JP2003120255A - Exhaust gas purification honeycomb structure - Google Patents
Exhaust gas purification honeycomb structureInfo
- Publication number
- JP2003120255A JP2003120255A JP2001319697A JP2001319697A JP2003120255A JP 2003120255 A JP2003120255 A JP 2003120255A JP 2001319697 A JP2001319697 A JP 2001319697A JP 2001319697 A JP2001319697 A JP 2001319697A JP 2003120255 A JP2003120255 A JP 2003120255A
- Authority
- JP
- Japan
- Prior art keywords
- exhaust gas
- honeycomb structure
- honeycomb
- porosity
- porous
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000746 purification Methods 0.000 title description 4
- 239000011148 porous material Substances 0.000 claims abstract description 20
- 239000013618 particulate matter Substances 0.000 claims abstract description 7
- 239000003054 catalyst Substances 0.000 claims description 22
- 229910000510 noble metal Inorganic materials 0.000 claims description 9
- 241000264877 Hippospongia communis Species 0.000 description 79
- 210000004027 cell Anatomy 0.000 description 32
- 239000010410 layer Substances 0.000 description 18
- 238000011144 upstream manufacturing Methods 0.000 description 15
- 229910052751 metal Inorganic materials 0.000 description 14
- 239000002184 metal Substances 0.000 description 14
- 230000002093 peripheral effect Effects 0.000 description 13
- 238000005192 partition Methods 0.000 description 11
- 239000000843 powder Substances 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 8
- 239000000758 substrate Substances 0.000 description 8
- 239000011888 foil Substances 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 229910001220 stainless steel Inorganic materials 0.000 description 7
- 239000010935 stainless steel Substances 0.000 description 7
- 239000000919 ceramic Substances 0.000 description 6
- 239000002585 base Substances 0.000 description 5
- 238000005219 brazing Methods 0.000 description 5
- 229910052878 cordierite Inorganic materials 0.000 description 5
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 229910002091 carbon monoxide Inorganic materials 0.000 description 3
- 239000010970 precious metal Substances 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 210000002421 cell wall Anatomy 0.000 description 2
- 239000011247 coating layer Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000004745 nonwoven fabric Substances 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 102100029777 Eukaryotic translation initiation factor 3 subunit M Human genes 0.000 description 1
- 101001012700 Homo sapiens Eukaryotic translation initiation factor 3 subunit M Proteins 0.000 description 1
- 101100293260 Homo sapiens NAA15 gene Proteins 0.000 description 1
- 102100026781 N-alpha-acetyltransferase 15, NatA auxiliary subunit Human genes 0.000 description 1
- 101100121112 Oryza sativa subsp. indica 20ox2 gene Proteins 0.000 description 1
- 101100121113 Oryza sativa subsp. japonica GA20OX2 gene Proteins 0.000 description 1
- MCMNRKCIXSYSNV-UHFFFAOYSA-N ZrO2 Inorganic materials O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 1
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 239000011232 storage material Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Exhaust Gas After Treatment (AREA)
- Processes For Solid Components From Exhaust (AREA)
- Filtering Materials (AREA)
Abstract
(57)【要約】
【課題】圧損の低いフロースルー型であっても、排ガス
中の粒子状物質(PM)を捕集できるようにする。
【解決手段】ハニカムセルの内壁の少なくとも一部に、
孔径が 500μm以下、気孔率が55〜95%の超多孔質部を
形成した。排ガスがハニカムセル内を通過する際に、排
ガス流れと並行する極めて高い気孔率の超多孔質部16が
PMを捕集する作用をもつと考えられ、PMを30〜50%
という高い捕集率で捕集することができる。そしてフロ
ースルー型であるので、PMが超多孔質部に堆積したと
しても圧損の増大はほとんど無い。
[PROBLEMS] To enable particulate matter (PM) in exhaust gas to be collected even in a flow-through type with low pressure loss. SOLUTION: At least a part of the inner wall of the honeycomb cell is provided.
A superporous portion having a pore size of 500 μm or less and a porosity of 55 to 95% was formed. When the exhaust gas passes through the honeycomb cell, the super-porous portion 16 having an extremely high porosity, which is parallel to the flow of the exhaust gas, is considered to have an action of trapping PM.
Can be collected at a high collection rate. And since it is a flow-through type, even if PM accumulates on a super porous part, there is almost no increase in pressure loss.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、ディーゼルエンジ
ンなどから排出される排ガス中の粒子状物質(以下PM
という)を捕集できるフロースルー型の排ガス浄化ハニ
カム構造体に関する。TECHNICAL FIELD The present invention relates to particulate matter (hereinafter referred to as PM) in exhaust gas discharged from a diesel engine or the like.
The present invention relates to a flow-through type exhaust gas purifying honeycomb structure capable of collecting the above).
【0002】[0002]
【従来の技術】ディーゼルエンジンの排ガス中には、カ
ーボン、 SOF(Soluble Organic Fraction)、高分子有
機化合物、硫酸ミストなどからなるPMが含まれ、大気
汚染及び人体への悪影響の面からPMの排出を抑制しよ
うとする動きが高まっている。PMの排出を抑制するに
は、フィルタによってPMを捕集する方法と、フロース
ルー型の触媒を用いてPMを燃焼除去する方法の2種類
があり、それぞれのあるいは両方を組み合わせた技術開
発が進められている。2. Description of the Related Art The exhaust gas of a diesel engine contains PMs such as carbon, SOF (Soluble Organic Fraction), high molecular weight organic compounds, and sulfuric acid mist, which are emitted from the viewpoint of air pollution and adverse effects on the human body. There is a growing movement to curb this. There are two methods to suppress the emission of PM: a method of collecting PM by a filter and a method of burning and removing PM by using a flow-through type catalyst, and technological development of each or a combination of both is in progress. Has been.
【0003】フィルタとしては、ハニカム形状の耐熱性
基材あるいはメタルハニカム体の両端開口を互い違いに
市松状に閉塞したものが用いられている。このフィルタ
では、セル隔壁を多孔質として通気性を付与し、セル隔
壁を排ガスが通過する際にPMを濾過して捕集する。そ
して捕集されたPMは、排ガスの熱によってあるいは外
部から加熱することによって燃焼され、これによってフ
ィルタを再生している。As the filter, a honeycomb-shaped heat-resistant base material or a metal honeycomb body in which openings at both ends are alternately closed in a checkered pattern is used. In this filter, the cell partition walls are made porous to provide air permeability, and when exhaust gas passes through the cell partition walls, PM is filtered and collected. Then, the collected PM is burned by the heat of the exhaust gas or by being heated from the outside, thereby regenerating the filter.
【0004】例えば特開平9-262415号公報には、金属質
多孔体製平板と金属製波板を重ねてロール巻きし、入口
開口と出口開口を互い違いに目止めしてなるフィルタが
開示されている。このように熱電導性の高い金属製のフ
ィルタとすることで、捕集されたPMの燃焼を均一に効
率よく行うことができ、フィルタの溶損やクラックの発
生を防止できる。また触媒コンバータと一体化できるの
で、振動などに対する強度が向上するという利点もあ
る。For example, Japanese Unexamined Patent Publication (Kokai) No. 9-262415 discloses a filter in which a flat plate made of a porous metal material and a corrugated metal plate are overlapped and rolled, and the inlet openings and the outlet openings are alternately stopped. There is. By using a metal filter having high heat conductivity in this way, the collected PM can be uniformly and efficiently burned, and the filter can be prevented from melting and cracking. Further, since it can be integrated with the catalytic converter, there is an advantage that the strength against vibration and the like is improved.
【0005】またフロースルー型の触媒はPMを濾し取
る構造になっておらず、PMの粒径に対して十分大きい
直径0.05mm、好ましくは 0.2mm以上の連通口を有し、貴
金属を担持したアルミナなどからなる触媒コート層が連
通路に形成されている。このフロースルー型の触媒は、
ペレット状、フォーム状、ハニカム状など種々の形状と
されている。Further, the flow-through type catalyst does not have a structure for filtering out PM, has a communication hole with a diameter of 0.05 mm, preferably 0.2 mm or more, which is sufficiently larger than the particle size of PM, and carries a noble metal. A catalyst coat layer made of alumina or the like is formed in the communication passage. This flow-through type catalyst is
It has various shapes such as pellets, foams, and honeycombs.
【0006】そしてセル隔壁に貴金属を担持したフィル
タも開発されている。このような触媒付フィルタによれ
ば、捕集されたPMをより低温から燃焼させることがで
き、再生効率が高まる。また触媒によってPM以外のH
C,COあるいはNOx を浄化することもできる。A filter in which a noble metal is supported on the cell partition has also been developed. According to such a filter with a catalyst, the collected PM can be burned from a lower temperature, and the regeneration efficiency is increased. In addition, H
It can also purify C, CO or NO x .
【0007】[0007]
【発明が解決しようとする課題】ところが従来のフィル
タでは、セル隔壁でPMを濾過する構造であるために、
セル隔壁の細孔径を小さくしないとPMを捕集すること
ができない。しかしセル隔壁の細孔径を小さくすると、
圧損が増大するという不具合がある。またPMが堆積す
ると圧損がさらに増大してしまう。そこで圧損の増大を
防止しつつPMを捕集するには、セル隔壁の面積を大き
くすることが考えられるが、そうするとフィルタのサイ
ズが大きくなり自動車の排気系への装着が困難となるこ
ともある。However, since the conventional filter has a structure in which PM is filtered by the cell partition walls,
The PM cannot be collected unless the pore size of the cell partition wall is reduced. However, if the pore size of the cell partition wall is reduced,
There is a problem that the pressure loss increases. Moreover, if PM accumulates, the pressure loss will further increase. Therefore, in order to collect PM while preventing an increase in pressure loss, it is conceivable to increase the area of the cell partition wall, but if this is done, the size of the filter becomes large and it may be difficult to mount it on the exhaust system of the automobile. .
【0008】また貴金属を担持したフィルタにあって
は、フィルタのサイズが大きくなると触媒効率が低下
し、それを防ぐためには貴金属の担持量を多くしなけれ
ばならずコストが高くなるという問題がある。Further, in the case of a filter carrying a noble metal, there is a problem that the catalyst efficiency decreases as the size of the filter increases, and in order to prevent this, the amount of the noble metal carried must be increased, resulting in an increase in cost. .
【0009】一方、従来のフロースルー型の触媒では、
圧損の増大という問題は生じないもののPMを捕集する
ことが困難であり、フロースルー型の触媒を用いる場合
には、PMを濾過するための手段が別に必要となるとい
う問題がある。On the other hand, in the conventional flow-through type catalyst,
Although the problem of increase in pressure loss does not occur, it is difficult to collect PM, and when a flow-through type catalyst is used, there is a problem that a means for filtering PM is additionally required.
【0010】本発明はこのような事情に鑑みてなされた
ものであり、フロースルー型であってもPMを捕集でき
るようにすることを目的とする。The present invention has been made in view of the above circumstances, and an object thereof is to make it possible to collect PM even in a flow-through type.
【0011】[0011]
【課題を解決するための手段】上記課題を解決する本発
明の排ガス浄化ハニカム構造体の特徴は、排ガスの入口
と出口を連通する複数のハニカムセル内を排ガスが流通
するフロースルー型のハニカム構造体であって、ハニカ
ムセルの内壁の少なくとも一部には孔径が 500μm以
下、気孔率が55〜95%の超多孔質部が形成され、超多孔
質部で排ガス中の粒子状物質を捕集することにある。The exhaust gas purifying honeycomb structure of the present invention which solves the above-mentioned problems is characterized by a flow-through type honeycomb structure in which exhaust gas flows through a plurality of honeycomb cells communicating the exhaust gas inlet and outlet. It is a body, and at least a part of the inner wall of the honeycomb cell is formed with an ultra-porous portion having a pore size of 500 μm or less and a porosity of 55 to 95%, and the particulate matter in the exhaust gas is collected in the ultra-porous portion. To do.
【0012】上記排ガス浄化ハニカム構造体では、ハニ
カムセルの内壁には、多孔質酸化物に貴金属を担持して
なる触媒層が形成されていることが望ましい。In the above exhaust gas purifying honeycomb structure, it is desirable that a catalyst layer in which a precious metal is supported on a porous oxide is formed on the inner wall of the honeycomb cell.
【0013】[0013]
【発明の実施の形態】本発明の排ガス浄化ハニカム構造
体は、ハニカムセルの内壁の少なくとも一部には孔径が
500μm以下、気孔率が55〜95%の超多孔質部が形成さ
れている。現象の詳細はまだ不明であるが、排ガスがハ
ニカムセル内を通過する際に、排ガス流れと並行する極
めて高い気孔率の超多孔質部がPMを捕集する作用をも
つと考えられ、PMを30〜50%という高い捕集率で捕集
することができる。そしてフロースルー型であるので、
排ガスの流通抵抗はきわめて小さく、PMが超多孔質部
に堆積したとしても圧損の増大はほとんど無い。BEST MODE FOR CARRYING OUT THE INVENTION The exhaust gas-purifying honeycomb structure of the present invention has a hole diameter of at least a part of the inner wall of the honeycomb cell.
An ultra-porous portion having a porosity of 55 to 95% and a thickness of 500 μm or less is formed. Although the details of the phenomenon are still unknown, it is considered that when the exhaust gas passes through the honeycomb cell, the ultra-porous portion having an extremely high porosity parallel to the exhaust gas flow has a function of trapping PM. It can be collected at a high collection rate of 30 to 50%. And because it is a flow-through type,
The flow resistance of the exhaust gas is extremely small, and even if PM is deposited on the superporous portion, there is almost no increase in pressure loss.
【0014】超多孔質部の孔径が 500μmより大きくな
ると細孔に捕集されたPMが容易に離脱して排出されて
しまうため、孔径は 500μm以下とすることが必要であ
る。孔径の下限は特に制限されないが、PMの最小粒径
以上とすることが好ましい。また気孔率が55%未満では
PMの捕集が困難となり、95%を超えると超多孔質部の
強度が不足して使用中に破損などの不具合が生じる。If the pore size of the super-porous portion is larger than 500 μm, the PM trapped in the pores is easily separated and discharged, so the pore size must be 500 μm or less. The lower limit of the pore size is not particularly limited, but it is preferable that it is not less than the minimum particle size of PM. Further, if the porosity is less than 55%, it becomes difficult to collect PM, and if it exceeds 95%, the strength of the super-porous portion is insufficient and problems such as breakage occur during use.
【0015】超多孔質部は、ハニカムセルの内壁の少な
くとも一部に形成されている。例えばハニカムセルの内
壁の表面に形成されていてもよいし、セル隔壁の厚さ方
向の全体を超多孔質部とすることもできる。超多孔質部
を内壁の表面に形成すれば、セル隔壁自体は気孔率を低
く緻密に形成できるので、ハニカム構造体の強度が向上
する。またセル壁厚を薄くしても十分な強度を有するよ
うになるため、セル密度を高くすることができ排ガスと
の接触面積が増大するため浄化能が向上する。そして超
多孔質部を排ガス流れの下流部の内壁表面に形成すれ
ば、下流部は熱衝撃が低いため、高熱膨張で結合強度が
高い炭化珪素などの材料を使用することができ、より高
気孔率化できるためPM捕集率がさらに向上する。The super porous portion is formed on at least a part of the inner wall of the honeycomb cell. For example, it may be formed on the surface of the inner wall of the honeycomb cell, or the entire cell partition wall in the thickness direction may be a superporous portion. If the super-porous portion is formed on the surface of the inner wall, the cell partition walls themselves can be formed densely with a low porosity, and therefore the strength of the honeycomb structure is improved. Further, even if the cell wall thickness is thinned, the cell has sufficient strength, so that the cell density can be increased and the contact area with the exhaust gas is increased, so that the purification performance is improved. If the ultra-porous portion is formed on the inner wall surface of the downstream portion of the exhaust gas flow, the thermal shock at the downstream portion is low, so that a material such as silicon carbide having high thermal expansion and high bond strength can be used, and the higher porosity is achieved. Since it can be ratioized, the PM collection rate is further improved.
【0016】またハニカム構造体の排ガス流れ方向にお
ける超多孔質部の位置は、上流側、中央部、下流部ある
いはこれらの組合せから自由に選択することができ、排
ガス流れ方向と垂直方向の位置は、中心部、外周部ある
いは全体から自由に選択することができる。The position of the super-porous portion in the exhaust gas flow direction of the honeycomb structure can be freely selected from the upstream side, the central part, the downstream part or a combination thereof, and the position in the direction perpendicular to the exhaust gas flow direction can be selected. , The central part, the outer peripheral part or the whole can be freely selected.
【0017】超多孔質部を排ガス流れ方向の上流部に形
成した場合には、上流部でPMが捕集される。したがっ
てハニカムセルの内壁に触媒層をもつ場合には、下流部
において貴金属にPMが付着するのが抑制されるため、
触媒層の活性低下を抑制することができる。また超多孔
質部を排ガス流れ方向の下流部に形成した場合には、上
流部の触媒層による低温始動時の性能悪化を抑制するこ
とができる。そして超多孔質部を排ガス流れ方向の中央
部に形成した場合には、PM燃焼時の熱歪みが緩和され
るため構造の信頼性が向上する。When the ultra-porous portion is formed upstream in the exhaust gas flow direction, PM is collected in the upstream portion. Therefore, when the inner wall of the honeycomb cell has a catalyst layer, PM is prevented from adhering to the noble metal in the downstream portion,
It is possible to suppress a decrease in activity of the catalyst layer. Further, when the super-porous portion is formed in the downstream portion in the exhaust gas flow direction, it is possible to suppress the deterioration of performance at the time of low temperature starting due to the catalyst layer in the upstream portion. When the super-porous portion is formed in the central portion in the exhaust gas flow direction, thermal strain at the time of PM combustion is relaxed, so that the reliability of the structure is improved.
【0018】さらに超多孔質部を外周部に形成した場合
には、HC,CO,NOx の浄化性能が向上し、内周部に形成
した場合には、捕集したPMが燃焼し易いという効果が
得られる。Further, when the super-porous portion is formed on the outer peripheral portion, the purification performance of HC, CO and NO x is improved, and when it is formed on the inner peripheral portion, the collected PM is easily burned. The effect is obtained.
【0019】ハニカム構造体としては、コージェライト
などの耐熱性セラミックから形成されたもの、あるいは
金属製の波板と平板を重ねてロール状に巻回したものな
どを用いることができる。As the honeycomb structure, it is possible to use one formed of a heat-resistant ceramic such as cordierite, or one in which a metal corrugated plate and a flat plate are stacked and wound in a roll shape.
【0020】そして耐熱性セラミックから形成されたハ
ニカム構造体に超多孔質部を形成するには、アルミナな
どのセラミック粉末にカーボン粉末などの焼失性粉末を
混合した混合粉末からウェットコート法などによりコー
ト層を形成し、それを焼成することで超多孔質部を形成
することができる。この場合は、焼失性粉末の粒径及び
混合量を調整することで、超多孔質部の孔径と気孔率を
制御すればよい。あるいはセラミックファイバーを用い
て超多孔質部を形成してもよい。Then, in order to form the super-porous portion in the honeycomb structure formed of the heat resistant ceramic, a mixed powder obtained by mixing a ceramic powder such as alumina with a burnable powder such as carbon powder is coated by a wet coating method or the like. The superporous portion can be formed by forming a layer and firing it. In this case, the pore size and porosity of the super-porous portion may be controlled by adjusting the particle size and mixing amount of the burnable powder. Alternatively, the ultra-porous portion may be formed by using ceramic fibers.
【0021】また超多孔質部の材質としては、アルミナ
の他にセリア、シリカ、イットリア、コージェライトな
どを用いることができる。コート層の厚さは特に制限さ
れないが、10〜 300μmの範囲とするのが好ましい。こ
れ以上厚くすると圧損が増大したり、使用時に剥離する
場合がある。なおセラミック製のハニカム構造体自体の
少なくとも一部を超多孔質とすることも場合によっては
可能であるが、その超多孔質部で強度が不足するため自
動車排ガス用としては好ましくない。As the material of the super-porous portion, ceria, silica, yttria, cordierite, etc. can be used in addition to alumina. The thickness of the coat layer is not particularly limited, but it is preferably in the range of 10 to 300 μm. If it is made thicker than this, pressure loss may increase or peeling may occur during use. Although it is possible in some cases to make at least a part of the ceramic honeycomb structure itself super-porous, it is not preferable for automobile exhaust gas because the super-porous portion lacks strength.
【0022】また金属製のハニカム構造体の場合には、
平板及び波板の少なくとも一方の少なくとも一部に多孔
質金属板を用いることで、超多孔質部を形成することが
できる。また平板及び波板全てを超多孔質部とすること
もできる。平板を超多孔質部とすれば低圧損とすること
ができ、波板を超多孔質部とすればPM捕集率が向上す
る。In the case of a metallic honeycomb structure,
The super-porous portion can be formed by using the porous metal plate for at least a part of at least one of the flat plate and the corrugated plate. Alternatively, the flat plate and the corrugated plate may all be used as the superporous portion. If the flat plate is the super-porous portion, a low pressure loss can be achieved, and if the corrugated plate is the super-porous portion, the PM collection rate is improved.
【0023】多孔質金属板としてはメタル不織布、パン
チングメタルなどを利用することができ、その孔径と気
孔率が上記範囲となるようにすればよい。あるいは平板
及び波板の少なくとも一方の少なくとも一部表面に、上
記したセラミック製の超多孔質部をコートすることもで
きる。As the porous metal plate, a metal non-woven fabric, punching metal or the like can be used, and its pore diameter and porosity may be set within the above ranges. Alternatively, at least a part of the surface of at least one of the flat plate and the corrugated plate can be coated with the above-mentioned ceramic superporous portion.
【0024】本発明のハニカム構造体の使用時には、超
多孔質部にPMが堆積するため定期的に堆積したPM燃
焼除去してPM捕集能を回復させる必要がある。これは
高温の排ガスを供給する方法、あるいは外部ヒータなど
で加熱する方法など、従来のフィルタと同様に行うこと
ができる。触媒層をもたない場合には、 600〜 650℃で
PMを燃焼除去してPM捕集能を回復することができ
る。When the honeycomb structure of the present invention is used, since PM is deposited on the super-porous portion, it is necessary to periodically remove and burn the deposited PM to recover the PM trapping ability. This can be performed in the same manner as a conventional filter, such as a method of supplying high-temperature exhaust gas or a method of heating with an external heater or the like. In the case where the catalyst layer is not provided, PM can be burned and removed at 600 to 650 ° C to recover the PM trapping ability.
【0025】さらに本発明の排ガス浄化ハニカム構造体
では、ハニカムセルの内壁には、多孔質酸化物に貴金属
を担持してなる触媒層が形成されていることが望まし
い。これにより排ガス中のHC,CO及びNOx を浄化するこ
とができ、排ガス浄化用触媒としても利用することがで
きる。Further, in the exhaust gas purifying honeycomb structure of the present invention, it is desirable that a catalyst layer in which a precious metal is supported on a porous oxide is formed on the inner wall of the honeycomb cell. As a result, HC, CO and NO x in the exhaust gas can be purified, and the exhaust gas can also be used as an exhaust gas purification catalyst.
【0026】また触媒層は、少なくとも超多孔質部に形
成されていることが望ましい。このような触媒層をもて
ば、捕集されたPMを 200〜 300℃の低温域から速やか
に燃焼除去することができ、PM捕集能を連続的に回復
させることができる。Further, it is desirable that the catalyst layer is formed at least in the superporous portion. With such a catalyst layer, the trapped PM can be promptly burned and removed from a low temperature range of 200 to 300 ° C., and the PM trapping ability can be continuously restored.
【0027】この触媒層は、担体粉末に貴金属を担持し
てなる触媒粉末をハニカムセルの内壁にコートして形成
することができる。また超多孔質部がアルミナなどの担
体から形成されていれば、超多孔質部に貴金属を直接担
持することも可能である。The catalyst layer can be formed by coating the inner wall of the honeycomb cell with a catalyst powder in which a carrier powder carries a noble metal. If the superporous portion is formed of a carrier such as alumina, it is possible to directly support the noble metal on the superporous portion.
【0028】担体粉末としては Al2O3,SiO2,TiO2,Ce
O2,ZrO2などを用いることができ、貴金属にはPt,Pd,
Rh,Irなどを用いることができる。中でも特に活性が高
いPtが好ましい。また触媒層を形成するには、担体粉末
に予め貴金属を担持した触媒粉末をハニカム構造体にコ
ートしてもよいし、先ず担体粉末からコート層を形成し
それに貴金属を担持することもできる。またアルカリ金
属,アルカリ土類金属あるいは希土類元素から選ばれる
NOx 吸蔵材をさらに担持すれば、排ガス中のNO x も効率
よく浄化することができる。Al as the carrier powder2O3, SiO2, TiO2, Ce
O2, ZrO2Etc. can be used, and Pt, Pd,
Rh, Ir, etc. can be used. Especially high activity
Pt is preferred. Also, to form the catalyst layer, the carrier powder
The catalyst powder supporting the precious metal on the
Or you can first coat the carrier powder to form a coat layer.
It can also carry a noble metal. Also alkali gold
Selected from genus, alkaline earth metals or rare earth elements
NOx If the storage material is further supported, NO in the exhaust gas x Is also efficient
Can be purified well.
【0029】[0029]
【実施例】以下、実施例及び比較例により本発明を具体
的に説明する。EXAMPLES The present invention will be specifically described below with reference to Examples and Comparative Examples.
【0030】(実施例1)図1に本実施例のハニカム構
造体の要部断面図を示す。このハニカム構造体は厚さ 2
50μmのステンレス製不織布からなる平板1と、平板1
から波形状に形成された波板2を重ねて、直径 103mm、
長さ 155mmのロール状に巻回されてなり、平板1及び波
板2はロウ付け接合されている。平板1と波板2とで形
成されたセルの密度は 400/in2 である。また平板1及
び波板2は共に気孔径が 100μm以下、気孔率が65%で
あり、ハニカム構造体の全体が本発明にいう超多孔質部
となっている。(Embodiment 1) FIG. 1 is a sectional view showing the main part of a honeycomb structure of this embodiment. This honeycomb structure has a thickness of 2
Flat plate 1 made of stainless non-woven fabric of 50 μm, and flat plate 1
The corrugated sheets 2 formed in the shape of
It is wound in a roll shape having a length of 155 mm, and the flat plate 1 and the corrugated plate 2 are brazed and joined. The density of the cell formed by the flat plate 1 and the corrugated plate 2 is 400 / in 2 . Further, both the flat plate 1 and the corrugated plate 2 have a pore diameter of 100 μm or less and a porosity of 65%, and the whole honeycomb structure is the superporous portion referred to in the present invention.
【0031】(実施例2)図2に本実施例のハニカム構
造体の斜視図を示す。このハニカム構造体は、気孔率が
異なること以外は実施例1と同様の平板1及び波板2か
ら同様に形成された上流部3と、厚さ50μmのステンレ
ス製金属箔からなる平板と波板を重ねてロール状に巻回
されてなる下流部4とから構成されている。(Embodiment 2) FIG. 2 shows a perspective view of a honeycomb structure of the present embodiment. This honeycomb structure has an upstream portion 3 similarly formed from a flat plate 1 and a corrugated plate 2 similar to those of Example 1 except that the porosity is different, and a flat plate and a corrugated plate made of a stainless steel metal foil having a thickness of 50 μm. And a downstream portion 4 which is formed by overlapping and winding in a roll shape.
【0032】上流部3は直径 103mm、長さ80mm、下流部
4は直径 103mm、長さ75mmに形成され、ロウ付けによっ
て互いに接合されている。上流部3及び下流部4は、共
にセルの密度は 400/in2 である。また上流部3の平板
及び波板は共に気孔径が 100μm以下、気孔率が85%で
あり、上流部3が本発明にいう超多孔質部となってい
る。The upstream portion 3 is formed to have a diameter of 103 mm and a length of 80 mm, and the downstream portion 4 is formed to have a diameter of 103 mm and a length of 75 mm, which are joined together by brazing. The cell density of both the upstream portion 3 and the downstream portion 4 is 400 / in 2 . Both the flat plate and the corrugated plate of the upstream portion 3 have a pore diameter of 100 μm or less and a porosity of 85%, and the upstream portion 3 is a super-porous portion according to the present invention.
【0033】(実施例3)図3に本実施例のハニカム構
造体の斜視図を示す。このハニカム構造体は、厚さ50μ
mのステンレス製金属箔からなる平板と波板を重ねてロ
ール状に巻回されてなる上流部5と、気孔率が異なるこ
と以外は実施例1と同様の平板1及び波板2から同様に
形成された下流部6とから構成されている。(Embodiment 3) FIG. 3 is a perspective view of a honeycomb structure of this embodiment. This honeycomb structure has a thickness of 50μ
In the same manner as in the flat plate 1 and the corrugated plate 2 of Example 1, except that the flat plate and the corrugated plate made of a stainless steel metal foil of m are wound and rolled in a roll shape, and the porosity is different. It is composed of the formed downstream portion 6.
【0034】上流部5は直径 103mm、長さ 100mm、下流
部6は直径 103mm、長さ55mmに形成され、ロウ付けによ
って互いに接合されている。上流部5及び下流部6は、
共にセルの密度は 400/in2 である。また下流部6の平
板及び波板は共に気孔径が 100μm以下、気孔率が85%
であり、下流部6が本発明にいう超多孔質部となってい
る。The upstream portion 5 is formed to have a diameter of 103 mm and a length of 100 mm, and the downstream portion 6 is formed to have a diameter of 103 mm and a length of 55 mm, which are joined to each other by brazing. The upstream part 5 and the downstream part 6 are
Both have a cell density of 400 / in 2 . Both the flat plate and the corrugated plate in the downstream portion 6 have a pore diameter of 100 μm or less and a porosity of 85%.
And the downstream portion 6 is the super-porous portion according to the present invention.
【0035】(実施例4)図4に本実施例のハニカム構
造体の斜視図を示す。このハニカム構造体は、厚さ50μ
mのステンレス製金属箔からなる平板と波板を重ねてロ
ール状に巻回されてなる上流部7と、気孔率が異なるこ
と以外は実施例1と同様の平板1及び波板2から同様に
形成された中央部8と、上流部7と同様に形成された下
流部9から構成されている。(Embodiment 4) FIG. 4 shows a perspective view of a honeycomb structure of the present embodiment. This honeycomb structure has a thickness of 50μ
In the same manner as in the flat plate 1 and the corrugated plate 2 of Example 1, except that the flat plate and the corrugated plate made of a stainless steel metal foil of m are stacked and wound in a roll shape, and the porosity is different. It is composed of a central portion 8 formed and a downstream portion 9 formed similarly to the upstream portion 7.
【0036】上流部7は直径 103mm、長さ50mm、中央部
8は直径 103mm、長さ55mm、下流部9は直径 103mm、長
さ50mmに形成され、ロウ付けによって互いに接合されて
いる。上流部7、中央部8及び下流部9は、共にセルの
密度は 400/in2 である。また中央部8の平板及び波板
は共に気孔径が 100μm以下、気孔率が90%であり、中
央部8が本発明にいう超多孔質部となっている。The upstream portion 7 has a diameter of 103 mm and a length of 50 mm, the central portion 8 has a diameter of 103 mm and a length of 55 mm, and the downstream portion 9 has a diameter of 103 mm and a length of 50 mm, which are joined to each other by brazing. The upstream portion 7, the central portion 8 and the downstream portion 9 all have a cell density of 400 / in 2 . Both the flat plate and the corrugated plate of the central portion 8 have a pore diameter of 100 μm or less and a porosity of 90%, and the central portion 8 is the super-porous portion according to the present invention.
【0037】(実施例5)図5に本実施例のハニカム構
造体の概略断面図を示す。このハニカム構造体は、厚さ
50μmのステンレス製金属箔からなる平板と波板を重ね
てロール状に巻回されてなる中心部10と、中心部10の外
周に巻回され、気孔率が異なること以外は実施例1と同
様の平板1及び波板2から同様に形成された外周部11と
から構成されている。(Embodiment 5) FIG. 5 shows a schematic sectional view of a honeycomb structure of the present embodiment. This honeycomb structure has a thickness
Same as Example 1 except that a central portion 10 formed by stacking a flat plate and a corrugated sheet made of a stainless steel foil of 50 μm and wound in a roll shape, and the outer periphery of the central portion 10 and having different porosities The outer peripheral portion 11 is similarly formed from the flat plate 1 and the corrugated plate 2.
【0038】中心部10は直径40mm、長さ 155mm、外周部
11は外径 103mm、長さ 155mmに形成され、ロウ付けによ
って互いに接合されている。中心部10及び外周部11は、
共にセルの密度が 400/in2 である。また外周部11の平
板及び波板は共に気孔径が 100μm以下、気孔率が75%
であり、外周部11が本発明にいう超多孔質部となってい
る。The central portion 10 has a diameter of 40 mm, a length of 155 mm, and an outer peripheral portion.
The 11 is formed with an outer diameter of 103 mm and a length of 155 mm and is joined to each other by brazing. The central portion 10 and the outer peripheral portion 11 are
Both have a cell density of 400 / in 2 . Both the flat plate and the corrugated plate of the outer peripheral portion 11 have a pore diameter of 100 μm or less and a porosity of 75%.
The outer peripheral portion 11 is the super-porous portion according to the present invention.
【0039】(実施例6)図6に本実施例のハニカム構
造体の概略断面図を示す。このハニカム構造体は、気孔
率が異なること以外は実施例1と同様の平板1及び波板
2から同様に形成された中心部12と、中心部12の外周に
巻回され、厚さ50μmのステンレス製金属箔からなる平
板と波板を重ねてロール状に巻回されてなる外周部13と
から構成されている。(Embodiment 6) FIG. 6 shows a schematic sectional view of a honeycomb structure of the present embodiment. This honeycomb structure has a center portion 12 formed in the same manner as the flat plate 1 and the corrugated plate 2 as in Example 1 except that the porosity is different, and is wound around the outer periphery of the center portion 12 and has a thickness of 50 μm. It is composed of a flat plate made of stainless steel metal foil and an outer peripheral portion 13 formed by stacking a corrugated plate and winding it in a roll.
【0040】中心部12は直径80mm、長さ 155mm、外周部
13は外径 103mm、長さ 155mmに形成され、ロウ付けによ
って互いに接合されている。中心部12及び外周部13は、
共にセルの密度が 400/in2 である。また中心部12の平
板及び波板は共に気孔径が 100μm以下、気孔率が90%
であり、外周部11が本発明にいう超多孔質部となってい
る。The central portion 12 has a diameter of 80 mm, a length of 155 mm, and an outer peripheral portion.
The 13 has an outer diameter of 103 mm and a length of 155 mm, and is joined to each other by brazing. The central portion 12 and the outer peripheral portion 13 are
Both have a cell density of 400 / in 2 . Both the flat plate and the corrugated plate of the central portion 12 have a pore diameter of 100 μm or less and a porosity of 90%.
The outer peripheral portion 11 is the super-porous portion according to the present invention.
【0041】(実施例7)図7に本実施例のハニカム構
造体の要部断面図を示す。このハニカム構造体は、気孔
率が異なること以外は実施例1と同様の平板14を用い、
波板15を厚さ50μmのステンレス製金属箔から形成した
こと以外は実施例1と同様の構成である。平板14が本発
明にいう超多孔質部となっている。(Embodiment 7) FIG. 7 is a sectional view showing the main part of the honeycomb structure of the present embodiment. This honeycomb structure uses the same flat plate 14 as in Example 1 except that the porosity is different,
The configuration is the same as that of the first embodiment except that the corrugated plate 15 is formed of a stainless steel foil having a thickness of 50 μm. The flat plate 14 is the superporous portion referred to in the present invention.
【0042】(実施例8)図8に本実施例のハニカム構
造体の要部断面図を示す。このハニカム構造体は、気孔
率が異なること以外は実施例1と同様の波板16を用い、
平板17を厚さ50μmのステンレス製金属箔から形成した
こと以外は実施例1と同様の構成である。波板16が本発
明にいう超多孔質部となっている。(Embodiment 8) FIG. 8 is a sectional view showing the main part of the honeycomb structure of the present embodiment. This honeycomb structure uses the same corrugated plate 16 as in Example 1 except that the porosity is different,
The configuration is the same as that of Example 1 except that the flat plate 17 is formed of a stainless steel metal foil having a thickness of 50 μm. The corrugated plate 16 is the superporous portion according to the present invention.
【0043】(実施例9)図9に本実施例のハニカム構
造体の要部断面図を示す。このハニカム構造体は、コー
ジェライト製のハニカム基材18と、ハニカム基材18のセ
ル壁表面に形成された Al2O3製コート層19とから構成さ
れている。ハニカム基材18は、直径 103mm、長さ 155m
m、セル密度 400/in2 であり、コート層19は気孔径が
100μm以下、気孔率が85%であってハニカム基材18の
1リットル当たり 100g形成され、コート層19が超多孔
質部を構成している。(Embodiment 9) FIG. 9 is a sectional view showing the main part of the honeycomb structure of the present embodiment. This honeycomb structure includes a cordierite honeycomb base material 18 and an Al 2 O 3 coating layer 19 formed on the cell wall surface of the honeycomb base material 18. The honeycomb substrate 18 has a diameter of 103 mm and a length of 155 m.
m, the cell density was 400 / in 2 , and the coat layer 19 had a pore diameter of
The honeycomb base material 18 has a porosity of not more than 100 μm and a porosity of 85% and is formed in an amount of 100 g per liter of the honeycomb substrate 18. The coat layer 19 constitutes a super-porous portion.
【0044】コート層19は、平均粒径10μmの Al2O3粉
末80重量部と、平均粒径3μmのCeO2粉末20重量部とを
スラリーとし、このスラリーをハニカム基材18にウォッ
シュコートした後 800℃で焼成することにより形成され
ている。The coating layer 19 was a slurry of 80 parts by weight of Al 2 O 3 powder having an average particle size of 10 μm and 20 parts by weight of CeO 2 powder having an average particle size of 3 μm, and this slurry was wash-coated on the honeycomb substrate 18. After that, it is formed by firing at 800 ° C.
【0045】(実施例10)図10に本実施例のハニカム構
造体の概略断面図を示す。このハニカム構造体は、実施
例9と同様のハニカム基材18と、ハニカム基材18の中心
部20のみに形成され、かつ気孔率が異なること以外は実
施例9と同様のコート層21とから構成され、中心部20が
超多孔質部を構成している。中心部20の直径は80mmであ
る。中心部20に形成されているコート層21は、気孔径が
100μm以下、気孔率が75%であってハニカム基材18の
1リットル当たり70g形成されている。(Embodiment 10) FIG. 10 shows a schematic sectional view of a honeycomb structure of the present embodiment. This honeycomb structure is composed of the same honeycomb substrate 18 as in Example 9 and the same coat layer 21 as in Example 9 except that it is formed only in the central portion 20 of the honeycomb substrate 18 and has a different porosity. The central portion 20 constitutes a super-porous portion. The diameter of the central part 20 is 80 mm. The coat layer 21 formed in the central portion 20 has a pore diameter of
The thickness is 100 μm or less, the porosity is 75%, and 70 g is formed per liter of the honeycomb substrate 18.
【0046】この中心部20は、ハニカム基材18の外周部
をマスキングしてウォッシュコートしたこと以外は実施
例9と同様にして形成されている。The central portion 20 is formed in the same manner as in Example 9 except that the outer peripheral portion of the honeycomb substrate 18 is masked and wash-coated.
【0047】(比較例1)コージェライト製でハニカム
形状の耐熱性基材の両端開口を互い違いに市松状に閉塞
した市販のディーゼルパティキュレートフィルタを比較
例1のハニカム構造体とした。このハニカム構造体は、
直径 103mm、長さ 155mm、セル密度 400/in2 であり、
セル隔壁の気孔率は50%である。Comparative Example 1 A honeycomb structure of Comparative Example 1 was a commercially available diesel particulate filter made of cordierite and made of a honeycomb-shaped heat-resistant base material, in which both end openings were alternately closed in a checkered pattern. This honeycomb structure is
Diameter 103mm, length 155mm, cell density 400 / in 2 ,
The porosity of the cell partition wall is 50%.
【0048】(比較例2)コージェライト製のフロース
ルー型のモノリス基材を比較例2のハニカム構造体とし
た。このハニカム構造体は、直径 103mm、長さ 155mm、
セル密度 400/in 2 であり、ハニカムセル隔壁の気孔率
は30%である。(Comparative Example 2) Froth made of cordierite
A roux-type monolith substrate was used as the honeycomb structure of Comparative Example 2.
It was This honeycomb structure has a diameter of 103 mm, a length of 155 mm,
Cell density 400 / in 2 And the porosity of the honeycomb cell partition wall
Is 30%.
【0049】(比較例3)金属製網体を積層して巻回し
てなる巻回体を比較例3のハニカム構造体とした。この
ハニカム構造体の気孔率は70%、目開き(気孔径)は1
mmである。(Comparative Example 3) A honeycomb structure of Comparative Example 3 was obtained by laminating and winding a metal net body. This honeycomb structure has a porosity of 70% and an opening (pore diameter) of 1
mm.
【0050】<試験・評価>上記実施例及び比較例のハ
ニカム構造体を排気量2Lのディーゼルエンジンの排気
系に装着し、2000回転程度の低速運転時におけるハニカ
ム構造体前後の排ガス中のPM濃度を測定して、ハニカ
ム構造体に捕集されたPMの捕集率を求めた。また同時
にハニカム構造体前後の排ガス圧力を測定し、差圧から
圧損を求めた。結果をそれぞれ表1に示す。<Test / Evaluation> The honeycomb structures of the above-mentioned examples and comparative examples were mounted on an exhaust system of a diesel engine having a displacement of 2 L, and PM concentration in exhaust gas before and after the honeycomb structure at a low speed operation of about 2000 rpm. Was measured to obtain the collection rate of PM collected in the honeycomb structure. At the same time, the exhaust gas pressure before and after the honeycomb structure was measured, and the pressure loss was calculated from the differential pressure. The results are shown in Table 1.
【0051】[0051]
【表1】 [Table 1]
【0052】表1より、各実施例のハニカム構造体は、
フロースルー型でありながらPM捕集率が35%以上と高
効率でPMを捕集することができ、かつ圧損も十分に低
いことが明らかである。From Table 1, the honeycomb structure of each example is
Although it is a flow-through type, it is clear that the PM collection rate is 35% or more, PM can be collected with high efficiency, and the pressure loss is sufficiently low.
【0053】[0053]
【発明の効果】すなわち本発明のハニカム構造体によれ
ば、フロースルー型であってもPMを捕集することがで
きる。That is, according to the honeycomb structure of the present invention, PM can be collected even in the flow-through type.
【図1】実施例1のハニカム構造体の要部断面図であ
る。FIG. 1 is a cross-sectional view of a main part of a honeycomb structure of Example 1.
【図2】実施例2のハニカム構造体の概略斜視図であ
る。FIG. 2 is a schematic perspective view of a honeycomb structure of Example 2.
【図3】実施例3のハニカム構造体の概略斜視図であ
る。FIG. 3 is a schematic perspective view of a honeycomb structure of Example 3.
【図4】実施例4のハニカム構造体の概略斜視図であ
る。FIG. 4 is a schematic perspective view of a honeycomb structure of Example 4.
【図5】実施例5のハニカム構造体の概略断面図であ
る。FIG. 5 is a schematic sectional view of a honeycomb structure of Example 5.
【図6】実施例6のハニカム構造体の概略断面図であ
る。FIG. 6 is a schematic cross-sectional view of a honeycomb structure of Example 6.
【図7】実施例7のハニカム構造体の要部断面図であ
る。[Fig. 7] Fig. 7 is a cross-sectional view of essential parts of a honeycomb structure of Example 7.
【図8】実施例8のハニカム構造体の要部断面図であ
る。FIG. 8 is a cross-sectional view of a main part of the honeycomb structure of Example 8.
【図9】実施例9のハニカム構造体の要部断面図であ
る。FIG. 9 is a cross-sectional view of a main part of a honeycomb structure of Example 9.
【図10】実施例10のハニカム構造体の概略断面図であ
る。FIG. 10 is a schematic sectional view of a honeycomb structure of Example 10.
【符号の説明】
1:平板(超多孔質部) 2:波板(超多孔質
部)
3:上流部(超多孔質部) 4:下流部[Explanation of Codes] 1: Flat Plate (Super Porous Part) 2: Corrugated Plate (Super Porous Part) 3: Upstream Part (Super Porous Part) 4: Downstream Part
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F01N 3/24 F01N 3/24 E 3/28 301 3/28 301G 301P Fターム(参考) 3G090 AA03 AA04 BA01 3G091 AA18 AA28 AB01 AB13 BA00 BA14 BA15 BA19 BA38 GA03 GA08 GA16 GA17 GA18 GA19 GA20 GA21 GA24 GB01X GB04X GB05W GB10X GB16X GB17X HA07 HA14 HA32 HA47 4D019 AA01 BA02 BB01 BB03 BC07 BD01 BD10 CA01 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 7 Identification code FI theme code (reference) F01N 3/24 F01N 3/24 E 3/28 301 3/28 301G 301P F term (reference) 3G090 AA03 AA04 BA01 3G091 AA18 AA28 AB01 AB13 BA00 BA14 BA15 BA19 BA38 GA03 GA08 GA16 GA17 GA18 GA19 GA20 GA21 GA24 GB01X GB04X GB05W GB10X GB16X GB17X HA07 HA14 HA32 HA47 4D019 AA01 BA02 BB01 BB03 BC07 BD01 BD10 CA01
Claims (2)
ニカムセル内を排ガスが流通するフロースルー型のハニ
カム構造体であって、該ハニカムセルの内壁の少なくと
も一部には孔径が 500μm以下、気孔率が55〜95%の超
多孔質部が形成され、該超多孔質部で排ガス中の粒子状
物質を捕集することを特徴とする排ガス浄化ハニカム構
造体。1. A flow-through type honeycomb structure in which exhaust gas flows through a plurality of honeycomb cells communicating with an inlet and an outlet of the exhaust gas, wherein at least a part of an inner wall of the honeycomb cell has a pore diameter of 500 μm or less, An exhaust gas-purifying honeycomb structure, characterized in that an ultra-porous portion having a porosity of 55 to 95% is formed, and the particulate matter in the exhaust gas is collected by the ultra-porous portion.
化物に貴金属を担持してなる触媒層が形成されている請
求項1に記載の排ガス浄化ハニカム構造体。2. The exhaust gas purifying honeycomb structure according to claim 1, wherein a catalyst layer formed by supporting a noble metal on a porous oxide is formed on an inner wall of the honeycomb cell.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001319697A JP4357776B2 (en) | 2001-10-17 | 2001-10-17 | Exhaust gas purification honeycomb structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001319697A JP4357776B2 (en) | 2001-10-17 | 2001-10-17 | Exhaust gas purification honeycomb structure |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004209963A Division JP4358054B2 (en) | 2004-07-16 | 2004-07-16 | Exhaust gas purification honeycomb structure |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2003120255A true JP2003120255A (en) | 2003-04-23 |
JP2003120255A5 JP2003120255A5 (en) | 2005-06-30 |
JP4357776B2 JP4357776B2 (en) | 2009-11-04 |
Family
ID=19137211
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001319697A Expired - Fee Related JP4357776B2 (en) | 2001-10-17 | 2001-10-17 | Exhaust gas purification honeycomb structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4357776B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004092553A1 (en) * | 2003-04-17 | 2004-10-28 | Ecocat Oy | Porous sheet and substrate having porous sheet(s) for treating exhaust gases of combustion engines |
WO2007086182A1 (en) * | 2006-01-27 | 2007-08-02 | Ibiden Co., Ltd. | Honeycomb structure, process for producing the same and exhaust gas purification apparatus |
WO2007097237A1 (en) * | 2006-02-27 | 2007-08-30 | Tanaka Kikinzoku Kogyo K.K. | Filter for diesel exhaust gas purification |
JP2007330860A (en) * | 2006-06-13 | 2007-12-27 | Toyota Motor Corp | Honeycomb substrate for catalyst and exhaust gas purification catalyst using the same |
DE102007028664A1 (en) * | 2007-06-21 | 2008-12-24 | Süd-Chemie AG | Catalyst for the treatment of exhaust gases from diesel or petrol engine in the motor vehicle technology, comprises a metallic monolith having parallel channels along the direction of flow of the exhaust gases, and a heatable jacket pipe |
JP4871875B2 (en) * | 2004-11-12 | 2012-02-08 | エミテク・ゲゼルシャフト・フュール・エミシオーンテクノロギー・ミット・ベシュレンクテル・ハフツング | Coated particle trap with nitrogen dioxide regeneration |
JP2012528705A (en) * | 2009-04-22 | 2012-11-15 | ビー・エイ・エス・エフ、コーポレーション | Partial filter substrate including SCR catalyst, exhaust treatment system, and engine exhaust treatment method |
JP2019527620A (en) * | 2016-08-16 | 2019-10-03 | コンチネンタル オートモーティヴ ゲゼルシャフト ミット ベシュレンクテル ハフツングContinental Automotive GmbH | Honeycomb body for exhaust gas aftertreatment |
-
2001
- 2001-10-17 JP JP2001319697A patent/JP4357776B2/en not_active Expired - Fee Related
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004092553A1 (en) * | 2003-04-17 | 2004-10-28 | Ecocat Oy | Porous sheet and substrate having porous sheet(s) for treating exhaust gases of combustion engines |
US8337762B2 (en) | 2003-04-17 | 2012-12-25 | Ecocat Oy | Substrate having porous sheet(s) for treating exhaust gases of combustion engines |
JP4871875B2 (en) * | 2004-11-12 | 2012-02-08 | エミテク・ゲゼルシャフト・フュール・エミシオーンテクノロギー・ミット・ベシュレンクテル・ハフツング | Coated particle trap with nitrogen dioxide regeneration |
WO2007086182A1 (en) * | 2006-01-27 | 2007-08-02 | Ibiden Co., Ltd. | Honeycomb structure, process for producing the same and exhaust gas purification apparatus |
EP1825900A3 (en) * | 2006-01-27 | 2008-07-30 | Ibiden Co., Ltd. | Honeycomb structured body, method for manufacturing honeycomb structured body and exhaust gas purifying device |
WO2007097237A1 (en) * | 2006-02-27 | 2007-08-30 | Tanaka Kikinzoku Kogyo K.K. | Filter for diesel exhaust gas purification |
JP2007224884A (en) * | 2006-02-27 | 2007-09-06 | Tanaka Kikinzoku Kogyo Kk | Diesel exhaust emission control filter |
JP2007330860A (en) * | 2006-06-13 | 2007-12-27 | Toyota Motor Corp | Honeycomb substrate for catalyst and exhaust gas purification catalyst using the same |
DE102007028664A1 (en) * | 2007-06-21 | 2008-12-24 | Süd-Chemie AG | Catalyst for the treatment of exhaust gases from diesel or petrol engine in the motor vehicle technology, comprises a metallic monolith having parallel channels along the direction of flow of the exhaust gases, and a heatable jacket pipe |
JP2012528705A (en) * | 2009-04-22 | 2012-11-15 | ビー・エイ・エス・エフ、コーポレーション | Partial filter substrate including SCR catalyst, exhaust treatment system, and engine exhaust treatment method |
JP2019527620A (en) * | 2016-08-16 | 2019-10-03 | コンチネンタル オートモーティヴ ゲゼルシャフト ミット ベシュレンクテル ハフツングContinental Automotive GmbH | Honeycomb body for exhaust gas aftertreatment |
Also Published As
Publication number | Publication date |
---|---|
JP4357776B2 (en) | 2009-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3560408B2 (en) | Diesel exhaust gas purification filter and method for producing the same | |
JP4827530B2 (en) | Honeycomb structure | |
JP4284588B2 (en) | Exhaust gas purification filter catalyst | |
JP4509029B2 (en) | Honeycomb structure | |
JP2001190916A (en) | Honeycomb structure | |
CZ2005554A3 (en) | Device comprising compression ignition engine having exhaust system provided with particulate matter filter | |
JP2001327818A (en) | Ceramic filter and filtration device | |
JPWO2007086182A1 (en) | Honeycomb structure, method for manufacturing honeycomb structure, and exhaust gas purification device | |
JP2007253144A (en) | Honeycomb structured body and exhaust gas purifying device | |
JP2009160547A (en) | Exhaust gas purification catalyst and production method thereof | |
JP4715032B2 (en) | Diesel exhaust gas purification filter | |
JP2008151100A (en) | Exhaust gas purification device | |
JP2002054422A (en) | Ceramic filter, and method of manufacturing same | |
JP2003120255A (en) | Exhaust gas purification honeycomb structure | |
JP4426381B2 (en) | Honeycomb structure and manufacturing method thereof | |
JP2001355431A (en) | Exhaust emission control device for diesel engine | |
JP2006077672A (en) | Exhaust gas purification filter and exhaust gas purification device | |
JP2009228618A (en) | Exhaust emission control device | |
JP3879988B2 (en) | Exhaust gas purification catalyst and production method thereof | |
JP2001205108A (en) | Particulate filter | |
JP2003056327A (en) | Exhaust fine particle collecting filter of self- regeneration type | |
JP2008229459A (en) | Exhaust gas purification device | |
JP2005296820A (en) | Exhaust gas purification filter catalyst | |
JP4868714B2 (en) | Exhaust gas purification filter catalyst | |
JP4358054B2 (en) | Exhaust gas purification honeycomb structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20041015 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041015 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060627 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060707 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20070302 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070426 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20070510 |
|
A912 | Removal of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20070608 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090626 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090805 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120814 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120814 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130814 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |