JP2003120902A - Refuse incinerating generation boiler super-heater - Google Patents
Refuse incinerating generation boiler super-heaterInfo
- Publication number
- JP2003120902A JP2003120902A JP2001311277A JP2001311277A JP2003120902A JP 2003120902 A JP2003120902 A JP 2003120902A JP 2001311277 A JP2001311277 A JP 2001311277A JP 2001311277 A JP2001311277 A JP 2001311277A JP 2003120902 A JP2003120902 A JP 2003120902A
- Authority
- JP
- Japan
- Prior art keywords
- superheater
- heater
- generation boiler
- super
- titanium oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims abstract description 29
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims abstract description 29
- 230000001012 protector Effects 0.000 claims abstract description 25
- 239000000567 combustion gas Substances 0.000 claims abstract description 18
- 239000011248 coating agent Substances 0.000 claims abstract description 9
- 238000000576 coating method Methods 0.000 claims abstract description 9
- 239000000203 mixture Substances 0.000 claims abstract description 5
- 239000002002 slurry Substances 0.000 claims abstract description 5
- 238000010248 power generation Methods 0.000 claims description 27
- 239000002699 waste material Substances 0.000 claims description 11
- 238000005507 spraying Methods 0.000 claims description 5
- 230000007797 corrosion Effects 0.000 abstract description 19
- 238000005260 corrosion Methods 0.000 abstract description 19
- 239000004071 soot Substances 0.000 abstract description 8
- 239000002918 waste heat Substances 0.000 abstract description 7
- 230000001133 acceleration Effects 0.000 abstract description 3
- 238000007789 sealing Methods 0.000 abstract description 3
- 239000010407 anodic oxide Substances 0.000 abstract 1
- 238000002485 combustion reaction Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 229920006395 saturated elastomer Polymers 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 3
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 3
- 238000007751 thermal spraying Methods 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 229910000423 chromium oxide Inorganic materials 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000010285 flame spraying Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 1
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 1
- 238000007750 plasma spraying Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明はごみ焼却炉発電ボイ
ラ過熱器に関し、さらに詳しくはごみ焼却炉などに付設
された発電設備の高温高圧化(高効率化)が可能なごみ
焼却炉発電ボイラ過熱器に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a waste incinerator power generation boiler superheater, and more particularly to a waste incinerator power generation boiler superheater capable of increasing the temperature and pressure (high efficiency) of a power generation facility attached to a waste incinerator or the like. Regarding
【0002】[0002]
【従来の技術】近年、ごみ焼却炉などで発生する廃熱を
有効利用して蒸気タービンによる発電を行うため、廃熱
ボイラを設置した発電プラントが増加している。この廃
熱ボイラは、燃焼排ガスと接触して過熱蒸気を作る過熱
器管やこれを保護するプロテクタを備えているが、過熱
器管やプロテクタが燃焼排ガス中の塩化水素ガスや低融
点付着灰によって高温腐食されるのを防止するため、過
熱蒸気温度を300℃以下に制限して運転されている。
このため、廃熱ボイラによる発電効率は15%程度であ
った。2. Description of the Related Art In recent years, the number of power plants equipped with a waste heat boiler has been increasing in order to effectively utilize the waste heat generated in a refuse incinerator or the like for power generation by a steam turbine. This waste heat boiler is equipped with a superheater tube that makes superheated steam by contacting the combustion exhaust gas and a protector that protects it, but the superheater tube and the protector use the hydrogen chloride gas in the combustion exhaust gas and the low melting point ash. In order to prevent high temperature corrosion, the superheated steam temperature is limited to 300 ° C. or less for operation.
Therefore, the power generation efficiency of the waste heat boiler was about 15%.
【0003】[0003]
【発明が解決しようとする課題】しかし、最近では、過
熱蒸気温度を400〜500℃に高温高圧化することに
よって従来の約2倍程度の発電効率(25〜30%)を
得る試みがなされている。図4は、ごみ焼却炉発電ボイ
ラの概略説明図、図5は、ごみ焼却炉発電ボイラに設け
られた過熱器の配管説明図である。図4および図5にお
いて、ごみ焼却炉発電ボイラ10は、ごみ等の廃棄物を
燃焼して燃焼ガスを発生させる燃焼室2と、該燃焼室2
で発生した燃焼ガスと接触して過熱器管7内の飽和蒸気
を過熱蒸気に過熱する1次過熱器1a、2次過熱器1b
および3次過熱器1cを備えた過熱器1と、過熱器管7
に燃焼ガス中の灰が付着するのを防止するスートブロア
3と、スートブロア3の噴出蒸気の直撃を受ける過熱器
管7の部位を保護するプロテクタ8とから主として構成
される。However, recently, an attempt has been made to obtain a power generation efficiency (25 to 30%) about twice that of the conventional one by increasing the superheated steam temperature to 400 to 500 ° C. at high temperature and high pressure. There is. FIG. 4 is a schematic explanatory diagram of a refuse incinerator power generation boiler, and FIG. 5 is a piping explanatory diagram of a superheater provided in the refuse incinerator power generation boiler. 4 and 5, a refuse incinerator power generation boiler 10 includes a combustion chamber 2 that combusts waste such as dust to generate combustion gas, and a combustion chamber 2
The primary superheater 1a and the secondary superheater 1b, which contact the combustion gas generated in 1) and superheat the saturated steam in the superheater pipe 7 into superheated steam.
And a superheater 1 having a third superheater 1c, and a superheater tube 7
It is mainly composed of a soot blower 3 for preventing ash in the combustion gas from adhering to and a protector 8 for protecting a portion of the superheater pipe 7 which is directly hit by the steam ejected from the soot blower 3.
【0004】このような構成において、ごみ焼却炉発電
ボイラ10は、蒸気条件40ata×450℃で運転さ
れ、過熱器1は、燃焼ガスの入口側から3次過熱器1
c、2次過熱器1b、1次過熱器1aの順に配置され
る。燃焼室2で発生した燃焼ガスは、過熱器1と接触
し、過熱器管7内の飽和蒸気を過熱蒸気に過熱してす
る。過熱器1の入口側における燃焼ガスの温度が600
℃と高温であるため特に2次過熱器1bおよび3次過熱
器1cは激しい高温腐食環境に曝されることになる。In such a construction, the refuse incinerator power generation boiler 10 is operated under steam conditions of 40 ata × 450 ° C., and the superheater 1 is the tertiary superheater 1 from the combustion gas inlet side.
c, the secondary superheater 1b, and the primary superheater 1a are arranged in this order. The combustion gas generated in the combustion chamber 2 comes into contact with the superheater 1 and superheats the saturated steam in the superheater pipe 7 to superheated steam. The temperature of the combustion gas at the inlet side of the superheater 1 is 600
Since the temperature is as high as ℃, the secondary superheater 1b and the tertiary superheater 1c are particularly exposed to a severe high temperature corrosive environment.
【0005】過熱器管の材料としては、SUS310
(25Cr20Ni)、Alloy625(61Ni21.5
Cr9 Mo2.5 Fe3.6 (Nb+Ta))等のNi合金
が使用されているが、蒸気温度が高くなると、このよう
な材料でも年間の減肉量は1mmを超える場合があった。
またスートブロア3からの噴出蒸気の直撃を受ける部位
では、過熱器管7の減肉が加速するため、この部位には
プロテクタ8が設置されている(図5参照)。しかし、
プロテクタ8は非冷却部材であり、過熱器管7に較べて
そのメタル温度も高く、減肉速度が過熱器管7に較べよ
り大きくなる。The material of the superheater tube is SUS310.
(25Cr 20 Ni), Alloy 625 (61Ni 21.5
Ni alloys such as Cr 9 Mo 2.5 Fe 3.6 (Nb + Ta)) are used, but when the steam temperature becomes high, even such a material may have an annual wall loss of more than 1 mm.
In addition, since the wall thickness of the superheater pipe 7 is accelerated at the portion directly hit by the steam ejected from the soot blower 3, the protector 8 is installed at this portion (see FIG. 5). But,
The protector 8 is a non-cooling member, its metal temperature is higher than that of the superheater pipe 7, and the thinning rate is higher than that of the superheater pipe 7.
【0006】本発明の課題は、上記従来技術の問題点を
解決し、燃焼ガスによる高温腐食およびスートブロアか
らの噴出蒸気による減肉加速を抑制し、廃熱ボイラの高
温高圧化による発電効率の向上を図ることができるごみ
焼却炉発電ボイラ過熱器を提供することにある。An object of the present invention is to solve the above-mentioned problems of the prior art, suppress high temperature corrosion due to combustion gas and acceleration of wall thinning due to steam ejected from a soot blower, and improve power generation efficiency by increasing the temperature and pressure of a waste heat boiler. It is to provide a waste incinerator power generation boiler superheater capable of achieving the above.
【0007】[0007]
【課題を解決するための手段】本発明者は、上記課題に
鑑み、鋭意検討した結果、燃焼ガスや灰と接触する過熱
器管やプロテクタの最外層を90重量%以上のチタン酸
化物で構成し、プラズマや高速ガス溶射等により厚さ1
0〜300μmの皮膜とし、さらに該最外層にチタン酸
化物を含む有機または無機の溶液またはスラリを含浸さ
せて封孔処理を施すことにより、過熱器管やプロテクタ
の減肉速度を許容できる値以下に低減できることを見い
だし、本発明に到達したものである。上記課題を達成す
るために本願で特許請求される発明は以下の通りであ
る。As a result of intensive studies in view of the above problems, the present inventor has constituted the outermost layer of a superheater tube or protector that comes into contact with combustion gas or ash by 90% by weight or more of titanium oxide. Thickness 1 by plasma or high speed gas spraying
A film with a thickness of 0 to 300 μm is formed, and the outermost layer is impregnated with an organic or inorganic solution or slurry containing titanium oxide to carry out a sealing treatment, so that the wall thinning speed of the superheater tube or the protector is not more than an allowable value. The present invention has been achieved by discovering that it can be reduced to The invention claimed in the present application for achieving the above object is as follows.
【0008】(1)過熱器管またはこれを保護するプロ
テクタを備えたごみ焼却炉発電ボイラ過熱器において、
前記過熱器管またはプロテクタが、少なくとも組成の異
なる2層からなり、かつ燃焼ガスまたは付着灰と接触す
る最外層がチタン酸化物を90重量%以上含むことを特
徴とするごみ焼却炉発電ボイラ過熱器。
(2)前記最外層は、溶射皮膜で形成され、厚さが10
〜300μmであることを特徴とする(1)に記載のご
み焼却炉発電ボイラ過熱器。
(3)前記最外層の皮膜上および皮膜内部に、チタン酸
化物を含む溶液またはスラリを含浸させて封孔処理した
ことを特徴とする(1)または(2)に記載のごみ焼却
炉発電ボイラ過熱器。(1) In a waste incinerator power generation boiler superheater equipped with a superheater pipe or a protector for protecting the pipe,
The superheater tube or protector is composed of at least two layers having different compositions, and the outermost layer in contact with combustion gas or adhered ash contains 90% by weight or more of titanium oxide. . (2) The outermost layer is formed of a thermal spray coating and has a thickness of 10
It is-300 micrometers, The refuse incinerator electric power generation boiler superheater as described in (1) characterized by the above-mentioned. (3) The refuse incinerator power generation boiler according to (1) or (2), characterized in that a solution or a slurry containing titanium oxide is impregnated on the coating of the outermost layer and inside the coating to perform a sealing treatment. Superheater.
【0009】[0009]
【作用】本発明において、燃焼ガスや付着灰と接触する
過熱器管等の最外層をチタン酸化物で構成することによ
り、ごみ焼却炉発電ボイラ過熱器の耐高温腐食性を向上
させることができ、廃熱ボイラの高温高圧化での運転が
可能となり、高発電効率を得ることができる。この理由
は、過熱器管等の最外層を形成するチタン酸化物が、高
い塩素分圧下において他の酸化物、例えばクロム酸化
物、シリカ、モリブデン酸化物に較べて塩化物を形成し
にくく、酸化物として安定して存在しているためと考え
られる。またチタン酸化物層はメタルに較べて高い硬度
を有しており、耐食性のみならず、燃焼ガスに含まれる
灰の衝突による摩耗に対しても有効に作用する。In the present invention, the high temperature corrosion resistance of the waste incinerator power generation boiler superheater can be improved by forming the outermost layer of the superheater pipe, etc., which comes into contact with the combustion gas and the adhered ash, with titanium oxide. Further, the waste heat boiler can be operated at high temperature and high pressure, and high power generation efficiency can be obtained. The reason for this is that the titanium oxide forming the outermost layer of the superheater tube or the like is less likely to form chloride than other oxides such as chromium oxide, silica, and molybdenum oxide under high chlorine partial pressure, and thus is not oxidized. It is considered that it exists as a stable object. Further, the titanium oxide layer has a hardness higher than that of metal, and thus not only has corrosion resistance, but also effectively acts on wear due to collision of ash contained in combustion gas.
【0010】[0010]
【発明の実施の形態】以下、本発明のごみ焼却炉発電ボ
イラ過熱器を図面により説明するが、本発明はこれらに
限定されるものではない。図1は、本発明における過熱
器を構成する過熱器管の断面説明図である。また図2
は、本発明における過熱器を構成するプロテクタの断面
説明図である。図1における過熱器管7は、飽和蒸気が
流入する伝熱管6と、該伝熱管6の最外層に設けられた
チタン酸化物層5で構成され、チタン酸化物層5が燃焼
ガスと接触して伝熱管6内の飽和蒸気を過熱蒸気に過熱
する。図2におけるプロテクタ8は、飽和蒸気が流入す
る伝熱管6と、該伝熱管6の外層に設けられてフートブ
ロア3(図5参照)の噴出蒸気の直撃による減肉を軽減
するプロテクタ層4と、該プロテクタ層4の外層に設け
られたチタン酸化物層5で構成され、チタン酸化物層5
が燃焼ガスと接触して伝熱管6内の飽和蒸気を過熱蒸気
に過熱する。BEST MODE FOR CARRYING OUT THE INVENTION The refuse incinerator power generation boiler superheater of the present invention will be described below with reference to the drawings, but the present invention is not limited thereto. FIG. 1 is a cross-sectional explanatory view of a superheater tube that constitutes the superheater in the present invention. See also FIG.
[FIG. 3] is a cross-sectional explanatory view of a protector constituting the superheater in the present invention. The superheater tube 7 in FIG. 1 is composed of a heat transfer tube 6 into which saturated steam flows and a titanium oxide layer 5 provided on the outermost layer of the heat transfer tube 6, and the titanium oxide layer 5 contacts the combustion gas. And superheats the saturated steam in the heat transfer tube 6 to superheated steam. The protector 8 in FIG. 2 includes a heat transfer tube 6 into which saturated steam flows, and a protector layer 4 provided on an outer layer of the heat transfer tube 6 to reduce wall thinning due to direct hit of the steam discharged from the foot blower 3 (see FIG. 5). The titanium oxide layer 5 is provided on the outer layer of the protector layer 4, and the titanium oxide layer 5 is formed.
Contact the combustion gas to superheat the saturated steam in the heat transfer tube 6 into superheated steam.
【0011】このような最外層がチタン酸化物層で形成
されている過熱器管7やプロテクタ8を使用することに
より、例えば、蒸気条件21t/h×40ata×45
0℃のボイラにおいて、燃焼ガスによる過熱器管7の高
温腐食やスートブロアからの噴出蒸気によるプロテクタ
8の減肉加速を抑制することができ、ボイラの高温高圧
化による発電効率の向上を図ることができる。上記伝熱
管6やプロテクタ層4には、通常、炭素鋼、ステンレス
鋼18−8、SUS310、Alloy625などの材
料が用いられるが、これらの材料の線膨張率はそれぞれ
13.5×10-6、18.4×10-6および16.9×
10-6と、酸化チタンの線膨張率8.7×10-6に比べ
て大きいため、熱サイクルやスートブロアからの蒸気に
よる熱衝撃でチタン酸化物層5の剥離が生じるおそれが
ある場合には、伝熱管6やプロテクタ層4と、チタン酸
化物層5との間にチタン酸化物と、例えばAlloy6
25などのメタルとの混合物からなる層を設けてもよ
い。By using the superheater tube 7 or the protector 8 whose outermost layer is formed of a titanium oxide layer, for example, steam conditions of 21 t / h × 40 data × 45.
In a 0 ° C boiler, high temperature corrosion of the superheater pipe 7 due to combustion gas and acceleration of wall thinning of the protector 8 due to steam ejected from the soot blower can be suppressed, and power generation efficiency can be improved by increasing the temperature and pressure of the boiler. it can. Materials such as carbon steel, stainless steel 18-8, SUS310, and Alloy 625 are usually used for the heat transfer tube 6 and the protector layer 4, and the linear expansion coefficients of these materials are 13.5 × 10 −6 and 18.4 x 10 -6 and 16.9 x
And 10-6, which is larger than the coefficient of linear expansion 8.7 × 10 -6 titanium oxide, when there is a risk that peeling of titanium oxide layer 5 occurs by heat shock with steam from the heat cycle and soot blower is , Titanium oxide between the heat transfer tube 6 or the protector layer 4 and the titanium oxide layer 5, for example, Alloy 6
A layer made of a mixture with a metal such as 25 may be provided.
【0012】本発明において、最外層のチタン酸化物の
含有量は高温腐食を防止する点から90重量%以上とす
る必要がある。図3は最外層のチタン酸化物含有量と耐
腐食性の関係を示す図である。図3において、最外層の
耐腐食性は、1000ppm HCl含有ガス中500℃
で、NaCl・KCl・Na2 SO4 灰を試験片に塗布
した状態で50時間加熱し、腐食量を求め、チタン酸化
物単独(100%)の場合を1としたときの各試験片の
腐食量の相対腐食量で示し、チタン酸化物に混合するメ
タル成分としてはAlloy625を使用した。図3か
ら、腐食量はメタル成分量が10重量%を超えると大き
くなることがわかる。上記した耐剥離性や耐腐食性を考
慮すると、最外層としてはチタン酸化物にメタル成分を
10重量%未満の範囲で混合したものがより好ましい。In the present invention, the content of titanium oxide in the outermost layer must be 90% by weight or more from the viewpoint of preventing high temperature corrosion. FIG. 3 is a diagram showing the relationship between the titanium oxide content of the outermost layer and corrosion resistance. In FIG. 3, the corrosion resistance of the outermost layer is 500 ° C. in a gas containing 1000 ppm HCl.
Then, the amount of corrosion was obtained by heating the test piece with NaCl, KCl, and Na 2 SO 4 ash for 50 hours, and the corrosion amount of each titanium oxide (100%) was set to 1 The amount of relative corrosion is shown, and Alloy 625 was used as the metal component mixed with the titanium oxide. From FIG. 3, it can be seen that the amount of corrosion increases when the amount of metal component exceeds 10% by weight. Considering the above-mentioned peeling resistance and corrosion resistance, the outermost layer is more preferably a mixture of titanium oxide and a metal component in the range of less than 10% by weight.
【0013】チタン酸化物層は、プラズマ溶射、高速フ
レーム溶射、アーク溶射、ガス溶射等の溶射方法により
形成するのが好ましく、その厚さは耐剥離性、耐蝕性の
点から10〜300μm、好ましくは20〜200μm
とするのが好ましい。また、溶射によって形成された皮
膜には気孔が含まれるため、この気孔を通じて表面に付
着した灰やHClを含む燃焼ガスが浸透し、母材(伝熱
管6)が腐食され易くなる。これを防止ためには、溶射
法により最外層を形成した後に、最外層にチタン酸化物
を含む有機または無機の溶液またはスラリを含浸させて
耐食性を向上させるのが好ましい。The titanium oxide layer is preferably formed by a thermal spraying method such as plasma spraying, high speed flame spraying, arc spraying or gas spraying, and the thickness thereof is 10 to 300 μm from the viewpoint of peeling resistance and corrosion resistance, preferably. Is 20-200 μm
Is preferred. Further, since the coating film formed by thermal spraying contains pores, the combustion gas containing ash and HCl adhering to the surface penetrates through the pores, and the base material (heat transfer tube 6) is easily corroded. In order to prevent this, it is preferable that after forming the outermost layer by the thermal spraying method, the outermost layer is impregnated with an organic or inorganic solution or slurry containing titanium oxide to improve the corrosion resistance.
【0014】[0014]
【発明の効果】請求項1〜3に係る発明によれば、腐食
や摩耗の激しい環境で使用される過熱器管やプロテクタ
の耐食性および耐摩耗性を向上させることができるた
め、高温高圧化による発電効率を向上さることができ
る。According to the inventions of claims 1 to 3, it is possible to improve the corrosion resistance and wear resistance of a superheater pipe or protector used in an environment where corrosion and wear are severe. The power generation efficiency can be improved.
【図1】本発明の過熱器を構成する過熱器管の断面説明
図。FIG. 1 is an explanatory cross-sectional view of a superheater tube that constitutes the superheater of the present invention.
【図2】)本発明の過熱器に用いられるプロテクタの断
面説明図。FIG. 2) A sectional explanatory view of a protector used in the superheater of the present invention.
【図3】最外層のチタン酸化物含有量と相対腐食量の関
係を示す図。FIG. 3 is a diagram showing the relationship between the titanium oxide content of the outermost layer and the relative corrosion amount.
【図4】ごみ焼却炉発電ボイラの概略説明図。FIG. 4 is a schematic explanatory diagram of a refuse incinerator power generation boiler.
【図5】ごみ焼却炉発電ボイラ過熱器の配管説明図。FIG. 5 is an explanatory diagram of piping of a waste incinerator power generation boiler superheater.
1…過熱器、1a…1次過熱器、1b…2次過熱器、1
c…3次過熱器、2…燃焼室、3…スートブロア、4…
プロテクタ層、5…チタン酸化物層、6…伝熱管、7…
過熱器管、8…プロテクタ、10…ごみ焼却炉発電ボイ
ラ。1 ... Superheater, 1a ... Primary superheater, 1b ... Secondary superheater, 1
c ... tertiary superheater, 2 ... combustion chamber, 3 ... soot blower, 4 ...
Protector layer, 5 ... titanium oxide layer, 6 ... heat transfer tube, 7 ...
Superheater tube, 8 ... protector, 10 ... refuse incinerator power generation boiler.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F22B 37/04 F22B 37/04 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) F22B 37/04 F22B 37/04
Claims (3)
タを備えたごみ焼却炉発電ボイラ過熱器において、前記
過熱器管またはプロテクタが、少なくとも組成の異なる
2層からなり、かつ燃焼ガスまたは付着灰と接触する最
外層がチタン酸化物を90重量%以上含むことを特徴と
するごみ焼却炉発電ボイラ過熱器。1. A waste incinerator power generation boiler superheater equipped with a superheater tube or a protector for protecting the superheater tube, wherein the superheater tube or protector is composed of at least two layers having different compositions, and a combustion gas or adhering ash. A waste incinerator power generation boiler superheater characterized in that the outermost layer in contact contains 90% by weight or more of titanium oxide.
さが10〜300μmであることを特徴とする請求項1
に記載のごみ焼却炉発電ボイラ過熱器。2. The outermost layer is formed of a thermal spray coating and has a thickness of 10 to 300 μm.
Waste incinerator power generation boiler superheater described in.
チタン酸化物を含む溶液またはスラリを含浸させて封孔
処理したことを特徴とする請求項1または2に記載のご
み焼却炉発電ボイラ過熱器。3. The outermost coating on and inside the coating,
3. The refuse incinerator power generation boiler superheater according to claim 1 or 2, wherein the solution or slurry containing titanium oxide is impregnated and sealed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001311277A JP2003120902A (en) | 2001-10-09 | 2001-10-09 | Refuse incinerating generation boiler super-heater |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001311277A JP2003120902A (en) | 2001-10-09 | 2001-10-09 | Refuse incinerating generation boiler super-heater |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003120902A true JP2003120902A (en) | 2003-04-23 |
Family
ID=19130136
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001311277A Pending JP2003120902A (en) | 2001-10-09 | 2001-10-09 | Refuse incinerating generation boiler super-heater |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003120902A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006241483A (en) * | 2005-02-28 | 2006-09-14 | Central Res Inst Of Electric Power Ind | Energy generation facility |
JP2009126950A (en) * | 2007-11-22 | 2009-06-11 | Central Res Inst Of Electric Power Ind | Coal gasification facility and surface treatment method for coal gasification facility |
JP2013112836A (en) * | 2011-11-25 | 2013-06-10 | Dai Ichi High Frequency Co Ltd | Method for producing protector for metal tube |
JP2014055710A (en) * | 2012-09-12 | 2014-03-27 | Idemitsu Kosan Co Ltd | Structure with heat exchanger tube including protector |
JP2015232420A (en) * | 2014-06-10 | 2015-12-24 | 住友金属鉱山株式会社 | Waste heat boiler for nonferrous metal smelting furnace |
JP2017106720A (en) * | 2017-03-17 | 2017-06-15 | 出光興産株式会社 | Structure comprising heat exchange piping having protector |
CN113688512A (en) * | 2021-08-16 | 2021-11-23 | 广州智光节能有限公司 | Scheme comparing and selecting method and device for large flue matched waste heat boiler |
US11504738B2 (en) | 2018-03-02 | 2022-11-22 | Ihi Corporation | Coating and method for forming the same |
JP7673574B2 (en) | 2021-08-16 | 2025-05-09 | 株式会社Ihi | Method for manufacturing test specimen for evaluating protective layer |
-
2001
- 2001-10-09 JP JP2001311277A patent/JP2003120902A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006241483A (en) * | 2005-02-28 | 2006-09-14 | Central Res Inst Of Electric Power Ind | Energy generation facility |
JP2009126950A (en) * | 2007-11-22 | 2009-06-11 | Central Res Inst Of Electric Power Ind | Coal gasification facility and surface treatment method for coal gasification facility |
JP2013112836A (en) * | 2011-11-25 | 2013-06-10 | Dai Ichi High Frequency Co Ltd | Method for producing protector for metal tube |
JP2014055710A (en) * | 2012-09-12 | 2014-03-27 | Idemitsu Kosan Co Ltd | Structure with heat exchanger tube including protector |
JP2015232420A (en) * | 2014-06-10 | 2015-12-24 | 住友金属鉱山株式会社 | Waste heat boiler for nonferrous metal smelting furnace |
JP2017106720A (en) * | 2017-03-17 | 2017-06-15 | 出光興産株式会社 | Structure comprising heat exchange piping having protector |
US11504738B2 (en) | 2018-03-02 | 2022-11-22 | Ihi Corporation | Coating and method for forming the same |
CN113688512A (en) * | 2021-08-16 | 2021-11-23 | 广州智光节能有限公司 | Scheme comparing and selecting method and device for large flue matched waste heat boiler |
CN113688512B (en) * | 2021-08-16 | 2024-02-02 | 广州智光节能有限公司 | Scheme comparison method and device for waste heat boiler matched with large flue |
JP7673574B2 (en) | 2021-08-16 | 2025-05-09 | 株式会社Ihi | Method for manufacturing test specimen for evaluating protective layer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6040308B2 (en) | Heat exchanger with excellent corrosion resistance | |
Oksa et al. | Nickel-based HVOF coatings promoting high temperature corrosion resistance of biomass-fired power plant boilers | |
US7845292B2 (en) | Process for slag and corrosion control in boilers | |
JP2003120902A (en) | Refuse incinerating generation boiler super-heater | |
JP3222307B2 (en) | Alloy and multi-layer steel pipe having corrosion resistance in an environment in which a fuel containing V, Na, S, Cl is burned | |
US5190832A (en) | Alloy and composite steel tube with corrosion resistance in combustion environment where v, na, s and cl are present | |
JPH10274401A (en) | High temperature corrosion resistant heat exchange tube of waste incineration boiler / super heater | |
JPS59211546A (en) | Cobalt-based thermal spray alloy | |
JP2561567B2 (en) | Waste incinerator boiler alloy and multi-layer steel pipe | |
US5066523A (en) | Process for producing corrosion-resistant layers | |
JP2005272927A (en) | High temperature corrosion resistant material | |
US5194222A (en) | Alloy and composite steel tube with corrosion resistance in combustion environment where v, na, s and c1 are present | |
JP2000065488A (en) | Wear-resistant structure of fluidized-bed boiler heat transfer tubes | |
JPH08313192A (en) | Thermal spray coating of heat resistant material | |
Stringer | High-temperature corrosion problems in steam boilers | |
JP3032341B2 (en) | Manufacturing method of wear-resistant heat transfer tube | |
JP2005146409A (en) | Adhesion-preventing method | |
JP2005146409A5 (en) | ||
JP2006265580A (en) | High corrosion resistance heat-resisting alloy | |
KR100601184B1 (en) | Protective film treatment method of desulfurization equipment | |
JPH08134571A (en) | Corrosion resistant heat resistant alloy for garbage incineration facility | |
Kalsi et al. | Hot corrosion in bio medical waste incinerator and cold spray coatings-A review | |
JPH0755387A (en) | Heat exchanger heat transfer tubes | |
JP7016283B2 (en) | High temperature corrosion resistant heat resistant alloy, welding powder and piping with overlay welding layer on the outer peripheral surface | |
JPH07146092A (en) | Method for manufacturing heat transfer tube for heat exchanger |