JP2003119313A - Method for producing porous film - Google Patents
Method for producing porous filmInfo
- Publication number
- JP2003119313A JP2003119313A JP2001314496A JP2001314496A JP2003119313A JP 2003119313 A JP2003119313 A JP 2003119313A JP 2001314496 A JP2001314496 A JP 2001314496A JP 2001314496 A JP2001314496 A JP 2001314496A JP 2003119313 A JP2003119313 A JP 2003119313A
- Authority
- JP
- Japan
- Prior art keywords
- porous film
- producing
- battery
- weight
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Cell Separators (AREA)
Abstract
(57)【要約】
【課題】高空孔率、高通気性を有し、機械的強度、収縮
率が良好であり、高耐熱性を有する多孔質フィルムの製
造方法、かかる製造方法により得られる多孔質フィル
ム、該多孔質フィルムからなる電池用セパレータ、なら
びに該電池用セパレータを用いてなる電池およびキャパ
シターを提供すること。
【解決手段】ポリオレフィンと架橋性の不飽和結合を有
するゴム類を含む樹脂成分および溶媒を含有する樹脂組
成物を溶融混練し、得られた溶融混練物をシート状に成
形し、該シート状成形物の延伸処理と脱溶媒処理を行う
工程を有する多孔質フィルムの製造方法において、紫外
線を照射する工程を有する多孔質フィルムの製造方法、
前記多孔質フィルムの製造方法により得られ得る多孔質
フィルム、前記多孔質フィルムからなる電池用セパレー
タ、前記電池用セパレータを用いてなる電池、ならびに
前記電池用セパレータを用いてなるキャパシター。(57) Abstract: A method for producing a porous film having high porosity, high air permeability, good mechanical strength, good shrinkage, and high heat resistance, and a porous film obtained by such a production method. A porous film, a battery separator comprising the porous film, and a battery and a capacitor using the battery separator. A resin composition containing a resin having a crosslinkable unsaturated bond with a polyolefin and a resin composition containing a solvent are melt-kneaded, and the obtained melt-kneaded material is formed into a sheet, and the sheet is formed. In a method for producing a porous film having a step of performing a stretching treatment and a desolvation treatment of a product, a method for producing a porous film having a step of irradiating ultraviolet rays
A porous film obtainable by the method for producing a porous film, a battery separator including the porous film, a battery including the battery separator, and a capacitor including the battery separator.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、多孔質フィルムの
製造方法、かかる製造方法により得られ得る多孔質フィ
ルム、該多孔質フィルムからなる電池用セパレータ、な
らびに該電池用セパレータを用いてなる電池およびキャ
パシターに関する。TECHNICAL FIELD The present invention relates to a method for producing a porous film, a porous film obtainable by such a production method, a battery separator made of the porous film, and a battery using the battery separator. Regarding capacitors.
【0002】[0002]
【従来の技術】多孔質フィルムは、電池用セパレータ、
電解コンデンサー隔膜、透湿防水材、各種フィルター等
に用いられている。なかでも、電池用セパレータは、電
池として軽量・高起電力・高エネルギーが得られ、しか
も自己放電が少ないリチウム二次電池の重要な部材とし
て注目を集めており、今後は電気自動車用バッテリーの
構成部材としても期待されている。2. Description of the Related Art Porous films are used for battery separators,
It is used in electrolytic capacitor diaphragms, moisture-permeable waterproof materials, and various filters. Among them, battery separators are gaining attention as an important component of lithium secondary batteries, which are lightweight, have high electromotive force and high energy as batteries, and have little self-discharge. It is also expected as a member.
【0003】これまでに、ポリオレフィン含有多孔質フ
ィルムを中心にリチウム二次電池用セパレータの耐熱性
向上に関するいくつかの提案がなされている。例えば、
特開平10−12211号公報では、ガラス繊維の不織
布等をポリオレフィン含有多孔質フィルムに積層させて
用いている。また、特開平3−245457号公報や特
開平3−193125号公報のように、製膜後に重合さ
せる等の手法で架橋させた高分子化合物を用いるものも
多い。また、組成面だけではなく、特開平5−7444
4号公報のように、セパレータの極板からのはみ出し部
を接着するといった、電池内の構造面での提案もなされ
ている。特公平1−18091号公報、特開平9−16
9867号公報、特開平6−153023号公報等に
は、ポリオレフィン樹脂の他にゴムを含有した多孔質フ
ィルムが開示されているが、これらは耐熱性向上を目的
としたものではない。Up to now, several proposals have been made to improve the heat resistance of separators for lithium secondary batteries, centering on polyolefin-containing porous films. For example,
In Japanese Patent Laid-Open No. 10-12211, a nonwoven fabric made of glass fiber or the like is used by being laminated on a polyolefin-containing porous film. Further, as in JP-A-3-245457 and JP-A-3-193125, there are many cases where a polymer compound crosslinked by a method such as polymerization after film formation is used. Further, not only the compositional aspect but also JP-A-5-7444
As in Japanese Patent Publication No. 4, a proposal has been made in terms of the structure inside the battery, such as bonding the protruding portion of the separator from the electrode plate. Japanese Examined Patent Publication No. 1-18091 and Japanese Unexamined Patent Publication No. 9-16
9867, JP-A-6-153023 and the like disclose porous films containing rubber in addition to polyolefin resins, but these are not intended to improve heat resistance.
【0004】リチウムイオン二次電池用セパレータは、
膜を形成している樹脂が溶融して、膜の空孔を閉塞させ
ることで電池の異常加熱の際にイオン透過性を喪失し、
電流による更なる加熱を防ぐシャットダウン(SD)機
能を有している。しかし、電池の外部短絡等で電池に短
絡電流が流れる異常が発生した際には温度上昇が極めて
急激であるために、SD機能が充分に発現したとして
も、既に温度がセパレータのSD温度より遙かに高い温
度に達している危険性が高い。そのような場合、セパレ
ータは完全に溶融状態になり、特に異物や析出したリチ
ウムデンドライトの存在がある時、容易に破断、破膜し
てしまい、正極と負極が直接接触し、短絡状態となる危
険性がある。特に、過充電状態等においては電池内の内
圧が高まり、膜厚方向に高圧が加わり破膜短絡する危険
性がいっそう高まる。The lithium ion secondary battery separator is
The resin that forms the film melts, closing the pores of the film and losing ion permeability during abnormal heating of the battery.
It has a shutdown (SD) function that prevents further heating due to electric current. However, when an abnormality occurs in which a short-circuit current flows in the battery due to an external short circuit of the battery, etc., the temperature rise is extremely rapid, so even if the SD function is fully developed, the temperature is already much higher than the SD temperature of the separator. There is a high risk of reaching extremely high temperatures. In such a case, the separator will be in a completely molten state, and especially in the presence of foreign matter or precipitated lithium dendrites, it easily breaks or breaks, and the positive electrode and negative electrode may come into direct contact with each other, resulting in a short circuit condition. There is a nature. In particular, in an overcharged state or the like, the internal pressure in the battery increases, and the high pressure is applied in the film thickness direction, further increasing the risk of short circuit in the membrane.
【0005】[0005]
【発明が解決しようとする課題】本発明の目的は、高空
孔率、高通気性を有し、機械的強度、収縮率が良好であ
り、かつ、前記するような高温・高圧状態にさらされた
場合においても、その形状を維持し得る程度の高耐熱性
を有する、特にリチウムイオン二次電池用セパレータと
して好適に用いられる多孔質フィルムの製造方法、かか
る製造方法により得られる多孔質フィルム、該多孔質フ
ィルムからなる電池用セパレータ、ならびに該電池用セ
パレータを用いてなる電池およびキャパシターを提供す
ることである。The object of the present invention is to have high porosity, high air permeability, good mechanical strength and shrinkage, and to be exposed to the high temperature and high pressure state as described above. Even in the case of having a high heat resistance to the extent that it can maintain its shape, particularly a method for producing a porous film suitably used as a separator for a lithium ion secondary battery, a porous film obtained by such a production method, It is intended to provide a battery separator made of a porous film, and a battery and a capacitor using the battery separator.
【0006】[0006]
【課題を解決するための手段】本発明者らは、前記課題
を解決するべく鋭意検討した結果、多孔質フィルムを製
造する際の一工程として紫外線の照射を行うことによ
り、多孔質フィルムを構成する原料樹脂の架橋反応を促
進すると同時に、空孔率や通気性の向上を図ることがで
きることを見出し、本発明を完成するに至った。Means for Solving the Problems As a result of intensive studies to solve the above problems, the present inventors have constructed a porous film by irradiating it with ultraviolet rays as one step in manufacturing the porous film. It was found that the porosity and the air permeability can be improved at the same time that the crosslinking reaction of the raw material resin can be promoted, and the present invention has been completed.
【0007】即ち、本発明の要旨は(1) ポリオレフ
ィンと架橋性の不飽和結合を有するゴム類を含む樹脂成
分および溶媒を含有する樹脂組成物を溶融混練し、得ら
れた溶融混練物をシート状に成形し、該シート状成形物
の延伸処理と脱溶媒処理を行う工程を有する多孔質フィ
ルムの製造方法において、紫外線を照射する工程を有す
る多孔質フィルムの製造方法、(2) 前記(1)記載
の多孔質フィルムの製造方法により得られ得る多孔質フ
ィルム、(3) 前記(2)記載の多孔質フィルムから
なる電池用セパレータ、(4) 前記(3)記載の電池
用セパレータを用いてなる電池、ならびに(5) 前記
(3)記載の電池用セパレータを用いてなるキャパシタ
ー、に関する。That is, the gist of the present invention is (1) melt-kneading a resin composition containing a solvent and a resin component containing a polyolefin and a rubber having a crosslinkable unsaturated bond, and the obtained melt-kneaded product into a sheet. (2) The method for producing a porous film, which comprises the step of irradiating with ultraviolet rays in the method for producing a porous film, which comprises the steps of: ) A porous film obtainable by the method for producing a porous film described above, (3) a battery separator comprising the porous film described in (2) above, (4) using the battery separator described in (3) above. And a capacitor using the battery separator according to (3) above.
【0008】[0008]
【発明の実施の形態】本発明の多孔質フィルムの製造方
法には、例えば公知の湿式成膜法を利用することがで
き、樹脂成分と溶媒とを含む樹脂組成物を加熱溶融、混
練し、得られた溶融混練物をシート状に押し出した後冷
却し、得られたシート状成形物を延伸処理し、次いで脱
溶媒処理した後、紫外線の照射を行うのが好ましい。BEST MODE FOR CARRYING OUT THE INVENTION In the method for producing a porous film of the present invention, for example, a known wet film-forming method can be used, in which a resin composition containing a resin component and a solvent is melted and kneaded by heating, It is preferable that the obtained melt-kneaded product is extruded into a sheet and then cooled, the obtained sheet-shaped molded product is subjected to a stretching treatment, then subjected to a solvent removal treatment, and then irradiated with ultraviolet rays.
【0009】本発明においては前記樹脂成分の1つとし
てポリオレフィンが用いられる。かかるポリオレフィン
としては、エチレン、プロピレン、1−ブテン、4−メ
チル−1−ペンテン、1−ヘキセン等のオレフィンの単
独重合体、共重合体およびこれらの混合物等が挙げら
れ、なかでも、得られる多孔質フィルムの高強度化の観
点から、好ましくは重量平均分子量5×105 以上、よ
り好ましくは1×106以上、さらに好ましくは1.5
×106 以上の超高分子量ポリオレフィンが好ましく、
特に超高分子量ポリエチレンが好ましい。なお、重量平
均分子量は、後述の実施例に記載の方法により測定する
ことができる。In the present invention, polyolefin is used as one of the resin components. Examples of such polyolefins include homopolymers of olefins such as ethylene, propylene, 1-butene, 4-methyl-1-pentene, and 1-hexene, copolymers, and mixtures thereof. From the viewpoint of enhancing the strength of the high quality film, the weight average molecular weight is preferably 5 × 10 5 or more, more preferably 1 × 10 6 or more, and further preferably 1.5.
Ultra high molecular weight polyolefin of 10 6 or more is preferable,
Ultra high molecular weight polyethylene is particularly preferable. The weight average molecular weight can be measured by the method described in Examples below.
【0010】前記ポリオレフィンにおける前記超高分子
量ポリオレフィンの含有量は、溶融混練の際に超高分子
量ポリオレフィンの絡み合いが多く、充分な膜強度が得
られる観点から、1重量%以上が好ましく、50〜10
0重量%がより好ましく、60〜90重量%がさらに好
ましい。The content of the ultrahigh molecular weight polyolefin in the polyolefin is preferably 1% by weight or more, from the viewpoint of sufficient entanglement of the ultrahigh molecular weight polyolefin during melt kneading and sufficient film strength, and 50 to 10
0% by weight is more preferable, and 60 to 90% by weight is further preferable.
【0011】なお、前記ポリオレフィンの配合量は、前
記樹脂組成物の樹脂成分中50〜95重量%が好まし
く、60〜90重量%がより好ましい。該配合量は、膜
強度を向上させる観点から、50重量%以上が好まし
く、均一な混練が容易で、厚さムラ、特性ムラが生じな
い観点から95重量%以下が好ましい。The amount of the polyolefin compounded is preferably 50 to 95% by weight, more preferably 60 to 90% by weight, based on the resin component of the resin composition. The blending amount is preferably 50% by weight or more from the viewpoint of improving the film strength, and is preferably 95% by weight or less from the viewpoint that uniform kneading is easy and uneven thickness and characteristic unevenness do not occur.
【0012】また本発明においては前記樹脂成分の他の
1つとして架橋性の不飽和結合を有するゴム類が用いら
れる。かかるゴム類としては、特に超高分子量ポリオレ
フィンにより発現される強度と共に、さらに超高分子量
ポリオレフィンの融点(約141℃)を超えた高温領域
においても形状維持性、機械的強度を発揮させ得る観点
から、架橋処理工程において超高分子量ポリオレフィン
との間に架橋構造を形成することができる、特に主鎖に
C=C二重結合を有するものが好ましい。なかでも、不
飽和縮合脂環式化合物またはその誘導体の開環重合体
は、主鎖にそのモノマー単位に由来する脂肪族環と二重
結合とを有しており、架橋構造の効率的な形成と得られ
る多孔質フィルムの耐熱性の向上が期待できるため好ま
しい。また、該開環重合体は、その二重結合の一部が水
素添加されていてもよい。In the present invention, a rubber having a crosslinkable unsaturated bond is used as another one of the resin components. As such rubbers, from the viewpoint that strength can be exhibited particularly by the ultra-high molecular weight polyolefin, shape retention and mechanical strength can be exhibited even in a high temperature region exceeding the melting point (about 141 ° C.) of the ultra-high molecular weight polyolefin. In the crosslinking treatment step, those capable of forming a crosslinked structure with the ultrahigh molecular weight polyolefin, particularly those having a C = C double bond in the main chain are preferable. Among them, a ring-opening polymer of an unsaturated condensed alicyclic compound or a derivative thereof has an aliphatic ring derived from the monomer unit and a double bond in the main chain, and efficiently forms a crosslinked structure. This is preferable because improvement in heat resistance of the resulting porous film can be expected. Further, in the ring-opening polymer, a part of its double bond may be hydrogenated.
【0013】かかるゴム類の具体例としては、末端に二
重結合を持つ低級炭化水素の末端水素をエチレン基に置
換した構造を有するモノマーを重合したものであって、
主鎖にメチレン基が結合している構造を有する樹脂、例
えばポリブタジエン等が挙げられる。また、前記不飽和
縮合脂環式化合物としては、以下に説明する3つの系列
のものが挙げられる。Specific examples of such rubbers are obtained by polymerizing a monomer having a structure in which the terminal hydrogen of a lower hydrocarbon having a double bond at the terminal is substituted with an ethylene group,
Examples of the resin include a resin having a structure in which a methylene group is bonded to the main chain, such as polybutadiene. In addition, examples of the unsaturated condensed alicyclic compound include those of the three series described below.
【0014】第一の系列としては、狭義の縮合脂環式化
合物として分類されるものの内で、開環重合後、主鎖に
組み込まれる二重結合を環の1つに有する不飽和化合物
が挙げられる。また、それらの不飽和化合物の水素原子
の幾つかが他の置換基に置き換わった誘導体も含めて、
不飽和縮合脂環式化合物として使用できる。この具体例
として、ビシクロ〔3.2.0〕ヘプト−6−エン、ビ
シクロ〔4.2.0〕オクト−7−エンおよびそれらの
誘導体等が挙げられる。The first series includes unsaturated compounds having a double bond in one of the rings, which is incorporated into the main chain after ring-opening polymerization, among those classified as condensed alicyclic compounds in a narrow sense. To be In addition, including derivatives in which some of the hydrogen atoms of those unsaturated compounds are replaced by other substituents,
It can be used as an unsaturated condensed alicyclic compound. Specific examples thereof include bicyclo [3.2.0] hept-6-ene, bicyclo [4.2.0] oct-7-ene and their derivatives.
【0015】第二の系列としては、有橋環化合物として
分類されるものの内で、開環重合後、主鎖に組み込まれ
る二重結合を環の1つに有する不飽和化合物が挙げられ
る。また、それらの不飽和化合物の水素原子の幾つかが
他の置換基に置き換わった誘導体も含めて、不飽和縮合
脂環式化合物として使用できる。この具体例として、ビ
シクロ〔2.2.1〕ヘプト−5−エン(本明細書にお
いてはノルボルネンという場合がある)、ビシクロ
〔2.2.1〕ヘプト−5−エン−2,3−ジカルボキ
シメチルエステル等のノルボルネン誘導体、ビシクロ
〔2.2.2〕オクト−2−エンおよびそれらの誘導体
等が挙げられる。The second series includes unsaturated compounds having a double bond in one of the rings, which is incorporated into the main chain after ring-opening polymerization, among compounds classified as bridged ring compounds. Moreover, the unsaturated condensed alicyclic compound can be used, including a derivative in which some of the hydrogen atoms of these unsaturated compounds are replaced with other substituents. Specific examples of this include bicyclo [2.2.1] hept-5-ene (sometimes referred to as norbornene herein), bicyclo [2.2.1] hept-5-ene-2,3-di Examples thereof include norbornene derivatives such as carboxymethyl ester, bicyclo [2.2.2] oct-2-ene and derivatives thereof.
【0016】第三の系列としては、有橋環でかつ縮合脂
環を有し、開環重合後、主鎖に脂肪族環および二重結合
とを有する化合物が挙げられる。この具体例としては、
トリシクロ〔5.2.1.02.6 〕デカ−3,8−ジエ
ン(ジシクロペンタジエン)、テトラシクロドデセンお
よびそれらの誘導体等が挙げられる。The third series includes compounds having a bridged ring and a condensed alicyclic ring, and having an aliphatic ring and a double bond in the main chain after ring-opening polymerization. As a concrete example of this,
Tricyclo [5.2.1.0 2.6] dec-3,8-diene (dicyclopentadiene), tetracyclododecene, and derivatives thereof.
【0017】これらの不飽和縮合脂環式化合物の中で
は、原料供給等の観点から、ノルボルネンおよびノルボ
ルネン誘導体が好ましい。また、これらの不飽和縮合脂
環式化合物は、単独でまたは2種以上を混合してまたは
順次開環重合することができる。Among these unsaturated condensed alicyclic compounds, norbornene and norbornene derivatives are preferable from the viewpoint of supplying raw materials. Moreover, these unsaturated condensed alicyclic compounds can be ring-opening-polymerized individually or in a mixture of two or more kinds.
【0018】前記不飽和縮合脂環式化合物の開環重合体
として、好ましくはポリノルボルネン等が用いられ、と
くに、重量平均分子量の高いポリノルボルネンが分散性
の観点から好ましく用いられる。As the ring-opening polymer of the unsaturated condensed alicyclic compound, polynorbornene or the like is preferably used, and particularly polynorbornene having a high weight average molecular weight is preferably used from the viewpoint of dispersibility.
【0019】これらのゴム類を、好ましくは前記超高分
子量ポリオレフィン、特に超高分子量ポリエチレンと共
に用いることにより、高温領域においても多孔質フィル
ムの形状と機械的強度を維持することができ、さらに本
発明の製造方法の1つの特徴である紫外線照射による架
橋処理により耐熱性を向上でき、例えば、かかる多孔質
フィルムを電池用セパレータとして用いてなる電池中で
該セパレータが高温・高圧にさらされた際にも正極と負
極を隔てた状態を維持できるため、かかる電池の安全性
が向上することになる。By using these rubbers, preferably together with the above-mentioned ultra-high molecular weight polyolefin, especially ultra-high molecular weight polyethylene, the shape and mechanical strength of the porous film can be maintained even in a high temperature region, and the present invention is further provided. The heat resistance can be improved by cross-linking treatment by ultraviolet irradiation, which is one of the features of the manufacturing method of, for example, when the separator is exposed to high temperature and high pressure in a battery using the porous film as a battery separator. Since the positive electrode and the negative electrode can be kept separated from each other, the safety of such a battery is improved.
【0020】なお、前記ゴム類の配合量は、前記樹脂組
成物の樹脂成分中1〜50重量%が好ましく、1〜20
重量%がより好ましい。該配合量は、耐熱性に寄与する
架橋密度の向上という観点から、1重量%以上が好まし
く、得られる多孔質フィルムの強度および通気性の維持
・向上という観点から、50重量%以下が好ましい。The amount of the rubber compounded is preferably 1 to 50% by weight in the resin component of the resin composition, and 1 to 20% by weight.
Weight percent is more preferred. The blending amount is preferably 1% by weight or more from the viewpoint of improving the crosslink density contributing to heat resistance, and is preferably 50% by weight or less from the viewpoint of maintaining / improving the strength and air permeability of the resulting porous film.
【0021】また、前記ゴム類と架橋し得るその他の樹
脂を樹脂成分として任意に用いてもよい。そのような樹
脂としては、エチレン−アクリルモノマー共重合体、エ
チレン−酢酸ビニル共重合体等の変性ポリオレフィン類
や、ポリスチレン系、ポリオレフィン系、ポリジエン
系、塩化ビニル系、ポリエステル系等の熱可塑性エラス
トマー、例えば、高・中・低密度ポリエチレン、ポリプ
ロピレン、それらの共重合体等が挙げられる。Further, other resins which can be crosslinked with the above rubbers may be optionally used as a resin component. Examples of such resins include ethylene-acrylic monomer copolymers, modified polyolefins such as ethylene-vinyl acetate copolymers, polystyrene-based, polyolefin-based, polydiene-based, vinyl chloride-based, thermoplastic elastomers such as polyester-based, For example, high / medium / low density polyethylene, polypropylene, copolymers thereof and the like can be mentioned.
【0022】これらの樹脂は、単独でまたは2種以上混
合して用いることができる。その配合量は、前記樹脂組
成物の樹脂成分中5〜50重量%が好ましく、10〜4
0重量%がより好ましい。These resins can be used alone or in admixture of two or more. The blending amount thereof is preferably 5 to 50% by weight in the resin component of the resin composition, and is 10 to 4%.
0% by weight is more preferred.
【0023】前記溶媒としては、前記ポリオレフィンお
よび架橋性の不飽和結合を有するゴム類、さらに熱可塑
性エラストマーの溶解性に優れたものが好ましく、例え
ば、ノナン、デカン、ウンデカン、ドデカン、デカリ
ン、流動パラフィンなどの脂肪族または環式の炭化水
素、沸点がこれらに対応する鉱油留分などが挙げられ、
流動パラフィンなどの脂環式炭化水素を多く含む不揮発
性溶媒が好ましい。また、溶媒の配合量としては、混練
りトルク、圧延、延伸応力が適正で生産性に優れ、また
シート化する際のダイス出口でのネックインも問題とな
らず良好に成形が行え、しかも適度で均質な孔径の微多
孔が形成された多孔質フィルムが得られるという観点か
ら、前記樹脂組成物において、好ましくは樹脂成分5〜
30重量部と溶媒70〜95重量部、より好ましくは樹
脂成分10〜30重量部と溶媒70〜90重量部、さら
に好ましくは樹脂成分10〜25重量部と溶媒75〜9
0重量部とする。As the solvent, those having excellent solubility of the above-mentioned polyolefin and rubber having a crosslinkable unsaturated bond and thermoplastic elastomer are preferable, and examples thereof include nonane, decane, undecane, dodecane, decalin and liquid paraffin. Aliphatic or cyclic hydrocarbons such as, mineral oil fractions having a boiling point corresponding to these,
A non-volatile solvent containing a large amount of alicyclic hydrocarbon such as liquid paraffin is preferable. Further, as the compounding amount of the solvent, kneading torque, rolling, stretching stress is appropriate and excellent in productivity, and neck-in at the die exit when forming into a sheet can be favorably molded without causing a problem, and is appropriate. From the viewpoint that a porous film in which micropores having a uniform pore size are formed can be obtained, the resin composition in the resin composition is preferably 5 to
30 parts by weight and 70 to 95 parts by weight of solvent, more preferably 10 to 30 parts by weight of resin component and 70 to 90 parts by weight of solvent, still more preferably 10 to 25 parts by weight of resin component and 75 to 9 parts of solvent.
0 parts by weight.
【0024】さらに、前記樹脂組成物には、所望により
酸化防止剤、紫外線吸収剤、染料、造核剤、顔料、帯電
防止剤等の添加剤を、本発明の目的を損なわない範囲で
添加することができる。Further, if desired, additives such as an antioxidant, an ultraviolet absorber, a dye, a nucleating agent, a pigment, an antistatic agent, etc. are added to the resin composition within a range not impairing the object of the present invention. be able to.
【0025】樹脂成分と溶媒からなる樹脂組成物は、例
えば、均一なスラリー状に混合して調製される。続い
て、該樹脂組成物を溶融混練りし、シート状に成形する
が、かかる工程は、公知の方法に従えばよく、バンバリ
ーミキサー、ニーダーなどを用いて、適当な温度条件
下、好ましくは100〜200℃でバッチ式にて混練り
し、次いで、冷却された金属板またはロールに挟み込み
急冷して急冷結晶化によりシート状成形物にしてもよ
く、Tダイなどを取り付けた押出機などを用いてシート
状成形物を得てもよい。このようにして得られるシート
状成形物の厚さは特に限定されないが3〜20mmが好
ましい。The resin composition composed of the resin component and the solvent is prepared, for example, by mixing in a uniform slurry form. Subsequently, the resin composition is melt-kneaded and molded into a sheet, and such a step may be performed according to a known method, using a Banbury mixer, a kneader or the like, under an appropriate temperature condition, preferably 100. It may be kneaded in batch at ~ 200 ° C, then sandwiched in a cooled metal plate or roll and rapidly cooled to form a sheet-like molded product by rapid crystallization. An extruder equipped with a T-die or the like may be used. You may obtain a sheet-shaped molded article. The thickness of the sheet-shaped molded product thus obtained is not particularly limited, but is preferably 3 to 20 mm.
【0026】前記シート状成形物の延伸処理の方式とし
ては、特に限定されるものではなく、通常のテンター
法、ロール法、インフレーション法またはこれらの方法
の組合せであってもよく、また、一軸延伸、二軸延伸な
どのいずれの方式をも適用することができる。また、二
軸延伸の場合は、縦横同時延伸または逐次延伸のいずれ
でもよいが、縦横同時延伸が好ましい。延伸処理の温度
は、好ましくは100〜150℃、より好ましくは11
5〜130℃である。The method for stretching the sheet-shaped molded product is not particularly limited, and may be an ordinary tenter method, roll method, inflation method or a combination of these methods, and uniaxial stretching. Any method such as biaxial stretching can be applied. In the case of biaxial stretching, either longitudinal / transverse simultaneous stretching or sequential stretching may be used, but longitudinal / transverse simultaneous stretching is preferred. The temperature of the stretching treatment is preferably 100 to 150 ° C, more preferably 11
It is 5 to 130 ° C.
【0027】延伸前のシートの厚さは、好ましくは0.
2〜1.2mm、より好ましくは0.2〜0.8mmで
あり、延伸後の厚さは、好ましくは50〜150μm、
より好ましくは60〜100μmである。また、延伸の
速度は、好ましくは5mm/秒以下、より好ましくは3
mm/秒以下であり、かかる範囲内であれば、延伸途中
で延伸切れを起こすことがないので好ましい。The thickness of the sheet before stretching is preferably 0.
2 to 1.2 mm, more preferably 0.2 to 0.8 mm, and the thickness after stretching is preferably 50 to 150 μm,
More preferably, it is 60 to 100 μm. The stretching speed is preferably 5 mm / sec or less, more preferably 3 mm / sec or less.
It is not more than mm / sec, and it is preferable if it is within such a range, because breakage of stretching does not occur during stretching.
【0028】脱溶媒処理は、シート状成形物から溶媒を
除去して微多孔構造を形成させる工程であり、例えば、
シート状成形物を溶剤で洗浄して残留する溶媒を除去す
ることにより行うことができる。溶剤としては、ペンタ
ン、ヘキサン、ヘプタン、デカンなどの炭化水素、塩化
メチレン、四塩化炭素などの塩化炭化水素、三フッ化エ
タンなどのフッ化炭化水素、ジエチルエーテル、ジオキ
サンなどのエーテル類などの易揮発性溶剤が挙げられ、
これらは単独でまたは2種以上を混合して用いることが
できる。かかる溶剤を用いた洗浄方法は、特に限定され
ず、例えば、シート状成形物を溶剤中に浸漬して溶媒を
抽出する方法、溶剤をシート状成形物にシャワーする方
法などが挙げられる。脱溶媒処理は延伸前に行ってもよ
い。例えば、シート状組成物を脱溶媒処理してから延伸
処理に供してもよく、あるいは延伸処理前に脱溶媒処理
を行い、延伸処理後に再度脱溶媒処理を行ってもよい。The desolvation treatment is a step of removing the solvent from the sheet-shaped molded product to form a microporous structure.
It can be carried out by washing the sheet-shaped molded product with a solvent to remove the residual solvent. Examples of the solvent include hydrocarbons such as pentane, hexane, heptane and decane, chlorinated hydrocarbons such as methylene chloride and carbon tetrachloride, fluorinated hydrocarbons such as trifluoroethane, ethers such as diethyl ether and dioxane. Volatile solvents,
These may be used alone or in combination of two or more. The cleaning method using such a solvent is not particularly limited, and examples thereof include a method of immersing the sheet-shaped molded product in the solvent to extract the solvent, and a method of showering the solvent on the sheet-shaped molded product. The solvent removal treatment may be performed before stretching. For example, the sheet composition may be subjected to desolvation treatment and then subjected to a stretching treatment, or may be subjected to desolvation treatment before the stretching treatment and then subjected to the desolvation treatment again after the stretching treatment.
【0029】なお、本発明では、延伸および脱溶媒処理
の前後に、さらに圧延処理を行ってもよい。例えば、シ
ート状成形物をそのまま圧延処理してから延伸処理と脱
溶媒処理(延伸と脱溶媒の順序はいずれが先でもよい)
を行ってもよい。あるいは、延伸処理と脱溶媒処理の間
に圧延処理を行ってもよく、例えば、圧延処理前に脱溶
媒処理を行い、圧延処理後に再度延伸処理と脱溶媒処理
(延伸と脱溶媒の順序はいずれが先でもよい)を行って
残存溶媒を除去する態様であってもよい。In the present invention, rolling treatment may be further performed before and after the stretching and desolvation treatment. For example, the sheet-shaped molded product is directly subjected to rolling treatment, followed by stretching treatment and desolvation treatment (either stretching or desolvation may be performed first).
You may go. Alternatively, the rolling treatment may be performed between the stretching treatment and the desolvation treatment, for example, the desolvation treatment is performed before the rolling treatment, and the stretching treatment and the desolvation treatment are performed again after the rolling treatment (the order of stretching and desolvation is May be performed first) to remove the residual solvent.
【0030】かかる圧延処理はヒートプレス等により行
い、好ましくは100℃以上、より好ましくは100〜
140℃で加熱を行ないながら、圧延処理前のシート状
成形物の厚さに対し5分の1から20分の1の厚さに成
形する。Such rolling treatment is carried out by heat pressing or the like, preferably 100 ° C. or higher, more preferably 100 to
While heating at 140 ° C., the sheet-shaped molded product before rolling is molded to a thickness of 1/5 to 1/20 of the thickness.
【0031】これらの公知の方法によって前記樹脂成分
を成膜した後、得られたフィルムに対し紫外線照射する
のが好ましい。紫外線照射は、好ましくは200nm以
下に波長の分布を実質的に有しない紫外線、また、充分
な膜強度を維持する観点から、より好ましくは250n
m以下に波長の分布を実質的に有しない紫外線を0.5
〜20分間程度、成膜後に得られたフィルムに対し照射
することにより行う。かかる紫外線照射により架橋性を
有する樹脂由来の二重結合の全部または一部が消失し、
得られる多孔質フィルム中において当該樹脂どうしまた
は当該樹脂とポリオレフィンとの間で架橋が生じ、多孔
質フィルムの耐熱性(高温・高圧下での耐破膜性)が維
持・向上することになる。また本発明においては、紫外
線照射を行うことにより耐熱性の向上と同時に、空孔率
や通気性を向上させる。従来、多孔質フィルムの空孔率
・通気性の向上は原料樹脂等を適宜調整することにより
行なわれており、高い空孔率・通気性を所望する場合に
は、使用し得る原料樹脂が制限され、その結果、多孔質
フィルムの強度を犠牲にせざるを得ない場合があった。
しかしながら、本発明においては、最初に充分な強度を
有するフィルムを得、次いで紫外線を照射して空孔率・
通気性を向上させるので、強度が充分であって、しかも
空孔率・通気性がより向上した優れた多孔質フィルムが
得られる。After the above resin component is formed into a film by these known methods, the obtained film is preferably irradiated with ultraviolet rays. The ultraviolet irradiation is preferably ultraviolet light having substantially no wavelength distribution of 200 nm or less, and more preferably 250 n from the viewpoint of maintaining sufficient film strength.
0.5 μm of ultraviolet light having substantially no wavelength distribution below m
It is performed by irradiating the film obtained after the film formation for about 20 minutes. By such ultraviolet irradiation, all or part of the double bond derived from the resin having crosslinkability disappears,
Crosslinking occurs between the resins or between the resin and the polyolefin in the obtained porous film, and the heat resistance (film rupture resistance under high temperature and high pressure) of the porous film is maintained and improved. Further, in the present invention, irradiation with ultraviolet rays improves porosity and air permeability at the same time as improving heat resistance. Conventionally, the improvement of the porosity and air permeability of the porous film has been performed by appropriately adjusting the raw material resin, etc., and when high porosity and air permeability are desired, the usable raw material resin is limited. As a result, the strength of the porous film may have to be sacrificed.
However, in the present invention, a film having sufficient strength is first obtained, and then ultraviolet rays are irradiated to obtain a porosity.
Since the air permeability is improved, an excellent porous film having sufficient strength and further improved porosity and air permeability can be obtained.
【0032】なお、前記架橋処理は、例えば、成膜後の
フィルムにそのまま、または重合開始剤を含むメタノー
ル溶液を含浸させ、溶媒であるメタノールを乾燥後に、
低圧水銀灯または高圧水銀灯を用いて紫外線を照射して
行う。なお、充分な膜強度を維持する観点から、紫外線
の照射には、250nm以下に波長の分布を実質的に有
しない紫外線を発生する前記水銀灯を用いることが好ま
しい。The cross-linking treatment may be carried out, for example, on the film after film formation as it is or by impregnating it with a methanol solution containing a polymerization initiator and drying methanol as a solvent.
Irradiate with ultraviolet rays using a low pressure mercury lamp or a high pressure mercury lamp. From the viewpoint of maintaining sufficient film strength, it is preferable to use the above-mentioned mercury lamp that emits ultraviolet rays having substantially no wavelength distribution of 250 nm or less for the irradiation of ultraviolet rays.
【0033】また、前記架橋処理工程に続いて、熱収縮
を防止する観点から、得られた多孔質フィルムをヒート
セット(熱固定)してもよい。ヒートセットする際の温
度は、例えば、110〜140℃とし、0.5〜2時間
程度行えばよい。Further, the porous film obtained may be heat-set (heat-fixed) from the viewpoint of preventing heat shrinkage subsequent to the crosslinking treatment step. The temperature for heat setting is, for example, 110 to 140 ° C., and the temperature may be set for about 0.5 to 2 hours.
【0034】以上のようにして得られた多孔質フィルム
の厚さとしては、好ましくは10〜50μm、より好ま
しくは15〜40μmである。かかる範囲内であれば、
該多孔質フィルムからなる電池用セパレータを用いてな
る電池の性能が良好であり好ましい。また、その通気度
としては、好ましくは800秒/100cc以下、より
好ましくは750秒/100cc以下である。また、好
ましくは100秒/100cc以上、より好ましくは1
50秒/100cc以上である。通気度がかかる範囲内
であれば、電解液の浸透性や保液性が良好で、しかも電
気抵抗が適正であり、かかる多孔質フィルムをセパレー
タとして用いることにより良好な電池を組み立てること
ができる。また、空孔率は30〜70%が好ましく、3
5〜50%がより好ましい。空孔率が前記範囲内であれ
ば、微多孔分布が適正であって、しかも過充電状態にお
いても電池の短絡が抑えられる。突き刺し強度は3N/
25μm以上が好ましく、4N/25μm以上がより好
ましい。突き刺し強度が前記範囲内であれば、破膜する
ことなく充分な強度を有する。さらに、充分な機械的強
度が得られるという観点から、ゲル分率は好ましくは5
0〜90%である。なお、これらの多孔質フィルムの各
種特性は、後述の実施例に記載する方法により測定する
ことができる。The thickness of the porous film obtained as described above is preferably 10 to 50 μm, more preferably 15 to 40 μm. Within this range,
A battery using a battery separator made of the porous film has good performance and is preferable. The air permeability thereof is preferably 800 seconds / 100 cc or less, more preferably 750 seconds / 100 cc or less. Also, preferably 100 seconds / 100 cc or more, more preferably 1
50 seconds / 100 cc or more. When the air permeability is within the above range, the permeability of the electrolytic solution and the liquid retaining property are good, and the electric resistance is appropriate, and a good battery can be assembled by using such a porous film as a separator. The porosity is preferably 30 to 70% and 3
5 to 50% is more preferable. When the porosity is within the above range, the micropore distribution is appropriate, and further, the short circuit of the battery can be suppressed even in the overcharged state. Puncture strength is 3N /
It is preferably 25 μm or more, more preferably 4 N / 25 μm or more. When the puncture strength is within the above range, the film has sufficient strength without rupturing. Further, the gel fraction is preferably 5 from the viewpoint of obtaining sufficient mechanical strength.
0 to 90%. Various properties of these porous films can be measured by the methods described in Examples below.
【0035】本発明の多孔質フィルムは、高い膜特性と
共に、高温・高圧状態下でも、その形状を維持し得る程
度の高耐熱性を有するものであり、特にリチウムイオン
二次電池用セパレータとして好適に使用することがで
き、さらにキャパシターのセパレータ、油吸収シート、
フィルターとしての応用も可能である。The porous film of the present invention has high film properties and high heat resistance to the extent that its shape can be maintained even under high temperature and high pressure conditions, and is particularly suitable as a separator for lithium ion secondary batteries. Can also be used for capacitor separator, oil absorption sheet,
It can also be applied as a filter.
【0036】本発明の電池としては、前記多孔質フィル
ムをセパレータとして用いてなるものであればよく、そ
の構造、構成物質、および製造方法などについては公知
の電池と同様でよく特に限定はない。該電池は、本発明
の多孔質フィルムをセパレータとして用いるので安全性
に優れたものである。また、前記多孔質フィルムをセパ
レータとして用いることによりキャパシターを得ること
もできる。本キャパシターは公知のキャパシターと同様
にして製造することができ、安全性に優れたものであ
る。The battery of the present invention may be any one using the above-mentioned porous film as a separator, and its structure, constituent materials, manufacturing method and the like may be the same as those of known batteries and are not particularly limited. The battery is excellent in safety because it uses the porous film of the present invention as a separator. Also, a capacitor can be obtained by using the porous film as a separator. This capacitor can be manufactured in the same manner as a known capacitor and is excellent in safety.
【0037】[0037]
【実施例】本発明を実施例に基づいてさらに詳細に説明
するが、本発明はかかる実施例のみに限定されるもので
はない。なお、各実施例および比較例にて得られた多孔
質フィルムの各種特性については下記要領にて測定を行
った。EXAMPLES The present invention will be described in more detail based on examples, but the present invention is not limited to such examples. The various characteristics of the porous films obtained in each of the examples and comparative examples were measured according to the following procedures.
【0038】(1)重量平均分子量
ウォーターズ社製のゲル浸透クロマトグラフ「GPC−
150C」を用い、溶媒にo−ジクロロベンゼンを、ま
た、カラムとして昭和電工(株)製の「Shodex−
80M」を用いて135℃で測定した。データ処理は、
TRC社製データ処理システムを用いて行った。また、
分子量はポリスチレンを基準として算出した。(1) Weight average molecular weight Gel permeation chromatograph "GPC-" manufactured by Waters
150C ", o-dichlorobenzene was used as a solvent, and a column" SHODEX- "manufactured by Showa Denko KK was used as a column.
80M "at 135 ° C. Data processing is
The data processing system manufactured by TRC was used. Also,
The molecular weight was calculated based on polystyrene.
【0039】(2)フィルム厚
1/10000シックネスゲージによりフィルム厚(μ
m)を測定した。(2) Film thickness 1/10000 The film thickness (μ
m) was measured.
【0040】(3)空孔率
測定対象の多孔質フィルムを直径6cmの円状に切り抜
き、その体積と重量を求め、それらから次式を用いて計
算した。
空孔率(体積%)=100×〔体積(cm3)−重量(g)/多孔質フィル
ムの樹脂成分の平均密度(g/cm3)〕/体積(cm3)(3) Porosity The porous film to be measured was cut out into a circular shape having a diameter of 6 cm, the volume and weight thereof were determined, and the volume and weight were calculated using the following formula. Porosity (vol%) = 100 × [volume (cm 3) - Weight (g) / porous average density of the resin component of the film (g / cm 3)] / volume (cm 3)
【0041】(4)通気度(ガーレ値)
JIS P8117に準拠して、通気度(秒/100c
c)を測定した。(4) Air permeability (Gurley value) In accordance with JIS P8117, air permeability (second / 100c)
c) was measured.
【0042】(5)突き刺し試験
カトーテック(株)製圧縮試験機「KES−G5」を用
いて、突き刺し試験を行った。得られた荷重変移曲線か
ら最大荷重を読み取り、突き刺し強度(N)とした。針
は、直径0.75mm、先端の曲率半径0.5mmのも
のを用い、2cm/秒の速度で行った。値は全て厚さ2
5μmに換算した。(5) Puncture test A puncture test was performed using a compression tester "KES-G5" manufactured by Kato Tech Co., Ltd. The maximum load was read from the obtained load change curve and defined as the puncture strength (N). A needle having a diameter of 0.75 mm and a tip radius of curvature of 0.5 mm was used, and the speed was 2 cm / sec. All values are thickness 2
It was converted to 5 μm.
【0043】(6)収縮率
直径6cmの円状に切り取った膜を、イメージスキャナ
にて144dpiで読みとり、面積をピクセル数に変換
してブランク値とした。次に同膜を105℃で1時間恒
温乾燥機中に保持し、取りだし後イメージスキャナにて
144dpiで読みとり、面積をピクセル数に変換して
熱処理後の値とした。ブランクおよび熱処理後の面積ピ
クセル数から、次式によってR1 (収縮率)(%)を求
めた。
R1 =100×(P0 −P1 )/P0
(P0 :熱収縮前のピクセル数、P1 :熱収縮後のピク
セル数)(6) Shrinkage rate The film cut into a circle with a diameter of 6 cm was read at 144 dpi with an image scanner, and the area was converted into the number of pixels to obtain a blank value. Next, the film was kept in a thermostatic dryer at 105 ° C. for 1 hour, taken out and read by an image scanner at 144 dpi, and the area was converted into the number of pixels to obtain a value after heat treatment. From the number of area pixels after blanking and heat treatment, R 1 (shrinkage rate) (%) was calculated by the following formula. R 1 = 100 × (P 0 −P 1 ) / P 0 (P 0 : number of pixels before heat shrink, P 1 : number of pixels after heat shrink)
【0044】(7)ゲル分率
多孔質フィルムを4cm×4cmの角に切断し、5cm
×5cmの金属メッシュで挟み込み、5cm×5cm角
のサンプルとした。このサンプルの初期重量を測定し、
100mlのm−キシレン(沸点139℃)中に浸漬し
て昇温し、3時間キシレンを沸騰させ、取り出し後洗浄
乾燥させて重量変化からゲル分率R2 (%)を測定し
た。
R2 (%)=100×P1/P0
〔P0:初期重量(g)、P1:沸騰キシレン処理後重
量(g)〕(7) Gel fraction Porous film was cut into 4 cm × 4 cm squares and cut into 5 cm
The sample was sandwiched between metal meshes of 5 cm x 5 cm to form a 5 cm x 5 cm square sample. Measure the initial weight of this sample,
The gel fraction R 2 (%) was measured from the weight change by immersing in 100 ml of m-xylene (boiling point 139 ° C.), raising the temperature, boiling the xylene for 3 hours, taking out, washing and drying. R 2 (%) = 100 × P1 / P0 [P0: initial weight (g), P1: weight after boiling xylene treatment (g)]
【0045】(8)耐熱性
幅3mmの短冊状の多孔質フィルムをチャック間を10
mmとして取り付け、セイコー電子製熱応力歪み分析装
置TMA/SS100にセットして、昇温速度2℃/m
inで昇温した。短冊状の多孔質フィルムが破断した際
の温度を耐熱性の指標としての耐熱破断温度(℃)とし
た。(8) Heat resistance A strip-shaped porous film having a width of 3 mm is provided between chucks 10 times.
mm, and set in a thermal stress strain analyzer TMA / SS100 manufactured by Seiko Denshi, and a heating rate of 2 ° C / m
The temperature was raised in. The temperature at which the strip-shaped porous film broke was defined as the heat-resistant rupture temperature (° C) as an index of heat resistance.
【0046】実施例1
流動パラフィン85重量部と、超高分子量ポリエチレン
(三井化学(株)製、商品名:Hizex Milli
on 240S、融点136℃、重量平均分子量2×1
06 )70重量%、ポリノルボルネンゴム(ノルボルネ
ン開環重合体粉末、日本ゼオン(株)製、商品名:ノー
ソレックスNB、重量平均分子量2×106 以上)8重
量%、ポリオレフィン系熱可塑性エラストマーTPE8
21(住友化学(株)製、商品名:TPE821、ポリ
エチレン・ポリプロピレン共重合体)22重量%からな
る混合物15重量部とを、二軸押出機(東芝機械、TE
M−35B)で160℃にて混練りし、フィッシュテー
ルダイスで押し出し後、サイジングダイスに通してドラ
イアイス温度(−30℃)まで急冷し、厚さおよそ8m
mのゲル状成形物を作製した。これを加熱プレス機で1
15℃にて5分間予熱後、9mmのスペーサ厚みでプレ
スし、3分間保持した後、水温に冷却したプレス機に挿
み急冷し、厚さ約110mmのゲルシートを得た。この
シートをバッチ式同時二軸延伸機(岩本製作所製、BI
X−712−S)で、127℃において予熱後、およそ
3.2×3.2倍延伸し、厚さおよそ90μmのゲルフ
ィルムを得た。延伸速度は4mm/秒に設定した。得ら
れたゲルフィルムは、正方形のSUS製枠に固定し、3
浴のn−ヘプタンで溶媒を抽出し、室温でヘプタンの乾
燥を行い多孔質フィルムを得た。次いで、SUS製枠に
固定したまま、200nm以下に波長の分布を実質的に
有しない紫外線の発生を可能としたコンベア式高圧水銀
灯照射装置(アイグラフィックス社製、UE021−2
03C、出力2kW、コンベア速度3m/min)にて
15分間の紫外線照射を行い、その後そのまま乾燥機中
に投入し、85℃で12時間、117℃で2時間、順次
ヒートセット処理を行い、最終的に厚さ24μm、空孔
率40%、通気度470秒/100cc、突き刺し強度
6N/25μm、収縮率13%、ゲル分率72%、耐熱
破断温度200℃以上の多孔質フィルムを得た。Example 1 85 parts by weight of liquid paraffin and ultrahigh molecular weight polyethylene (trade name: Hizex Milli, manufactured by Mitsui Chemicals, Inc.)
on 240S, melting point 136 ° C, weight average molecular weight 2 × 1
0 6 ) 70% by weight, polynorbornene rubber (norbornene ring-opening polymer powder, manufactured by Nippon Zeon Co., Ltd., trade name: Nosolex NB, weight average molecular weight 2 × 10 6 or more) 8% by weight, polyolefin thermoplastic elastomer TPE8
21 (Sumitomo Chemical Co., Ltd., trade name: TPE821, polyethylene / polypropylene copolymer) 15 parts by weight of a mixture of 22% by weight, and a twin-screw extruder (Toshiba Machinery, TE
M-35B) at 160 ° C., extruded with a fish tail die, then passed through a sizing die and rapidly cooled to dry ice temperature (−30 ° C.) to a thickness of about 8 m.
A gel-like molded product of m was produced. 1 with a heating press
After preheating at 15 ° C. for 5 minutes, the spacer was pressed with a spacer thickness of 9 mm, held for 3 minutes, and then inserted into a press machine cooled to a water temperature and rapidly cooled to obtain a gel sheet having a thickness of about 110 mm. This sheet is batch type simultaneous biaxial stretching machine (Iwamoto Seisakusho, BI
X-712-S) was preheated at 127 ° C. and then stretched by about 3.2 × 3.2 times to obtain a gel film having a thickness of about 90 μm. The stretching speed was set to 4 mm / sec. The obtained gel film was fixed to a square SUS frame,
The solvent was extracted with n-heptane in the bath, and the heptane was dried at room temperature to obtain a porous film. Then, while being fixed to the SUS frame, a conveyor-type high-pressure mercury lamp irradiation device capable of generating ultraviolet rays having substantially no wavelength distribution of 200 nm or less (manufactured by Eye Graphics Co., UE021-2
UV irradiation for 15 minutes at 03C, output 2 kW, conveyor speed 3 m / min), and then put into the dryer as it is, and heat set treatment is performed sequentially at 85 ° C. for 12 hours and 117 ° C. for 2 hours. A porous film having a thickness of 24 μm, a porosity of 40%, an air permeability of 470 seconds / 100 cc, a puncture strength of 6 N / 25 μm, a shrinkage rate of 13%, a gel fraction of 72%, and a heat-resistant rupture temperature of 200 ° C. or higher was obtained.
【0047】比較例1
実施例1において、紫外線照射を行わなかった以外は同
様とし、厚さ24μm、空孔率35%、通気度670秒
/100cc、突き刺し強度6.5N/25μm、収縮
率12%、ゲル分率75%、耐熱破断温度200℃以上
の多孔質フィルムを得た。Comparative Example 1 The same procedure as in Example 1 was carried out except that the ultraviolet irradiation was not carried out, and the thickness was 24 μm, the porosity was 35%, the air permeability was 670 seconds / 100 cc, the puncture strength was 6.5 N / 25 μm, and the shrinkage rate was 12. %, A gel fraction of 75%, and a heat-resistant breaking temperature of 200 ° C. or higher were obtained.
【0048】実施例2
実施例1において、超高分子量ポリエチレン88重量
%、ポリノルボルネンゴム12重量%からなる混合物を
用い、延伸時の温度を125℃、延伸速度を2mm/
秒、紫外線照射時間を10分間、ヒートセット処理を8
5℃で12時間、130℃で2時間、順次行った以外は
同様とし、厚さ23μm、空孔率33%、通気度650
秒/100cc、突き刺し強度7N/25μm、収縮率
3%、ゲル分率80%、耐熱破断温度240℃以上の多
孔質フィルムを得た。Example 2 In Example 1, a mixture of 88% by weight of ultrahigh molecular weight polyethylene and 12% by weight of polynorbornene rubber was used, the temperature during stretching was 125 ° C., the stretching speed was 2 mm /
Seconds, UV irradiation time 10 minutes, heat set treatment 8
Same procedure as above, except that the procedure was performed at 5 ° C. for 12 hours and at 130 ° C. for 2 hours, the thickness was 23 μm, the porosity was 33%, and the air permeability was 650.
A porous film having a second / 100 cc, a puncture strength of 7 N / 25 μm, a shrinkage rate of 3%, a gel fraction of 80% and a heat-resistant rupture temperature of 240 ° C. or higher was obtained.
【0049】比較例2
実施例2において、紫外線照射を行わなかった以外は同
様とし、厚さ23μm、空孔率30%、通気度880秒
/100cc、突き刺し強度7.5N/25μm、収縮
率3%、ゲル分率78%、耐熱破断温度240℃以上の
多孔質フィルムを得た。Comparative Example 2 The same procedure as in Example 2 was carried out except that the ultraviolet ray irradiation was not performed, and the thickness was 23 μm, the porosity was 30%, the air permeability was 880 seconds / 100 cc, the puncture strength was 7.5 N / 25 μm, and the shrinkage rate was 3. %, A gel fraction of 78% and a heat-resistant breaking temperature of 240 ° C. or higher were obtained.
【0050】実施例3
流動パラフィン85重量部と、超高分子量ポリエチレン
(三井化学(株)製、商品名:Hizex Milli
on 240S、融点136℃、重量平均分子量2×1
06 )70重量%、ポリノルボルネンゴム(ノルボルネ
ン開環重合体粉末、日本ゼオン(株)製、商品名:ノー
ソレックスNB、重量平均分子量2×106 以上)8重
量%、ポリオレフィン系熱可塑性エラストマーTPE8
21(住友化学(株)製、商品名:TPE821、ポリ
エチレン・ポリプロピレン共重合体)22重量%からな
る混合物15重量部とを、二軸押出機(東芝機械、TE
M−35B)で160℃にて混練りし、フィッシュテー
ルダイスで押し出し後、サイジングダイスに通してドラ
イアイス温度まで急冷し、厚さおよそ8mmのゲル状成
形物を作製した。これを加熱プレス機で115℃にて5
分間予熱後、9mmのスペーサ厚みでプレスし、3分間
保持した後、水温に冷却したプレス機に挿み急冷し、厚
さ約110mmのゲルシートを得た。このシートをバッ
チ式同時二軸延伸機(岩本製作所製、BIX−712−
S)で、127℃において予熱後、およそ3.2×3.
2倍延伸し、厚さおよそ90μmのゲルフィルムを得
た。延伸速度は4mm/秒に設定した。得られたゲルフ
ィルムは、正方形のSUS製枠に固定し、3浴のn−ヘ
プタンで溶媒を抽出し、室温でヘプタンの乾燥を行い多
孔質フィルムを得た。次いで、SUS製枠に固定したま
ま、250nm以下に波長の分布を実質的に有しない紫
外線の発生を可能としたコンベア式高圧水銀灯照射装置
(アイグラフィックス社製、UE021−203C、出
力2kW、コンベア速度3m/min)にて15分間の
紫外線照射を行い、その後そのまま乾燥機中に投入し、
85℃で12時間、117℃で2時間、順次ヒートセッ
ト処理を行い、最終的に厚さ24μm、空孔率39%、
通気度480秒/100cc、突き刺し強度6.5N/
25μm、収縮率12%、ゲル分率74%、耐熱破断温
度200℃以上の多孔質フィルムを得た。Example 3 85 parts by weight of liquid paraffin and ultrahigh molecular weight polyethylene (manufactured by Mitsui Chemicals, Inc., trade name: Hizex Milli)
on 240S, melting point 136 ° C, weight average molecular weight 2 × 1
0 6 ) 70% by weight, polynorbornene rubber (norbornene ring-opening polymer powder, manufactured by Nippon Zeon Co., Ltd., trade name: Nosolex NB, weight average molecular weight 2 × 10 6 or more) 8% by weight, polyolefin-based thermoplastic elastomer TPE8
21 (Sumitomo Chemical Co., Ltd., trade name: TPE821, polyethylene / polypropylene copolymer) 15 parts by weight of a mixture of 22% by weight, and a twin-screw extruder (Toshiba Machinery, TE
M-35B) was kneaded at 160 ° C., extruded with a fish tail die, and then rapidly cooled to a dry ice temperature through a sizing die to prepare a gel-like molded product having a thickness of about 8 mm. This is heated at 115 ° C for 5 minutes with a heating press
After preheating for a minute, it was pressed with a spacer thickness of 9 mm, held for 3 minutes, and then inserted into a press machine cooled to a water temperature and rapidly cooled to obtain a gel sheet having a thickness of about 110 mm. This sheet is batch-type simultaneous biaxial stretching machine (manufactured by Iwamoto Seisakusho, BIX-712-
S) after preheating at 127 ° C., approximately 3.2 × 3.
The film was stretched 2 times to obtain a gel film having a thickness of about 90 μm. The stretching speed was set to 4 mm / sec. The obtained gel film was fixed on a square SUS frame, the solvent was extracted with n-heptane in 3 baths, and the heptane was dried at room temperature to obtain a porous film. Next, while being fixed to the SUS frame, a conveyor type high-pressure mercury lamp irradiation device capable of generating ultraviolet rays having substantially no wavelength distribution of 250 nm or less (manufactured by Eye Graphics Co., UE021-203C, output 2 kW, conveyor UV irradiation for 15 minutes at a speed of 3 m / min), then put it into the dryer as it is,
Heat setting treatment was sequentially performed at 85 ° C. for 12 hours and 117 ° C. for 2 hours to finally obtain a thickness of 24 μm and a porosity of 39%.
Air permeability 480 seconds / 100cc, puncture strength 6.5N /
A porous film having a thickness of 25 μm, a shrinkage rate of 12%, a gel fraction of 74% and a heat-resistant rupture temperature of 200 ° C. or higher was obtained.
【0051】実施例4
実施例3において、200nm以下に波長の分布を実質
的に有しない紫外線の発生を可能としたコンベア式高圧
水銀灯照射装置にて15分間の紫外線照射を行った以外
は同様とし、厚さ24μm、空孔率40%、通気度47
0秒/100cc、突き刺し強度6N/25μm、収縮
率13%、ゲル分率72%、耐熱破断温度200℃以上
の多孔質フィルムを得た。Example 4 The same as Example 3 except that the ultraviolet irradiation was carried out for 15 minutes with a conveyor type high pressure mercury lamp irradiation device capable of generating ultraviolet having substantially no wavelength distribution of 200 nm or less. , Thickness 24μm, porosity 40%, air permeability 47
A porous film having 0 second / 100 cc, a puncture strength of 6 N / 25 μm, a shrinkage rate of 13%, a gel fraction of 72%, and a heat-resistant rupture temperature of 200 ° C. or higher was obtained.
【0052】比較例3
実施例3において、紫外線照射を行わなかった以外は同
様とし、厚さ24μm、空孔率35%、通気度670秒
/100cc、突き刺し強度6.5N/25μm、収縮
率12%、ゲル分率75%、耐熱破断温度200℃以上
の多孔質フィルムを得た。Comparative Example 3 The procedure of Example 3 was repeated except that the ultraviolet irradiation was not performed, and the thickness was 24 μm, the porosity was 35%, the air permeability was 670 seconds / 100 cc, the puncture strength was 6.5 N / 25 μm, and the shrinkage rate was 12. %, A gel fraction of 75%, and a heat-resistant breaking temperature of 200 ° C. or higher were obtained.
【0053】実施例5
実施例3において、超高分子量ポリエチレン88重量
%、ポリノルボルネンゴム12重量%からなる混合物を
用い、延伸時の温度を125℃、延伸速度を2mm/
秒、250nm以下に波長の分布を実質的に有しない紫
外線の発生を可能としたコンベア式高圧水銀灯照射装置
による紫外線照射時間を10分間、ヒートセット処理を
85℃で12時間、130℃で2時間、順次行った以外
は同様とし、厚さ23μm、空孔率33%、通気度68
0秒/100cc、突き刺し強度7.5N/25μm、
収縮率3%、ゲル分率81%、耐熱破断温度240℃以
上の多孔質フィルムを得た。Example 5 In Example 3, a mixture of 88% by weight of ultra high molecular weight polyethylene and 12% by weight of polynorbornene rubber was used, the temperature during stretching was 125 ° C., the stretching speed was 2 mm /
Second, UV irradiation time by a conveyor type high pressure mercury lamp irradiation device capable of generating UV light having substantially no wavelength distribution of 250 nm or less is 10 minutes, heat setting treatment is 85 ° C. for 12 hours, 130 ° C. for 2 hours. The procedure is the same as above, except that the thickness is 23 μm, the porosity is 33%, and the air permeability is 68.
0 seconds / 100 cc, puncture strength 7.5 N / 25 μm,
A porous film having a shrinkage ratio of 3%, a gel fraction of 81% and a heat-resistant breaking temperature of 240 ° C. or higher was obtained.
【0054】実施例6
実施例3において、200nm以下に波長の分布を実質
的に有しない紫外線の発生を可能としたコンベア式高圧
水銀灯照射装置にて10分間の紫外線照射を行った以外
は同様とし、厚さ23μm、空孔率33%、通気度65
0秒/100cc、突き刺し強度7N/25μm、収縮
率3%、ゲル分率80%、耐熱破断温度240℃以上の
多孔質フィルムを得た。Example 6 The same procedure as in Example 3 was carried out except that ultraviolet irradiation was carried out for 10 minutes with a conveyor type high pressure mercury lamp irradiation device capable of generating ultraviolet rays having substantially no wavelength distribution of 200 nm or less. , Thickness 23μm, porosity 33%, air permeability 65
A porous film having 0 second / 100 cc, a puncture strength of 7 N / 25 μm, a shrinkage rate of 3%, a gel fraction of 80%, and a heat-resistant rupture temperature of 240 ° C. or higher was obtained.
【0055】比較例4
実施例5において、紫外線照射を行わなかった以外は同
様とし、厚さ23μm、空孔率30%、通気度880秒
/100cc、突き刺し強度7.5N/25μm、収縮
率3%、ゲル分率78%、耐熱破断温度240℃以上の
多孔質フィルムを得た。Comparative Example 4 The same procedure as in Example 5 was carried out except that the ultraviolet ray irradiation was not performed, and the thickness was 23 μm, the porosity was 30%, the air permeability was 880 seconds / 100 cc, the puncture strength was 7.5 N / 25 μm, and the shrinkage rate was 3. %, A gel fraction of 78% and a heat-resistant breaking temperature of 240 ° C. or higher were obtained.
【0056】[0056]
【表1】 [Table 1]
【0057】表1の結果より、紫外線を照射して得られ
た実施例1〜6の多孔質フィルムでは、紫外線を照射せ
ずに製造を行なった、各実施例に対応する比較例1〜4
の多孔質フィルムに比べ、耐熱性および強度が維持され
つつ、空孔率および通気性の向上が認められる。また、
実施例3と4、実施例5と6の比較から、250nm以
下に波長の分布を有しない紫外線を照射して得られた多
孔質フィルムでは、強度の低下が生じないことが分か
る。From the results shown in Table 1, the porous films of Examples 1 to 6 obtained by irradiating with ultraviolet rays were manufactured without irradiating with ultraviolet rays, and Comparative Examples 1 to 4 corresponding to the respective examples.
The heat resistance and strength are maintained, while the porosity and air permeability are improved as compared with the porous film of No. Also,
From the comparison between Examples 3 and 4 and Examples 5 and 6, it can be seen that the porous film obtained by irradiating with ultraviolet rays having no wavelength distribution of 250 nm or less does not cause reduction in strength.
【0058】[0058]
【発明の効果】本発明により、空孔率、通気性が向上
し、機械的強度、収縮率が良好な、架橋高分子からなる
多孔質フィルムを作製することが可能であり、また、得
られる多孔質フィルムを電池用セパレータとして用いる
ことで良好な所望の特性を有する電池またはキャパシタ
ーを作製することが可能であり、異常状態下において、
電池中で高温にさらされた際にも該セパレータの形状と
機械的強度が保持され、正極と負極を隔てた状態を維持
できることから、電池またはキャパシターの安全性を向
上させることができる。EFFECTS OF THE INVENTION According to the present invention, it is possible and possible to produce a porous film made of a crosslinked polymer, which has improved porosity, air permeability, and good mechanical strength and shrinkage. It is possible to produce a battery or capacitor having good desired characteristics by using the porous film as a battery separator, under abnormal conditions,
The shape and mechanical strength of the separator can be maintained even when exposed to high temperature in the battery, and the state in which the positive electrode and the negative electrode are separated can be maintained, so that the safety of the battery or the capacitor can be improved.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 山本 一成 大阪府茨木市下穂積1−1−2 日東電工 株式会社内 (72)発明者 能見 俊祐 大阪府茨木市下穂積1−1−2 日東電工 株式会社内 (72)発明者 山口 睦子 大阪府茨木市下穂積1−1−2 日東電工 株式会社内 Fターム(参考) 4F074 AA16 AA17 AA54 AA98 AD01 AG20 AH01 BB25 CB03 CB16 CB28 CC02 CC45 CC50 DA49 5H021 BB01 BB04 BB05 BB13 BB15 CC00 EE02 EE04 HH03 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Kazunari Yamamoto 1-1-2 Shimohozumi, Ibaraki City, Osaka Prefecture Nitto Denko Within the corporation (72) Inventor Shunsuke Nomi 1-1-2 Shimohozumi, Ibaraki City, Osaka Prefecture Nitto Denko Within the corporation (72) Inventor Mutsuko Yamaguchi 1-1-2 Shimohozumi, Ibaraki City, Osaka Prefecture Nitto Denko Within the corporation F-term (reference) 4F074 AA16 AA17 AA54 AA98 AD01 AG20 AH01 BB25 CB03 CB16 CB28 CC02 CC45 CC50 DA49 5H021 BB01 BB04 BB05 BB13 BB15 CC00 EE02 EE04 HH03
Claims (8)
有するゴム類を含む樹脂成分および溶媒を含有する樹脂
組成物を溶融混練し、得られた溶融混練物をシート状に
成形し、該シート状成形物の延伸処理と脱溶媒処理を行
う工程を有する多孔質フィルムの製造方法において、紫
外線を照射する工程を有する多孔質フィルムの製造方
法。1. A melt-kneaded resin composition containing a resin component containing a polyolefin and a rubber having a crosslinkable unsaturated bond and a solvent, and molding the obtained melt-kneaded product into a sheet, A method for producing a porous film, which comprises a step of irradiating ultraviolet rays in a method of producing a porous film, which comprises the steps of stretching and desolvating a molded product.
布を実質的に有しないものである請求項1記載の多孔質
フィルムの製造方法。2. The method for producing a porous film according to claim 1, wherein the ultraviolet rays have substantially no wavelength distribution below 250 nm.
チレンである請求項1または2記載の多孔質フィルムの
製造方法。3. The method for producing a porous film according to claim 1, wherein the polyolefin is ultra-high molecular weight polyethylene.
がポリノルボルネンである請求項1〜3いずれか記載の
多孔質フィルムの製造方法。4. The method for producing a porous film according to claim 1, wherein the rubber having a crosslinkable unsaturated bond is polynorbornene.
ルムの製造方法により得られ得る多孔質フィルム。5. A porous film obtainable by the method for producing a porous film according to claim 1.
電池用セパレータ。6. A battery separator comprising the porous film according to claim 5.
てなる電池。7. A battery using the battery separator according to claim 6.
てなるキャパシター。8. A capacitor comprising the battery separator according to claim 6.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001314496A JP2003119313A (en) | 2001-10-11 | 2001-10-11 | Method for producing porous film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001314496A JP2003119313A (en) | 2001-10-11 | 2001-10-11 | Method for producing porous film |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003119313A true JP2003119313A (en) | 2003-04-23 |
Family
ID=19132801
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001314496A Pending JP2003119313A (en) | 2001-10-11 | 2001-10-11 | Method for producing porous film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003119313A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004091014A1 (en) * | 2003-04-09 | 2004-10-21 | Nitto Denko Corporation | Adhesive-carrying porous film for cell separator and its application |
JP2005285372A (en) * | 2004-03-26 | 2005-10-13 | Toshiba Corp | Nonaqueous electrolyte secondary battery |
WO2008146758A1 (en) | 2007-05-24 | 2008-12-04 | Nitto Denko Corporation | Method for production of porous film, porous film, separator for non-aqueous electrolyte battery, and non-aqueous electrolyte battery using the separator |
JP2009043485A (en) * | 2007-08-07 | 2009-02-26 | Mitsubishi Plastics Inc | Lithium ion battery separator and method for producing the same |
CN102751459A (en) * | 2011-04-22 | 2012-10-24 | 北京东皋膜技术有限公司 | Nano microporous diaphragm made of post-crosslinked rubber and polyolefin composite, and manufacturing method thereof |
WO2016104791A1 (en) * | 2014-12-26 | 2016-06-30 | 東レバッテリーセパレータフィルム株式会社 | Polyolefin resin composition and manufacturing method for polyolefin microporous membrane |
WO2018095093A1 (en) * | 2016-11-25 | 2018-05-31 | 上海恩捷新材料科技股份有限公司 | Battery separator film and method for fabrication thereof |
WO2018095094A1 (en) * | 2016-11-25 | 2018-05-31 | 上海恩捷新材料科技股份有限公司 | Method for fabricating battery separator film |
CN114665227A (en) * | 2022-03-23 | 2022-06-24 | 哈尔滨工业大学无锡新材料研究院 | High-wettability lithium ion battery diaphragm and preparation method thereof |
-
2001
- 2001-10-11 JP JP2001314496A patent/JP2003119313A/en active Pending
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004091014A1 (en) * | 2003-04-09 | 2004-10-21 | Nitto Denko Corporation | Adhesive-carrying porous film for cell separator and its application |
US7833654B2 (en) * | 2003-04-09 | 2010-11-16 | Nitto Denko Corporation | Adhesive-carrying porous film for battery separator and use thereof |
KR101025187B1 (en) | 2003-04-09 | 2011-03-31 | 닛토덴코 가부시키가이샤 | Adhesive-supported porous film for battery separator and its use |
JP2005285372A (en) * | 2004-03-26 | 2005-10-13 | Toshiba Corp | Nonaqueous electrolyte secondary battery |
KR101458243B1 (en) | 2007-05-24 | 2014-11-04 | 닛토덴코 가부시키가이샤 | Method for production of porous film, porous film, separator for non-aqueous electrolyte battery, and non-aqueous electrolyte battery using the separator |
WO2008146758A1 (en) | 2007-05-24 | 2008-12-04 | Nitto Denko Corporation | Method for production of porous film, porous film, separator for non-aqueous electrolyte battery, and non-aqueous electrolyte battery using the separator |
JP2009001791A (en) * | 2007-05-24 | 2009-01-08 | Nitto Denko Corp | Method for producing porous film, porous film, separator for non-aqueous electrolyte battery, and non-aqueous electrolyte battery using the separator |
US9340653B2 (en) | 2007-05-24 | 2016-05-17 | Nitto Denko Corporation | Method for production of porous film, porous film, separator for non-aqueous electrolyte battery, and non-aqueous electrolyte battery using the separator |
JP2009043485A (en) * | 2007-08-07 | 2009-02-26 | Mitsubishi Plastics Inc | Lithium ion battery separator and method for producing the same |
CN102751459A (en) * | 2011-04-22 | 2012-10-24 | 北京东皋膜技术有限公司 | Nano microporous diaphragm made of post-crosslinked rubber and polyolefin composite, and manufacturing method thereof |
US9991494B2 (en) | 2011-04-22 | 2018-06-05 | Tianjin Dg Membrane Co., Ltd. | Nano microporous diaphragm of post-crosslinked rubber and polyolefin composite, and manufacturing method thereof |
WO2016104791A1 (en) * | 2014-12-26 | 2016-06-30 | 東レバッテリーセパレータフィルム株式会社 | Polyolefin resin composition and manufacturing method for polyolefin microporous membrane |
CN107207762A (en) * | 2014-12-26 | 2017-09-26 | 东丽株式会社 | The manufacture method of polyolefine resin composition and polyolefin micro porous polyolefin membrane |
JPWO2016104791A1 (en) * | 2014-12-26 | 2017-10-05 | 東レ株式会社 | Polyolefin resin composition and method for producing polyolefin microporous membrane |
WO2018095093A1 (en) * | 2016-11-25 | 2018-05-31 | 上海恩捷新材料科技股份有限公司 | Battery separator film and method for fabrication thereof |
WO2018095094A1 (en) * | 2016-11-25 | 2018-05-31 | 上海恩捷新材料科技股份有限公司 | Method for fabricating battery separator film |
CN114665227A (en) * | 2022-03-23 | 2022-06-24 | 哈尔滨工业大学无锡新材料研究院 | High-wettability lithium ion battery diaphragm and preparation method thereof |
CN114665227B (en) * | 2022-03-23 | 2024-04-09 | 哈尔滨工业大学无锡新材料研究院 | High-wettability lithium ion battery diaphragm and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6127438A (en) | Polyethylene microporous film and process for producing the same | |
RU2406612C2 (en) | Multilayer microporous polyolefin membrane and storage battery separator | |
CN102372856B (en) | Polyolefin porous membrane, its manufacture method and manufacturing installation thereof | |
JP5220477B2 (en) | Porous film manufacturing method, porous film, nonaqueous electrolyte battery separator, and nonaqueous electrolyte battery using the same | |
JP4703076B2 (en) | Microporous film | |
JP4583532B2 (en) | Porous membrane | |
JP4677663B2 (en) | Polyolefin microporous membrane | |
JPWO2006137535A1 (en) | Method for producing polyolefin microporous membrane | |
JP3113287B2 (en) | Polyethylene microporous membrane with low fuse temperature | |
JP2002284918A (en) | Polyolefin microporous membrane, its production method and use | |
KR20190124207A (en) | Polyolefin microporous membrane, multilayer polyolefin microporous membrane, laminated polyolefin microporous membrane, and separator | |
CN101223216A (en) | Microporous high-density polyethylene film and its preparation method | |
JP2003119313A (en) | Method for producing porous film | |
JP2002128942A (en) | Polyolefin microporous film and its manufacturing method | |
JP7532843B2 (en) | Polyolefin microporous membrane, battery separator, and secondary battery | |
JP2001200081A (en) | Polyethylene microporous membrane and its manufacturing method | |
JP2001200082A (en) | Polyethylene microporous membrane and its manufacturing method | |
CN101001904A (en) | Microporous high density polyethylene film and method of producing the same | |
JP2003105121A (en) | Polyolefin minute porous film and method of its manufacture | |
JP2002047372A (en) | Porous film and method of preparing the same and battery using the same | |
JP2003119306A (en) | Low-shrinkable fine porous film and method for producing the same | |
JP2019157060A (en) | Polyolefin microporous film | |
JP2004189918A (en) | Porous film | |
JP2002036459A (en) | Porous film and its manufacturing method | |
JP6686995B2 (en) | Method for producing porous resin film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20051028 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051101 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20060308 |