の折り線で構成された筒状折り畳み構造
物の展開図であり、折り畳まれた後の断面が矩形状とな
る構造物の展開図である。図60の各接点での折りたた
み条件は図59と全く同様に成立つ。図60中のδとδ'
はその和がπ/2で、 それらは鉛直方向の3角形要素(パ
ーツ)について一定である(δとδ'以外の角度は任意)。
このことより、反復型の折り線を有する筒状構造物は、
図58A、図58Bのタイプの構造物に比し、折りたた
み条件についての拘束度合が緩やかであることが分か
る。Using the repetitive folding line in FIG.
When the dimensional lengths of the sides are different in the horizontal direction, that is, an unfolded view folded in a rectangular shape is obtained. Figure 60
(N = 4). FIG. 60 is a development view of a tubular folding structure configured by repetitive folding lines, and is a development view of a structure having a rectangular cross section after being folded. The folding condition at each contact in FIG. 60 is satisfied exactly as in FIG. Δ and δ ′ in FIG. 60
Is the sum of π / 2, and they are constant for vertical triangular elements (parts) (angles other than δ and δ'are arbitrary).
From this, the tubular structure having repetitive fold lines,
It can be seen that the degree of constraint regarding the folding condition is milder than that of the structure of the type shown in FIGS. 58A and 58B.
【0073】(ii)Θ3=Θ4、即ち、鉛直方向の山折
り線が直線の場合
図61は鉛直方向に接続される折り線が直線を形成する
折り線群を有する筒状折り畳み構造物の角度関係を説明
する図である。Θ3=Θ4の場合、筒状構造物のモデルは
図61のようになるから、α* =γ,β * =δ,γ* =α,δ
* =βとなる。したがって、式(35)はΘ3=Θ4の時γ-
α=0となる。また図57よりα+β-Θ1+Θ3=γ+δ+Θ2+
Θ4となるから、 Θ3=Θ4,γ=αとおくと、この関係式
はβ-δ=Θ1+Θ2となり、前記式(32)も同時に満たさ
れる。すなわち式(32)〜(36)の折りたたみ条件
は単一の次式(37)で表される。
α=γ, β-δ=Θ1+Θ2 ………………………………………………(37)
前記式(36)でα* =γ,β* =δとおき、α=γとする
と、
a/b=sinβ/sinδ ……………………………………………………(38)
を得る。a/b値を与え、閉じる条件(β+δ=π/N)を式
(38)に用いると、β,δが数値計算で求まり、式(3
7)よりΘ1+Θ2が決まる。したがって、前記図57より
a/b=sinΘ2/sinΘ1であるから、得られたΘ1+Θ2を用
いるとΘ1,Θ2が決まる。図62は鉛直方向に接続され
る折り線が直線を形成する折り線群を有する筒状折り畳
み構造物の具体例の図であり、図62Aはa/b=2.
5、N=4の場合の展開図、図62Bはa/b=2.
5、N=6の場合の展開図である。図62Aの筒状折り
畳み構造物は、a/b=2.5、N=4(β+δ=π/
4)、図62Bの筒状折り畳み構造物は、a/b=2.
5、N=6(β+δ=π/6)に設定されているので、
折り畳み条件及び閉じる条件等を満足するので、折り畳
むことができる。ここでα=γは自由に選択出来る。(Ii) Θ3 = Θ4, that is, a mountain fold in the vertical direction
If the wire is straight
In FIG. 61, the folding lines connected in the vertical direction form a straight line.
Explain the angular relationship of a tubular fold structure with fold lines
FIG. If Θ3 = Θ4, the model of the tubular structure is
Since it becomes like FIG. 61, α* = γ, β * = δ, γ* = α, δ
* = β. Therefore, equation (35) is γ- when Θ3 = Θ4
α = 0. Further, from FIG. 57, α + β-Θ1 + Θ3 = γ + δ + Θ2 +
Since Θ4, if we set Θ3 = Θ4, γ = α, this relational expression
Becomes β-δ = Θ1 + Θ2, and the above equation (32) is also satisfied at the same time.
Be done. That is, the folding condition of the equations (32) to (36)
Is expressed by a single equation (37).
α = γ, β-δ = Θ1 + Θ2 ……………………………………………… (37)
In equation (36), α* = γ, β* = δ and α = γ
When,
a / b = sinβ / sinδ …………………………………………………… (38)
To get a / b value is given and the closing condition (β + δ = π / N)
When used in (38), β and δ can be obtained by numerical calculation, and equation (3
Θ1 + Θ2 is determined from 7). Therefore, from FIG.
Since a / b = sin Θ2 / sin Θ1, the obtained Θ1 + Θ2 is used.
Θ1 and Θ2 will be decided when there is. Figure 62 is connected vertically
Cylindrical fold having folding lines forming straight lines
FIG. 62A is a diagram of a specific example of a structure having a / b = 2.
5, a development view in the case of N = 4, FIG. 62B shows a / b = 2.
5 is a development view in the case of 5, N = 6. FIG. 62A tubular folding
The folded structure has a / b = 2.5, N = 4 (β + δ = π /
4), the tubular folding structure of FIG. 62B has a / b = 2.
5, N = 6 (β + δ = π / 6), so
Folding conditions and closing conditions are satisfied, so fold
Can be removed. Here, α = γ can be freely selected.
【0074】(3−4)異なる要素形状の組合せによる
擬円錐殻の製作及びこれによる異型角錐殻モデルの創製
(3−4−1)異なる模様による円錐殻のモデル
等角ら旋や反復型の折り線を用い、展開図を相似な矩形
や6角形要素に分割して、折りたたみ可能なの円錐型筒
状構造物を製作する方法は前述した。この時、要素寸法
は中心に近づく程、等比級数的に小さくなり、これを製
作加工する際に煩雑な工程が要求された。それゆえここ
では、中心に近づく程、等角ら旋が与える寸法より大き
くして行く修正モデルを考える。図63は等角螺旋の修
正モデルの図であり、図63Aは螺旋型の折り線の説明
図、図63Bは図63AにおいてN=6とした時の具体
例を示す図である。図63Aに示されるように外周上に
点A,B,C,…、これより小さな半径上に点D,E,F…及びG,
H,I…をとる。各点を結んで描いた矩形要素を分割して
得られる上側の3角形の左下隅の角(∠DAE,∠EBF,∠GDH
等)を図58の説明で使用したように全てδ0と置く。(3-4) Manufacture of a pseudo-conical shell by combining different element shapes and creation of an atypical pyramid shell model by this (3-4-1) Model of a conical shell with different patterns The method of dividing the development view into similar rectangular and hexagonal elements by using folding lines to manufacture a foldable conical tubular structure has been described above. At this time, the element dimension becomes geometrically smaller as it gets closer to the center, and a complicated process is required when manufacturing and processing the element. Therefore, here, we consider a modified model in which the size gets larger than the dimension given by the conformal helix as it approaches the center. 63 is a diagram of a modified model of an equiangular spiral, FIG. 63A is an explanatory diagram of spiral folding lines, and FIG. 63B is a diagram showing a specific example when N = 6 in FIG. 63A. As shown in FIG. 63A, points A, B, C, ... Are on the outer circumference, and points D, E, F, ...
Take H, I ... The lower left corner of the upper triangle obtained by dividing the rectangular element drawn by connecting each point (∠DAE, ∠EBF, ∠GDH
Etc.) are all set as .delta.0 as used in the description of FIG.
【0075】ここで、点Eでの折りたたみ条件を考え
る。要素ABEDを分割する線分AEと右上の要素のそれ(線
分EI)のなす角θ1は、∠ADE=∠BEF≡pとおくと、θ1=
β0+p+γ1-πとなる。△ADEの内角の和よりp+α0+δ0
=πを得る。これらの式から、pを消去すると、
β0-α0=δ0-γ1+θ1 …………………………………………………(39)
となり、折りたたみ条件が成立つ。これは角δ0を各段
毎に一定に保つと折りたたみ可能な擬似円錐型筒状構造
物が製作出来ることを示す。このδ0値は閉じる条件で
決まり、展開図の初期曲がりをNΘとして(Θ; 矩形要素
の下辺が中心に対して張る角)、次式により決定され
る。
NΘ+2δ0×N=2π ………………………………………………………(40)
N=6とした例を図63Bに示す(Θ=20°,δ0=20°)。Now, consider the folding condition at the point E. The angle θ1 formed by the line segment AE that divides the element ABED and that (line segment EI) of the element on the upper right is θ1 = ∠ADE = ∠BEF≡p
β0 + p + γ1-π. From the sum of the interior angles of △ ADE, p + α0 + δ0
get = π. If p is deleted from these equations, β0-α0 = δ0-γ1 + θ1 becomes (39), and the folding condition is satisfied. This shows that a foldable pseudo-conical tubular structure can be manufactured by keeping the angle δ0 constant for each step. This δ0 value is determined by the closing condition, and is determined by the following equation, where NΘ is the initial bend of the development view (Θ; the angle formed by the lower side of the rectangular element with respect to the center). NΘ + 2δ0 × N = 2π …………………………………………………… (40) Figure 63B shows an example where N = 6 (Θ = 20 °, δ0 = 20 °).
【0076】図64は反復型等角螺旋の修正モデルの図
であり、図64Aは螺旋型の折り線の説明図、図64B
は図64AにおいてN=6とした時の具体例を示す図で
ある。図64Aに前記図63Aのモデルで外周から偶数
段目の矩形を反対方向にとった反復型のモデルを示す。
なお、各点と角度を図63Aと全く同様に定める。点E
における折り畳みについて考える。線分EFの延長上に点
Jを取る。点Eでの折りたたみ条件は∠HEJ=∠GED+∠AEB
と∠BEJ=∠HEG+∠DEAが同時に成立つことである。∠DEJ
=Θであるから∠HEJ=δ0+γ1+Θ、また∠JEB=π-p=α0
+δ0であるから、上の条件が成立つ。したがって、図6
4Aの反復型の等角螺旋の修正モデルでは、折り畳み条
件が成立し、閉じる条件は、図63Aの場合と同様であ
る。この反復型の筒状構造物の例を図64Bに示す(N=
6,Θ=20°,δ0=20°)。FIG. 64 is a diagram of a modified model of the repetitive conformal helix, and FIG. 64A is an explanatory diagram of the spiral fold line, and FIG. 64B.
FIG. 64B is a diagram showing a specific example when N = 6 in FIG. 64A. FIG. 64A shows a repetitive model of the model of FIG. 63A in which even-numbered-stage rectangles are taken in the opposite direction from the outer circumference.
In addition, each point and angle are determined in exactly the same manner as in FIG. 63A. Point E
Consider folding in. Point on extension of line segment EF
Take J The folding condition at point E is ∠HEJ = ∠GED + ∠AEB
And ∠BEJ = ∠HEG + ∠DEA are established at the same time. ∠DEJ
= Θ, so ∠HEJ = δ0 + γ1 + Θ, and ∠JEB = π-p = α0
Since + δ0, the above condition holds. Therefore, FIG.
In the modified model of the iterative conformal spiral of 4A, the folding condition is satisfied and the closing condition is the same as the case of FIG. 63A. An example of this repeating tubular structure is shown in FIG. 64B (N =
6, Θ = 20 °, δ0 = 20 °).
【0077】(3−4−2) 異型角錐筒の製作
図65は異型の角錐状構造物の説明図であり、図65A
は角度関係を説明する図、図65Bは異型の角錐状構造
物の具体例である。図65Aに示されるように、外周上
の点Aから中心Oに向かうzigzagの山折り線ACDE(図6
5Aの折り線)を考え、この折り線ACDEの「振り角」
をjΘ(j;正数値、Θ;扇形の微小分割角)とし、折り線AC,
CD,DE…が半径方向と角φ0,φ1,φ2…をなすものとす
る。また同様に点Bから最初、前記折り線ACと逆方向に向
かう山折り線(図65Aの折り線)を描き、これが半径
方向と角ψ0、ψ1、ψ2…をなすものとる(振り角;kΘ)。
このような折り線(、)を交互に取って、展開図65
Aを作図し扇形を台形形状の要素で分割する。図65A
の中央部の線分AB,DG等が中心Oに対して張る角度をm
Θ、また左右の線分IC,JD,FK,GL等の張る角度をnΘとす
る。線分IC、KFの延長線上に点M,Nをとる。点Cでの折り
たたみ条件は∠ACM=π/2-[(n/2+j)Θ+φ0],∠DCF=π/2-
[(j+m/2)Θ+φ1]を等置して、
φ0-φ1=(m-n)Θ/2 …………………………………………………(41)
となる。同様に点Fでの折り畳み条件は次式(42)で
表される。
ψ0-ψ1=(m-n)Θ/2 ……………………………………………………(42)(3-4-2) Manufacture of atypical pyramidal cylinder FIG. 65 is an explanatory view of an atypical pyramidal structure, and FIG.
Is a diagram for explaining the angular relationship, and FIG. 65B is a specific example of an atypical pyramidal structure. As shown in FIG. 65A, the zigzag mountain fold line ACDE from the point A on the outer circumference to the center O (see FIG. 6).
5A fold line), and consider the fold line of ACDE
Be jΘ (j: positive value, Θ: fan-shaped minute division angle), and fold line AC,
It is assumed that CD, DE ... Form angles φ0, φ1, φ2 ... With the radial direction. Similarly, a mountain fold line (a fold line in FIG. 65A) extending from the point B in the direction opposite to the fold line AC is drawn first, and this forms the angles ψ0, ψ1, ψ2 ... With the radial direction (swing angle; kΘ ).
These folding lines (,) are taken alternately, and a development view 65
Draw A and divide the sector into trapezoidal elements. Figure 65A
The angle formed by the line segments AB, DG, etc. in the center of the
Let θ be the angle between the left and right line segments IC, JD, FK, and GL. Place points M and N on the extension of line segment IC and KF. The folding condition at point C is ∠ACM = π / 2-[(n / 2 + j) Θ + φ0], ∠DCF = π / 2-
Putting [(j + m / 2) Θ + φ1] equally, φ0-φ1 = (mn) Θ / 2 …………………………………………………… (41) Becomes Similarly, the folding condition at the point F is expressed by the following equation (42). ψ0-ψ1 = (mn) Θ / 2 …………………………………………………… (42)
【0078】図65Aにおいて、∠DCF=π/2-(j+m/2)Θ
-φ1, ∠ICD=π/2-nΘ/2+φ1であるから、点Cでの折り
たたみ後の角度Φ≡∠ICD-∠DCF、及び点Fでの折りたた
み後の角度Ψは次式(43)、(44)で表される。
Φ=2φ1+{j+(m-n)/2}Θ …………………………………………(43)
Ψ=2ψ1+{k+(m-n)/2}Θ …………………………………………(44)
折りたたみ後の形状が長方形の場合を考え、j=k=1と置
き、各々の頂点が90°で折りたたまれるとする。長方形
の縦横比を与えるm、nをm-n=2とすると、式(43),(4
4)は、
2(φ1+Θ)=2(ψ1+Θ)=90° …………………………………………(45)
となる。また、式(41),(42)は次式(46)とな
る。
φ0-φ1=ψ0-ψ1=(m-n)Θ/2=Θ ……………………………………(46)
式(45)でΘ=5°と置くと、φ1=ψ1=40°、式(46)よ
りφ0=ψ0=45°となる。同様の手順でφ2、φ3・・・が求め
られ、最終的にφ(=ψ)の変化は45°→40°→45°→40
°で与えられる。m=3,n=1とした場合の展開図を図65
Bに示す。In FIG. 65A, ∠DCF = π / 2- (j + m / 2) Θ
Since -φ1, ∠ICD = π / 2-nΘ / 2 + φ1, the angle Φ≡∠ICD-∠DCF after folding at point C and the angle Ψ after folding at point F are given by ), (44). Φ = 2φ1 + {j + (mn) / 2} Θ ………………………………………… (43) Ψ = 2ψ1 + {k + (mn) / 2} Θ ………………………… ……………………… (44) Consider the case where the shape after folding is a rectangle, and set j = k = 1, and assume that each vertex is folded at 90 °. If m and n, which give the aspect ratio of the rectangle, are set to mn = 2, then equations (43) and (4
4) becomes 2 (φ1 + Θ) = 2 (ψ1 + Θ) = 90 ° ………………………………………… (45). Also, equations (41) and (42) become the following equation (46). φ0-φ1 = ψ0-ψ1 = (mn) Θ / 2 = Θ …………………………………… (46) If we set Θ = 5 ° in equation (45), φ1 = ψ1 = 40 °, and φ0 = ψ0 = 45 ° from equation (46). Φ2, φ3 ... Are obtained by the same procedure, and finally the change of φ (= ψ) is 45 ° → 40 ° → 45 ° → 40
Given in °. FIG. 65 shows a development view when m = 3 and n = 1.
Shown in B.
【0079】4.円筒型筒状折り畳み構造物と円錐型筒
状折り畳み構造物の関係
以下では、最初、等角ら旋状折り線を任意角で逆方向、
あるいは同方向に交叉させて構成した3角形要素による
折りたたみ可能な円錐(台)形状筒状構造物の展開図の作
図方法を述べる。次にこれに基づき考案されたより大き
な展開能を有する矩形要素からなる展開図の製作法を述
べる。
(4−1)折りたたみ式円筒から円錐殻への変換の基本
関係
図66は折り畳み可能な円筒型筒状構造物の展開図を説
明する図であり、図66Aは円筒の座屈パターンの展開
図で図9に対応する図、図66Bは各要素の角度の説明
図、図66Cは図66AのABが水平になるように傾斜
した図である。図67は折り畳み可能な円筒型筒状構造
物の説明図であり、図67Aは図66Bを描き直した図
でで図22Aに対応する図、図67Bは展開図の上昇を
説明するための図で図66Bに対応する図である。図6
8は折り畳み可能な円筒型筒状構造物の説明図であり、
図68Aは図67BのGFが水平になるように傾斜させ
た図、図68Bは図68Aを描き直した図である。4. Relationship between a cylindrical tubular folding structure and a conical tubular folding structure In the following, first, the equiangular spiral folding line is reversed at an arbitrary angle,
Alternatively, a method for drawing a developed view of a conical (trapezoidal) cylindrical structure that can be folded by triangular elements configured by intersecting in the same direction will be described. Next, a method for producing a developed view composed of rectangular elements having a greater developability, which is devised based on this, will be described. (4-1) Basic Relationship of Conversion from Foldable Cylinder to Conical Shell FIG. 66 is a diagram illustrating a development view of a foldable cylindrical tubular structure, and FIG. 66A is a development view of a buckling pattern of the cylinder. FIG. 66 is a diagram corresponding to FIG. 9, FIG. 66B is an explanatory diagram of angles of each element, and FIG. 66C is a diagram inclined so that AB in FIG. 66A is horizontal. 67A and 67B are explanatory views of a foldable cylindrical tubular structure, FIG. 67A is a drawing in which FIG. 66B is redrawn, and is a drawing corresponding to FIG. 22A, and FIG. It is a figure corresponding to FIG. 66B. Figure 6
8 is an explanatory view of a foldable cylindrical tubular structure,
68A is a diagram in which the GF in FIG. 67B is inclined so as to be horizontal, and FIG. 68B is a diagram in which FIG. 68A is redrawn.
【0080】図66〜図68に円筒の折りたたみの展開
図を示す。図66Aは円筒の軸圧縮時の座屈パターンか
ら得られる折りたたみの基本形で、α=β=π/6(図66
B参照)の2等辺3角形要素からなる。これを図66A中
の傾斜した線分ABで切断しACを下辺DEに接合すると 図
66Cが得られ、図67Aのように変形できる。 図6
7BにおいてFGで切断すると1段上がり(1段上昇)、
あるいはFHで切断すると2段上がりの主折り線が螺旋に
沿う筒状構造物の展開図になる。1段上がりのものが図
68Aであり、この図68Aは図68Bと等価である。
図68の展開図の両端を接合して円筒を構成した時、左
下隅から出る傾斜した折り線の右端(図68Aの点F)
はこの山折り線の一段上の折り線の左端と連続する。こ
れはGuest等が数値計算によって折りたたみ特性を調べ
た円筒のモデルに相当する。図67Aは筒状構造物の円
周方向に沿って平行4辺形要素が6個配置されるが、彼等
が示したように図68の一段上がりのモデルではこれが
7個、2段上がりのものは8個で構成される。これ等のモデ
ルの折りたたみ条件はβ=π/6であり、α=π/6の時に
は、正6角形状で折りたたまれるがαがπ/6でない限
り、正多角形形状で折りたたまれることはない。また、
この段上がり数が増えると折りたたみ時に半径方向の収
縮が大きくなる。66 to 68 are developed views of the folding of the cylinder. FIG. 66A is a folding basic form obtained from a buckling pattern of a cylinder when axially compressed, and α = β = π / 6 (see FIG. 66).
(See B)). When this is cut along the slanted line segment AB in FIG. 66A and AC is joined to the lower side DE, FIG. 66C is obtained, which can be transformed as shown in FIG. 67A. Figure 6
When cut with FG in 7B, it goes up 1 step (up 1 step),
Alternatively, when cut by FH, a two-step raised main fold line is a development view of a tubular structure along a spiral. The one step up is shown in FIG. 68A, which is equivalent to FIG. 68B.
When the both ends of the development view of FIG. 68 are joined to form a cylinder, the right end of the inclined fold line extending from the lower left corner (point F in FIG. 68A)
Is continuous with the left end of the fold line above this mountain fold line. This is equivalent to a cylinder model in which Guest et al. Investigated folding characteristics by numerical calculation. In FIG. 67A, six parallelogram elements are arranged along the circumferential direction of the tubular structure.
7 pieces, 2 steps up to 8 pieces. The folding condition of these models is β = π / 6, and when α = π / 6, it is folded in a regular hexagonal shape, but unless α is π / 6, it is not folded in a regular polygonal shape. . Also,
When the number of steps increases, the contraction in the radial direction becomes large when folded.
【0081】前記図66〜図68に示す円筒型の筒状折
り畳み構造物に対応する円錐型の筒状折り畳み構造物の
展開図を図69〜図71に示す。図69は折り畳み可能
な円錐型筒状折り畳み構造物の展開図であり、図69A
は図66Aの円筒型構造物に対応する円錐型構造物の展
開図、図69Bは図67Aの円筒型構造物に対応する円
錐型構造物の展開図である。図70は折り畳み可能な円
錐型筒状折り畳み構造物の展開図であり、図68Bの円
筒型構造物に対応する円錐型構造物の展開図である。図
71は折り畳み可能な円錐型筒状折り畳み構造物の展開
図であり、図71Aは図67Bにおける2段上がりの円
筒状構造物に対応する円錐型構造物の展開図であり、図
71Bは図71Aを描き直したものである。なお、図7
1Bは図71Aを描きなおしたもので、右上がりの緩や
かな山折り螺旋方向に6個の要素で構成されていること
を示している。以下においては図69Aの形式の折り線
を逆方向ら旋、図69Bの形式の折り線を同方向ら旋と
呼ぶ。69 to 71 are developed views of a conical tubular folding structure corresponding to the cylindrical tubular folding structure shown in FIGS. 66 to 68. 69A is a development view of a conical tubular folding structure that can be folded, and FIG.
66A is a development view of a conical structure corresponding to the cylindrical structure of FIG. 66A, and FIG. 69B is a development view of a conical structure corresponding to the cylindrical structure of FIG. 67A. 70 is a development view of a foldable conical tubular folding structure, which is a development view of a conical structure corresponding to the cylindrical structure of FIG. 68B. FIG. 71 is a development view of a conical tubular folding structure that can be folded, FIG. 71A is a development view of a conical structure that corresponds to the two-step-up cylindrical structure in FIG. 67B, and FIG. 71B is a diagram. It is a repainted version of 71A. Note that FIG.
FIG. 1B is a redrawing of FIG. 71A, showing that it is composed of six elements in the direction of the upward gradual gentle mountain fold. In the following, the fold line in the form of FIG. 69A will be referred to as reverse spiral, and the fold line in the form of FIG. 69B will be referred to as same direction spiral.
【0082】(4−2)ら旋状折り線による折りたたみ
型円錐殻の作図法
(4−2−1)逆方向に交叉する山折りのら旋状折り線
で構成される3角形要素からなる展開図
図72は逆方向螺旋の折り線群に関する作図及び角度の
説明図であり、図33に対応する図である。図72のよ
うに点Aを外周上に取り、半径と角φをなすよう折り線
ABを引き、点Bを定める(線分ABが中心に対して張る角:
mΘ)。同様に、点Bから更に角φで右上方向に進展させ
点Cを定め、次に点Dを定める。この折れ線をとする。
点Aから半径方向と角ψをなすよう線分AEを左上方向に
引き (線分AEが張る角度:nΘ)、同じ角ψ,nΘを用いて
作図し、 点E,F,Gを定める。点Eから右上がりの折れ線
をと同様に描く。又点Bから折れ線(点I,B,H・・・)を
と同様の手順で描き、等角ら旋状折り線で展開図を構
成する。△0AB及び△0AEに正弦定理を用いると、Bの半
径をR1、点Eの半径をR1*とするとp≡R1/R0とq≡R1*/R0
は各々
p=sinφ/sin(φ+mΘ),q=sinψ/sin(ψ+nΘ) ………………………(46)
で与えられる。点C,Dの無次元半径はp2,p3・・,点F,G・・・
の無次元半径は各々q2,q3・・・で与えられ、折り線,
は等角の螺旋になる。また、点E,B,J・・・の無次元半径は
各々q,p,p2 /q,p3 /q2・・ のようにp/q(≡r)の等比数列
になり、この点列も等角ら旋上に来る。折り線で構成さ
れた矩形要素は相似形である。(4-2) Construction method of folding conical shell by spiral fold line (4-2-1) Consists of triangular elements composed of spiral fold lines of mountain folds intersecting in opposite directions FIG. 72 is an exploded view showing the drawing and the angle regarding the folding line group of the backward spiral, and is a view corresponding to FIG. 33. As shown in Fig. 72, fold the line so that point A is placed on the outer circumference and form a corner with the radius
Draw AB and define point B (angle that line segment AB forms with the center:
m Θ). Similarly, the point C is further developed from the point B at the angle φ in the upper right direction, and the point C is determined, and then the point D is determined. Let this line be.
A line segment AE is drawn in the upper left direction from the point A so as to form an angle ψ with the radial direction (angle splayed by the line segment AE: nΘ), and the same angle ψ, nΘ is drawn to determine points E, F, G. Draw a line rising from point E to the right in the same way as. In addition, a polygonal line (points I, B, H ...) Is drawn from the point B in the same procedure as that, and a development view is constructed by equiangular spiral folding lines. Using the sine theorem for △ 0AB and △ 0AE, if the radius of B is R1 and the radius of point E is R1 * , p≡R1 / R0 and q≡R1 * / R0
Are respectively given by p = sin φ / sin (φ + mΘ), q = sin ψ / sin (ψ + nΘ) ……………………… (46). The dimensionless radii of points C and D are p 2 , p 3 ..., Points F, G ...
The dimensionless radii of are given by q 2 , q 3 ...
Becomes an equiangular spiral. Also, the dimensionless radii of points E, B, J ... are the geometric progressions of p / q (≡r) such as q, p, p 2 / q, p 3 / q 2 This sequence of points also comes on a conformal spiral. The rectangular elements composed of fold lines are similar figures.
【0083】ここで、各節点における折り畳み条件を確
認する。この矩形を構成する3角形要素の角度を図72
のように角α〜δで表し、これらの角度関係を求める。
△OEBと△ABEの内角の和の関係より、
α+δ+φ+ψ+(m+n)Θ=π、
β+γ+φ+ψ=π ………………………(47)
を得る。上の2式(47)より次式(48)が導かれ
る。β-α=δ-γ+(m+n)Θ ……………………………
……………… (48)線分EB、BJがなす角が(m+n)Θ
であるから、式(48)は点Bで折りたたみ条件が成立つ
ことを示す。矩形要素の相似性より、全ての節点で折り
畳み条件を満足している。∠0EH=∠0AB=φより、線分EH
とABの交点と点0,E,Aの4点は同一円上にある。それゆえ
δ=β+mΘが成立ち、式(48)より
δ-β=mΘ,γ-α=nΘ …………………………………………………(49)
を得る。また式(47)より次式(50)を得る。
α=π-δ-(φ+ψ)-(m+n)Θ …………………………………………(50)
r≡p/qは△OABにおいて正弦定理より、次式(51)で
与えられる。
r=sin(φ+δ)/sin[φ+δ+(m+n)Θ] …………………………………(51)Here, the folding condition at each node is confirmed. Figure 72 shows the angles of the triangular elements that make up this rectangle.
The angles are represented by the angles α to δ as shown in FIG.
From the relationship of the sum of the internal angles of △ OEB and △ ABE, α + δ + φ + ψ + (m + n) Θ = π, β + γ + φ + ψ = π ……………………… (47 ) Get The following equation (48) is derived from the above two equations (47). β-α = δ-γ + (m + n) Θ ……………………………………
……………… (48) The angle formed by the line segments EB and BJ is (m + n) Θ
Therefore, the expression (48) shows that the folding condition is satisfied at the point B. Due to the similarity of rectangular elements, all nodes satisfy the folding condition. From ∠0EH = ∠0AB = φ, the line segment EH
And the intersection of AB and the four points 0, E, A are on the same circle. Therefore, δ = β + mΘ holds, and from equation (48), δ-β = mΘ, γ-α = nΘ …………………………………………………… (49) obtain. Further, the following expression (50) is obtained from the expression (47). α = π-δ- (φ + ψ)-(m + n) Θ …………………………………… (50) r≡p / q is the sine theorem in ΔOAB, It is given by the following equation (51). r = sin (φ + δ) / sin [φ + δ + (m + n) Θ] ……………………………………… (51)
【0084】次に具体例を考える。 図72の点Kが外周
上にある場合にはp/q2 =1である。一般的にp/qk =1で表
す(k;整数)。 q=sinψ/sin(ψ+nΘ)=p(1/k)より次式
(52)を得る。
cosψ=sinψ・f(p) ……………………………………………………(52)
ただし、f(p)≡(1-p(1/k)cosmΘ)/(p(1/k)sinmΘ)した
がって、ψはpすなわちφの関数である。cos2ψ+sin2ψ
=1を用い、sinψ>0を採るとsinψ=(1+f2)-0.5すなわち
ψは
ψ=arcsin(1+f2)-0.5 ………………………………………………(53)
となる。またr=p/q=p(1-1/k)より、上と同様に、δ+φ
は、
δ+φ=arcsin(1+g2)-0.5 …………………………………………(54)
ただし、g(p)≡[1-p(1-1/k)cos(m+n)Θ]/[p(1-1/k)sin
(m+n)Θ]で表される。Next, a concrete example will be considered. When the point K in FIG. 72 is on the outer circumference, p / q 2 = 1. Generally expressed by p / q k = 1 (k; integer). The following expression (52) is obtained from q = sin ψ / sin (ψ + nΘ) = p (1 / k) . cosψ = sinψ ・ f (p) ……………………………………………… (52) where f (p) ≡ (1-p (1 / k) cosmΘ) / (p (1 / k) sinm Θ) Therefore ψ is a function of p or φ. cos 2 ψ + sin 2 ψ
= With 1, Taking sinψ> 0 sinψ = (1 + f2) -0.5 i.e. [psi is ψ = arcsin (1 + f2) -0.5 ................................................... (53) Also, from r = p / q = p (1-1 / k) , as above, δ + φ
Is δ + φ = arcsin (1 + g2) -0.5 ………………………………………… (54) where g (p) ≡ [1-p (1-1 / k ) cos (m + n) Θ] / [p (1-1 / k) sin
(m + n) Θ].
【0085】折りたたみ後、円周方向に閉じる条件は展
開図上の左上がり方向の山折り線数をN(周方向の要素
数)として、折りたたみによる曲げ角Φは
Φ=2[δ+[π-φ-ψ-(m+n)Θ]]・N ……………………………………(55)
で与えられる。展開図の初期曲がり(両端のなす角)はΨ
=(m+kn)NΘであるから、折りたたみ後 周方向に閉じる
条件式(28)(Φ+Ψ=2π)は、
[δ+π-φ-ψ-(m+n)Θ]+(m+kn)Θ/2N=π/N ………………………(56)
で与えられる。 式(53),(54)を式(56)に用い、こ
れを満たすφを数値計算で算出して得た展開図の一例を
用いた定数とともに図73に示す。図73は逆方向螺旋
の折り線群を有する円錐型筒状折り畳み構造物の具体例
の展開図である。この図73の筒状構造物は前記図69
Aのら旋状山折り線を傾斜させたものに対応し、p=qk
(k=2)の条件より、展開図の左右端での折り線の連続性
が成立っている。図73では、N=3,Θ=5°,m=3,n=2
で計算を行い、p=0.8873,q=0.9419の計算結果を得た。After folding, the condition for closing in the circumferential direction is N = (number of elements in the circumferential direction), which is the number of mountain fold lines in the upward direction on the development view, and the bending angle Φ due to folding is Φ = 2 [δ + [π -φ-ψ- (m + n) Θ]] ・ N …………………………………… (55). The initial bend (angle between both ends) of the developed view is Ψ
Since = (m + kn) NΘ, the conditional expression (28) (Φ + Ψ = 2π) that closes in the circumferential direction after folding is [δ + π-φ-ψ- (m + n) Θ] + (m + kn) Θ / 2N = π / N ………………………… (56). 73 is shown together with the constants using an example of a developed view obtained by calculating φ satisfying the formulas (53) and (54) in the formula (56) and performing numerical calculation. FIG. 73 is a development view of a specific example of the conical tubular folding structure having a reverse spiral folding line group. The cylindrical structure of FIG. 73 is similar to that of FIG.
Corresponding to the spiral mountain fold line of A, p = q k
From the condition of (k = 2), the continuity of the fold lines at the left and right edges of the development view is established. In FIG. 73, N = 3, Θ = 5 °, m = 3, n = 2
The calculation result of p = 0.8873, q = 0.9419 was obtained.
【0086】(4−2−2)同方向で交叉する山折りの
ら旋状折り線で構成される3角形要素からなる展開図
図74は同方向螺旋の折り線群に関する作図及び角度の
説明図であり、図74Aは全体図、図74Bは図74A
要部拡大図である。図74Aのように点A(半径R0)を
円の外周上に取り、半径と角φをなす線分ABを引き(線A
Bが中心に対して張る角:mΘ)、点Bから同じφとmΘ値
を用いて点C,点Dを順次定める。この折り線をとす
る。次に、点Aから角度ψ(<φ)で同様に点Eを定め(線分
AEが張る角度:Θ)、同じ手順で点F,G,Hを定め、折れ線
を作図する。p≡R1/R0 (R1;Bの半径)は
p≡sinφ/sin(φ+mΘ) ………………………………………………(57)
で与えられる。同様にして、点Eの無次元半径qは次式
(58)で与えられる。
q≡sinψ/sin(ψ+Θ) …………………………………………………(58)
したがって、点B,C,Dの無次元半径はp2,p3,p4で、 点F,
G,Hのそれらは各々q2,q3,q4で与えられる。次に点B,C,D
…を起点として折れ線を得たのと同様に、角φを取っ
て描く。このような手順により、図74Aのような矩形
模様を得、各点の半径は図74Aのようになる。点Aか
ら矩形の対角線(点線)上にある点A,I,J,Kの列(白丸点)
を結ぶ折り線をとする。これらの点の無次元半径は、
各々1,(pq),(pq)2,(pq)3で表される。したがって、折り
線〜は等角ら旋状になる。(4-2-2) Exploded view consisting of triangular elements composed of spiral fold lines of mountain folds intersecting in the same direction. FIG. 74 is a drawing and explanation of angles regarding a fold line group of spirals in the same direction. 74A is an overall view, and FIG. 74B is FIG. 74A.
FIG. As shown in Fig. 74A, a point A (radius R0) is taken on the outer circumference of the circle, and a line segment AB that forms an angle φ with the radius is drawn (line A
(An angle formed by B with respect to the center: mΘ), and point C and point D are sequentially determined from point B using the same φ and mΘ values. This fold line is Next, define point E from point A at an angle ψ (<φ) in the same way (line segment
AE angle: Θ), follow the same procedure to determine points F, G, H and draw a polygonal line. p≡R1 / R0 (radius of R1; B) is given by p≡sin φ / sin (φ + mΘ) ……………………………………………… (57). Similarly, the dimensionless radius q of the point E is given by the following equation (58). q≡sin ψ / sin (ψ + Θ) ……………………………………………… (58) Therefore, the dimensionless radii of points B, C, D are p 2 , p 3 , p 4 at point F,
Those of G and H are given by q 2 , q 3 and q 4 , respectively. Then points B, C, D
Draw the angle φ in the same way as you obtained the polygonal line starting from. With such a procedure, a rectangular pattern as shown in FIG. 74A is obtained, and the radius of each point is as shown in FIG. 74A. Columns of points A, I, J, and K on the diagonal line (dotted line) from point A to the rectangle (white circles)
The fold line connecting The dimensionless radius of these points is
They are represented by 1, (pq), (pq) 2 and (pq) 3 , respectively. Therefore, the fold lines are in the form of an equiangular spiral.
【0087】具体的に無次元半径を計算する。r≡pqは
△OAIに正弦定理を用いて、次式(59)で表される(∠
EAI=δ)。
r=sin(ψ+δ)/sin[ψ+δ+(m+1)Θ] …………………………………(59)
節点Iについて、折りたたみ条件を検証する。全て相似
形の矩形要素を対角に分割し、角α〜δを図74Bに示
すように定める。図74Bよりφ=γ+δ+ψである。半
径OEの延長上に点Lを取ると、∠AEL=ψ+Θ、∠OEI=φで
あるから、∠AEI=∠AEL+∠LEI=ψ+Θ+π-φになる。△A
EIの内角の和の関係よりαは、α=π-∠AEI-δ=φ-ψ-
δ-Θとなり、γは∠OABの関係より、γ=φ-(ψ+δ)と
なる。△OABの内角から∠ABI=(π-φ-mΘ)+ψより、β=
π-γ-∠ABI=φ-ψ-γ+mΘ=δ+mΘで表される。線分AI
が中心に対して張る角が(m+1)Θ、線分AI,IJのなす角は
(m+1)Θを考慮すると次式(60)、
β-α=δ-γ+(m+1)Θ …………………………………………………(60)
すなわち節点Iでの折りたたみ条件(式(3))が成立
つ。Specifically, the dimensionless radius is calculated. r≡pq is expressed by the following equation (59) using the sine theorem for △ OAI (∠
EAI = δ). r = sin (ψ + δ) / sin [ψ + δ + (m + 1) Θ] ……………………………… (59) For node I, verify the folding condition. All the similar rectangular elements are diagonally divided, and angles α to δ are determined as shown in FIG. 74B. From FIG. 74B, φ = γ + δ + ψ. If we take the point L on the extension of the radius OE, then ∠AEL = ψ + Θ and ∠OEI = φ, so ∠AEI = ∠AEL + ∠LEI = ψ + Θ + π-φ. △ A
From the relationship of the sum of the internal angles of EI, α is α = π-∠AEI-δ = φ-ψ-
δ-Θ, and γ becomes γ = φ- (ψ + δ) from the relation of ∠OAB. From the internal angle of △ OAB ∠ABI = (π-φ-mΘ) + ψ, β =
π-γ-∠ ABI = φ-ψ-γ + mΘ = δ + mΘ Line AI
Is an angle of (m + 1) Θ with respect to the center, and the angles made by the line segments AI and IJ are
Considering (m + 1) Θ, the following equation (60), β-α = δ-γ + (m + 1) Θ ……………………………………………………… (60 ) That is, the folding condition (Equation (3)) at node I holds.
【0088】次に連続条件の検証を行う。円周方向の矩
形要素数をNとした時、一段上昇の場合の展開図の左右
の連続条件はq=pNである。この値は、次のようにして計
算する。q≡sinψ/sin(ψ+Θ)=pNより、式(53)を得た
のと同様に計算して、
ψ=arcsin(1+f2)-0.5………………………………………………(61)
ただし、f(p)≡(1-pNcosΘ)/(pNsinΘ)
を得る。したがって、ψはpすなわちφの関数である。r
=pN+1とr=sin(ψ+δ)/sin[(ψ+δ)+(m+1)Θ]を用いて、
r=pN+1sin[(ψ+δ)+(m+1)Θ]=sin(ψ+δ)を得る。同様
の手順で、ψ+δとして次式を得る。
ψ+δ=arcsin[(1+g2)] ………………………………………(62)
ただし、g≡[1-pN+1cos[(m+1)Θ]]/(pN+1sin[(m+1)Θ])Next, the continuous condition is verified. Assuming that the number of rectangular elements in the circumferential direction is N, the continuous condition on the left and right of the development diagram in the case of one step rise is q = p N. This value is calculated as follows. From q≡sin ψ / sin (ψ + Θ) = p N, we perform the same calculation as we obtained equation (53), and ψ = arcsin (1 + f2) -0.5 ……………………………… …………………… (61) However, we get f (p) ≡ (1-p N cos Θ) / (p N sin Θ). Therefore, ψ is a function of p or φ. r
= p N + 1 and r = sin (ψ + δ) / sin [(ψ + δ) + (m + 1) Θ],
We obtain r = p N + 1 sin [(ψ + δ) + (m + 1) Θ] = sin (ψ + δ). By the same procedure, the following equation is obtained as ψ + δ. ψ + δ = arcsin [(1 + g2)] ………………………………………… (62) However, g≡ [1-p N + 1 cos [(m + 1) Θ] ] / (p N + 1 sin [(m + 1) Θ])
【0089】折りたたみ後、円周方向に閉じる条件を導
く。1段上昇の場合、折りたたみによる折り曲げ角Φ
は、
Φ=[N[(ψ+δ)-ψ]-(φ-ψ-δ-Θ)]×2 ……………………………(63)
で与えられる。円錐殻の展開図の初期曲がりΨは、
Ψ=[(N-1)m+(m-1)]Θ=(Nm-1)Θ ……………………………………(64)
であるから、閉じる条件(Φ+Ψ=2π)は次式(65)と
なる。
(N+1)δ+(ψ-φ)+(Nm+1)Θ/2=π ……………………………………(65)
式(61),(62)を式(65)に用いて、式(65)を満た
すφを数値計計算で算出することより、前記図70の展
開図を得る。螺旋に沿った山折り線(主折り線)が1周
回る毎に2段上昇する場合には、
2N[G-2φ-F]-NmΘ+2(N-1)π=0 ……………………………………(66)
で閉じる条件が与えられる。式(61),(62)を式(6
6)に用い、 数値計算で得た結果を図75に示す。図7
5は同方向螺旋の折り線群を有する円錐型筒状折り畳み
構造物の具体例の展開図である。なお、図75におい
て、N=8,Θ=5°,m=2.4で計算を行い、p=0.98547、q
=0.868859の計算結果を得た。After folding, the conditions for closing in the circumferential direction are introduced. Bending angle Φ due to folding in case of one step rise
Is given by Φ = [N [(ψ + δ) -ψ]-(φ-ψ-δ-Θ)] × 2 ……………………………… (63). The initial bend Ψ of the development view of the conical shell is Ψ = [(N-1) m + (m-1)] Θ = (Nm-1) Θ …………………………………… (64 ), The closing condition (Φ + Ψ = 2π) is the following expression (65). (N + 1) δ + (ψ-φ) + (Nm + 1) Θ / 2 = π …………………………………… (65) Formulas (61) and (62) By using φ in (65) and calculating φ satisfying the equation (65) by a numerical meter calculation, the developed view of FIG. 70 is obtained. 2N [G-2φ-F] -NmΘ + 2 (N-1) π = 0 ………… when the mountain fold line (main fold line) along the spiral goes up by 2 steps per revolution ……………………………… (66) The condition for closing is given. Expressions (61) and (62) are converted into Expression (6)
FIG. 75 shows the result obtained by the numerical calculation used for 6). Figure 7
5 is a development view of a specific example of a conical tubular folding structure having folding lines in the same direction. In addition, in FIG. 75, calculation is performed with N = 8, Θ = 5 °, m = 2.4, and p = 0.98547, q
= 0.868859 was obtained.
【0090】(4−2−3)矩形要素で構成される展開
図
前記図72では2つの等角ら旋状の山折り線 (,)と
それらの交点を結ぶ谷折り線の群で3形要素の展開図を
構成した。これを基にここでは相似な台形要素で展開図
を分割する。図76は台形要素によって構成された円錐
状構造物の説明図であり、図76Aは作図方法及び角度
関係の説明図、図76Bは図76Aの作図法によって形
成した具体例の構造物の展開図である。図76Aにおい
て、折り線を外周上の点A(半径R0)から最初中心に張
る角nΘで左上方向に、次に右上方向にkΘ進展させ、こ
れを交互に繰り返してzigzagの折り線(ADEFG)を描く(線
分が半径方向となす角を交互にφ、ψとする)。中心角
(m+n)Θ置きに等間隔に配置された外周上の点B,Cか
らも全く同様のzigzagの山折り線BHIJK,CLMNP・・を描く。
次に点C,D,A,H,B・・やL,M,F,E,J,K・・を結び、これを円周
方向の山折り線とし、台形要素に2分割する線LE等を谷
折り線にする。点Dの半径をR1、点Eの半径をR2とする
と、p≡R1/R0、q≡R2/R1は、
p≡sinφ/sin(φ+nΘ)
q≡sinψ/sin(ψ+kΘ) ………………………………………………(67)
となる。同一径上の点L,D,Hの無次元半径はp、点M,E,I,
及び点N,F,Jのそれらは各々pq,p2q,…で与えられる。台
形の底辺AH,CDが半径方向となす角をξ(mΘ;線分AHが中
心にたいして張る角)、谷折り線DI,LEが半径方向となす
角をχとするとpとq値は
p≡sinξ/sin(ξ+Θ)
q≡sinχ/sin[χ+(k+m+n)Θ] ………………………………………(68)
のようにも表記出来る。(4-2-3) Exploded view composed of rectangular elements In FIG. 72, a group of two equiangular spiral mountain fold lines (,) and a valley fold line connecting their intersections forms a 3-shape. An exploded view of the elements was constructed. Based on this, here the development view is divided by similar trapezoidal elements. 76 is an explanatory view of a conical structure composed of trapezoidal elements, FIG. 76A is an explanatory view of a drawing method and an angular relationship, and FIG. 76B is a development view of a specific example of the structure formed by the drawing method of FIG. 76A. Is. In FIG. 76A, the fold line is extended from the point A (radius R0) on the outer circumference to the upper left direction at the angle nΘ extending from the center first, and then to the upper right direction by kΘ, and this is alternately repeated to fold the zigzag fold line (ADEFG). Draw (alternate angles φ and ψ between line segments and radial direction). Draw the same zigzag mountain fold lines BHIJK, CLMNP ... from points B and C on the outer circumference that are arranged at equal intervals at the central angle (m + n) Θ.
Next, connect the points C, D, A, H, B ... Or L, M, F, E, J, K ..., and use this as the mountain fold line in the circumferential direction. Etc. to the valley fold line. Assuming that the radius of point D is R1 and the radius of point E is R2, p≡R1 / R0 and q≡R2 / R1 are p≡sin φ / sin (φ + nΘ) q≡sin ψ / sin (ψ + kΘ)… ………………………………………………… (67) The dimensionless radii of points L, D, H on the same diameter are p, points M, E, I,
And the points N, F, and J are given by pq, p 2 q ,. If the angle formed by the bases AH and CD of the trapezoid with the radial direction is ξ (mΘ; the angle formed by the line segment AH with respect to the center) and the angle formed by the valley fold lines DI and LE with the radial direction is χ, the p and q values are p ≡ sin ξ / sin (ξ + Θ) q≡sin χ / sin [χ + (k + m + n) Θ] …………………………………………… (68)
【0091】次に点Dにおける折りたたみ条件を導く。
線分CDの延長線上に点Qをとる。半径ODの延長上に点Sを
定める。点Dにおける折り畳み条件は、∠ADQ=∠EDIで表
される。∠ODQ=∠CDS=ξ+mΘ,∠ADS=φ+nΘより、∠ADQ
=π-[ξ+φ+(m+n)Θ]となる。∠EDI=χ-ψであるから、
これらを等置して、折りたたみ条件として
χ-ψ+ξ+φ+(m+n)Θ=π ……………………………………………(69)
を得る。点Eにおいては、半径OEの延長上に取った点Tに
対して、∠JED=∠JET+∠DET=(π-ξ)+(ψ+kΘ)より、∠
DEL=ξ-(ψ+kΘ)となり、∠FEL=[π-χ-(k+m+n)Θ]-φ
を等置すると上式(69)になる。すなわち全ての点で
の折りたたみ条件は式(69)で表される。Next, the folding condition at the point D is derived.
Place point Q on the extension of line segment CD. Set point S on the extension of radius OD. The folding condition at the point D is represented by ∠ADQ = ∠EDI. From ∠ODQ = ∠CDS = ξ + mΘ, ∠ADS = φ + nΘ, ∠ADQ
= π- [ξ + φ + (m + n) Θ]. Since ∠EDI = χ-ψ,
By arranging them equally, χ-ψ + ξ + φ + (m + n) Θ = π ……………………………………………… (69) is obtained as a folding condition. At point E, ∠JED = ∠JET + ∠DET = (π-ξ) + (ψ + kΘ)
DEL = ξ- (ψ + kΘ) and ∠FEL = [π-χ- (k + m + n) Θ] -φ
When is placed equally, the above equation (69) is obtained. That is, the folding conditions at all points are expressed by equation (69).
【0092】次に、円周方向の曲がった帯板部分を考
え、折りたたみ後円周方向に閉じる条件を導く。円周方
向の台形要素数をN個とすると、折りたたみによって、2
(χ-ψ)Nだけ折れ曲がる。 この帯板の初期曲がり(両端
のなす角)は(m+n)ΘNである。これらの和を2πと置い
て、閉じる条件として、
(χ-ψ)+(m+n)Θ/2=π/N ……………………………………………(70)
を得る。折り畳み条件式(69)及び閉じる条件式(70)
より次式(71)を得る。
ξ+φ=(N-1)/N・π-(m-n)Θ/2 ………………………………………(71)
式(67),(68)のpを等置し、m,n,kを与え式(71)を
用いるとφとξが計算でき、同様にqを等置してψとχ
が算出される。このようにして得た展開図の例を図76
Bに示す。なお、図76Bにはp=0.9573,q=0.8746の場
合の展開図を示す。Next, considering the curved strip plate portion in the circumferential direction, the conditions for closing in the circumferential direction after folding are derived. If the number of trapezoidal elements in the circumferential direction is N, the number of
Bend only by (χ-ψ) N. The initial bending (angle between both ends) of this strip is (m + n) ΘN. Putting the sum of these as 2π, the closing condition is (χ-ψ) + (m + n) Θ / 2 = π / N ……………………………………………… (70 ) Get Folding conditional expression (69) and closing conditional expression (70)
The following expression (71) is obtained. ξ + φ = (N-1) / N ・ π- (mn) Θ / 2 ………………………………………… (71) Eq. (67), (68) is equal to Then, if m, n, k are given and Eq. (71) is used, φ and ξ can be calculated.
Is calculated. An example of the development view thus obtained is shown in FIG.
Shown in B. Incidentally, FIG. 76B shows a development view in the case of p = 0.9573 and q = 0.8746.
【0093】図77は台形要素によって構成された図7
6とは異なる円錐状構造物の説明図であり、図77Aは
作図方法及び角度関係の説明図、図77Bは図77Aの
作図法によって形成した具体例の構造物の展開図であ
る。前記図76Aの展開図は点A,B,Cから描いたzigzag
の山折り線の頂点を半波長ずらせて結んだ山折り線(例
えばCDAHB・)で構成した。これを更に1波長上方にずらせ
て描いた展開図を図77Aに示す。角度を図76Aと同
様に定義する。代表点GとFの折りたたみ条件は各々、
ξ+φ+χ-ψ+(m+n-k)Θ=0 …………………………………………(72)
ξ+φ+χ-ψ+(m+n)Θ=0 ……………………………………………(73)
で与えられる。上の2式(72),(73)は同時に満た
されなければならないから、このような模様の展開図で
はk=0でなければならない。すなわちψ=0として、式(6
8)を次式で表す。
p=sinφ/sin(φ+nΘ),q=定数 ………………………………………(74)
点K,D,H・・の無次元半径はp、点L,E・・、点M、F・・のそれら
は各々pq,p2q・・で与えられる。点Eの半径はp2qであり、
これはまたsinχ/sin[χ+(m+n)Θ]で表されるから、
pq2 =sinχ/sin[χ+(m+n)Θ] ………………………………………(75)
を得る。また次式(76)も成立つ。
p2q=sinξ/sin[ξ+mΘ] ……………………………………………(76)FIG. 77 shows the configuration of FIG. 7 formed by trapezoidal elements.
77A is an explanatory view of a conical structure different from FIG. 6, FIG. 77A is an explanatory view of a drawing method and an angular relationship, and FIG. 77B is a developed view of a structure of a specific example formed by the drawing method of FIG. 77A. The developed view of FIG. 76A is zigzag drawn from points A, B and C.
The mountain fold line (for example, CDAHB) is formed by connecting the vertices of the mountain fold line by shifting by half a wavelength. FIG. 77A shows a development view in which this is further shifted by one wavelength and drawn. The angles are defined as in Figure 76A. The folding conditions of the representative points G and F are ξ + φ + χ-ψ + (m + nk) Θ = 0 ………………………………………… (72) ξ + φ + χ-ψ + (m + n) Θ = 0 ………………………………………………… (73). Since the above two equations (72) and (73) must be satisfied at the same time, k = 0 must be satisfied in the development view of such a pattern. That is, with ψ = 0, the equation (6)
8) is represented by the following formula. p = sin φ / sin (φ + nΘ), q = constant ………………………………………… (74) The dimensionless radius of points K, D, H ・ ・ is p, point L, Those of E ···, points M, F ·· are respectively given by pq, p 2 q ··. The radius of point E is p 2 q,
This is also expressed as sinχ / sin [χ + (m + n) Θ], so pq 2 = sinχ / sin [χ + (m + n) Θ] …………………………………… ……… (75) is obtained. Further, the following expression (76) is also established. p 2 q = sin ξ / sin [ξ + mΘ] …………………………………………… (76)
【0094】閉じる条件は、折曲がり角Φ=2(χ-ξ)N、
初期曲がり角Ψ=(m+n)ΘNとして(N;要素数)、次式(7
7)で与えられる。
Φ+Ψ=2(2χ-ξ)N+(m+n)Θ)N=2π …………………………………(77)
χ,ψを未知数として、 式(74)〜(77)を解くことに
より得られた展開図を図77Bに示す。図77Bにはp=
0.8990,q=0.9806の場合の展開図を示す。The closing condition is that the bending angle Φ = 2 (χ-ξ) N,
As the initial turning angle Ψ = (m + n) ΘN (N; number of elements), the following equation (7
Given in 7). Φ + Ψ = 2 (2χ-ξ) N + (m + n) Θ) N = 2π …………………………………… (77) Let χ and ψ be unknowns and formulas (74)-( FIG. 77B shows a development view obtained by solving (77). In FIG. 77B, p =
The developed view for 0.8990 and q = 0.9806 is shown.
【0095】図78は図74とは異なる矩形要素で構成
される円錐型筒状折り畳み構造物の作図法及び角度関係
の説明図である。前記図74のモデルを基に、別の形の
矩形要素で構成される展開図を考える。図78のように
外縁上の点A(半径R0)を起点に、半径方向と角φをな
す線分ABを描く (ABが中心に対して張る角; mΘ)。次に
点Bから半径方向と角ξをなす線分BCを描き、これが張
る角をnΘとする。同様の手順で交互にmΘ,nΘを経る毎
に角φ,ξを取りzigzagの折り線CDEF・・Gを描く。これを
周方向の折り線とする。点Bの半径をR1とすると無次
元半径R1/R0は、
p≡R1/R0=sin[φ/(φ+mΘ)] ………………………………………(78)
で与えられる。点Cの半径をR2とすると次式(79)が
成立つ。
r≡R2/R1=sin[ξ/(ξ+nΘ)] …………………………………………(79)
点Cの無次元半径R2/R0はprで表され、順次、 点D,E,Fの
無次元半径はp2r, p2r 2, p3r2・・・で表される。FIG. 78 is composed of rectangular elements different from those in FIG.
Drawing method and angle relation of conical tubular fold structure
FIG. Based on the model of FIG. 74,
Consider an expanded view composed of rectangular elements. As in Figure 78
Starting from point A (radius R0) on the outer edge, make an angle φ with the radial direction.
Draw a line segment AB (angle between AB and the center; m Θ). next
Draw a line segment BC that makes an angle ξ with the radial direction from point B, and
Let nθ be the angle. In the same procedure, every time m
Take angles φ and ξ and draw zigzag fold line CDEF ・ ・ G. this
It should be a fold line in the circumferential direction. Infinite if the radius of point B is R1
The original radius R1 / R0 is
p≡R1 / R0 = sin [φ / (φ + mΘ)] ………………………………………… (78)
Given in. If the radius of the point C is R2, the following equation (79) becomes
It stands.
r≡R2 / R1 = sin [ξ / (ξ + nΘ)] ………………………………………… (79)
The dimensionless radius R2 / R0 of the point C is represented by pr, and the points D, E, F
Dimensionless radius is p2r, p2r 2, p3r2Represented by ...
【0096】次に点Aから半径方向と角ψなす線分AIを
描く(線分AIが中心に対して張る角;Θ)。点Iの無次元半
径qは
q≡sinψ/sin(ψ+Θ) …………………………………………………(80)
で表される。点Iを起点とし、折り線と逆に、最初角
ξ(張る角nΘ)、次に角ψ(張る角mΘ)で点J,Kを定め、
これを繰返してと同様な折り線を描く。 このような
作図によって扇型膜を相似な6角形要素で分割すること
が出来る。この分割で得られるzigzag線FEMLT・・を折り
線とし、6角形要素を対角に分割する線を(谷)折り線
とする。Next, a line segment AI forming an angle ψ with the radial direction from the point A is drawn (angle formed by the line segment AI with respect to the center; Θ). The dimensionless radius q of the point I is expressed by q≡sin ψ / sin (ψ + Θ) …………………………………………………… (80). Starting from the point I, conversely to the fold line, first determine the points J and K at the angle ξ (angle to be stretched nΘ) and then the angle ψ (angle to be stretched mΘ).
Repeat this to draw the same folding line. With such a drawing, the fan-shaped film can be divided by similar hexagonal elements. The zigzag line FEMLT ··· obtained by this division is the fold line, and the line dividing the hexagonal element diagonally is the (valley) fold line.
【0097】点Eでの折りたたみ条件を導く。線分DEの
延長上に点S、半径0Eの延長線上に点Rを取る。∠DER=ξ
+nΘ,∠REF=π-φであるから、∠FES=φ-ξ-nΘとな
る。∠MEP=χ-ψであるから、これらを等置して、折り
畳み条件式(81)を得る。
φ+ψ-χ-ξ=nΘ ………………………………………………………(81)
点Mでの折りたたみ条件式も上式(81)で表される。
すなわち全ての節点の折りたたみ条件式は式(81)で
与えられる。The folding condition at the point E is derived. Place point S on the extension of line segment DE and point R on the extension line of radius 0E. ∠DER = ξ
Since + nΘ and ∠REF = π-φ, ∠FES = φ-ξ-nΘ. Since ∠MEP = χ−ψ, these are equally placed to obtain the folding conditional expression (81). φ + ψ-χ-ξ = nΘ …………………………………………………… (81) The folding conditional expression at point M is also expressed by the above expression (81). .
That is, the folding conditional expressions for all nodes are given by Expression (81).
【0098】次に連続条件を検討する。折り線は角φ
でN回、角ξでN-1回折り曲げられて、点Gに至る。すな
わち点Gの無次元半径はpNrN-1で与えられる。この値が
点Iの無次元半径qと等しい時、1段上がりのら旋模様に
なり、扇形の左右の折り線の連続条件が満たされ、これ
は次式(82)で表される。
q=pNrN-1……………………………………………………………(82)
6角形要素の連続性から、対角線AKが半径方向となす角
をχとし、この対角線が中心に対して張る角が(m+n+1)
Θになることを考慮すると、点Kの無次元半径sは、
s=sinχ/sin[χ+(m+n+1)Θ] …………………………………………(83)
で与えられる。s=pqrであるから、sは次式(84)で表
される。
s=pN+1 qN ………………………………………………………(84)Next, the continuous condition will be examined. Fold line is angle φ
Is bent N times at an angle ξ at N times and reaches point G. That is, the dimensionless radius of point G is given by p N r N-1 . When this value is equal to the dimensionless radius q of the point I, the spiral pattern is raised by one step, and the continuous condition of the left and right folding lines of the fan shape is satisfied, which is expressed by the following equation (82). q = p N r N-1 ……………………………………………………… (82) Due to the continuity of hexagonal elements, the angle formed by the diagonal line AK and the radial direction. Is χ, and the angle formed by this diagonal with respect to the center is (m + n + 1)
Considering that it becomes Θ, the dimensionless radius s of the point K is s = sinχ / sin [χ + (m + n + 1) Θ] …………………………………………………… (83) is given by. Since s = pqr, s is expressed by the following equation (84). s = p N + 1 q N …………………………………………………………… (84)
【0099】次に1段上がりの場合の円周方向に閉じる
条件を考える。2本の点線で仕切られた円周方向の曲が
った帯状部分UVを考える。線分AIと線分AKのなす角はχ
-ψ、線分BCと線分DWのなす角ζはζ=ξ-χ-Θである。
この帯状部分には前者が(N-1)個、後者が1個ある。すな
わちこの折りたたみの操作により、Φ≡2[(N-1)(χ-ψ)
-ζ]だけ折れ曲がる。 帯状部分の初期曲がり角Ψは[mN
+n(N-1)-1]Θであるから、折り曲げ後、この帯状部分の
両端が閉じる条件(Φ+Ψ=2π)は次式(85)で与えら
れる。
2Nχ-2(N-1)ψ-ξ+[mN+n(N-1)-1]Θ=2π …………………………(85)Next, consider the condition for closing in the circumferential direction in the case of one step up. Consider a circumferentially curved strip UV that is divided by two dotted lines. The angle between line segment AI and line segment AK is χ
The angle ζ between -ψ and line segment BC and line segment DW is ζ = ξ-χ-Θ.
In this strip, there are (N-1) formers and one latter. In other words, by this folding operation, Φ≡2 [(N-1) (χ-ψ)
-Just bends. The initial bending angle Ψ of the strip is [mN
Since + n (N-1) -1] Θ, the condition (Φ + Ψ = 2π) that both ends of this strip portion are closed after bending is given by the following equation (85). 2Nχ-2 (N-1) ψ-ξ + [mN + n (N-1) -1] Θ = 2π ………………………… (85)
【0100】(具体例)図79は図78の作図法に基づ
いて形成された折り線を有する折り畳み可能な円錐型筒
状折り畳み構造物の具体例の説明図であり、図79Aは
1段上がりの展開図、図79Bは2段上がりの展開図で
ある。φ,ψ,ξ及びχを未知数とし、p,q,r.sの表記式
を用いて4つの関係式、(81),(82),(84),(85)を
数値的に解くと、これらの値が決定される。N=7として
得た1段及上がりの展開図を図79Aに示す。図79A
には、N=7,Θ=5°,m=2,n=1で計算を行い、得られ
た計算結果p=0.8869,q=1.007,r=0.9525,s=0.7551の場合
の展開図を示す。(Concrete Example) FIG. 79 is an explanatory view of a concrete example of a foldable conical tubular fold structure having fold lines formed based on the drawing method of FIG. 78, and FIG. 79A shows one step up. FIG. 79B is a development view of two stages higher. When φ, ψ, ξ and χ are unknowns and four relational expressions (81), (82), (84), (85) are numerically solved using the notation expressions of p, q, rs, these The value of is determined. FIG. 79A shows an expanded view of one step up obtained by N = 7. Figure 79A
Is calculated with N = 7, Θ = 5 °, m = 2, n = 1, and the developed result is p = 0.8869, q = 1.007, r = 0.9525, s = 0.7551. Show.
【0101】2段上がりの場合には、展開図の連続条件
は、
q=pN/2・rN/2-1 …………………………………………………(86)
になる。式(86)をs=pqrに代入してsは次式(87)で
表される。
s=p2/(2-N)qN/(N-2) …………………………………………………(87)
折りたたみ後、周方向に閉じる条件はΦ=4[(N/2-1)(χ-
ψ)-ζ],Ψ=[mN+n(N-1)-2(n+1)]Θを用いて、
4[(N/2-1)(χ-ψ)-(ξ-χ-Θ)]+[(m+n)N-2(n+1)]Θ=2π …………(88)
で表される。N=8として得た2段上がりの展開図を図79
Bに示す。このときN=8,Θ=5°,m=2,n=1で計算
を行い、p=0.8479,q=0.9981,R=0.9490,S=0.8031を
算出した。図79A,図79Bにおいて、各々N=7,8と
したにも拘らず、円周方向右上がりに6要素で展開図が
構成されていることが分かる(図69B,図70,図7
1A参照)。In the case of two steps up, the continuous condition of the developed view is q = p N / 2 · r N / 2-1 ………………………………………………………… (86) Substituting equation (86) into s = pqr, s is represented by the following equation (87). s = p2 / (2-N) qN / (N-2) …………………………………………………… (87) After folding, the condition to close in the circumferential direction is Φ = 4 ((N / 2-1) (χ-
ψ) -ζ], Ψ = [mN + n (N-1) -2 (n + 1)] Θ, using 4 [(N / 2-1) (χ-ψ)-(ξ-χ- Θ)] + [(m + n) N-2 (n + 1)] Θ = 2π ............ (88) Fig. 79 shows the two-tiered development view obtained with N = 8.
Shown in B. At this time, calculation was performed with N = 8, Θ = 5 °, m = 2, n = 1, and p = 0.8479, q = 0.9981, R = 0.9490, S = 0.8031 was calculated. In FIGS. 79A and 79B, it can be seen that the developed view is composed of six elements in the upward direction of the circumferential direction, even though N = 7 and 8 respectively (FIGS. 69B, 70, and 7).
1A).
【0102】5.考察
3.節において各節点での折りたたみ条件、展開図の左
右端の連続性、及び折りたたみ後、展開図の両端が円周
方向に閉じる条件を組合わせて、折りたたみ可能な円筒
及び円錐型の筒状折り畳み構造物を作る方法の検討を行
った。異なる寸法で展開図をモデル化すると、拘束式が
極めて多くなり、 同一模様で展開をつくるようには簡
単ではない場合が多いことが判明した。本文では記述さ
れていないが、例えば図60に示された矩形断面モデル
や 図63B図64Bの4角錐モデルをら旋様式にするこ
とは数理的に不可能であることが明らかになっている。
創世期にある折りたたみ法を系統的に研究する観点か
ら、このような折りたたみが出来ないことを示して行く
ことも、 その限界を明らかにする点から究めて重要な
ことと思われる。本明細書では、直ぐにこれを工学的に
利用するのは難しいと思われるモデルも含まれている
が、このようなモデルの開発もまた、折りたたみ技術を
体系化し、これをより洗練し、有用な折りたたみ形式の
構造を開発して行くことに寄与すると考えられる。ま
た、これらのモデルの折り線をトラス部材とみなすと、
折りたたみ式のトラス構造の基本モデルにもなるとも
に、新しい機構要素の創製にも役立つものと思われる。
環境保全の点からプラスチック製品を紙製品で置き換え
ようとする動き、あるいは即席食品容器等を折りたたみ
収納形式にする要求等に見られるように、上述した折り
たたみ技術の集大成はこれらに答えるための時代の要請
になりつつあると思われる。5. Consideration 3. A foldable cylindrical or conical tubular fold structure that combines the folding conditions at each node, the continuity of the left and right ends of the development view, and the condition that both ends of the development view are closed in the circumferential direction after folding. I examined how to make things. It has been found that modeling development drawings with different dimensions results in an extremely large number of constraint equations, and it is often not easy to create developments with the same pattern. Although not described in the text, it has been proved mathematically impossible to make the rectangular cross-section model shown in FIG. 60 or the four-sided pyramid model shown in FIGS. 63B and 64B into a spiral pattern.
From the viewpoint of systematically studying the folding method in the early years, it is also important to show that such folding cannot be done in order to clarify its limit. Although models are included herein that may be difficult to engineer immediately, the development of such models also systematizes folding techniques to make them more sophisticated and useful. It is believed that it will contribute to the development of a folding structure. Also, if we consider the folding lines of these models as truss members,
It can be used as a basic model of a folding truss structure and also useful for creating new mechanical elements.
As seen in the movement to replace plastic products with paper products from the viewpoint of environmental protection, and the demand for folding and storing instant food containers, etc., the culmination of the folding technology mentioned above is the era of answering these. It seems that it is becoming a request.
【0103】また、4.節において折りたたみ可能な円
筒、円錐殻等の同形、あるいは相似な形状要素で分割し
て展開図を構成する結果を基に、これらを異なる要素形
状で分割して展開図を設計する方法を議論し、これを応
用して折りたたみ可能な異型の角筒及び角錐状折り畳み
構造物を作る方法を述べた。最初、任意角で逆方向に交
差する等角ら旋状の山折り線の交点、 また同方向に交
差するそれ等の交点を結んで分割した3角形要素で展開
図を構成する方法を定式化した。次に、これらの結果に
基づき矩形要素で展開図を分割する方法を検討した。こ
れにより、3角形要素で構成される展開図の一般化と、
矩形要素についての一般的な取り扱い法が確立された。
折り線をトラス部材とみなすと、1節点6折り線を用いた
3角形要素からなる円錐殻は、節点が6個の部材で結合さ
れる拘束度合の強い構造になる。一方矩形要素からなる
構造は4折り線からなるため、拘束度合が弱く結果とし
て展開が容易な構造になる。またこの矩形要素からなる
構造は折り線の導入も3角形のそれより容易であること
から、製品を製作加工する点からも有利であると考えら
れる。紙あるいは高分子膜製の折りたたみ式の容器など
は図8(b)のモデルを用いると1段だけの簡素な展開図で
製作出来るため、このような折りたたみモデルを用いて
食品容器とその加工法の開発が可能と考えられる。Also, 4. Based on the result of constructing an exploded view by dividing the same shape such as a foldable cylinder, a conical shell, or similar shape elements in a node, we discuss a method of designing an exploded view by dividing these with different element shapes. , A method for making a foldable irregular-shaped rectangular tube and a pyramidal fold structure by applying this. First, formalize a method of constructing a development diagram with the intersections of equiangular spiral mountain fold lines that intersect in opposite directions at arbitrary angles, and the triangular elements that are divided by connecting those intersections that intersect in the same direction. did. Next, based on these results, we examined a method of dividing the development view with rectangular elements. As a result, generalization of the development view composed of triangular elements and
A general treatment for rectangular elements has been established.
If we consider the fold line as a truss member, we used 6 fold lines per node.
The conical shell consisting of triangular elements has a structure with a strong degree of constraint in which the nodes are connected by six members. On the other hand, since the structure consisting of rectangular elements consists of four fold lines, the degree of constraint is weak and as a result the structure is easy to deploy. In addition, since the structure of this rectangular element is easier to introduce the folding line than that of the triangular shape, it is considered to be advantageous from the point of manufacturing and processing the product. A foldable container made of paper or polymer film can be manufactured with a simple development drawing of only one stage by using the model in Fig. 8 (b) .Therefore, such a foldable model is used for the food container and its processing method. It is considered possible to develop
【0104】6.まとめ
矩形あるいは 6角形要素を構成する山折り線とこれらの
要素を2分割する谷折り線でパターン化して 異なる形状
の要素群を用いて折りたたみ可能な円筒、角筒あるいは
角錐型筒状折り畳み構造物を設計する方法を述べた。こ
れらは折りたたみ技法の機能性を拡大し、かつ造形性を
高め、この技法が工業製品や民製品に汎く用いられるよ
うな系統的な折りたたみ収納法を集成する際に、基本モ
デルとなると思われる。また、展開図を等角ら旋状折り
線で3角形要素や矩形要素に分割して折りたたみ可能な
円錐殻の展開図を得る方法を検討し、それを解析的に算
出する方法を延べ、基本的な展開図を示した。厳しい性
能が要求される宇宙構造用のインフレータブル構造には
なお展開性能や安定性についてなお詳細な検討を要する
が、簡単な生活用品等への応用は困難なことではないと
思われる。6. Summary Cylindrical, prismatic, or pyramidal tubular folding structure that is foldable by patterning mountain fold lines that make up rectangular or hexagonal elements and valley fold lines that divide these elements into two, and using different shaped element groups I described how to design. These expand the functionality of the folding technique and enhance the formability, and are considered to be the basic model when assembling a systematic folding storage method that is commonly used for industrial products and consumer products. . In addition, we examined the method of dividing the development view into triangular elements and rectangular elements by equiangular spiral fold lines to obtain a foldable conical shell development view, and extended the method to calculate it analytically. The development diagram is shown. Inflatable structures for space structures that require strict performance still require detailed study of deployment performance and stability, but it seems that it is not difficult to apply them to simple household goods.
【0105】従来技術の問題点と前述の研究結果に鑑
み、本発明の筒状折り畳み構造物は、以下の事項(O0
1),(O02)を技術的課題とする。
(O01)従来にない形状の折り畳み/展開可能な筒状折
り畳み構造物を提供すること。
(O02)折り線に囲まれたパーツどうしが密着状態にな
るまで折り畳み/展開できる筒状折り畳み構造物を提供
すること。In view of the problems of the prior art and the above-mentioned research results, the tubular folding structure of the present invention has the following items (O0
1) and (O02) are considered technical issues. (O01) To provide a foldable / unfoldable tubular fold structure having a shape that has never been seen before. (O02) To provide a tubular folding structure that can be folded / unfolded until the parts surrounded by the fold line come into close contact with each other.
【0106】[0106]
【課題を解決するための手段】次に、前記課題を解決し
た本発明を説明するが、本発明の要素には、後述の実施
例の要素との対応を容易にするため、実施例の要素の符
号をカッコで囲んだものを付記する。なお、本発明を後
述の実施例の符号と対応させて説明する理由は、本発明
の理解を容易にするためであり、本発明の範囲を実施例
に限定するためではない。The present invention, which has solved the above-mentioned problems, will now be described. Elements of the present invention include elements of the embodiment in order to facilitate correspondence with the elements of the embodiment described later. Add the ones in parentheses to the symbol. The reason why the present invention is described in association with the reference numerals of the embodiments described later is to facilitate the understanding of the present invention and not to limit the scope of the present invention to the embodiments.
【0107】(本発明)前記課題を解決するため、本発
明の筒状折り畳み構造物は、下記の構成要件(A01)〜
(A07)を備えたことを特徴とする。
(A01)複数の多角形のパーツ(P)と、前記各パーツ
(P)の外側辺を互いに接続する直線状のパーツ接続部
とを有し前記直線状のパーツ接続部に沿って折り畳み可
能な直線状の折り線(M、V)が形成された筒壁(1)
であって、前記折り線(M、V)は筒壁(1)の一面側
から見て前記一面側が山折りとなる複数の山折り線
(M)と谷折りとなる1以上の谷折り線(V)とを有す
る前記筒壁(1)、(A02)前記筒壁(1)の軸方向の
一端部を閉塞する底壁(2)、(A03)前記側壁の展開
図の両端で折り線(M、V)が連続しているための条件
である連続条件を満足する折り線(M、V)を有する前
記複数の折り線(M、V)、(A04)前記山折り線
(M)及び谷折り線(V)の交点である複数の節点が所
定の間隔で配置され、1つの節点で交わる山折り線
(M)の数と谷折り線(V)の数との差が2となるよう
に形成され、前記1つの節点で交わる複数の折り線
(M、V)を含む各パーツ(P)が密着状態で折り畳む
ことができる条件である折り畳み条件を満足する折り線
(M、V)を有する前記複数の折り線(M、V)、(A
05)前記折り線(M、V)に沿って折り畳んだ時に、前
記パーツ(P)が密着して前記筒壁(1)が軸方向に折
り畳まれるための条件である閉じる条件を満足する折り
線(M、V)を有する前記複数の折り線(M、V)、
(A06)中心軸に直交する断面の径が中心軸方向に沿っ
て一定に形成された前記筒壁(1)、(A07)五角形以
上の多角形若しくは三角形、又は円形の形状の断面を有
する前記筒壁(1)。(Invention) In order to solve the above-mentioned problems, the tubular folding structure of the present invention has the following constitutional requirements (A01) to (A01).
It is characterized by having (A07). (A01) Having a plurality of polygonal parts (P) and a linear part connecting part that connects the outer sides of the parts (P) to each other, and is foldable along the linear part connecting part Cylindrical wall (1) on which linear folding lines (M, V) are formed
The fold lines (M, V) are a plurality of mountain fold lines (M) whose one side is a mountain fold when viewed from one side of the cylindrical wall (1), and one or more valley fold lines which are a valley fold. (V) with the cylindrical wall (1), (A02) bottom wall (2) that closes one axial end of the cylindrical wall (1), (A03) fold line at both ends of the side wall development view The plurality of fold lines (M, V) having fold lines (M, V) satisfying a continuous condition which is a condition for (M, V) being continuous, (A04) The mountain fold line (M) And a plurality of nodes that are the intersections of the valley fold lines (V) are arranged at a predetermined interval, and the difference between the number of the mountain fold lines (M) and the number of the valley fold lines (V) that intersect at one node is 2. Folding condition which is a condition that allows each part (P) including a plurality of folding lines (M, V) intersecting at the one node to be folded in close contact with each other. The plurality of fold lines having a satisfactory fold line (M, V) (M, V), (A
05) A fold line that satisfies a closing condition, which is a condition for the part (P) to be in close contact and the cylindrical wall (1) to be axially folded when folded along the fold lines (M, V) The plurality of fold lines (M, V) having (M, V),
(A06) The cylindrical wall (1) in which the diameter of the cross section orthogonal to the central axis is constant along the central axis direction, (A07) the cross section having a polygonal or triangular shape of a pentagon or more, or a circular shape. Tube wall (1).
【0108】前記構成要件(A01)〜(A07)を備えた
本発明の筒状折り畳み構造物は、筒壁(1)が中心軸に
直交する断面の径が中心軸方向に沿って一定に形成され
ているので、円筒または角筒型の筒状折り畳み構造物で
ある。そして、前記筒壁(1)の軸方向の一端部は、底
壁(2)によって閉塞されており、筒状折り畳み構造物
は容器として筒壁(1)の内部に物を収容できる。筒壁
(1)には、複数の多角形のパーツ(P)と、前記各パ
ーツ(P)の外側辺を互いに接続する直線状のパーツ接
続部とを有し前記直線状のパーツ接続部に沿って折り畳
み可能な直線状の折り線(M、V)が形成されている。
また、前記筒壁(1)は、前記折り線(M、V)は筒壁
(1)の一面側から見て前記一面側が山折りとなる複数
の山折り線(M)と谷折りとなる1以上の谷折り線
(V)とを有する。前記複数の折り線(M、V)は、前
記側壁の展開図の両端で折り線(M、V)が連続してい
るための条件である連続条件、前記1つの節点で交わる
複数の折り線(M、V)を含む各パーツ(P)が密着状
態で折り畳むことができる条件である折り畳み条件、及
び、前記折り線(M、V)に沿って折り畳んだ時に前記
パーツ(P)が密着して前記筒壁(1)が軸方向に折り
畳まれるための条件である閉じる条件を満足する折り線
(M、V)を有する。したがって、複数の折り線(M、
V)に沿って筒状折り畳み構造物を折り畳んだ時、従来
の前記パーツ(P)どうしが密着状態になる前に筒状折
り畳み構造物が折り畳めなくなる場合と異なり、前記複
数の多角形のパーツ(P)どうしが密着状態まで折り畳
まれる。そして、パーツ(P)どうしが密着した状態か
ら折り畳む前の状態まで展開できる。また、筒壁(1)
は五角形以上の多角形若しくは三角形、又は円形の形状
の断面を有するので、従来には無い、様々な形状の断面
を有する筒状折り畳み構造物を提供できる。また、前記
筒状折り畳み構造物は、折り畳んで外形を小さくした状
態で運搬・輸送し、使用時には展開するなどの用途に対
応できる。In the tubular folding structure of the present invention having the above-mentioned structural requirements (A01) to (A07), the diameter of the cross section of the tubular wall (1) perpendicular to the central axis is formed to be constant along the central axis direction. Therefore, it is a cylindrical folding structure of a cylindrical or square tube type. One end of the tubular wall (1) in the axial direction is closed by the bottom wall (2), and the tubular folding structure can accommodate an object inside the tubular wall (1) as a container. The cylindrical wall (1) has a plurality of polygonal parts (P) and linear part connecting parts that connect the outer sides of the parts (P) to each other. A linear fold line (M, V) that can be folded along is formed.
Further, the fold line (M, V) of the cylindrical wall (1) is a valley fold with a plurality of mountain fold lines (M) whose one side is a mountain fold when viewed from the one side of the cylindrical wall (1). And one or more valley fold lines (V). The plurality of fold lines (M, V) are continuous conditions that are the conditions for the fold lines (M, V) to be continuous at both ends of the development view of the side wall, and the plurality of fold lines intersect at the one node. Folding conditions under which each part (P) including (M, V) can be folded in a close contact state, and when the parts (P) are folded along the folding line (M, V) The cylindrical wall (1) has folding lines (M, V) that satisfy the closing condition, which is a condition for axially folding the cylindrical wall (1). Therefore, a plurality of folding lines (M,
V) when the tubular folding structure is folded, unlike the conventional case where the tubular folding structure becomes unfoldable before the parts (P) come into close contact with each other, the plurality of polygonal parts ( P) Fold each other until they are in close contact. Then, the parts (P) can be expanded from the state where they are in close contact with each other to the state before being folded. Also, the cylinder wall (1)
Has a polygonal or triangular shape having a pentagonal shape or more, or a circular cross section, it is possible to provide a tubular folding structure having various shapes of cross sections, which has not been available in the past. Further, the tubular folding structure can be used for applications such as being transported by being folded and having a small outer shape, and being unfolded at the time of use.
【0109】また、前記課題を解決するために、本発明
の筒状折り畳み構造物は、下記構成要件(A01)〜(A
05),(A06′)を備えることもできる。
(A01)複数の多角形のパーツ(P)と、前記各パーツ
(P)の外側辺を互いに接続する直線状のパーツ接続部
とを有し前記直線状のパーツ接続部に沿って折り畳み可
能な直線状の折り線(M、V)が形成された筒壁(1)
であって、前記折り線(M、V)は筒壁(1)の一面側
から見て前記一面側が山折りとなる複数の山折り線
(M)と谷折りとなる1以上の谷折り線(V)とを有す
る前記筒壁(1)、(A02)前記筒壁(1)の軸方向の
一端部を閉塞する底壁(2)、(A03)前記側壁の展開
図の両端で折り線(M、V)が連続しているための条件
である連続条件を満足する折り線(M、V)を有する前
記複数の折り線(M、V)、(A04)前記山折り線
(M)及び谷折り線(V)の交点である複数の節点が所
定の間隔で配置され、1つの節点で交わる山折り線
(M)の数と谷折り線(V)の数との差が2となるよう
に形成され、前記1つの節点で交わる複数の折り線
(M、V)を含む各パーツ(P)が密着状態で折り畳む
ことができる条件である折り畳み条件を満足する折り線
(M、V)を有する前記複数の折り線(M、V)、(A
05)前記折り線(M、V)に沿って折り畳んだ時に、前
記パーツ(P)が密着して前記筒壁(1)が軸方向に折
り畳まれるための条件である閉じる条件を満足する折り
線(M、V)を有する前記複数の折り線(M、V)、
(A06′)中心軸方向の一端部に行くに従って断面の径
が小さくなる筒壁(1)In order to solve the above-mentioned problems, the tubular folding structure of the present invention has the following constitutional requirements (A01) to (A01).
05), (A06 ') can be provided. (A01) Having a plurality of polygonal parts (P) and a linear part connecting part that connects the outer sides of the parts (P) to each other, and is foldable along the linear part connecting part Cylindrical wall (1) on which linear folding lines (M, V) are formed
The fold lines (M, V) are a plurality of mountain fold lines (M) whose one side is a mountain fold when viewed from one side of the cylindrical wall (1), and one or more valley fold lines which are a valley fold. (V) with the cylindrical wall (1), (A02) bottom wall (2) that closes one axial end of the cylindrical wall (1), (A03) fold line at both ends of the side wall development view The plurality of fold lines (M, V) having fold lines (M, V) satisfying a continuous condition which is a condition for (M, V) being continuous, (A04) The mountain fold line (M) And a plurality of nodes that are the intersections of the valley fold lines (V) are arranged at a predetermined interval, and the difference between the number of the mountain fold lines (M) and the number of the valley fold lines (V) that intersect at one node is 2. Folding condition which is a condition that allows each part (P) including a plurality of folding lines (M, V) intersecting at the one node to be folded in close contact with each other. The plurality of fold lines having a satisfactory fold line (M, V) (M, V), (A
05) A fold line that satisfies a closing condition, which is a condition for the part (P) to be in close contact and the cylindrical wall (1) to be axially folded when folded along the fold lines (M, V) The plurality of fold lines (M, V) having (M, V),
(A06 ') Cylindrical wall (1) whose cross-sectional diameter decreases toward one end in the central axis direction
【0110】前記構成要件(A01)〜(A06′)を備え
た本発明の筒状折り畳み構造物は、筒壁(1)が中心軸
方向の一端部に行くに従って断面の径が小さくなってい
るので、円錐または角錐型の筒状折り畳み構造物であ
る。前記筒壁(1)の軸方向の一端部は底壁(2)によ
って閉塞されているので、筒状折り畳み構造物は容器と
して内部に物を収容できる。前記筒壁(1)には、複数
の多角形のパーツ(P)と、前記各パーツ(P)の外側
辺を互いに接続する直線状のパーツ接続部とを有し前記
直線状のパーツ接続部に沿って折り畳み可能な直線状の
折り線(M、V)が形成されている。そして、前記筒壁
(1)は、前記折り線(M、V)は筒壁(1)の一面側
から見て前記一面側が山折りとなる複数の山折り線
(M)と谷折りとなる1以上の谷折り線(V)とを有す
る。前記複数の折り線(M、V)は、前記側壁の展開図
の両端で折り線(M、V)が連続しているための条件で
ある連続条件、前記1つの節点で交わる複数の折り線
(M、V)を含む各パーツ(P)が密着状態で折り畳む
ことができる条件である折り畳み条件、及び、前記折り
線(M、V)に沿って折り畳んだ時に、前記パーツ
(P)が密着して前記筒壁(1)が軸方向に折り畳まれ
るための条件である閉じる条件を満足する折り線(M、
V)を有する。したがって、複数の折り線(M、V)に
沿って筒状折り畳み構造物を折り畳んだ時、従来の前記
パーツ(P)どうしが密着状態になる前に筒状折り畳み
構造物が折り畳めなくなる場合と異なり、前記複数の多
角形のパーツ(P)どうしが密着状態まで折り畳まれ
る。そして、パーツ(P)どうしが密着した状態から折
り畳む前の状態まで展開できる。また、従来には無い、
様々な形状の断面を有する円錐または角錐型筒状折り畳
み構造物を提供できる。さらに、前記筒状折り畳み構造
物は、折り畳んで外形を小さくした状態で運搬・輸送
し、使用時には展開するなどの用途に対応できる。In the tubular folding structure of the present invention having the above-mentioned structural requirements (A01) to (A06 '), the diameter of the cross section becomes smaller as the tubular wall (1) goes to one end in the central axis direction. Therefore, it is a conical or pyramid-shaped tubular folding structure. Since one end portion of the cylindrical wall (1) in the axial direction is closed by the bottom wall (2), the cylindrical folding structure can store an object inside as a container. The cylindrical wall (1) has a plurality of polygonal parts (P) and linear part connecting parts that connect the outer sides of the parts (P) to each other. A linear fold line (M, V) that can be folded along is formed. Further, the fold line (M, V) of the cylindrical wall (1) is a valley fold with a plurality of mountain fold lines (M) whose one side is a mountain fold when viewed from the one side of the cylindrical wall (1). And one or more valley fold lines (V). The plurality of fold lines (M, V) are continuous conditions that are the conditions for the fold lines (M, V) to be continuous at both ends of the development view of the side wall, and the plurality of fold lines intersect at the one node. Folding conditions that are conditions under which each part (P) including (M, V) can be folded in a close contact state, and when the parts (P) are folded along the folding line (M, V), the part (P) is in close contact Then, a fold line (M, M that satisfies the closing condition, which is a condition for axially folding the cylindrical wall (1)).
V). Therefore, when the tubular folding structure is folded along a plurality of folding lines (M, V), unlike the conventional case where the tubular folding structure cannot be folded before the parts (P) are brought into close contact with each other. , The plurality of polygonal parts (P) are folded to a close contact state. Then, the parts (P) can be expanded from the state where they are in close contact with each other to the state before being folded. Also, there is no conventional one,
It is possible to provide a conical or pyramidal tubular folding structure with various shaped cross sections. Further, the tubular folding structure can be used for applications such as being transported by being folded and having a small outer shape, and being unfolded at the time of use.
【0111】また、前記構成要件(A01)〜(A07)ま
たは(A01)〜(A06′)を備えた筒状折り畳み構造物
は、下記の構成要件(A08)を備えることも可能であ
る。(A08)前記筒壁(1)の中心軸方向の一部分のみ
に形成された前記複数の折り線(M、V)。前記構成要
件(A01)〜(A08)または(A01)〜(A06′),
(A08)を備えた筒状折り畳み構造物は、前記複数の折
り線(M、V)が前記筒壁(1)の中心軸方向の一部分
のみに形成されているので、従来には無い折り畳み/展
開可能な筒状折り畳み構造物を製作・提供することがで
きる。また、一部分のみに折り線(M、V)が形成され
ているので、折り線(M、V)の形成されていない部分
に物を収容し、折り線(M、V)が形成された部分を折
り畳むことによって、物を収容しつつ外形を小さくでき
る。したがって、全体に折り線(M、V)が形成されて
いる構造物より幅広い用途に使用可能である。Further, the cylindrical folding structure having the above-mentioned structural requirements (A01) to (A07) or (A01) to (A06 ') can also have the following structural requirement (A08). (A08) The plurality of folding lines (M, V) formed only on a part of the cylindrical wall (1) in the central axis direction. The above configuration requirements (A01) to (A08) or (A01) to (A06 '),
In the tubular folding structure provided with (A08), since the plurality of folding lines (M, V) are formed only in a part of the tubular wall (1) in the central axis direction, the folding It is possible to manufacture and provide a deployable tubular folding structure. Further, since the fold line (M, V) is formed only in a part, an object is accommodated in a portion where the fold line (M, V) is not formed, and the fold line (M, V) is formed. By folding, the outer shape can be reduced while accommodating objects. Therefore, it can be used in a wider range of applications than a structure in which folding lines (M, V) are formed on the whole.
【0112】また、前記構成要件(A01)〜(A07)ま
たは(A01)〜(A06′)を備えた筒状折り畳み構造物
は、下記の構成要件(A09)を備えることも可能であ
る。(A09)前記筒壁(1)の中心軸を中心とする螺旋
に沿って形成された折り線(M、V)を有する前記複数
の折り線(M、V)。前記構成要件(A01)〜(A0
7),(A09)または(A01)〜(A06′),(A09)
を備えた筒状折り畳み構造物は、前記複数の折り線
(M、V)が前記筒壁(1)の中心軸を中心とする螺旋
に沿って形成されているので、従来には無い折り畳み/
展開可能な筒状折り畳み構造物を製作・提供することが
できる。The tubular folding structure having the above-mentioned constituents (A01) to (A07) or (A01) to (A06 ') can also have the following constituents (A09). (A09) The plurality of fold lines (M, V) having fold lines (M, V) formed along a spiral about the central axis of the cylindrical wall (1). The above configuration requirements (A01) to (A0
7), (A09) or (A01) to (A06 '), (A09)
In the tubular folding structure provided with, since the plurality of folding lines (M, V) are formed along a spiral centered on the central axis of the tubular wall (1), a folding / unfolding structure which has not been available in the past can be obtained.
It is possible to manufacture and provide a deployable tubular folding structure.
【0113】また、前記構成要件(A01)〜(A07)、
(A01)〜(A06′)、(A01)〜(A08)、(A01)
〜(A06′),(A08)、(A01)〜(A07),(A0
9)または(A01)〜(A06′),(A09)を備えた筒
状折り畳み構造物は、下記の構成要件(A010),(A0
11)を備えることができる。(A010)前記筒壁(1)
の外方から見て2本の山折り線(M)と1本の谷折り線
(V)とによって形成された三角形状の前記多角形のパ
ーツ(P)のみを有する前記複数の多角形のパーツ
(P)、(A011)前記2本の山折り線(M)のうち一
方の山折り線(M)が前記筒壁(1)の水平面に沿って
配置され、且つ他方の山折り線(M)が前記筒壁(1)
の母線に対して一定の角度傾斜して配置された前記2本
の山折り線(M)。Further, the above structural requirements (A01) to (A07),
(A01) to (A06 '), (A01) to (A08), (A01)
~ (A06 '), (A08), (A01) to (A07), (A0
9) or (A01) to (A06 ') and (A09), the tubular folding structure has the following constitutional requirements (A010) and (A0).
11) can be provided. (A010) The cylindrical wall (1)
Of the plurality of polygons having only the triangular polygonal parts (P) formed by two mountain fold lines (M) and one valley fold line (V) when viewed from the outside. Parts (P), (A011) Of the two mountain fold lines (M), one mountain fold line (M) is arranged along the horizontal plane of the cylindrical wall (1), and the other mountain fold line (M). M) is the cylindrical wall (1)
The two mountain fold lines (M) arranged at a certain angle with respect to the generatrix.
【0114】前記構成要件(A01)〜(A07),(A01
0),(A011)、(A01)〜(A06′),(A010),
(A011)、(A01)〜(A08),(A010),(A01
1)、(A01)〜(A06′),(A08),(A010),
(A011)、(A01)〜(A07),(A09)〜(A011)
または(A01)〜(A06′),(A09)〜(A011)を
備えた筒状折り畳み構造物では、前記複数の多角形のパ
ーツ(P)は、前記筒壁(1)の外方から見て2本の山
折り線(M)と1本の谷折り線(V)とによって形成さ
れた三角形状の前記多角形のパーツ(P)のみを有す
る。そして、前記2本の山折り線(M)は、前記2本の
山折り線(M)のうち一方の山折り線(M)が前記筒壁
(1)の水平面に沿って配置され、且つ他方の山折り線
(M)が前記筒壁(1)の母線に対して一定の角度傾斜
して配置されている。したがって、折り畳み時に中心軸
周りに回転しながら折り畳まれて外形が小さくなる従来
には無い、折り畳み/展開可能な筒状折り畳み構造物を
提供することができる。The above constituent elements (A01) to (A07), (A01)
0), (A011), (A01) to (A06 '), (A010),
(A011), (A01) to (A08), (A010), (A01
1), (A01) to (A06 '), (A08), (A010),
(A011), (A01) to (A07), (A09) to (A011)
Alternatively, in the tubular folding structure including (A01) to (A06 ') and (A09) to (A011), the plurality of polygonal parts (P) are viewed from the outside of the tubular wall (1). And has only the triangular polygonal part (P) formed by two mountain fold lines (M) and one valley fold line (V). The two mountain fold lines (M) are arranged such that one mountain fold line (M) of the two mountain fold lines (M) is arranged along a horizontal plane of the cylindrical wall (1), and The other mountain fold line (M) is arranged at a certain angle with respect to the generatrix of the cylindrical wall (1). Therefore, it is possible to provide a foldable / unfoldable tubular fold structure, which has not been available in the related art, and is folded while rotating around the central axis during folding to reduce the outer shape.
【0115】また、前記構成要件(A01)〜(A07)、
(A01)〜(A06′)、(A01)〜(A08)、(A01)
〜(A06′),(A08)、(A01)〜(A07),(A0
9)または(A01)〜(A06′),(A09)を備えた筒
状折り畳み構造物は、下記の構成要件(A012)を備え
ることができる。
(A012)平行な一対の辺を有しない不等辺四角形のパ
ーツ(P)のみを有する前記複数の多角形のパーツ
(P)。
前記構成要件(A01)〜(A07),(A012)、(A0
1)〜(A06′),(A012)、(A01)〜(A08),
(A012)、(A01)〜(A06′),(A08),(A01
2)、(A01)〜(A07),(A09),(A012)または
(A01)〜(A06′),(A09),(A012)を備えた
筒状折り畳み構造物では、前記複数の多角形のパーツ
(P)は、平行な一対の辺を有しない不等辺四角形のパ
ーツ(P)のみを有するので、従来には無い、折り畳み
/展開可能な筒状折り畳み構造物を提供することができ
る。Further, the above-mentioned constituent elements (A01) to (A07),
(A01) to (A06 '), (A01) to (A08), (A01)
~ (A06 '), (A08), (A01) to (A07), (A0
The tubular folding structure provided with 9) or (A01) to (A06 '), (A09) can have the following constituent element (A012). (A012) The plurality of polygonal parts (P) having only parts (P) of an isosceles quadrangle having no pair of parallel sides. The above configuration requirements (A01) to (A07), (A012), (A0
1) to (A06 '), (A012), (A01) to (A08),
(A012), (A01) to (A06 '), (A08), (A01
2), (A01) to (A07), (A09), (A012) or (A01) to (A06 '), (A09), (A012), the tubular folding structure has a plurality of polygons. Since the part (P) includes only the part (P) that is not an equilateral quadrilateral and does not have a pair of parallel sides, it is possible to provide a foldable / unfoldable tubular fold structure that has not existed in the related art.
【0116】(実施例)次に図面を参照しながら、本発
明の実施の形態の具体例(実施例)を説明するが、本発
明は以下の実施例に限定されるものではない。なお、以
後の説明の理解を容易にするために、図面において、前
後方向をX軸方向、左右方向をY軸方向、上下方向をZ
軸方向とし、矢印X,−X,Y,−Y,Z,−Zで示す
方向または示す側をそれぞれ、前方、後方、右方、左
方、上方、下方、または、前側、後側、右側、左側、上
側、下側とする。また、図中、「○」の中に「・」が記
載されたものは紙面の裏から表に向かう矢印を意味し、
「○」の中に「×」が記載されたものは紙面の表から裏
に向かう矢印を意味するものとする。(Examples) Next, specific examples (examples) of the embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited to the following examples. To facilitate understanding of the following description, in the drawings, the front-rear direction is the X-axis direction, the left-right direction is the Y-axis direction, and the up-down direction is the Z-axis.
In the axial direction, the directions or the sides indicated by arrows X, -X, Y, -Y, Z, -Z are respectively forward, backward, rightward, leftward, upward, downward, or frontward, rearward, rightward. , Left side, upper side, and lower side. In addition, in the figure, "." In "○" means an arrow from the back of the paper to the front,
"X" in "○" means an arrow from the front to the back of the paper.
【0117】(実施例1)図80は本発明の実施例1の
筒状折り畳み構造物としての折り畳み/展開可能な円錐
型食品容器の展開図である。図81は前記図80の食品
容器の展開(折り畳み前)状態の説明図であり、図81
Aは折り畳み前の食品容器を上方から見た平面図、図8
1Bは折り畳み前の食品容器の側面図である。図82は
前記図80の食品容器の半折り(折り畳み途中)状態の
説明図であり、図82Aは半折り状態の食品容器を上方
から見た平面図、図82Bは半折り状態の食品容器の側
面図である。図83は前記図80の食品容器を完全に折
り畳んだ状態の説明図であり、図83Aは完全に折り畳
んだ状態の食品容器を上方から見た平面図、図83Bは
完全に折り畳んだ状態の食品容器の側面図である。(Embodiment 1) FIG. 80 is a development view of a foldable / unfoldable conical food container as a cylindrical folding structure according to Embodiment 1 of the present invention. 81 is an explanatory view of the unfolded state (before folding) of the food container of FIG. 80.
FIG. 8A is a plan view of the food container before folding as seen from above, FIG.
1B is a side view of the food container before folding. FIG. 82 is an explanatory view of the food container of FIG. 80 in a half-folded state (during folding), FIG. 82A is a plan view of the half-folded food container seen from above, and FIG. 82B is a half-folded food container. It is a side view. 83 is an explanatory view of the food container of FIG. 80 in a completely folded state, FIG. 83A is a plan view of the food container in a completely folded state seen from above, and FIG. 83B is a food in a completely folded state. It is a side view of a container.
【0118】図80において、折り畳み/展開可能な円
錐型筒状折り畳み構造物としての食品容器Aは円錐状の
側壁(筒壁)1と円板状の底壁2とを有している。前記
側壁1には、図80〜図83に示すように、外側面の上
部1aと下部1bには折り線が形成されておらず、中央
部1cのみに折り線が形成されている。そして、前記中
央部1cには折り畳んだ時に外側面が凸となる多数の山
折り線M(図80実線参照)および凹となる多数の谷折
り線V(図80の点線参照)が形成されている。前記多
数の山折り線の内、中央部1cの上端及び下端で接続し
ている複数の山折り線は上側主折り線M1および下側主
折り線M2となる。この2つの主折り線M1、M2が食
品容器Aの中心軸に垂直な断面上にエンドレスに形成さ
れ、螺旋に沿って形成されていないので、2つ主折り線
M1、M2の間に形成された部分(1段分)のみが折り
畳み可能となる。In FIG. 80, a food container A as a conical tubular folding structure capable of folding / expanding has a conical side wall (cylindrical wall) 1 and a disc-shaped bottom wall 2. As shown in FIGS. 80 to 83, the side wall 1 has no fold line formed on the upper portion 1a and the lower portion 1b of the outer side surface, and has a fold line only on the central portion 1c. A large number of mountain fold lines M (see solid lines in FIG. 80) and a large number of valley fold lines V (see dotted lines in FIG. 80) that are concave are formed on the central portion 1c when the outer surface is convex when folded. There is. Among the many mountain fold lines, the plurality of mountain fold lines connected at the upper end and the lower end of the central portion 1c are the upper main fold line M1 and the lower main fold line M2. Since these two main folding lines M1 and M2 are formed endlessly on a cross section perpendicular to the central axis of the food container A and are not formed along a spiral, they are formed between the two main folding lines M1 and M2. Only the open part (1 step) can be folded.
【0119】前記主折り線M1,M2以外の山折り線M
及び谷折り線Vは、複数の折り線M,Vの交点である節
点において、3本の山折り線Mと1本の谷折り線Vの合
計4本の折り線が交わるように配置されている。即ち、
節点で交わる山折り線Mの数=3、谷折り線Vの数=1
でありその差は2(=3−1)である。そして、前記主
折り線M1,M2以外の山折り線M及び谷折り線Vは、
各節点における折り畳み条件及び閉じる条件を満足する
ように、食品容器Aの母線方向に対して一定角度傾斜し
て等間隔に配置されている。したがって、本実施例1の
食品容器の折り線M,Vにより形成される(囲まれる)
部分であるパーツPは不等辺三角形(三角形)に形成さ
れ、上部1a側に底辺を有する全ての三角形は同一の三
角形となり、下部1b側に底辺を有する全ての三角形も
同一の三角形となる。Mountain fold lines M other than the main fold lines M1 and M2
And the valley fold line V are arranged so that a total of four fold lines of three mountain fold lines M and one valley fold line V intersect at a node that is an intersection of the plurality of fold lines M and V. There is. That is,
Number of mountain fold lines M intersecting at nodes = 3, number of valley fold lines V = 1
And the difference is 2 (= 3-1). The mountain fold line M and the valley fold line V other than the main fold lines M1 and M2 are
The food containers A are arranged at equal intervals with respect to the generatrix direction of the food container A so as to satisfy the folding condition and the closing condition at each node. Therefore, it is formed (enclosed) by the folding lines M and V of the food container of the first embodiment.
The part P, which is a portion, is formed in an isosceles triangle (triangle), all triangles having a base on the upper 1a side are the same triangle, and all triangles having a bottom on the lower 1b side are also the same triangle.
【0120】(実施例1の作用)前記構成を備えた実施
例1の食品容器Aでは、中央部1cの折り線M,Vは折
り畳み条件、閉じる条件及び連続条件を満足する折り線
群から構成され、且つ主折り線M1、M2が中心軸に対
してエンドレスに形成されている。 したがって、実施
例1の食品容器Aはねじりながら折ることによって、図
81に示す展開状態から、図82に示す半折り状態を経
て、図83に示す完全折り畳み状態まで軸方向に折り畳
み/展開することができる。(Operation of Embodiment 1) In the food container A of Embodiment 1 having the above-mentioned structure, the folding lines M and V of the central portion 1c are composed of folding line groups satisfying the folding condition, the closing condition and the continuous condition. The main folding lines M1 and M2 are formed endlessly with respect to the central axis. Therefore, by folding the food container A of Example 1 while twisting, the food container A can be axially folded / expanded from the expanded state shown in FIG. 81 to the half-folded state shown in FIG. 82 to the completely folded state shown in FIG. 83. You can
【0121】このように形成された食品容器Aを、例え
ば、インスタント味噌汁の容器やインスタントラーメン
の容器などに使用することが可能である。この場合、生
産者から消費者に輸送する過程においては、食品容器A
の上部1aまたは下部1bの部分に、お湯をかけて膨張
する前の容積の小さい具材等を収容し、中央部1cを折
り畳むことによって、容器の外形を小さくして出荷する
ことができる。したがって、容器の外形が小さくなるの
で、従来よりも大量に輸送することが可能となり、輸送
コストを抑えることができる。消費者が味噌汁やラーメ
ンを作る時には、消費者が容器Aの中央部1cを展開す
ることによって、お湯を注いでそのまま食することがで
きる食品容器Aとなる。使用後は、再び中央部1cを折
り畳むことにより、外形が小さくなり、回収または廃棄
が容易となる。The food container A thus formed can be used, for example, as a container for instant miso soup or a container for instant noodles. In this case, in the process of transportation from the producer to the consumer, the food container A
By accommodating a material or the like having a small volume before being expanded by pouring hot water in the upper portion 1a or the lower portion 1b and folding the central portion 1c, the outer shape of the container can be reduced and shipped. Therefore, since the outer shape of the container becomes smaller, it is possible to transport a larger amount than before, and the transportation cost can be suppressed. When the consumer makes miso soup or ramen, the consumer unfolds the central portion 1c of the container A to provide a food container A that can be poured as it is by pouring hot water. After use, by folding the central portion 1c again, the outer shape becomes smaller and the collection or disposal becomes easier.
【0122】したがって、従来存在しなかった、外壁に
折り線群が形成された折り畳み/展開可能な食品容器を
提供することができる。また、実施例1の食品容器A
は、折り線の形成されていない上部1aまたは下部1b
に物を収容して、中央部1cを折り畳むことによって、
物を収容しつつ外形を小さくできるという従来には無い
機能を有する。そして、実施例1の食品容器Aは、従来
できなかった、折り畳んで外形を小さくした状態で食品
容器Aを運搬・輸送し、使用時には展開するなどの用途
に対応できる。Therefore, it is possible to provide a foldable / unfoldable food container having a fold line group formed on the outer wall, which has not existed in the past. Also, the food container A of Example 1
Is the upper part 1a or the lower part 1b in which no fold line is formed.
By accommodating things in the center and folding the central portion 1c,
It has an unprecedented function that can reduce the external shape while accommodating objects. The food container A of Example 1 can be used for applications such as transporting and transporting the food container A in a state of being folded and having a small outer shape and unfolding at the time of use, which has not been possible conventionally.
【0123】なお、一般に、前記上側及び下側主折り線
M1,M2と、谷折り線Vとの成す角度が大きくなるほ
ど、力学的関係から、完全に折り畳んだ状態から自然に
展開しにくく、展開状態から折り畳む時に軸方向に圧縮
するために必要な力が大きくなる。したがって、成す角
を大きく(45°以上)に設定するのが望ましく、この
ように設定することによって、完全に折り畳んだ状態の
食品容器Aに外から力をかけなくても、折り畳んだ状態
を維持し、自然に展開することが防止できる。また同時
に、展開した状態の食品容器Aは、軸方向に多少の力を
かけても折り畳まれなくなるので、食事中に、容器が折
り畳まれてしまうことが防止できる。さらに、成す角を
大きく設定した上で、折り畳んだ状態の食品容器Aの上
部開口を蓋等によって閉塞すると、食品容器A内部の空
気が密閉されるので、輸送・運搬時に自然に展開するこ
とがより効果的に防止できる。Generally, the larger the angle formed between the upper and lower main folding lines M1 and M2 and the valley folding line V, the more difficult it is to naturally expand from the completely folded state due to the mechanical relationship. The force required to axially compress when folded from the state increases. Therefore, it is desirable to set the angle formed to be large (45 ° or more), and by setting in this way, the food container A in the completely folded state can be maintained in the folded state without applying external force. However, it can be prevented from developing naturally. At the same time, the unfolded food container A will not be folded even if some force is applied in the axial direction, so that the container can be prevented from being folded during a meal. Furthermore, if the angle formed is set to a large value and the upper opening of the folded food container A is closed with a lid or the like, the air inside the food container A is sealed, so that it can be naturally expanded during transportation and transportation. It can be prevented more effectively.
【0124】また、実施例1の食品容器Aでは中央部1
cの部分にのみ折り線を形成したが、上部1aに折り線
を形成したり、下部1bに折り線を形成することもでき
る。また、上部1aと中央部1cに折り線を形成した
り、中央部1cと下部1b、あるいは、上部1aと下部
1bに折り線を形成したり等、目的に合わせて任意の部
分に折り線を形成することができる。さらに、部分的に
折り線を形成せずに全面に折り線を形成することも可能
である。このように形成した場合、アウトドアで使用で
きる折り畳み/展開可能なコップや食器、水筒などにも
使用できる。また、ペットボトルやコーヒー缶等に使用
すれば、小さく折り畳んで廃棄することができるさら
に、折り線を1段分だけ形成するのではなく、2段や3
段など複数段形成することもできる。複数段形成するこ
とによって、1段形成する場合よりも軸方向に小さく折
り畳み可能となる。Further, in the food container A of Example 1, the central portion 1
Although the folding line is formed only in the portion c, the folding line can be formed in the upper portion 1a or the lower portion 1b. Also, a fold line is formed on the upper portion 1a and the central portion 1c, a fold line is formed on the central portion 1c and the lower portion 1b, or between the upper portion 1a and the lower portion 1b. Can be formed. Further, it is possible to form the fold line on the entire surface without forming the fold line partially. When formed in this way, it can be used for folding / unfolding cups, tableware, water bottles, etc. that can be used outdoors. If it is used for PET bottles, coffee cans, etc., it can be folded into small pieces and discarded. Furthermore, instead of forming only one fold line, two or three fold lines are formed.
It is also possible to form a plurality of steps such as steps. By forming a plurality of stages, it becomes possible to fold smaller in the axial direction than when forming one stage.
【0125】(食品容器の製造方法)次に、実施例1の
食品容器Aの製造方法について例示する。実施例1の食
品容器は、図80に示すように、折り線を有する側壁1
の展開図が形成されたプラスチックや紙等のシートを筒
状に折り曲げて両端を接着した後、別個に作成した底壁
2を側壁1に接着することによって食品容器Aを製造す
ることができる。しかし、この手法では大量生産が困難
である。プラスチック製の折り畳み/展開可能な食品容
器を大量生産するためにプラスチック成形に使用される
真空成形法を利用した製造方法を以下に例示する。な
お、プラスチック以外の材料(発泡スチロール、鉄、ア
ルミ、紙等)で容器を形成する場合は、その材料の特性
に応じて、この他の成形法で製造することが可能であ
る。なお、展開図から食品容器Aを製造する時に接着剤
等による接着ではなく樹脂等によるコーティングや融着
等によって製造することも可能である図84は本発明の
実施例1の折り畳み/展開可能な食品容器の製造装置の
断面図であり、真空成形法の予張の工程を示す図であ
る。図85は本発明の実施例1の折り畳み/展開可能な
食品容器の製造装置の断面図であり、真空成形法の圧入
の工程を示す図である。図86は本発明の実施例1の折
り畳み/展開可能な食品容器の製造装置の断面図であ
り、真空成形法の成形の工程を示す図である。(Method for Manufacturing Food Container) Next, a method for manufacturing the food container A of Example 1 will be described. As shown in FIG. 80, the food container of Example 1 has side walls 1 having fold lines.
The food container A can be manufactured by bending a sheet of plastic, paper or the like on which the developed view is formed into a tubular shape and adhering both ends thereof, and then adhering the separately formed bottom wall 2 to the side wall 1. However, this method is difficult to mass-produce. A manufacturing method using a vacuum forming method used for plastic molding for mass-producing a plastic foldable / expandable food container is exemplified below. When the container is made of a material other than plastic (styrofoam, iron, aluminum, paper, etc.), it can be manufactured by another molding method depending on the characteristics of the material. When the food container A is manufactured from the development view, it is possible to manufacture it by coating or fusion bonding with a resin or the like instead of adhering it with an adhesive or the like. It is sectional drawing of the manufacturing apparatus of a food container, and is a figure which shows the process of pre-expansion of a vacuum forming method. FIG. 85 is a cross-sectional view of the apparatus for manufacturing a foldable / unfoldable food container according to the first embodiment of the present invention, which is a diagram showing a press-fitting step of the vacuum forming method. FIG. 86 is a cross-sectional view of the apparatus for manufacturing a foldable / unfoldable food container according to the first embodiment of the present invention, which is a diagram showing a forming step of a vacuum forming method.
【0126】図84〜図86において、食品容器製造装
置Bは成形装置B1と圧入装置B2とを有している。成
形装置B1は、上部に開口21aを有する成形台21
と、成形台21のその上部に設けられた成形材支持部2
2と、成形台21内部に上下方向に移動可能に支持され
た成形型23とを有している。前記成形型23の外形は
前記成形台21の開口21aよりも小さく形成されてい
る。前記成形型23の内壁の側部24は、製造目的の食
品容器Aに対応した円錐形状をしており、形成したい折
り線に対応した山折り線形成用の凹部24aと谷折り線
形成用の凸部24bが形成されている。前記成形型23
内壁の底部25には複数の空気穴25aが形成されてお
り、全ての空気穴25aは底部25の下部に設けられた
空気溜まり26に通じている。前記空気溜まり26には
空気入出路27が接続しており、空気入出路27は空気
ポンプ(図示せず)に接続されている。前記空気入出路
27には、空気の流れを遮断する空気弁27a(図85
参照)が設けられている。84 to 86, the food container manufacturing apparatus B has a molding apparatus B1 and a press-fitting apparatus B2. The molding apparatus B1 includes a molding table 21 having an opening 21a at the top.
And the molding material support portion 2 provided on the upper part of the molding table 21.
2 and a molding die 23 supported inside the molding table 21 so as to be movable in the vertical direction. The outer shape of the molding die 23 is formed smaller than the opening 21 a of the molding table 21. The side portion 24 of the inner wall of the mold 23 has a conical shape corresponding to the food container A to be manufactured, and has a concave portion 24a for forming a mountain fold line and a valley fold line for forming a fold line to be formed. The convex portion 24b is formed. Mold 23
A plurality of air holes 25a are formed in the bottom portion 25 of the inner wall, and all the air holes 25a communicate with an air reservoir 26 provided in the lower portion of the bottom portion 25. An air inlet / outlet passage 27 is connected to the air reservoir 26, and the air inlet / outlet passage 27 is connected to an air pump (not shown). The air inlet / outlet passage 27 has an air valve 27a (see FIG. 85) that shuts off the flow of air.
(See) is provided.
【0127】図84〜図86において、前記圧入装置B
2は前記成形装置B1に対して接近/離隔可能に配置さ
れており、成形装置B1に対向するノズル31が設けら
れている。前記ノズル31には吸気路32が接続されて
おり、前記吸気路32はポンプ(図示せず)に接続して
いる。図示しないポンプによって吸気路32に流入した
気体は、前記ノズル31から成形装置B1へ向かって噴
射されるように構成されている。84 to 86, the press-fitting device B is used.
No. 2 is arranged so as to be able to approach / separate from the molding apparatus B1, and a nozzle 31 facing the molding apparatus B1 is provided. An intake passage 32 is connected to the nozzle 31, and the intake passage 32 is connected to a pump (not shown). The gas that has flowed into the intake passage 32 by a pump (not shown) is configured to be jetted from the nozzle 31 toward the molding apparatus B1.
【0128】(製造方法の説明)前記構成を備えた食品
容器製造装置Bは、図84に示す予張工程では、前記圧
入装置B2と成形装置B1とを離隔させ、成形型23を
下方の待機位置に保持する。まず、成形材支持部22に
食品容器Aと同じ材料の成形材A′を装着する。前記成
形材A′は成形台21の開口21aを密閉するように被
覆している。そして前記空気入出路27から成形装置B
1に向かって空気を流入させると、成形台21の内部は
成形材A′によって密閉されているので、空気圧によっ
て成形材A′は外部に向かって膨張する。(Explanation of Manufacturing Method) In the food container manufacturing apparatus B having the above-described structure, in the pretensioning step shown in FIG. Hold in position. First, a molding material A ′ made of the same material as the food container A is mounted on the molding material support portion 22. The molding material A'covers the opening 21a of the molding table 21 so as to seal it. Then, from the air inlet / outlet 27 to the molding device B
When air is made to flow toward 1, the inside of the molding table 21 is sealed by the molding material A ', so that the molding material A'expands toward the outside by air pressure.
【0129】図85に示す、圧入工程において、前記空
気入出路27の空気の流入を停止し、空気弁27aを閉
じて空気入出路27を遮断することによって、成形台2
1の空気を密封する。その後、前記成形型23を上昇さ
せるとともに、圧入装置B2を成形装置B1に接近させ
る。このとき、圧入装置B2のノズル31から前記外部
に向かって膨張した成形材A′に向けて気体を噴射しな
がら接近させることによって、成形材A′は成形型23
の内壁(24,25)側に変形する。しかし、この状態
では、まだ、成形型23の内壁と同じ形に成形材A′は
成形されない。In the press-fitting step shown in FIG. 85, the inflow of air into the air inlet / outlet passage 27 is stopped, and the air valve 27a is closed to shut off the air inlet / outlet passage 27, whereby the molding table 2
Seal 1 air. After that, the molding die 23 is raised and the press-fitting device B2 is brought close to the molding device B1. At this time, the molding material A'is made to approach the molding material A'expanded toward the outside from the nozzle 31 of the press-fitting device B2, whereby the molding material A'is molded.
Is deformed to the inner wall (24, 25) side. However, in this state, the molding material A'is not yet molded into the same shape as the inner wall of the molding die 23.
【0130】図86に示す、成形工程において、前記成
形型23を成形台21の開口21aよりも突出させた状
態で保持し、圧入装置B2を前記成形型23の内側に入
った状態で保持する。前記成形型23が開口21aより
も突出しているので、成形型23の上端によって、成形
材A′が保持され、成形材A′と成形型23の内壁2
4,25との間は密封される。そして、前記ノズル31
からの期待の噴射を停止し、空気弁27aを開放して、
空気入出路27から空気穴25aおよび空気溜まり26
を介して、成形型23の内部の空気を排出する。このと
き成形型23と成形材A′との間は密封されているの
で、成形型23の内部がの空気が排気され負圧になる
と、成形材A′は成形型23の内壁に密着するように変
形して、成形型23の内壁24,25と同じ形状に成形
される。したがって、山折り線形成用凹部24aによっ
て山折り線Mが形成され、谷折り線形成用凸部24bに
よって谷折り線Vが形成された錐壁を有する食品容器A
が成形型23の内部に形成される。In the molding step shown in FIG. 86, the molding die 23 is held in a state of being projected from the opening 21a of the molding table 21, and the press-fitting device B2 is held in a state of being inside the molding die 23. . Since the molding die 23 projects beyond the opening 21a, the molding material A'is held by the upper end of the molding die 23, and the molding material A'and the inner wall 2 of the molding die 23.
The space between 4 and 25 is sealed. And the nozzle 31
Stop the expected injection from, open the air valve 27a,
From the air inlet / outlet path 27 to the air hole 25a and the air reservoir 26
The air inside the molding die 23 is discharged via the. At this time, since the molding die 23 and the molding material A ′ are hermetically sealed, when the air inside the molding die 23 is exhausted to a negative pressure, the molding material A ′ comes into close contact with the inner wall of the molding die 23. And is molded into the same shape as the inner walls 24 and 25 of the molding die 23. Therefore, the food container A having a conical wall in which the mountain fold line forming concave portion 24a forms the mountain fold line M and the valley fold line forming convex portion 24b forms the valley fold line V.
Are formed inside the mold 23.
【0131】(実施例2)図87は本発明の実施例2の
筒状折り畳み構造物としての折り畳み/展開可能な円錐
型容器の展開図である。図88は前記図87の容器の展
開(折り畳み前)状態の説明図であり、図87Aは折り
畳み前の容器を上方から見た平面図、図87Bは折り畳
み前の容器の側面図である。図89は前記図87の容器
の半折り(折り畳み途中)状態の説明図であり、図89
Aは半折り状態の容器を上方から見た平面図、図89B
は半折り状態の容器の側面図である。図90は前記図8
7の容器を完全に折り畳んだ状態の説明図であり、図9
0Aは完全に折り畳んだ状態の容器を上方から見た平面
図、図90Bは完全に折り畳んだ状態の容器の側面図で
ある。なお、この実施例2の説明において、前記実施例
1の構成要素に対応する構成要素には同一符号を付し
て、その詳細な説明は省略する。(Embodiment 2) FIG. 87 is a development view of a foldable / unfoldable conical container as a tubular folding structure according to Embodiment 2 of the present invention. 88 is an explanatory view of the unfolded (before folding) state of the container of FIG. 87, FIG. 87A is a plan view of the unfolded container seen from above, and FIG. 87B is a side view of the unfolded container. 89 is an explanatory view of the container of FIG. 87 in a half-folded state (during folding).
89A is a plan view of the container in the half-folded state seen from above, FIG. 89B
[Fig. 3] is a side view of the container in a half-folded state. FIG. 90 corresponds to FIG.
9 is an explanatory view of a state in which the container of No. 7 is completely folded, and FIG.
OA is a plan view of the container in a completely folded state seen from above, and FIG. 90B is a side view of the container in a completely folded state. In the description of the second embodiment, constituent elements corresponding to those of the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
【0132】図87において、実施例2の筒状折り畳み
構造物は、折り畳み/展開可能な円筒状折り畳み構造物
としての容器Cは、実施例1とは異なり、折り線M、V
によって囲まれるパーツPが不等辺四角形で構成されて
いる。また、実施例2の容器Cにはエンドレスに形成さ
れた主折り線M1、M2、M3が3つ配置されており、
2段分折り畳み可能に構成されている。したがって、実
施例2の容器Cをねじりながら折ることによって、図8
8に示す展開状態から、図89に示す半折り状態を経
て、図90に示す完全折り畳み状態に折り畳み/展開可
能である。In FIG. 87, the container C as a cylindrical foldable structure of the second embodiment is a foldable / unfoldable cylindrical foldable structure, unlike the first embodiment.
The part P surrounded by is composed of a scalene quadrangle. Further, in the container C of Example 2, three endlessly formed main folding lines M1, M2, M3 are arranged,
It can be folded for two steps. Therefore, by folding the container C of Example 2 while twisting,
It is possible to fold / unfold the unfolded state shown in FIG. 8 through the half-folded state shown in FIG. 89 to the fully folded state shown in FIG.
【0133】(実施例2の作用)前記構成を備えた実施
例2の容器Cでは、実施例1の容器Aと同様に折り線が
形成されていない上部1a及び下部1bに物を収容しつ
つ、中央部1cを折り畳んで外形を小さくすることがで
きる。したがって、従来存在しなかった、筒壁1に折り
線群が形成された折り畳み/展開可能な容器Cを提供す
ることができる。また、実施例2の容器Cは、折り畳み
可能な部分が2段分あるので、実施例1の容器Aよりも
軸方向により小さくすることができる。なお、折り畳む
時に2段とも折り畳まず、例えば、物を内部に収容して
運搬・輸送する時には1段だけ折り畳み、食事や展示等
使用するときは折り線を展開し、廃棄する時は2段とも
折り畳む等の使用法も可能である。また、実施例2の容
器Cは、実施例1の容器Aと同様に、中央部1cのみだ
けではなく、上部1aや下部1bに折り線M,Vを形成
したり、全面に折り線M,Vを形成することも可能であ
る。さらに、実施例2の容器Cも実施例1の容器Aと同
様に、主折り線M1、M2、M3と谷折り線Vとの成す
角度を大きく設定するのが望ましく(更に望ましくは4
5°以上)、このように設定することによって折り畳ん
だ状態から自然に展開したり、使用中に折り畳まれたり
することを防止できる。。(Operation of Embodiment 2) Like the container A of Embodiment 1, the container C of Embodiment 2 having the above-described structure stores objects in the upper portion 1a and the lower portion 1b where the fold line is not formed. The outer shape can be reduced by folding the central portion 1c. Therefore, it is possible to provide a foldable / unfoldable container C having a fold line group formed on the cylinder wall 1, which has not existed in the past. In addition, since the container C of the second embodiment has two foldable portions, it can be made smaller in the axial direction than the container A of the first embodiment. When folding, do not fold both tiers. For example, fold only one tier when storing and transporting items inside, expand fold lines when using for meals or exhibitions, and both tiers when discarding. Usage such as folding is also possible. In addition, the container C of Example 2 is similar to the container A of Example 1 in that not only the central portion 1c but also the fold lines M and V are formed on the upper portion 1a and the lower portion 1b, and the fold line M and V are formed on the entire surface. It is also possible to form V. Further, similarly to the container A of the first embodiment, it is desirable that the container C of the second embodiment also sets a large angle between the main fold lines M1, M2, M3 and the valley fold line V (more preferably, 4).
By setting in this way, it is possible to prevent the folded state from being naturally expanded or being folded during use. .
【0134】(実施例3)図91は本発明の実施例3の
筒状折り畳み構造物としての折り畳み/展開可能な円錐
型容器の展開図である。図92は前記図91の容器の展
開(折り畳み前)状態の説明図であり、図92Aは折り
畳み前の容器を上方から見た平面図、図92Bは折り畳
み前の容器の側面図である。図93は前記図91の容器
の半折り(折り畳み途中)状態の説明図であり、図93
Aは半折り状態の容器を上方から見た平面図、図93B
は半折り状態の容器の側面図である。図94は前記図9
1の容器を完全に折り畳んだ状態の説明図であり、図9
4Aは完全に折り畳んだ状態の容器を上方から見た平面
図、図94Bは完全に折り畳んだ状態の容器の側面図で
ある。なお、この実施例3の説明において、前記実施例
1の構成要素に対応する構成要素には同一符号を付し
て、その詳細な説明は省略する。(Embodiment 3) FIG. 91 is a development view of a foldable / unfoldable conical container as a tubular folding structure according to Embodiment 3 of the present invention. 92 is an explanatory view of the unfolded (before folding) state of the container of FIG. 91, FIG. 92A is a plan view of the unfolded container seen from above, and FIG. 92B is a side view of the unfolded container. 93 is an explanatory view of the container of FIG. 91 in a half-folded state (during folding).
93A is a plan view of the half-folded container as seen from above, FIG. 93B
[Fig. 3] is a side view of the container in a half-folded state. FIG. 94 corresponds to FIG.
9 is an explanatory view of a state in which the container of No. 1 is completely folded, and FIG.
4A is a plan view of the container in a completely folded state seen from above, and FIG. 94B is a side view of the container in a completely folded state. In the description of the third embodiment, constituent elements corresponding to those of the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
【0135】図91において、実施例3の折り畳み/展
開可能な円錐状折り畳み構造物としての容器Dは、実施
例1とは異なり、折り線M,Vによって囲まれるパーツ
Pが不等辺四角形で構成されている。したがって、実施
例3の容器Dは軸方向にねじりながら折り畳むことによ
って、図92に示す展開状態から、図93に示す半折り
状態を経て、図94に示す完全折り畳み状態に折り畳み
/展開可能である。また、実施例3の容器Dも、実施例
1の容器Aと同様に、中央部1cのみだけではなく、上
部1aや下部1bに折り線M,Vを形成したり、全面に
折り線M,Vを形成することも可能である。さらに、実
施例3の容器Dも実施例1の容器Aと同様に、主折り線
M1、M2と谷折り線Vとの成す角度を大きく設定する
のが望ましく(更に望ましくは45°以上)、このよう
に設定することによって折り畳んだ状態から自然に展開
したり、使用中に折り畳まれたりすることを防止でき
る。In FIG. 91, a container D as a foldable / expandable conical folding structure of the third embodiment is different from that of the first embodiment in that a part P surrounded by fold lines M and V is composed of an isosceles square. Has been done. Therefore, by folding the container D of Example 3 while twisting in the axial direction, the container D can be folded / unfolded from the unfolded state shown in FIG. 92 to the half-folded state shown in FIG. 93 to the fully folded state shown in FIG. 94. . Similarly to the container A of the first embodiment, the container D of the third embodiment has folding lines M and V formed not only in the central portion 1c but also in the upper portion 1a and the lower portion 1b, and the folding lines M and V are formed on the entire surface. It is also possible to form V. Further, similarly to the container A of the first embodiment, the container D of the third embodiment desirably has a large angle formed between the main fold lines M1 and M2 and the valley fold line V (more preferably 45 ° or more), By setting in this way, it is possible to prevent the folded state from being naturally expanded or folded during use.
【0136】(実施例4)図95は本発明の実施例4の
筒状折り畳み構造物としての折り畳み/展開可能な円筒
型容器の展開図であり、図95Aは実施例2と同様に中
央部が2段折り畳める円筒容器の展開図であり、図95
Bは図95Aの両端面が直線状になるように形成した展
開図である。図95に示す展開図の左右両端を接合して
形成される円筒容器Eは、前記各実施例の容器と同様
に、エンドレスに形成された主折り線M1〜M3の間の
部分(中央部1C)が折り畳み可能で、展開状態から半
折り状態を経て完全折り畳み状態に折り畳み/展開す
る。なお、図95Aのように展開図の左右両端に凹凸が
形成されていると、左右両端が接合しにくいので、図9
5Bのように展開図を形成すると、両端が接合し易くな
り、展開図から円筒容器Eを形成するのが容易である。
また、実施例4の容器Eも、実施例1の容器Aと同様
に、中央部1cのみだけではなく、上部1aや下部1b
に折り線M,Vを形成したり、全面に折り線M,Vを形
成することも可能である。さらに、実施例4の容器E
は、実施例1の容器Aと同様に、主折り線M1、M2、
M3と谷折り線Vとの成す角度を大きく設定するのが望
ましく(更に望ましくは45°以上)、このように設定
することによって折り畳んだ状態から自然に展開した
り、使用中に折り畳まれたりすることを防止できる。(Embodiment 4) FIG. 95 is a development view of a foldable / developable cylindrical container as a tubular folding structure according to Embodiment 4 of the present invention, and FIG. FIG. 95 is a development view of a cylindrical container that can be folded in two stages.
B is a development view in which both end surfaces of FIG. 95A are formed to be linear. The cylindrical container E formed by joining the left and right ends of the developed view shown in FIG. 95 is a portion between the main fold lines M1 to M3 formed endlessly (the central portion 1C, as in the case of the above-mentioned embodiments). ) Is foldable and folds / unfolds from the unfolded state to the half-folded state to the fully folded state. Note that if unevenness is formed on the left and right ends of the developed view as in FIG. 95A, it is difficult to join the left and right ends.
When the development view is formed as in 5B, both ends are easily joined, and the cylindrical container E can be easily formed from the development view.
In addition, the container E of the fourth embodiment, like the container A of the first embodiment, includes not only the central portion 1c but also the upper portion 1a and the lower portion 1b.
It is also possible to form the folding lines M and V on the entire surface or to form the folding lines M and V on the entire surface. Further, the container E of Example 4
Are the main folding lines M1, M2, similar to the container A of the first embodiment.
It is desirable to set a large angle between M3 and the valley fold line V (more preferably 45 ° or more). By setting in this way, the folded state can be naturally expanded or folded during use. Can be prevented.
【0137】(実施例5)図96は本発明の実施例5の
円錐型容器の展開図であり、主折り線が螺旋に沿って形
成された円錐容器の展開図である。図96に示す展開図
の左右両端を接合して形成される円錐容器Fは、前記各
実施例の容器と同様に、展開状態から半折り状態を経て
完全折り畳み状態に折り畳み/展開可能である。ただ
し、主折り線がエンドレスに形成されておらず、螺旋に
沿って形成されているので、折り線M,Vが形成されて
いる中央部分F1cの上端部と下端部において、折り畳
み条件等が満たされない節点が存在する可能性が高い。
すなわち、中央部1cの各パーツPや、上部1aまたは
下部1bの筒壁1にひずみが生じてしまう可能性があ
る。また、実施例5の容器Fは、実施例1の容器Aと同
様に、中央部1cのみだけではなく、上部1aや下部1
bに折り線M,Vを形成したり、全面に折り線M,Vを
形成することも可能である。さらに、実施例5の容器C
も実施例1の容器Aと同様に、主折り線M1、M2と谷
折り線Vとの成す角度を大きく設定するのが望ましく
(更に望ましくは45°以上)、このように設定するこ
とによって折り畳んだ状態から自然に展開したり、使用
中に折り畳まれたりすることを防止できる。(Embodiment 5) FIG. 96 is a development view of a conical container according to a fifth embodiment of the present invention, which is a development view of a conical container having a main fold line formed along a spiral. The conical container F formed by joining the left and right ends of the developed view shown in FIG. 96 can be folded / unfolded from the unfolded state through the half-folded state to the fully folded state, as in the case of each of the embodiments. However, since the main fold line is not formed endlessly but is formed along the spiral, the folding conditions and the like are satisfied at the upper end portion and the lower end portion of the central portion F1c where the fold lines M and V are formed. There is a high possibility that there will be unresolved nodes.
That is, distortion may occur in each part P of the central portion 1c and the cylindrical wall 1 of the upper portion 1a or the lower portion 1b. Further, the container F of Example 5 is similar to the container A of Example 1 in that not only the central portion 1c but also the upper portion 1a and the lower portion 1c
It is also possible to form the folding lines M and V on b and to form the folding lines M and V on the entire surface. Furthermore, the container C of Example 5
Similarly to the container A of the first embodiment, it is desirable to set the angle formed by the main fold lines M1 and M2 and the valley fold line V to be large (more preferably 45 ° or more). It is possible to prevent it from unfolding naturally from its original state or being folded during use.
【0138】(変更例)以上、本発明の実施例を詳述し
たが、本発明は、前記実施例に限定されるものではな
く、特許請求の範囲に記載された本発明の要旨の範囲内
で、種々の変更を行うことが可能である。本発明の変更
例を下記に例示する。
(H01)前記各実施例の容器の中央部1cに形成された
折り線群の代わりに、本発明者の研究結果において示し
た種々の折り線群を使用することができる。即ち、折り
畳み条件、閉じる条件及び連続条件を満足する任意の折
り線群を使用可能である。また、これら折り線群を使用
することによって、断面が円形のものだけでなく断面が
多角形の角筒または角錐型の筒状折り畳み構造物を製作
することもできる。
(H02)前記各実施例において、筒状構造物の一端だけ
を底壁2によって閉塞せずに両端を閉塞することもでき
る。(Modifications) Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above-mentioned embodiments, but is within the scope of the gist of the present invention described in the claims. Thus, various changes can be made. Modifications of the present invention are exemplified below. (H01) Instead of the fold line group formed in the central portion 1c of the container of each of the above-described examples, various fold line groups shown in the research results of the present inventor can be used. That is, it is possible to use an arbitrary folding line group that satisfies the folding condition, the closing condition, and the continuous condition. Further, by using these folding line groups, not only those having a circular cross section but also polygonal cross sections such as a polygonal tube or a pyramidal tubular folding structure can be manufactured. (H02) In each of the above embodiments, both ends of the tubular structure may be closed without closing the one end by the bottom wall 2.
【0139】[0139]
【発明の効果】前述の本発明の梱包装置は、下記の効果
(E01)、(E02)を奏することができる。
(E01)従来にない形状の折り畳み/展開可能な筒状折
り畳み構造物を提供することができる。
(E02)折り線に囲まれたパーツどうしが密着状態にな
るまで折り畳み/展開できる筒状折り畳み構造物を提供
することができる。The packing device of the present invention described above can achieve the following effects (E01) and (E02). (E01) It is possible to provide a foldable / unfoldable tubular fold structure having a shape that has not been achieved in the past. (E02) It is possible to provide a tubular folding structure that can be folded / unfolded until the parts surrounded by the fold lines come into close contact with each other.
【0140】[0140]
【図1】 図1は折り畳み構造物の折り畳まれる直線で
ある折り線と複数の折り線の交点である節点との代表例
を示す折り線説明図である。FIG. 1 is a fold line explanatory diagram showing a typical example of a fold line that is a straight line for folding a fold structure and a node that is an intersection of a plurality of fold lines.
【図2】 図2は2本の谷折り線が4本の山折り線の対
称位置に挿入されるタイプの1節点6折り線の折り畳み
条件を示す図である。FIG. 2 is a diagram showing a folding condition for a 1-node 6-fold line of a type in which two valley fold lines are inserted at symmetrical positions of four mountain fold lines.
【図3】 図3は山折り線(M1)、(M2)、(M
3)の間に谷折り線(V1)、(V2)が交互に挿入さ
れる場合の1節点6折り線の折り畳み条件を示す図であ
る。FIG. 3 shows mountain fold lines (M1), (M2), (M
It is a figure which shows the folding conditions of 1 nodal point 6 fold line when the valley fold lines (V1) and (V2) are alternately inserted between 3).
【図4】 図4は帯板を折り線に沿って折りたたんだと
きに帯板の両端部が接合されて円筒となる条件を説明す
る図であり、図4Aは帯板と折り線および折り線の角度
を示す図、図4Bは図4Aに示す折り線に沿って折りた
たんだときの基準軸の向きを変化を示す図である。FIG. 4 is a view for explaining a condition in which both ends of the strip are joined to form a cylinder when the strip is folded along the fold line, and FIG. 4A is a diagram showing the strip and the fold line and the fold line. FIG. 4B is a diagram showing the angle of FIG. 4A, and FIG. 4B is a diagram showing the change in the orientation of the reference axis when folded along the folding line shown in FIG. 4A.
【図5】 図5は閉じる条件を満たし且つ折り畳み方向
が同一方向(山折りまたは谷折りのいずれか一方)の折
り線により正4角形に折り畳む例の説明図で、図5Aは
展開された状態の帯板の折り線を示す図、図5Bは折り
畳み途中の状態を示す図、図5Cは折り畳んだ状態を示
す図である。FIG. 5 is an explanatory diagram of an example in which a folding condition is satisfied and a folding direction is the same direction (either mountain fold or valley fold) into a regular tetragon, and FIG. 5A is an expanded state. 5B is a diagram showing a folding line of the strip plate, FIG. 5B is a diagram showing a state in the middle of folding, and FIG. 5C is a diagram showing a folded state.
【図6】 図6は前記図4Aに示す帯状の板をπ・(N
−2)/Nだけ等間隔に同方向に折り曲げて正N角形を
構成する場合で且つN=6の場合の代表的な展開図を示
す図である。FIG. 6 is a plan view of the strip-shaped plate shown in FIG.
FIG. 2 is a diagram showing a typical development view when a regular N-gon is formed by bending in the same direction by −2) / N at equal intervals and when N = 6.
【図7】 図7は前記図6の山折り線と水平の折線の角
度の2倍(π/3)をα=2π/9とβ=π/9のよう
に分解して不等辺の台形要素で構成される疑似円筒の展
開図である。FIG. 7 is a trapezoid of unequal sides obtained by decomposing twice the angle (π / 3) between the mountain fold line and the horizontal fold line of FIG. 6 into α = 2π / 9 and β = π / 9. It is a development view of a pseudo cylinder composed of elements.
【図8】 図8は前記図6のY軸方向の山折り線をα=
π/3の山折り線Iとβ=π/6の谷折り線IIに分解し
た折り線の組を6個導入することによって製作される円
筒の説明図で、図8Aは展開図、図8Bは前記図8Aの
展開図の両端を接合したときに製作される折り畳み円筒
の半折り状態を示す図、図8Cは前記図8Bの折り畳み
円筒をさらに折り畳んだ状態を示す図である。FIG. 8 is a graph showing the mountain fold line in the Y-axis direction of FIG. 6 as α =
FIG. 8A is an exploded view and FIG. 8B is an explanatory view of a cylinder produced by introducing six sets of disassembled fold lines into a π / 3 mountain fold line I and β = π / 6 valley fold line II. FIG. 8 is a diagram showing a half-folded state of a folded cylinder produced when the both ends of the developed view of FIG. 8A are joined, and FIG. 8C is a diagram showing a further folded state of the folded cylinder of FIG. 8B.
【図9】 図9は前記図6の点AとBを合致させ、水平
の折り線から山折り部分をなくした図で、水平方向に底
角π/6の2等辺三角形からなるダイヤモンド模様
((1)〜(3))の展開図である。FIG. 9 is a diagram in which points A and B in FIG. 6 are aligned with each other and a mountain fold portion is removed from a horizontal folding line, and a diamond pattern (isosceles triangle having a base angle π / 6 in the horizontal direction ( It is a development view of (1) to (3).
【図10】 図10は不等辺三角形要素で構成される変
形ダイヤモンド模様による展開図である。FIG. 10 is a development view of a deformed diamond pattern composed of isosceles triangular elements.
【図11】 図11は水平の折り線に対して1つ飛びに
対称で且つ折り畳みが可能な展開図を有する疑似円筒体
の説明図で、図11Aは展開図、図11Bは前記図11
の展開図の両端を接合したときに製作される折り畳み円
筒の半折り状態を示す図、図11Cは前記図11Bと同
じものを異なる方向から見た図である。11 is an explanatory view of a pseudo-cylindrical body having a development view that is symmetrical with respect to a horizontal fold line and that can be folded, FIG. 11A is a development view, and FIG. 11B is the same as FIG.
FIG. 11C is a diagram showing a half-folded state of a folded cylinder produced when the both ends of FIG. 11B are joined, and FIG. 11C is a diagram of the same thing as FIG. 11B seen from a different direction.
【図12】 図12は前記図11の点Bと同様の折り線
だけで構成した折り畳みの展開図の例を示す図である。12 is a diagram showing an example of a development view of a fold formed only by folding lines similar to the point B in FIG.
【図13】 図13は折り畳み線により形成された複数
の形状の多角形のパーツ(平板壁)を有する折り畳み可
能な円筒壁の展開図である。FIG. 13 is an exploded view of a foldable cylindrical wall having a plurality of polygonal parts (flat plate walls) formed by folding lines.
【図14】 図14は前記図6をπ/6傾斜させた展開
図を有する疑似円筒体の説明図で、図14Aは展開図、
図14Bは前記図14Aの展開図の両端を接合したとき
に製作される折り畳み円筒の半折り状態を示す図であ
る。14 is an explanatory view of a pseudo-cylindrical body having a development view in which FIG. 6 is inclined by π / 6, and FIG. 14A is a development view,
FIG. 14B is a diagram showing a half-folded state of a folding cylinder produced when the both ends of the developed view of FIG. 14A are joined.
【図15】 図15は展開図の両端を接合したときの連
続性を保つ方法の説明図である。FIG. 15 is an explanatory diagram of a method of maintaining continuity when both ends of the development view are joined.
【図16】 図16は前記図7をπ/6傾斜させた展開
図を有する疑似円筒体の説明図で、図16Aは展開図、
図16Bは前記図16Aの展開図の両端を接合したとき
に製作される折り畳み円筒の半折り状態を示す図であ
る。16 is an explanatory view of a pseudo-cylindrical body having a development view in which FIG. 7 is inclined by π / 6, FIG. 16A is a development view,
FIG. 16B is a diagram showing a half-folded state of a folding cylinder produced when the both ends of the developed view of FIG. 16A are joined.
【図17】 図17は前記図8をπ/6傾斜させた展開
図である。FIG. 17 is a development view in which FIG. 8 is inclined by π / 6.
【図18】 図18は図11の螺旋型であり、図中の点
A,Dを結ぶ直線で切断して得たものである。FIG. 18 is a spiral type of FIG. 11 and is obtained by cutting along a straight line connecting points A and D in the figure.
【図19】 図19は、前記図12に示す円筒体の展開
図の平行な2本の直線AB′、C′Dにより切り取られ
た部分を示す図であり、AとB′およびDとC′が重な
るように図19の左右の両端縁を接続することにより折
り畳み可能な円筒体となるものの展開図である。FIG. 19 is a view showing a portion cut out by two parallel straight lines AB ′ and C′D in the development view of the cylindrical body shown in FIG. 12, and A and B ′ and D and C. FIG. 20 is a development view of what becomes a foldable cylindrical body by connecting the left and right edges of FIG. 19 so that ′ overlap.
【図20】 図20は任意形状の4角形要素(パーツ)
を有するり畳み可能な円筒体の展開図である。FIG. 20 is a quadrilateral element (part) having an arbitrary shape.
It is a development view of a refoldable cylindrical body having.
【図21】 図21は閉じる条件を満たし且つ折り畳み
方向が交互に反転する(山折り方向と谷折り方向とに反
転する)折り線により正6角形に折り畳む例の説明図
で、図21Aは展開された状態の帯板の折り線(1)〜(1
2)を示す図、図21B〜図21Fは折り畳み途中の状態
を示す図、図21Gは折り畳んだ状態を示す図である。FIG. 21 is an explanatory diagram of an example of folding into a regular hexagon along a fold line that satisfies the closing condition and that the folding directions are alternately inverted (inverted between the mountain fold direction and the valley fold direction), and FIG. 21A is an expanded view. Folding lines (1) to (1
2), FIG. 21B to FIG. 21F are views showing a state in the middle of folding, and FIG. 21G is a view showing a folded state.
【図22】 図22は水平の折り線に対して1つ飛びに
対称で且つ折り畳みが可能な展開図を有する疑似円筒体
の説明図で、図22Aは展開図、図22Bは前記図22
の展開図の両端を接合したときに製作される折り畳み円
筒の半折り状態を示す図である。22 is an explanatory view of a pseudo-cylindrical body having a development view that is symmetrical with respect to a horizontal fold line and that can be folded, and FIG. 22A is a development view and FIG. 22B is the same as FIG.
It is a figure which shows the half-folded state of the folding cylinder produced when joining both ends of the development view.
【図23】 図23は前記図22を一般化した折り線を
有する折り畳み円筒体の説明図で、図23Aは展開図、
図23Bは前記図23Aの展開図の両端を接合したとき
に製作される折り畳み円筒の半折り状態を示す図であ
る。FIG. 23 is an explanatory view of a folding cylindrical body having a fold line that is a generalization of FIG. 22, and FIG. 23A is a developed view,
FIG. 23B is a diagram showing a half-folded state of a folding cylinder produced when the both ends of the developed view of FIG. 23A are joined.
【図24】 図24は前記図23Aの6段の展開図を3
段にしαを30°として1段毎にβの値を変えた場合の
展開図である。[FIG. 24] FIG. 24 is a developed view of 6 stages of FIG. 23A.
FIG. 6 is a development view in the case where α is set to 30 ° and the value of β is changed for each stage.
【図25】 図25は図23Aの螺旋状の山折り線およ
び谷折り線を1段毎に逆転させて得られる反復螺旋型の
展開図である。FIG. 25 is a development view of a repetitive spiral type obtained by reversing the spiral mountain fold line and the valley fold line of FIG. 23A for each stage.
【図26】 図26は、折り畳み構造物の研究者である
Guest等が検討した筒状構造物の展開図に相当し、三角
形状の分割平板で作られ、主折り線が螺旋状になり、主
折り線が1周するごとに螺旋(1)が1段上昇する時の
円筒状構造物を本発明者が展開図で表したものである。FIG. 26 is a researcher of a folded structure.
Corresponding to a development view of a tubular structure examined by Guest et al., It is made of a triangular divided flat plate, and the main fold line has a spiral shape, and the spiral (1) has one step for each revolution of the main fold line. FIG. 3 is a developed view of the cylindrical structure when the present inventor rises.
【図27】 図27は主折り線が円周に沿って形成さ
れ、パーツが台形要素により形成された場合の円錐型筒
状折り畳み構造物の展開図の要部拡大図である。FIG. 27 is an enlarged view of a main part of the development view of the conical tubular folding structure in which the main fold line is formed along the circumference and the part is formed by the trapezoidal element.
【図28】 図28は図27と同様にして折り線により
等脚台形に分割され且つ正N角錐に折り畳まれる折り線
付円錐壁の、N=6、前記図27のφ*=π/36、2
Θ=π/12の場合の展開図を有する疑似円錐壁の説明
図で、図28Aは展開図、図28Bは前記図28Aの展
開図を有する折り線付円錐壁を半折りにした状態の斜視
図である。28 is a conical wall with a fold line that is divided into isosceles trapezoids by a fold line and is folded into a regular N pyramid in the same manner as FIG. 27, where N = 6, and φ * = π / 36 in FIG. 27. Two
28A is an explanatory view of a pseudo-conical wall having a development view in the case of Θ = π / 12, FIG. 28A is a development view, and FIG. 28B is a perspective view of a state in which the folding conical wall having the development view of FIG. 28A is half-folded. It is a figure.
【図29】 図29は前記図28の展開図の描き方の説
明図である。29 is an explanatory diagram of how to draw the development view of FIG. 28. FIG.
【図30】 図30は前記図28を螺旋型にした展開図
を有する疑似円錐体の説明図で、図30Aは展開図、図
30Bは前記図30Aの展開図を有する折り線付円錐壁
を半折りにした状態の斜視図である。30 is an explanatory view of a pseudo-cone having a development view in which FIG. 28 is made into a spiral shape, FIG. 30A is a development view, and FIG. 30B is a conical wall with folding lines having the development view of FIG. 30A. It is a perspective view in the state half-folded.
【図31】 図31は主折り線が円周に沿って形成され
た円錐における展開図が頂角2ΘのN個の二等辺三角形
で構成される場合の展開図の要部拡大図である。FIG. 31 is an enlarged view of a main part of a development view in a case where a development view of a cone in which a main fold line is formed along the circumference is composed of N isosceles triangles having an apex angle 2Θ.
【図32】 図32は折り線により不等辺三角形要素に
分割される場合の折り線付円錐壁の展開図の要部拡大図
である。FIG. 32 is an enlarged view of a main part of a development view of a conical wall with a fold line in the case of being divided into isosceles triangular elements by the fold line.
【図33】 図33は等角螺旋に沿った折り線を有する
折り畳み可能な折り線付円錐壁の展開図の説明図で、図
33Aは全体説明図、図33Bは前記図33Aの要部拡
大図である。FIG. 33 is an explanatory view of a development view of a foldable conical wall with folding lines having folding lines along an equiangular spiral, FIG. 33A is an overall explanatory view, and FIG. 33B is an enlarged view of a main part of FIG. 33A. It is a figure.
【図34】 図34は図31と同様の角度関係を有する
折り線群によって形成された展開図を有する円錐型筒状
折り畳み構造物の説明図で、図34Aは展開図、図34
Bは前記図34Aの展開図を有する折り線付円錐壁の半
折り状態の斜視図である。34 is an explanatory view of a conical tubular folding structure having a development view formed by folding line groups having an angular relationship similar to FIG. 31, and FIG. 34A is a development view and FIG.
34B is a perspective view of the conical wall with fold lines in the half-folded state having the development of FIG. 34A.
【図35】 図35は折り線により不等辺三角形要素に
分割される場合の円錐型筒状折り線付構造物の展開図
で、N=3、2Θ=π/9、α=π/9、δ=π/6と
した時の展開図(θ*=約0.0688π)である。FIG. 35 is a development view of a conical tubular fold line structure in which fold lines divide into isosceles triangular elements, where N = 3, 2Θ = π / 9, α = π / 9, FIG. 7 is a development view when δ = π / 6 (θ * = about 0.0688π).
【図36】 図36は前記図32の点Fで右上方に角度
α、左上方に角度δを取った折り線により不等辺三角形
要素に分割される場合の折り線付円錐壁の展開図で、
Θ,α,δ値を図35と同じ値とした場合の展開図であ
る。36 is a development view of a conical wall with a fold line in the case of being divided into inequilateral triangular elements by a fold line having an angle α at the upper right and an angle δ at the upper left at the point F in FIG. 32. ,
FIG. 36 is a development view when the Θ, α, and δ values are the same as those in FIG. 35.
【図37】 図37は折り畳み条件を説明するための1
段目と2段目の帯板の要部拡大図である。FIG. 37 is a view for explaining a folding condition 1
It is a principal part enlarged view of a 2nd step strip plate.
【図38】 図38は前記図37で2段目の谷折り線を
1段目のそれと角度γで逆方向に取った場合の図であ
る。38 is a diagram showing the case where the valley fold line of the second step in FIG. 37 is taken in the opposite direction to that of the first step at an angle γ.
【図39】 図39は二等辺三角形要素(頂角2Θ)が
N個からなる折り線付円錐壁の展開図を考え、その一段
だけを湾曲した帯状部分として書き出した図である。FIG. 39 is a view in which a development view of a conical wall with folding lines consisting of N isosceles triangle elements (apex angle 2Θ) is considered, and only one step thereof is written out as a curved strip portion.
【図40】 図40は、前記図37に示す折り線を有す
る円錐型筒状折り畳み構造物においてN=6、γ+ψ*
=π/3、ψ*=π/6、γ=π/6とした場合の展開
図(2Θ=π/18)を有する疑似円錐壁の説明図で、
図40Aは展開図、図40Bは前記図40Aの展開図を
有する円錐型筒状折り畳み構造物を半折りにした状態の
斜視図である。40 is a conical cylindrical folded structure having the fold line shown in FIG. 37, where N = 6, γ + ψ *.
= Π / 3, ψ * = π / 6, γ = π / 6, an explanatory view of a pseudo-conical wall having a development view (2Θ = π / 18),
FIG. 40A is a developed view, and FIG. 40B is a perspective view showing a state in which the conical tubular folding structure having the developed view of FIG. 40A is half-folded.
【図41】 図41は前記図37に示す折り線を有する
円錐型筒状折り畳み構造物においてN=6、γ+ψ*=
π/3、ψ*=π/4,γ=π/12とした場合の展開
図(2Θ=π/6)である。41 is a conical tubular fold structure having fold lines shown in FIG. 37, where N = 6, γ + ψ * =
FIG. 9 is a development view (2Θ = π / 6) when π / 3, ψ * = π / 4, γ = π / 12.
【図42】 図42は前記図40Aの展開図の段数を少
なくして1段毎にψ *の値を大きくした場合の展開図で
ある。FIG. 42 shows a reduced number of stages in the development view of FIG. 40A.
Without each step ψ *In the expanded view when the value of is increased
is there.
【図43】 図43は前記図42と同一形状の円錐壁の
展開図である。43 is a development view of a conical wall having the same shape as FIG. 42. FIG.
【図44】 図44は前記図38に示す折り線を有する
疑似円錐構造物の説明図で、図44Aは展開図、図44
Bは前記図44Aの展開図を有する擬似円錐構造物を半
折りにした状態の斜視図である。44 is an explanatory view of the pseudo-conical structure having the fold line shown in FIG. 38, FIG. 44A is a development view, and FIG.
FIG. 44B is a perspective view showing a state in which the pseudo-conical structure having the development view of FIG. 44A is half-folded.
【図45】 図45は2Θ=π/6,ψ*=π/6,γ
=π/6として得た反復螺旋型折り線付円錐構造物の展
開図(N=6)である。FIG. 45 shows that 2Θ = π / 6, ψ * = π / 6, γ
It is a development view (N = 6) of the repeating spiral type conical structure with a folding line obtained as = π / 6.
【図46】 図46は図40Aの円周方向の螺旋を右端
で1段上昇するようにした折り線付きの折り畳み円錐壁
の展開図である。FIG. 46 is a development view of a folding conical wall with a folding line in which the spiral in the circumferential direction of FIG. 40A is moved up one step at the right end.
【図47】 図47は折り畳み/展開が可能な平面紙の
折り畳み方法を説明する図で、図47Aは従来公知の折
り畳み可能な平面紙の展開図の要部説明図、図47Bは
折り畳み後に筒状となる平面紙の展開図の要部説明図で
ある。FIG. 47 is a diagram for explaining a folding method of a foldable / unfoldable plane paper, FIG. 47A is an explanatory view of a main part of a conventionally known foldable plane paper development view, and FIG. 47B is a cylinder after folding. It is a principal part explanatory view of the development view of the flat paper which becomes a shape.
【図48】 図48は折り畳み/展開可能な筒状構造物
の展開図であり、図48Aは同一の三角形要素(パー
ツ)で構成された筒状折り畳み構造物の展開図、図48
Bは同一の等脚台形要素(パーツ)で構成された筒状折
り畳み構造物の展開図である。48 is a development view of a foldable / unfoldable tubular structure, and FIG. 48A is a development view of a tubular foldable structure composed of the same triangular elements (parts), FIG.
B is a development view of a tubular folding structure composed of the same isosceles trapezoidal elements (parts).
【図49】 図49は折り畳み/展開可能な筒状構造物
の展開図であり、図49Aは異なる台形要素(パーツ)
で構成された筒状折り畳み構造物の展開図、図49Bは
異なる三角形要素(パーツ)で構成された筒状折り畳み
構造物の展開図である。FIG. 49 is an exploded view of a foldable / unfoldable tubular structure, and FIG. 49A shows different trapezoidal elements (parts).
FIG. 49B is a development view of the tubular folding structure configured by the above, and FIG. 49B is a development view of the tubular folding structure configured by different triangular elements (parts).
【図50】 図50は断面が十文字型の筒状折り畳み構
造物の説明図であり、図50Aが展開図、図50Bが図
50Aの展開図の両端を接合して形成される構造物を折
り畳んだ時の平面図である。50 is an explanatory view of a tubular folding structure having a cross-shaped cross section, FIG. 50A is a developed view, and FIG. 50B is a structure formed by joining both ends of the developed view of FIG. 50A. FIG.
【図51】 図51は断面が菱形の筒状折り畳み構造物
の説明図であり、図51Aは展開図、図51Bは図51
Aの展開図の両端を接合して形成される構造物を折り畳
んだ時の平面図である。51 is an explanatory view of a tubular folding structure having a rhombic cross section, FIG. 51A is a development view, and FIG. 51B is a drawing.
It is a top view when the structure formed by joining both ends of the development view of A is folded.
【図52】 図52は断面が擬楕円型の筒状折り畳み構
造物の説明図であり、図52Aは展開図、図52Bは図
52Aの展開図の両端を接合して形成される構造物を折
り畳んだ時の平面図である。52 is an explanatory view of a tubular folding structure having a pseudo-elliptical cross section, FIG. 52A shows a development view, and FIG. 52B shows a structure formed by joining both ends of the development view of FIG. 52A. It is a top view at the time of folding.
【図53】 図53は断面が矩形型の筒状折り畳み構造
物の説明図であり、図53Aは展開図、図53Bは図5
3Aの展開図の両端を接合して形成される構造物を折り
畳んだ時の平面図である。53 is an explanatory view of a tubular folding structure having a rectangular cross section, FIG. 53A is a development view, and FIG. 53B is FIG.
It is a top view when folding the structure formed by joining both ends of the development view of 3A.
【図54】 図54は主折り線が螺旋に沿う円筒型筒状
折り畳み構造物の展開図であり、図54Aは前記図50
Aの展開図に対応する図、図54Bは前記図51Aの展
開図に対応する図である。54 is a development view of a cylindrical tubular folding structure having a main fold line along a spiral, and FIG. 54A is the same as FIG.
54B is a view corresponding to the development view of FIG. A, and FIG. 54B is a view corresponding to the development view of FIG. 51A.
【図55】 図55は主折り線が螺旋に沿う円筒型筒状
折り畳み構造物の展開図であり、図55Aは前記図52
Aの展開図に対応する図、図55Bは前記図53Aの展
開図に対応する図である。55 is a development view of a cylindrical tubular folding structure having a main fold line along a spiral, and FIG. 55A is the same as FIG.
FIG. 55B is a view corresponding to the development view of A, and FIG. 55B is a view corresponding to the development view of FIG. 53A.
【図56】 図56は主折り線が螺旋に沿う円筒型筒状
折り畳み構造物の展開図であり、前記図49Aに対応す
る図である。56 is a development view of a cylindrical tubular folding structure having a main fold line along a spiral and is a view corresponding to FIG. 49A. FIG.
【図57】 図57は水平方向にzigzagに形成された折
り線と垂直方向にzigzagに形成された折り線とによって
構成される折り線群の角度関係を説明する図である。[FIG. 57] FIG. 57 is a diagram illustrating an angular relationship of a fold line group configured by a fold line formed in zigzag in the horizontal direction and a fold line formed in zigzag in the vertical direction.
【図58】 図58は水平方向に接続する折り線が直線
の折り線を有する筒状折り畳み構造物の具体例の説明図
であり、図58Aは鉛直方向の折り線がzigzag状になる
筒状構造物の展開図、図58Bは鉛直方向の折り線が曲
線状になる筒状構造物の展開図である。FIG. 58 is an explanatory view of a specific example of the tubular folding structure in which the fold line connecting in the horizontal direction has a straight fold line, and FIG. 58A is a tubular shape in which the vertical fold line has a zigzag shape. FIG. 58B is a development view of the structure, and FIG. 58B is a development view of the cylindrical structure in which the vertical folding line is curved.
【図59】 図59は水平方向に接続する折り線が直線
の折り線を有する筒状折り畳み構造物の具体例の説明図
であり、前記図58Aの展開図において1段ごとに反転
させた展開図である。FIG. 59 is an explanatory view of a specific example of a tubular folding structure in which the fold line connecting in the horizontal direction has a straight fold line. In the development view of FIG. 58A, the development is made by reversing each stage. It is a figure.
【図60】 図60は反復型の折り線で構成された筒状
折り畳み構造物の展開図であり、折り畳まれた後の断面
が矩形状となる構造物の展開図である。[Fig. 60] Fig. 60 is a development view of a tubular folding structure configured by repetitive folding lines, and is a development view of a structure having a rectangular cross section after being folded.
【図61】 図61は鉛直方向に接続される折り線が直
線を形成する折り線群を有する筒状折り畳み構造物の角
度関係を説明する図である。FIG. 61 is a diagram illustrating an angular relationship of a tubular folding structure having a fold line group in which fold lines connected in the vertical direction form a straight line.
【図62】 図62は鉛直方向に接続される折り線が直
線を形成する折り線群を有する筒状折り畳み構造物の具
体例の図であり、図62Aはa/b=2.5、N=4の
場合の展開図、図62Bはa/b=2.5、N=6の場
合の展開図である。FIG. 62 is a diagram of a specific example of a tubular folding structure having a fold line group in which fold lines connected in the vertical direction form a straight line, and FIG. 62A shows a / b = 2.5, N 62B is a development view when = 4, and FIG. 62B is a development view when a / b = 2.5 and N = 6.
【図63】 図63は等角螺旋の修正モデルの図であ
り、図63Aは螺旋型の折り線の説明図、図63Bは図
63AにおいてN=6とした時の具体例を示す図であ
る。63 is a diagram of a modified model of an equiangular spiral, FIG. 63A is an explanatory diagram of spiral fold lines, and FIG. 63B is a diagram showing a specific example when N = 6 in FIG. 63A. .
【図64】 図64は反復型等角螺旋の修正モデルの図
であり、図64Aは螺旋型の折り線の説明図、図64B
は図64AにおいてN=6とした時の具体例を示す図で
ある。64 is a diagram of a modified model of an iterative conformal helix, and FIG. 64A is an explanatory diagram of a spiral fold line, and FIG. 64B.
FIG. 64B is a diagram showing a specific example when N = 6 in FIG. 64A.
【図65】 図65は異型の角錐状構造物の説明図であ
り、図65Aは角度関係を説明する図、図65Bは異型
の角錐状構造物の具体例である。FIG. 65 is an explanatory diagram of an atypical pyramidal structure, FIG. 65A is a diagram illustrating an angular relationship, and FIG. 65B is a specific example of an atypical pyramidal structure.
【図66】 図66は折り畳み可能な円筒型筒状構造物
の展開図を説明する図であり、図66Aは円筒の座屈パ
ターンの展開図で図9に対応する図、図66Bは各要素
の角度の説明図、図66Cは図66AのABが水平にな
るように傾斜した図である。66 is a diagram for explaining a development view of a foldable cylindrical tubular structure, FIG. 66A is a development view of a buckling pattern of a cylinder and corresponds to FIG. 9, and FIG. 66B is each element. 66C is an explanatory view of the angle of FIG. 66C, and FIG. 66C is a view inclined so that AB in FIG. 66A is horizontal.
【図67】 図67は折り畳み可能な円筒型筒状構造物
の説明図であり、図67Aは図66Bを描き直した図で
で図22Aに対応する図、図67Bは展開図の上昇を説
明するための図で図66Bに対応する図である。67 is an explanatory view of a foldable cylindrical tubular structure, FIG. 67A is a drawing redrawing FIG. 66B and corresponds to FIG. 22A, and FIG. 66B is a diagram corresponding to FIG. 66B and is a diagram corresponding to FIG. 66B.
【図68】 図68は折り畳み可能な円筒型筒状構造物
の説明図であり、図68Aは図67BのGFが水平にな
るように傾斜させた図、図68Bは図68Aを描き直し
た図である。68 is an explanatory view of a foldable cylindrical tubular structure, FIG. 68A is a view in which GF in FIG. 67B is inclined so as to be horizontal, and FIG. 68B is a view in which FIG. 68A is redrawn. is there.
【図69】 図69は折り畳み可能な円錐型筒状折り畳
み構造物の展開図であり、図69Aは図66Aの円筒型
構造物に対応する円錐型構造物の展開図、図69Bは図
67Aの円筒型構造物に対応する円錐型構造物の展開図
である。69 is a development view of a foldable conical cylindrical folding structure, FIG. 69A is a development view of a conical structure corresponding to the cylindrical structure of FIG. 66A, and FIG. 69B is a development view of FIG. 67A. It is a development view of a conical structure corresponding to a cylindrical structure.
【図70】 図70は折り畳み可能な円錐型筒状折り畳
み構造物の展開図であり、図68Bの円筒型構造物に対
応する円錐型構造物の展開図である。70 is an exploded view of a foldable conical tubular folding structure and is an exploded view of a conical structure corresponding to the cylindrical structure of FIG. 68B.
【図71】 図71は折り畳み可能な円錐型筒状折り畳
み構造物の展開図であり、図71Aは図67Bにおける
2段上がりの円筒状構造物に対応する円錐型構造物の展
開図であり、図71Bは図71Aを描き直したものであ
る。71 is a development view of a foldable conical tubular fold structure, and FIG. 71A is a development view of a conical structure corresponding to the two-tiered cylindrical structure in FIG. 67B. 71B is a redrawing of FIG. 71A.
【図72】 図72は逆方向螺旋の折り線群に関する作
図及び角度の説明図であり、図33に対応する図であ
る。72 is an explanatory diagram of a drawing and an angle regarding a fold line group of a backward spiral, and is a view corresponding to FIG. 33.
【図73】 図73は逆方向螺旋の折り線群を有する円
錐型筒状折り畳み構造物の具体例の展開図である。FIG. 73 is a development view of a specific example of a conical tubular folding structure having a reverse spiral fold line group.
【図74】 図74は同方向螺旋の折り線群に関する作
図及び角度の説明図であり、図74Aは全体図、図74
Bは図74A要部拡大図である。74 is a drawing and an explanatory view of angles regarding a folding line group of the same direction spiral, FIG. 74A is an overall view, and FIG.
B is an enlarged view of a main part of FIG. 74A.
【図75】 図75は同方向螺旋の折り線群を有する円
錐型筒状折り畳み構造物の具体例の展開図である。[FIG. 75] FIG. 75 is a development view of a specific example of a conical tubular folding structure having a fold line group of spirals in the same direction.
【図76】 図76は台形要素によって構成された円錐
状構造物の説明図であり、図76Aは作図方法及び角度
関係の説明図、図76Bは図76Aの作図法によって形
成した具体例の構造物の展開図である。76 is an explanatory view of a conical structure composed of trapezoidal elements, FIG. 76A is an explanatory view of a drawing method and an angular relationship, and FIG. 76B is a structure of a specific example formed by the drawing method of FIG. 76A. FIG.
【図77】 図77は台形要素によって構成された図7
6とは異なる円錐状構造物の説明図であり、図77Aは
作図方法及び角度関係の説明図、図77Bは図77Aの
作図法によって形成した具体例の構造物の展開図であ
る。77: FIG. 77: FIG. 7 constituted by trapezoidal elements
77A is an explanatory view of a conical structure different from FIG. 6, FIG. 77A is an explanatory view of a drawing method and an angular relationship, and FIG. 77B is a developed view of a structure of a specific example formed by the drawing method of FIG. 77A.
【図78】 図78は図74とは異なる矩形要素で構成
される円錐型筒状折り畳み構造物の作図法及び角度関係
の説明図である。FIG. 78 is an explanatory diagram of a drawing method and an angular relationship of a conical tubular folding structure configured with rectangular elements different from those in FIG. 74.
【図79】 図79は図78の作図法に基づいて形成さ
れた折り線を有する折り畳み可能な円錐型筒状折り畳み
構造物の具体例の説明図であり、図79Aは1段上がり
の展開図、図79Bは2段上がりの展開図である。79 is an illustration of a specific example of a foldable conical tubular fold structure having fold lines formed based on the drawing method of FIG. 78, and FIG. 79A is a development view of one step up. , FIG. 79B is a development view of two steps up.
【図80】 図80は本発明の実施例1の筒状折り畳み
構造物としての折り畳み/展開可能な円錐型食品容器の
展開図である。FIG. 80 is a development view of a foldable / unfoldable conical food container as a cylindrical folding structure according to the first embodiment of the present invention.
【図81】 図81は前記図80の食品容器の展開(折
り畳み前)状態の説明図であり、図81Aは折り畳み前
の食品容器を上方から見た平面図、図81Bは折り畳み
前の食品容器の側面図である。81 is an explanatory view of the unfolded (unfolded) state of the food container of FIG. 80, FIG. 81A is a plan view of the unfolded food container as seen from above, and FIG. 81B is the unfolded food container. FIG.
【図82】 図82は前記図80の食品容器の半折り
(折り畳み途中)状態の説明図であり、図82Aは半折
り状態の食品容器を上方から見た平面図、図82Bは半
折り状態の食品容器の側面図である。82 is an explanatory view of the food container of FIG. 80 in a half-folded state (during folding), FIG. 82A is a plan view of the half-folded food container seen from above, and FIG. 82B is a half-folded state. It is a side view of the food container of FIG.
【図83】 図83は前記図80の食品容器を完全に折
り畳んだ状態の説明図であり、図83Aは完全に折り畳
んだ状態の食品容器を上方から見た平面図、図83Bは
完全に折り畳んだ状態の食品容器の側面図である。83 is an explanatory view of the food container of FIG. 80 in a completely folded state, FIG. 83A is a plan view of the food container in a completely folded state seen from above, and FIG. 83B is in a completely folded state. It is a side view of the food container in the open state.
【図84】 図84は本発明の実施例1の折り畳み/展
開可能な食品容器の製造装置の断面図であり、真空成形
法の予張の工程を示す図である。FIG. 84 is a cross-sectional view of the apparatus for manufacturing a foldable / unfoldable food container according to the first embodiment of the present invention, which is a diagram showing a pre-expansion step of the vacuum forming method.
【図85】 図85は本発明の実施例1の折り畳み/展
開可能な食品容器の製造装置の断面図であり、真空成形
法の圧入の工程を示す図である。FIG. 85 is a cross-sectional view of the apparatus for manufacturing a foldable / unfoldable food container according to the first embodiment of the present invention, showing a press-fitting step of the vacuum forming method.
【図86】 図86は本発明の実施例1の折り畳み/展
開可能な食品容器の製造装置の断面図であり、真空成形
法の成形の工程を示す図である。FIG. 86 is a cross-sectional view of the apparatus for manufacturing a foldable / unfoldable food container according to the first embodiment of the present invention, which is a diagram showing a forming step of a vacuum forming method.
【図87】 図87は本発明の実施例2の筒状折り畳み
構造物としての折り畳み/展開可能な円錐型容器の展開
図である。FIG. 87 is a development view of a foldable / unfoldable conical container according to a second embodiment of the present invention, which is a tubular folding structure.
【図88】 図88は前記図87の容器の展開(折り畳
み前)状態の説明図であり、図87Aは折り畳み前の容
器を上方から見た平面図、図87Bは折り畳み前の容器
の側面図である。88 is an explanatory view of the unfolded (unfolded) state of the container of FIG. 87, FIG. 87A is a plan view of the unfolded container seen from above, and FIG. 87B is a side view of the unfolded container. Is.
【図89】 図89は前記図87の容器の半折り(折り
畳み途中)状態の説明図であり、図89Aは半折り状態
の容器を上方から見た平面図、図89Bは半折り状態の
容器の側面図である。89 is an explanatory view of the container of FIG. 87 in a half-folded state (in the middle of folding), FIG. 89A is a plan view of the half-folded container seen from above, and FIG. 89B is a half-folded container. FIG.
【図90】 図90は前記図87の容器を完全に折り畳
んだ状態の説明図であり、図90Aは完全に折り畳んだ
状態の容器を上方から見た平面図、図90Bは完全に折
り畳んだ状態の容器の側面図である。90 is an explanatory view of the container of FIG. 87 in a completely folded state, FIG. 90A is a plan view of the container in a completely folded state seen from above, and FIG. 90B is in a completely folded state. It is a side view of the container of FIG.
【図91】 図91は本発明の実施例3の筒状折り畳み
構造物としての折り畳み/展開可能な円錐型容器の展開
図である。FIG. 91 is a development view of a foldable / unfoldable conical container according to a third embodiment of the present invention, which is a cylindrical folding structure.
【図92】 図92は前記図91の容器の展開(折り畳
み前)状態の説明図であり、図92Aは折り畳み前の容
器を上方から見た平面図、図92Bは折り畳み前の容器
の側面図である。92 is an explanatory view of the unfolded (before folding) state of the container of FIG. 91, FIG. 92A is a plan view of the unfolded container seen from above, and FIG. 92B is a side view of the unfolded container. Is.
【図93】 図93は前記図91の容器の半折り(折り
畳み途中)状態の説明図であり、図93Aは半折り状態
の容器を上方から見た平面図、図93Bは半折り状態の
容器の側面図である。93 is an explanatory view of the container of FIG. 91 in a half-folded state (during folding), FIG. 93A is a plan view of the half-folded container seen from above, and FIG. 93B is a half-folded container. FIG.
【図94】 図94は前記図91の容器を完全に折り畳
んだ状態の説明図であり、図94Aは完全に折り畳んだ
状態の容器を上方から見た平面図、図94Bは完全に折
り畳んだ状態の容器の側面図である。94 is an explanatory view of the container of FIG. 91 in a completely folded state, FIG. 94A is a plan view of the container in a completely folded state seen from above, and FIG. 94B is in a completely folded state. It is a side view of the container of FIG.
【図95】 図95は本発明の実施例4の筒状折り畳み
構造物としての折り畳み/展開可能な円筒型容器の展開
図であり、図95Aは実施例2と同様に中央部が2段折
り畳める円筒容器の展開図であり、図95Bは図95A
の両端面が直線状になるように形成した展開図である。FIG. 95 is a development view of a foldable / unfoldable cylindrical container as a tubular folding structure according to a fourth embodiment of the present invention, and FIG. 95A shows a central portion that can be folded in two stages as in the second embodiment. FIG. 95B is a development view of the cylindrical container, and FIG. 95B is FIG. 95A.
FIG. 4 is a development view in which both end faces of are formed to be linear.
【図96】 図96は本発明の実施例5の円錐型容器の
展開図であり、主折り線が螺旋に沿って形成された円錐
容器の展開図である。96 is a development view of the conical container of Example 5 of the present invention, and is a development view of the conical container in which the main fold line is formed along the spiral. FIG.
1…筒壁、2…底壁、M…山折り線、M,V…折り線、
P…パーツ、V…谷折り線。1 ... Tube wall, 2 ... Bottom wall, M ... Mountain fold line, M, V ... Fold line,
P ... parts, V ... valley fold line.
─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成13年11月14日(2001.11.
14)[Submission date] November 14, 2001 (2001.11.
14)
【手続補正1】[Procedure Amendment 1]
【補正対象書類名】図面[Document name to be corrected] Drawing
【補正対象項目名】図47[Correction target item name] Fig. 47
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【図47】 FIG. 47
【手続補正2】[Procedure Amendment 2]
【補正対象書類名】図面[Document name to be corrected] Drawing
【補正対象項目名】図48[Correction target item name] Fig. 48
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【図48】 FIG. 48
【手続補正3】[Procedure 3]
【補正対象書類名】図面[Document name to be corrected] Drawing
【補正対象項目名】図49[Correction target item name] Fig. 49
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【図49】 FIG. 49
【手続補正4】[Procedure amendment 4]
【補正対象書類名】図面[Document name to be corrected] Drawing
【補正対象項目名】図50[Name of item to be corrected] Fig. 50
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【図50】 FIG. 50
【手続補正5】[Procedure Amendment 5]
【補正対象書類名】図面[Document name to be corrected] Drawing
【補正対象項目名】図51[Correction target item name] Fig. 51
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【図51】 FIG. 51
【手続補正6】[Procedure correction 6]
【補正対象書類名】図面[Document name to be corrected] Drawing
【補正対象項目名】図52[Correction target item name] Fig. 52
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【図52】 FIG. 52
【手続補正7】[Procedure Amendment 7]
【補正対象書類名】図面[Document name to be corrected] Drawing
【補正対象項目名】図53[Name of item to be corrected] Fig. 53
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【図53】 FIG. 53
【手続補正8】[Procedure Amendment 8]
【補正対象書類名】図面[Document name to be corrected] Drawing
【補正対象項目名】図54[Correction target item name] Fig. 54
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【図54】 FIG. 54
【手続補正9】[Procedure Amendment 9]
【補正対象書類名】図面[Document name to be corrected] Drawing
【補正対象項目名】図55[Correction target item name] Fig. 55
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【図55】 FIG. 55
【手続補正10】[Procedure Amendment 10]
【補正対象書類名】図面[Document name to be corrected] Drawing
【補正対象項目名】図56[Correction target item name] Fig. 56
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【図56】 FIG. 56
【手続補正11】[Procedure Amendment 11]
【補正対象書類名】図面[Document name to be corrected] Drawing
【補正対象項目名】図57[Correction target item name] FIG. 57
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【図57】 FIG. 57
【手続補正12】[Procedure Amendment 12]
【補正対象書類名】図面[Document name to be corrected] Drawing
【補正対象項目名】図58[Correction target item name] FIG. 58
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【図58】 FIG. 58
【手続補正13】[Procedure Amendment 13]
【補正対象書類名】図面[Document name to be corrected] Drawing
【補正対象項目名】図59[Correction target item name] Fig. 59
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【図59】 FIG. 59
【手続補正14】[Procedure Amendment 14]
【補正対象書類名】図面[Document name to be corrected] Drawing
【補正対象項目名】図60[Correction target item name] Fig. 60
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【図60】 FIG. 60
【手続補正15】[Procedure Amendment 15]
【補正対象書類名】図面[Document name to be corrected] Drawing
【補正対象項目名】図61[Correction target item name] Fig. 61
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【図61】 FIG. 61
【手続補正16】[Procedure Amendment 16]
【補正対象書類名】図面[Document name to be corrected] Drawing
【補正対象項目名】図62[Correction target item name] Fig. 62
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【図62】 FIG. 62
【手続補正17】[Procedure Amendment 17]
【補正対象書類名】図面[Document name to be corrected] Drawing
【補正対象項目名】図63[Name of item to be corrected] Fig. 63
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【図63】 FIG. 63
【手続補正18】[Procedure 18]
【補正対象書類名】図面[Document name to be corrected] Drawing
【補正対象項目名】図64[Correction target item name] Fig. 64
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【図64】 FIG. 64
【手続補正19】[Procedure Amendment 19]
【補正対象書類名】図面[Document name to be corrected] Drawing
【補正対象項目名】図66[Correction target item name] FIG. 66
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【図66】 FIG. 66
【手続補正20】[Procedure amendment 20]
【補正対象書類名】図面[Document name to be corrected] Drawing
【補正対象項目名】図67[Correction target item name] FIG. 67
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【図67】 FIG. 67
【手続補正21】[Procedure correction 21]
【補正対象書類名】図面[Document name to be corrected] Drawing
【補正対象項目名】図68[Correction target item name] Fig. 68
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【図68】 FIG. 68
【手続補正22】[Procedure correction 22]
【補正対象書類名】図面[Document name to be corrected] Drawing
【補正対象項目名】図69[Name of item to be corrected] Fig. 69
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【図69】 FIG. 69
【手続補正23】[Procedure amendment 23]
【補正対象書類名】図面[Document name to be corrected] Drawing
【補正対象項目名】図70[Name of item to be corrected] Fig. 70
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【図70】 FIG. 70
【手続補正24】[Procedure correction 24]
【補正対象書類名】図面[Document name to be corrected] Drawing
【補正対象項目名】図71[Name of item to be corrected] Fig. 71
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【図71】 FIG. 71
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3E033 AA01 AA06 AA08 BA07 BA10 BA13 CA20 DB02 DC03 DD01 FA01 3E060 AB01 BC04 DA01 EA13 3E078 AA20 BC10 DD11 ─────────────────────────────────────────────────── ─── Continued front page F-term (reference) 3E033 AA01 AA06 AA08 BA07 BA10 BA13 CA20 DB02 DC03 DD01 FA01 3E060 AB01 BC04 DA01 EA13 3E078 AA20 BC10 DD11
Claims (6)
えた筒状折り畳み構造物、(A01)複数の多角形のパー
ツと、前記各パーツの外側辺を互いに接続する直線状の
パーツ接続部とを有し前記直線状のパーツ接続部に沿っ
て折り畳み可能な直線状の折り線が形成された筒壁であ
って、前記折り線は筒壁の一面側から見て前記一面側が
山折りとなる複数の山折り線と谷折りとなる1以上の谷
折り線とを有する前記筒壁、(A02)前記筒壁の軸方向
の一端部を閉塞する底壁、(A03)前記側壁の展開図の
両端で折り線が連続しているための条件である連続条件
を満足する折り線を有する前記複数の折り線、(A04)
前記山折り線及び谷折り線の交点である複数の節点が所
定の間隔で配置され、1つの節点で交わる山折り線の数
と谷折り線の数との差が2となるように形成され、前記
1つの節点で交わる複数の折線を含む各パーツが密着状
態で折り畳むことができる条件である折り畳み条件を満
足する折り線を有する前記複数の折線、(A05)前記折
り線に沿って折り畳んだ時に、前記パーツが密着して前
記筒壁が軸方向に折り畳まれるための条件である閉じる
条件を満足する折り線を有する前記複数の折り線、(A
06)中心軸に直交する断面の径が中心軸方向に沿って一
定に形成された前記筒壁、(A07)五角形以上の多角形
若しくは三角形、又は円形の形状の断面を有する前記筒
壁。1. A tubular folding structure having the following constituent requirements (A01) to (A07), (A01) a plurality of polygonal parts, and linear parts for connecting the outer sides of the respective parts to each other. A fold line having a connecting portion and a linear fold line that can be folded along the linear part connecting portion is formed, and the fold line is a mountain on the one surface side when viewed from one surface side of the cylinder wall. The cylinder wall having a plurality of mountain fold lines that form a fold and one or more valley fold lines that form a valley fold, (A02) a bottom wall that closes one axial end of the cylinder wall, and (A03) a side wall. A plurality of fold lines having fold lines that satisfy a continuation condition that is a condition for the fold lines to be continuous at both ends of the development view;
A plurality of nodes, which are the intersections of the mountain fold lines and the valley fold lines, are arranged at a predetermined interval, and are formed so that the difference between the number of the mountain fold lines and the number of the valley fold lines that intersect at one node is 2. A plurality of fold lines having fold lines satisfying a folding condition that is a condition that each part including a plurality of fold lines intersecting at the one node can be folded in close contact with each other, (A05) folded along the fold lines Sometimes, the plurality of fold lines having a fold line that satisfies a closing condition, which is a condition for the parts to come into close contact with each other and the cylindrical wall to be folded in the axial direction, (A
06) The cylindrical wall having a cross section perpendicular to the central axis formed to have a constant diameter along the central axis direction, and (A07) the cylindrical wall having a polygonal or triangular shape with a pentagon or more, or a circular cross section.
06′)を備えた筒状折り畳み構造物、(A01)複数の多
角形のパーツと、前記各パーツの外側辺を互いに接続す
る直線状のパーツ接続部とを有し前記直線状のパーツ接
続部に沿って折り畳み可能な直線状の折り線が形成され
た筒壁であって、前記折り線は筒壁の一面側から見て前
記一面側が山折りとなる複数の山折り線と谷折りとなる
1以上の谷折り線とを有する前記筒壁、(A02)前記筒
壁の軸方向の一端部を閉塞する底壁、(A03)前記側壁
の展開図の両端で折り線が連続しているための条件であ
る連続条件を満足する折り線を有する前記複数の折り
線、(A04)前記山折り線及び谷折り線の交点である複
数の節点が所定の間隔で配置され、1つの節点で交わる
山折り線の数と谷折り線の数との差が2となるように形
成され、前記1つの節点で交わる複数の折線を含む各パ
ーツが密着状態で折り畳むことができる条件である折り
畳み条件を満足する折り線を有する前記複数の折線、
(A05)前記折り線に沿って折り畳んだ時に、前記パー
ツが密着して前記筒壁が軸方向に折り畳まれるための条
件である閉じる条件を満足する折り線を有する前記複数
の折り線、(A06′)中心軸方向の一端部に行くに従っ
て断面の径が小さくなる筒壁2. The following constituent requirements (A01) to (A05), (A
(A01) a plurality of polygonal parts, and a linear part connecting part that connects the outer sides of the parts to each other, the linear part connecting part A fold line that is formed along a straight line that is foldable along the fold line. The cylinder wall having one or more valley fold lines, (A02) the bottom wall closing one end of the cylinder wall in the axial direction, and (A03) because the fold lines are continuous at both ends of the side wall development view. (A04) A plurality of nodes, which are intersections of the mountain fold line and the valley fold line, are arranged at a predetermined interval and intersect at one node. The difference between the number of mountain fold lines and the number of valley fold lines is 2, and the one node A plurality of fold lines having fold lines that satisfy the folding condition, which is a condition that each part including a plurality of fold lines intersecting with each other can be folded in a close contact state,
(A05) The plurality of fold lines having fold lines that satisfy a closing condition, which is a condition for the parts to come into close contact with each other and to fold the tubular wall in the axial direction when folded along the fold lines. ′) Cylindrical wall whose cross-sectional diameter decreases toward one end in the central axis direction
特徴とする請求項1または2記載の筒状折り畳み構造
物、(A08)前記筒壁の中心軸方向の一部分のみに形成
された前記複数の折り線。3. The tubular folding structure according to claim 1 or 2, characterized by comprising the following constituent features (A08): (A08) formed on only a part of the tubular wall in the central axis direction. The plurality of fold lines.
特徴とする請求項1または2記載の筒状折り畳み構造
物、(A09)前記筒壁の中心軸を中心とする螺旋に沿っ
て形成された折り線を有する前記複数の折り線。4. The tubular folding structure according to claim 1 or 2, characterized by comprising the following constituent features (A09): (A09) along a spiral about the central axis of the tubular wall The plurality of fold lines having formed fold lines.
備えたことを特徴とする請求項1ないし4記載の筒状折
り線付構造物、(A010)前記筒壁の外方から見て2本
の山折り線と1本の谷折り線とによって形成された三角
形状の前記多角形のパーツのみを有する前記複数の多角
形のパーツ、(A011)前記2本の山折り線のうち一方
の山折り線が前記筒壁の水平面に沿って配置され、且つ
他方の山折り線が前記筒壁の母線に対して一定の角度傾
斜して配置された前記2本の山折り線。5. The cylindrical fold line structure according to claim 1, further comprising the following constituent features (A010) and (A011), and (A010) seen from the outside of the cylindrical wall. (A011) Of the two mountain fold lines, the plurality of polygonal parts having only the triangular polygonal parts formed by two mountain fold lines and one valley fold line. The two mountain fold lines in which one mountain fold line is arranged along a horizontal plane of the cylinder wall, and the other mountain fold line is arranged at a certain angle with respect to a generatrix of the cylinder wall.
を特徴とする請求項1ないし4記載の筒状折り線付構造
物、(A012)平行な一対の辺を有しない不等辺四角形
のパーツのみを有する前記複数の多角形のパーツ。6. The structure with a cylindrical fold line according to claim 1, wherein the structure (A012) has the following constituent features (A012): The plurality of polygonal parts having only parts.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001322823A JP4253145B2 (en) | 2001-10-19 | 2001-10-19 | Tubular folding structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001322823A JP4253145B2 (en) | 2001-10-19 | 2001-10-19 | Tubular folding structure |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003128041A true JP2003128041A (en) | 2003-05-08 |
JP4253145B2 JP4253145B2 (en) | 2009-04-08 |
Family
ID=19139799
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001322823A Expired - Lifetime JP4253145B2 (en) | 2001-10-19 | 2001-10-19 | Tubular folding structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4253145B2 (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006256264A (en) * | 2005-03-18 | 2006-09-28 | Shoji Tougeda | Functional craft |
JP2007168807A (en) * | 2005-12-19 | 2007-07-05 | Dainippon Printing Co Ltd | Plastic bottle container |
JP2010143631A (en) * | 2008-12-22 | 2010-07-01 | Nihon Yamamura Glass Co Ltd | Container made of synthetic resin |
JP2015030526A (en) * | 2013-08-06 | 2015-02-16 | エステー株式会社 | Volatilization body and volatilization device |
WO2018173276A1 (en) * | 2017-03-24 | 2018-09-27 | オリンパス株式会社 | Rotational mechanism for treatment instruments |
US20180319538A1 (en) * | 2017-05-03 | 2018-11-08 | Petar Kirilov Zaharinov | Combinations and multiplications of foldable modules and their modifications |
CN109397741A (en) * | 2018-12-11 | 2019-03-01 | 天津市津东华明纸箱厂 | A kind of carton adsorption forming all-in-one machine |
CN109674129A (en) * | 2019-01-22 | 2019-04-26 | 深圳市新技术研究院有限公司 | Collapsible helmet |
WO2019240188A1 (en) * | 2018-06-13 | 2019-12-19 | 株式会社資生堂 | Vertically crushable container and multi-layered container |
CN110754780A (en) * | 2018-07-26 | 2020-02-07 | 哈尔滨工业大学 | A kind of folding water cup with self-stretching function and folding method thereof |
CN111678818A (en) * | 2020-05-22 | 2020-09-18 | 京东方科技集团股份有限公司 | Flexible screen module tool of buckling |
JPWO2019240187A1 (en) * | 2018-06-13 | 2021-06-24 | 株式会社 資生堂 | Multiple containers and inner containers |
JP2021525204A (en) * | 2018-06-05 | 2021-09-24 | ディフォールド インコーポレイテッド | Crushable tangible object with multiple foldable sections that are foldable and interconnected |
CN114083829A (en) * | 2021-11-26 | 2022-02-25 | 中科天工(武汉)智能技术有限公司 | Method and device for folding edges of gummed paper material |
WO2023063308A1 (en) * | 2021-10-11 | 2023-04-20 | 国立大学法人九州大学 | Bending structure and method for designing bending structure |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6256867B2 (en) * | 2013-08-07 | 2018-01-10 | 学校法人明治大学 | Cylindrical folding structure manufacturing method, cylindrical folding structure manufacturing apparatus, and cylindrical folding structure |
-
2001
- 2001-10-19 JP JP2001322823A patent/JP4253145B2/en not_active Expired - Lifetime
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006256264A (en) * | 2005-03-18 | 2006-09-28 | Shoji Tougeda | Functional craft |
JP2007168807A (en) * | 2005-12-19 | 2007-07-05 | Dainippon Printing Co Ltd | Plastic bottle container |
JP2010143631A (en) * | 2008-12-22 | 2010-07-01 | Nihon Yamamura Glass Co Ltd | Container made of synthetic resin |
JP2015030526A (en) * | 2013-08-06 | 2015-02-16 | エステー株式会社 | Volatilization body and volatilization device |
WO2018173276A1 (en) * | 2017-03-24 | 2018-09-27 | オリンパス株式会社 | Rotational mechanism for treatment instruments |
US11814214B2 (en) * | 2017-05-03 | 2023-11-14 | Difold Inc. | Collapsible article comprising combinations and multiplications of foldable sections |
US20180319538A1 (en) * | 2017-05-03 | 2018-11-08 | Petar Kirilov Zaharinov | Combinations and multiplications of foldable modules and their modifications |
JP2021525204A (en) * | 2018-06-05 | 2021-09-24 | ディフォールド インコーポレイテッド | Crushable tangible object with multiple foldable sections that are foldable and interconnected |
WO2019240188A1 (en) * | 2018-06-13 | 2019-12-19 | 株式会社資生堂 | Vertically crushable container and multi-layered container |
JP2019214411A (en) * | 2018-06-13 | 2019-12-19 | 株式会社 資生堂 | Container of enabling perpendicular crush and multiple container |
JP7260258B2 (en) | 2018-06-13 | 2023-04-18 | 株式会社 資生堂 | Container with lid, multiple containers, and method of assembling container with lid |
CN112236368A (en) * | 2018-06-13 | 2021-01-15 | 株式会社资生堂 | Container capable of being vertically flattened and multiple container |
JPWO2019240187A1 (en) * | 2018-06-13 | 2021-06-24 | 株式会社 資生堂 | Multiple containers and inner containers |
US11840388B2 (en) | 2018-06-13 | 2023-12-12 | Shiseido Company, Ltd. | Multilayered container and inner container |
US11801965B2 (en) | 2018-06-13 | 2023-10-31 | Shiseido Company, Ltd. | Vertically-crushable container and multi-wall container |
CN110754780A (en) * | 2018-07-26 | 2020-02-07 | 哈尔滨工业大学 | A kind of folding water cup with self-stretching function and folding method thereof |
CN109397741A (en) * | 2018-12-11 | 2019-03-01 | 天津市津东华明纸箱厂 | A kind of carton adsorption forming all-in-one machine |
CN109674129B (en) * | 2019-01-22 | 2023-09-01 | 深圳市新技术研究院有限公司 | foldable helmet |
CN109674129A (en) * | 2019-01-22 | 2019-04-26 | 深圳市新技术研究院有限公司 | Collapsible helmet |
CN111678818B (en) * | 2020-05-22 | 2023-07-25 | 京东方科技集团股份有限公司 | Flexible screen module jig of buckling |
CN111678818A (en) * | 2020-05-22 | 2020-09-18 | 京东方科技集团股份有限公司 | Flexible screen module tool of buckling |
WO2023063308A1 (en) * | 2021-10-11 | 2023-04-20 | 国立大学法人九州大学 | Bending structure and method for designing bending structure |
CN114083829B (en) * | 2021-11-26 | 2023-03-10 | 中科天工(武汉)智能技术有限公司 | Method and device for folding edges of gummed paper material |
CN114083829A (en) * | 2021-11-26 | 2022-02-25 | 中科天工(武汉)智能技术有限公司 | Method and device for folding edges of gummed paper material |
Also Published As
Publication number | Publication date |
---|---|
JP4253145B2 (en) | 2009-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2003128041A (en) | Cylindrical folding structure | |
JP3824540B2 (en) | Structure with fold line, fold line forming mold, and fold line forming method | |
Turner et al. | A review of origami applications in mechanical engineering | |
US6082056A (en) | Reversibly expandable structures having polygon links | |
US7805387B2 (en) | Morphological genome for design applications | |
JP2017020620A (en) | Foldable structure | |
AU6178199A (en) | Reversibly expandable structures having polygon links | |
WO2017030103A1 (en) | Foldable structure, foldable structure manufacturing method, foldable structure manufacturing device, and program | |
Demaine et al. | A survey of folding and unfolding in computational geometry | |
US8777825B1 (en) | Methods for designing boxes and other types of containers | |
JPH11342948A (en) | Plastic bottle | |
Pillwein et al. | Generalized deployable elastic geodesic grids | |
US8381471B2 (en) | Packaging/construction material to make variable sized structures with intrinsic cushioning | |
Demaine et al. | Enumerating foldings and unfoldings between polygons and polytopes | |
US20020166294A1 (en) | Spherical and polyhedral shells with improved segmentation | |
Demaine | Folding and unfolding | |
JP5637477B2 (en) | Foldable hollow polyhedron | |
Lord | Helical structures: the geometry of protein helices and nanotubes | |
CA3129775C (en) | Collapsible article comprising a plurality of foldably interconnected foldable sections | |
Demaine et al. | Hinged dissection of polypolyhedra | |
Connelly et al. | Handbook of convex geometry | |
Gorini | The facts on file geometry handbook | |
Balkcom et al. | Folding paper shopping bags | |
O'Rourke | Unfolding orthogonal polyhedra | |
O'Rourke et al. | Reshaping Convex Polyhedra |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041015 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20061025 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20061026 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20071218 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071225 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080222 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080729 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080926 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090120 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090123 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4253145 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120130 Year of fee payment: 3 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080926 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120130 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130130 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150130 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |