[go: up one dir, main page]

JP2003114083A - Cooling water circulating system - Google Patents

Cooling water circulating system

Info

Publication number
JP2003114083A
JP2003114083A JP2001307132A JP2001307132A JP2003114083A JP 2003114083 A JP2003114083 A JP 2003114083A JP 2001307132 A JP2001307132 A JP 2001307132A JP 2001307132 A JP2001307132 A JP 2001307132A JP 2003114083 A JP2003114083 A JP 2003114083A
Authority
JP
Japan
Prior art keywords
cooling water
point depressant
freezing point
concentration
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001307132A
Other languages
Japanese (ja)
Other versions
JP3698083B2 (en
Inventor
Toshihiro Takegawa
寿弘 竹川
Atsushi Miyazawa
篤史 宮澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2001307132A priority Critical patent/JP3698083B2/en
Publication of JP2003114083A publication Critical patent/JP2003114083A/en
Application granted granted Critical
Publication of JP3698083B2 publication Critical patent/JP3698083B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cooling water circulating system excellent in freeze proofing of a cooling water, cooling efficiency and circulating efficiency. SOLUTION: The system is provided with a cooling water circulating means 12 cooling a device 3 to be cooled by circulating the cooling water made of water mixed with a freezing-point depressant, and a freezing-point depressant concentration regulating means 11 connected to the cooling water circulating means 12 through a pressure regulating valve 8 to regulate the concentration of the freezing-point depressant in the cooling water. The freezing-point depressant concentration regulating means 11 is provided with antifreeze containers 5 and 6 containing solutions different in the concentration of freezing-point depressant and those are connected with each other through a water separation membrane 7. The antifreeze container 5 and 6 are provided with pressure regulating means 13 and 14 respectively to regulate each internal pressure, and regulates the amount of water permeating the water separation membrane 7 to determine the concentration of the freezing-point depressant.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、冷却水循環装置、特に
低温度雰囲気下における冷却水循環装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling water circulating device, and more particularly to a cooling water circulating device in a low temperature atmosphere.

【0002】[0002]

【従来の技術】本発明は、冷却水を用いた冷却を行う際
に冷却水を循環させるための冷却水循環装置に関するも
のであり、従来の技術としては冷却水循環装置を固体高
分子形燃料電池の冷却に用いる特開平5−190193
号のようなものがある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling water circulating device for circulating cooling water when cooling with cooling water. As a conventional technique, a cooling water circulating device is used for a polymer electrolyte fuel cell. JP-A-5-190193 used for cooling
There is something like an issue.

【0003】一般に燃料電池は、反応ガスである水素な
どの燃料ガスと空気などの酸化剤ガスを電気化学反応に
より、燃料の持つ化学エネルギーから直接電気エネルギ
ーに変換する装置である。この燃料電池は、電解質の違
い等により様々なタイプのものに分類されるが、その一
つとして、電解質に固体高分子を用いた固体高分子形燃
料電池が知られている。このときの燃料極、酸化剤極の
両極において進行する電極反応は、以下の通りである。
Generally, a fuel cell is a device for directly converting the chemical energy of the fuel into electric energy by an electrochemical reaction between a fuel gas such as hydrogen which is a reaction gas and an oxidant gas such as air. This fuel cell is classified into various types according to the difference in the electrolyte, and as one of them, a solid polymer fuel cell using a solid polymer as an electrolyte is known. The electrode reactions that proceed at both the fuel electrode and the oxidizer electrode at this time are as follows.

【0004】[0004]

【式1】 [Formula 1]

【0005】燃料極に水素ガスが供給されると、燃料極
では(1)の反応式が進行して水素イオンが生成する。
この生成した水素イオンが水和状態で電解質、例えば固
体高分子形燃料電池であれば固体高分子電解質膜内を移
動して酸化剤極に至り、この酸化剤極に酸素含有ガスた
とえば空気が供給されていると(2)の反応式が進行す
る。この(1)、(2)の電極反応は各極で進行するこ
とで、燃料電池は起電力を生じることとなる。
When hydrogen gas is supplied to the fuel electrode, the reaction formula (1) proceeds at the fuel electrode to generate hydrogen ions.
In the hydrated state, the generated hydrogen ions move into the electrolyte, for example, in the case of a solid polymer electrolyte fuel cell, to move to the inside of the solid polymer electrolyte membrane to reach the oxidizer electrode, and the oxygen-containing gas such as air is supplied to the oxidizer electrode Then, the reaction formula (2) proceeds. The electrode reaction of (1) and (2) proceeds at each electrode, so that the fuel cell produces an electromotive force.

【0006】このような燃料電池での発電では、燃料の
持つ化学エネルギーのうち電気エネルギーに変換できな
い分は熱として放出される。そのため当該反応を円滑に
進行させるために、循環する冷却水で燃料電池を冷却す
ることが広く知られている。
In the power generation using such a fuel cell, the chemical energy of the fuel, which cannot be converted into electric energy, is released as heat. Therefore, it is widely known to cool the fuel cell with circulating cooling water in order to allow the reaction to proceed smoothly.

【0007】ところで、このような固体高分子形燃料電
池は、通常、約80℃程度で作動するが、屋外で使用さ
れる場合には、氷点下まで気温が下がることがあるた
め、システム停止時にはシステム全体の凍結対策をとる
必要がある。
By the way, such a polymer electrolyte fuel cell normally operates at about 80 ° C., but when used outdoors, the temperature may drop to below freezing. It is necessary to take measures to freeze the whole.

【0008】特に燃料電池システムを車両等に搭載する
時には、寒冷地への移動あるいは寒冷地域での支障の無
い稼動を考慮して、水に凝固点降下剤を混合した冷却水
を燃料電池の冷却水とすることが一般的である。それぞ
れの地域の気温に応じて、水に混合する凝固点降下剤の
添加量は変化し、外気温のより低い地域ではより多くの
凝固点降下剤を混入する必要がある。
In particular, when the fuel cell system is mounted on a vehicle or the like, the cooling water obtained by mixing the water with a freezing point depressant is used as the cooling water for the fuel cell in consideration of movement to a cold region or operation without a hindrance in a cold region. Is generally used. The addition amount of the freezing point depressant mixed with water varies depending on the temperature of each region, and it is necessary to mix more freezing point depressant in a region where the outside temperature is lower.

【0009】[0009]

【発明が解決しようとしている問題点】しかしながら、
このような従来の方法を採用した固体高分子形燃料電池
では、次に挙げる問題点がある。
[Problems to be solved by the invention] However,
The polymer electrolyte fuel cell adopting such a conventional method has the following problems.

【0010】凝固点降下剤の混合割合が大きくなるに伴
い、凝固点降下剤を混合させた冷却水における熱容量は
低下していく。そのため、凝固点降下剤を混入した冷却
水では、燃料電池の冷却を行う熱交換機能は凝固点降下
剤の混合割合の増加に応じて低下していく。燃料電池で
は、セルごと、及び、セル面内での温度分布を均一に制
御することが発電性能の面から好ましい。このように発
電時の燃料電池における熱分布制御を均一にするという
面から見ると、冷却水は十分に熱を除去できる熱容量で
なければならないため、凝固点降下剤の混合割合はでき
るだけ小さくすることが望ましい。
As the mixing ratio of the freezing point depressant increases, the heat capacity of the cooling water mixed with the freezing point depressant decreases. Therefore, in the cooling water mixed with the freezing point depressant, the heat exchange function for cooling the fuel cell decreases as the mixing ratio of the freezing point depressant increases. In the fuel cell, it is preferable from the viewpoint of power generation performance to control the temperature distribution uniformly in each cell and in the cell plane. From the standpoint of uniform control of heat distribution in the fuel cell during power generation, the cooling water must have a heat capacity capable of sufficiently removing heat, so the mixing ratio of the freezing point depressant should be minimized. desirable.

【0011】さらに、混合した凝固点降下剤の割合の増
加に伴い冷却水の粘度は大きくなり、その結果冷却水を
循環させるために必要な圧力が大きくなる。このため、
循環に必要なポンプの能力が大きくなり、結果として大
きなポンプを備える必要があるので、システムサイズが
大きくなると共にコストアップの要因となる。
Further, the viscosity of the cooling water increases as the proportion of the freezing point depressant mixed increases, and as a result, the pressure required to circulate the cooling water increases. For this reason,
Since the capacity of the pump required for circulation becomes large, and as a result, it is necessary to provide a large pump, the system size becomes large and the cost increases.

【0012】以上のように、燃料電池の凍結対策として
燃料電池用の冷却水に必要な凝固点降下剤を添加するこ
とによって、熱交換機能の低下および冷却水の粘度上昇
による循環不良といった弊害が生じ、総合的な効率低下
がおこることを避けることはできない。
As described above, by adding a freezing point depressant necessary for cooling water for a fuel cell as a measure against freezing of the fuel cell, there are problems such as poor heat exchange function and poor circulation due to increase in viscosity of the cooling water. However, it is unavoidable that a total reduction in efficiency will occur.

【0013】そこで本発明は、特に低外気温時の冷却水
の凍結を防止すると共に、燃料電池などの被冷却装置稼
動時における冷却水の冷却効率を最適化させ、さらに被
冷却装置稼動時の冷却水の循環効率をも向上させるよう
にした冷却水循環装置を提供することを目的とする。
Therefore, the present invention prevents freezing of the cooling water especially at low outside air temperature, optimizes the cooling efficiency of the cooling water when the cooled device such as the fuel cell is in operation, and further when the cooled device is in operation. It is an object of the present invention to provide a cooling water circulation device that also improves the circulation efficiency of cooling water.

【0014】[0014]

【問題点を解決するための手段】第1の発明は、水に凝
固点降下剤を混合した冷却水を循環させる径路の途中に
冷却水で冷却される被冷却装置を設置した冷却水循環手
段と、前記冷却水循環手段の前記凝固点降下剤の含有濃
度を調整する凝固点降下剤濃度調整手段と、を備える。
[Means for Solving the Problems] The first invention is a cooling water circulating means in which a cooled device cooled by cooling water is installed in the middle of a path for circulating the cooling water in which water is mixed with a freezing point depressant. Freezing point depressant concentration adjusting means for adjusting the concentration of the freezing point depressant contained in the cooling water circulating means.

【0015】第2の発明は、第1の発明において、前記
被冷却装置を固体高分子形燃料電池発電システムの燃料
電池とする。
In a second aspect based on the first aspect, the cooled device is a fuel cell of a polymer electrolyte fuel cell power generation system.

【0016】第3の発明は、第1または2の発明におい
て、前記凝固点降下剤濃度調整手段は、前記凝固点降下
剤濃度が異なる溶液を収容する不凍液容器を複数個備
え、前記不凍液容器間を水のみを通過させる水分離膜を
介在させて連結させ、それぞれの前記不凍液容器内の水
量を調整することにより凝固点降下剤濃度を調整する。
In a third aspect based on the first or second aspect, the freezing point depressant concentration adjusting means is provided with a plurality of antifreeze containers for storing solutions having different freezing point depressant concentrations, and water is provided between the antifreeze containers. The freezing point depressant concentration is adjusted by interposing a water separation membrane that allows only the water to pass therethrough, and adjusting the amount of water in each of the antifreeze containers.

【0017】第4の発明は、第3の発明において、前記
不凍液容器内の圧力を外部から調整できる圧力調整手段
を備え、前記圧力調整手段により前記水分離膜を透過す
る水量を調整することで、前記不凍液容器内の水量を調
整する。
According to a fourth aspect of the present invention, in the third aspect of the present invention, pressure control means for adjusting the pressure in the antifreeze container from the outside is provided, and the amount of water that permeates the water separation membrane is adjusted by the pressure control means. Adjust the amount of water in the antifreeze container.

【0018】第5の発明は、第4の発明において、前記
凝固点降下剤濃度調整手段は、前記被冷却装置の環境の
温度に応じて、前記圧力調整手段を制御する。
In a fifth aspect based on the fourth aspect, the freezing point depressant concentration adjusting means controls the pressure adjusting means in accordance with the temperature of the environment of the device to be cooled.

【0019】第6の発明は、第4の発明において、前記
凝固点降下剤濃度調整手段は、前記被冷却装置の温度に
応じて、前記圧力手段を制御する。
In a sixth aspect based on the fourth aspect, the freezing point depressant concentration adjusting means controls the pressure means according to the temperature of the device to be cooled.

【0020】第7の発明は、第1から6のいずれか一つ
の発明において、前記冷却水循環手段と前記凝固点降下
剤濃度調整手段を圧力調整弁を介して連結し、前記冷却
水循環手段と前記凝固点降下剤濃度調整手段の内部圧力
を独立して制御する。
In a seventh aspect based on any one of the first to sixth aspects, the cooling water circulating means and the freezing point depressant concentration adjusting means are connected via a pressure adjusting valve, and the cooling water circulating means and the freezing point are connected. The internal pressure of the depressant concentration adjusting means is independently controlled.

【0021】[0021]

【作用及び効果】第1の発明によれば、冷却水循環手段
により被冷却装置を冷却する一方、冷却水に含まれる凝
固点降下剤の濃度を調整する凝固点降下剤濃度調整手段
を備えることで、冷却水の凍結防止を維持する範囲で凝
固点降下剤を低濃度に調整することができ、冷却水循環
手段における冷却・循環効率を向上できる。
According to the first aspect of the invention, the cooling water circulating means cools the device to be cooled, while the freezing point depressant concentration adjusting means for adjusting the concentration of the freezing point depressant contained in the cooling water is provided. The freezing point depressant can be adjusted to a low concentration within the range where the antifreezing of water is maintained, and the cooling / circulation efficiency in the cooling water circulation means can be improved.

【0022】第2の発明によれば、被冷却装置を固体高
分子形燃料電池とすることで、寒冷地保管時に必要とす
る凝固点降下剤濃度から、燃料電池稼動時において冷却
水の除熱効率と冷却水循環効率とを最適とする濃度範囲
へ凝固点降下剤の濃度を調整することができる。それに
より、寒冷地への移動或いは寒冷地での支障のない稼動
を考慮した冷却水を燃料電池の冷却水とすることができ
るとともに、冷却水循環手段における冷却・循環効率を
向上できる。
According to the second aspect of the present invention, by using the polymer electrolyte fuel cell as the device to be cooled, the heat removal efficiency of the cooling water during the operation of the fuel cell can be improved from the freezing point depressant concentration required for storage in cold regions. The concentration of the freezing point depressant can be adjusted to a concentration range that optimizes the cooling water circulation efficiency. Thereby, the cooling water in consideration of the movement to the cold district or the operation without any trouble in the cold district can be used as the cooling water of the fuel cell, and the cooling / circulation efficiency in the cooling water circulation means can be improved.

【0023】第3の発明によれば、凝固点降下剤濃度の
異なる溶液を収容する複数の不凍液容器間を水分離膜を
介して連結し、水分離膜を透過する水量を調整すること
で、それぞれの不当液容器内に収容されている溶液の凝
固点降下剤濃度を調整することができ、冷却水循環手段
の凝固点降下剤濃度を調整することができる。
According to the third aspect of the invention, a plurality of antifreezing liquid containers containing solutions having different freezing point depressant concentrations are connected through a water separation membrane, and the amount of water that permeates the water separation membrane is adjusted, respectively. It is possible to adjust the freezing point depressant concentration of the solution contained in the unreasonable liquid container, and the freezing point depressant concentration of the cooling water circulation means can be adjusted.

【0024】第4の発明によれば、水分離膜を介して連
結され、凝固点降下剤濃度の異なる溶液を収容する不凍
液容器それぞれに、圧力を外部から調整できる圧力調整
手段を備えることで、水分離膜を介して接する溶液それ
ぞれが水分離膜へ及ぼす圧力を調整することができ、そ
の圧力差に応じて水分離膜間の水の移動量を調整するこ
とができる。
According to the fourth aspect of the present invention, the antifreezing liquid container, which is connected through the water separation membrane and contains the solutions having different freezing point depressant concentrations, is provided with the pressure adjusting means capable of adjusting the pressure from the outside. The pressure exerted on the water separation membrane by each of the solutions in contact with each other through the separation membrane can be adjusted, and the amount of water movement between the water separation membranes can be adjusted according to the pressure difference.

【0025】第5の発明によれば、被冷却装置の環境の
温度に応じて、冷却水の凝固点降下剤濃度を凍結を回避
できる範囲内で低濃度に調整できるので、凍結を確実に
回避し循環効率・冷却効率を向上できる。
According to the fifth aspect of the invention, the freezing point depressant concentration of the cooling water can be adjusted to a low concentration within the range in which freezing can be avoided according to the temperature of the environment of the device to be cooled. The circulation efficiency and cooling efficiency can be improved.

【0026】第6の発明によれば、被冷却装置の温度に
応じて不凍液容器内の圧力を制御する手段を備えること
で、被冷却装置の熱除去に必要な熱容量を持つ凝固点降
下剤濃度の冷却水を循環させることができるので燃料電
池システム全体の効率を向上することができる。
According to the sixth aspect of the present invention, by providing the means for controlling the pressure in the antifreeze container according to the temperature of the device to be cooled, the concentration of the freezing point depressant having a heat capacity necessary for heat removal of the device to be cooled can be reduced. Since the cooling water can be circulated, the efficiency of the entire fuel cell system can be improved.

【0027】第7の発明によれば、冷却水循環手段と凝
固点降下剤濃度調整手段の内部圧力を独立に制御するこ
とにより、凝固点降下剤濃度調整手段内が高圧になって
も、冷却水循環手段に影響を与えずに冷却を行うことが
できる。
According to the seventh invention, by independently controlling the internal pressures of the cooling water circulating means and the freezing point depressant concentration adjusting means, even if the inside of the freezing point depressing agent concentration adjusting means has a high pressure, the cooling water circulating means is controlled. Cooling can be done without any effect.

【0028】[0028]

【発明の実施の形態】第1の実施形態において、本発明
を固体高分子形燃料電池システムに用いる固体高分子形
燃料電池3(図3参照、以下「燃料電池3」)を被冷却
装置として、これを冷却水を循環させて冷却する冷却装
置に適用する場合を説明する。
BEST MODE FOR CARRYING OUT THE INVENTION In the first embodiment, a polymer electrolyte fuel cell 3 (see FIG. 3, hereinafter referred to as "fuel cell 3") using the present invention in a polymer electrolyte fuel cell system is used as a device to be cooled. A case where this is applied to a cooling device that circulates cooling water to cool it will be described.

【0029】まず、ここで冷却に用いる冷却水は、水に
エチレングリコール、グリセリンなどの凝固点降下剤を
混入したものであり、本実施形態においては、エチレン
グリコールを5〜60Vol%の濃度で水に混合した冷
却水を用いる。
First, the cooling water used for cooling is water mixed with a freezing point depressant such as ethylene glycol or glycerin. In this embodiment, ethylene glycol is added to the water at a concentration of 5 to 60 Vol%. Use mixed cooling water.

【0030】第1の実施形態で冷却水中の凝固点降下剤
として用いるエチレングリコールの濃度と、冷却水の熱
容量および粘度の関係を図1に示す。ここで、冷却水の
熱容量比率及び粘度比率は、水の熱容量及び粘度を1と
したときの相対比を表す。図1のとおり、凝固点降下剤
の濃度が高くなるに従って冷却水の熱容量は徐々に低下
していく。つまり、凝固点降下剤の濃度が高くなると一
定量の冷却水が除去できる熱量が減少し、燃料電池3で
の冷却系での熱交換効率が悪化する。
FIG. 1 shows the relationship between the concentration of ethylene glycol used as a freezing point depressant in cooling water and the heat capacity and viscosity of cooling water in the first embodiment. Here, the heat capacity ratio and the viscosity ratio of the cooling water represent a relative ratio when the heat capacity and the viscosity of the water are 1. As shown in FIG. 1, the heat capacity of the cooling water gradually decreases as the concentration of the freezing point depressant increases. That is, when the concentration of the freezing point depressant increases, the amount of heat that can remove a certain amount of cooling water decreases, and the heat exchange efficiency in the cooling system of the fuel cell 3 deteriorates.

【0031】特に燃料電池3では、エンジン等にくらべ
て冷却水と燃料電池の温度差が小さいため、循環する冷
却水の量を少なくして循環系の損失を低減することが望
まれており、この場合の冷却水の熱容量は大きいことが
望まれる。
Particularly in the fuel cell 3, the temperature difference between the cooling water and the fuel cell is smaller than that in the engine and the like, so it is desired to reduce the amount of circulating cooling water to reduce the loss in the circulation system. In this case, it is desired that the heat capacity of the cooling water is large.

【0032】一方、図1に併せて示したとおり、冷却水
中の凝固点降下剤濃度が高くなるにつれ冷却水の粘度も
増加していく。燃料電池3では、エンジン等に比べて冷
却水の流路が特に狭く、冷却水の粘度が高くなると循環
に必要なポンプ吐出圧が大きくなるため、冷却水の循環
効率が悪化するだけでなく、吐出に必要な能力を持つ循
環ポンプ2(図3参照)を用意するには大きなコストが
かかり得策とはいえない。また、能力の大きいポンプは
サイズも大きくなるため、車載するためにはレイアウト
にも大きな制限を加えることになる。
On the other hand, as also shown in FIG. 1, the viscosity of the cooling water increases as the concentration of the freezing point depressant in the cooling water increases. In the fuel cell 3, the flow path of the cooling water is particularly narrow as compared with the engine, etc., and as the viscosity of the cooling water increases, the pump discharge pressure required for circulation increases, so that not only the circulation efficiency of the cooling water deteriorates, but also Preparing the circulation pump 2 (see FIG. 3) having the capacity necessary for discharging is very costly and not a good idea. In addition, since a pump having a large capacity also has a large size, a large limitation is imposed on the layout for mounting on a vehicle.

【0033】また、図2は燃料電池システム搭載の車両
における寒冷地への移動あるいは寒冷地での支障の無い
稼動を考慮した、冷却水の凝固点降下剤としてエチレン
グリコールを用いた場合のエチレングリコールの最低混
合割合を示した一般的な例である。燃料電池システムの
環境の温度が低くなればなるほど、凍結を避けるために
冷却水中へ混合しなければならない凝固点降下剤の量が
多くなっていく。
Further, FIG. 2 shows ethylene glycol in the case where ethylene glycol is used as a freezing point depressant for cooling water in consideration of movement to a cold region in a vehicle equipped with a fuel cell system or operation without any trouble in the cold region. It is a general example showing the minimum mixing ratio. The lower the temperature of the environment of the fuel cell system, the greater the amount of freezing point depressant that must be mixed into the cooling water to avoid freezing.

【0034】これらより、環境温度が低温度であるとき
には、冷却水の凝固点降下剤濃度は凍結を回避できる範
囲以内で出来るだけ低いほうがよいことがわかる。そこ
で、冷却水を燃料電池3で最適に使用するための本実施
形態における冷却水循環装置の概略構成を図3に示す。
From these, it can be seen that when the environmental temperature is low, the freezing point depressant concentration of the cooling water should be as low as possible within the range where freezing can be avoided. Therefore, FIG. 3 shows a schematic configuration of the cooling water circulation device in the present embodiment for optimally using the cooling water in the fuel cell 3.

【0035】本冷却水循環装置を、燃料電池3を管路の
一部として冷却水を循環させることにより燃料電池3を
冷却する冷却水循環系12と、冷却水循環系12を流れ
る冷却水内の凝固点降下剤濃度を調整する凝固点降下剤
濃度調整系11より構成する。
In this cooling water circulation device, a cooling water circulation system 12 for cooling the fuel cell 3 by circulating the cooling water with the fuel cell 3 as a part of a pipe, and a freezing point depression in the cooling water flowing through the cooling water circulation system 12 It comprises a freezing point depressant concentration adjusting system 11 for adjusting the concentration of the agent.

【0036】まず、冷却水循環系12を、冷却水タンク
1と循環ポンプ2、燃料電池3(被冷却装置)、熱交換
器4により構成し、冷却水をこれらの構成要素について
一方向に循環させる。すなわち、冷却水タンク1内の冷
却水を循環ポンプ2により汲み上げ、冷却水循環系12
の一部である燃料電池3内の冷却水管路に供給し、燃料
電池3の冷却を行う。
First, the cooling water circulation system 12 is constituted by the cooling water tank 1, the circulation pump 2, the fuel cell 3 (device to be cooled) and the heat exchanger 4, and the cooling water is circulated in one direction with respect to these components. . That is, the cooling water in the cooling water tank 1 is pumped up by the circulation pump 2, and the cooling water circulation system 12
Is supplied to the cooling water pipeline in the fuel cell 3 which is a part of the fuel cell 3 to cool the fuel cell 3.

【0037】燃料電池3内の冷却水管路の下流には、循
環する冷却水の温度を燃料電池3の冷却に必要な温度に
なるまで除熱する熱交換器4が設置されている。燃料電
池3を冷却することにより高温となった冷却水は、熱交
換器4で再び燃料電池3の冷却を行うことのできる温度
になり、再び冷却水タンク1に戻される。
A heat exchanger 4 for removing the temperature of the circulating cooling water to a temperature required for cooling the fuel cell 3 is installed downstream of the cooling water pipe in the fuel cell 3. The cooling water that has become high in temperature by cooling the fuel cell 3 reaches a temperature at which the heat exchanger 4 can cool the fuel cell 3 again, and is returned to the cooling water tank 1 again.

【0038】ここでは、冷却水タンク1の下流に循環ポ
ンプ2を設置したが、燃料電池3の冷却水管路下流に循
環ポンプ2を設置してもよい。
Although the circulation pump 2 is installed downstream of the cooling water tank 1, the circulation pump 2 may be installed downstream of the cooling water pipe of the fuel cell 3.

【0039】一方、凝固点降下剤濃度調整系11を、凝
固点降下剤濃度の異なる溶液を収容した不凍液容器5及
び不凍液容器6により構成し、この2つの不凍液容器
5、6を水のみを透過する水分離膜7を介して連結す
る。ここで、水分離膜7が常に不凍液容器5、6内の溶
液に接触しているように水分離膜7を設置する。
On the other hand, the freezing point depressant concentration adjusting system 11 is composed of an antifreezing liquid container 5 and an antifreezing liquid container 6 containing solutions having different freezing point depressing agent concentrations. It connects through the separation membrane 7. Here, the water separation membrane 7 is installed so that the water separation membrane 7 is always in contact with the solution in the antifreezing liquid containers 5 and 6.

【0040】不凍液容器5は冷却水循環系12の冷却水
タンク1に圧力調整弁8を介して連結する。また、この
不凍液容器5、6それぞれに圧力調整バルブ13、14
を設置し、不凍液容器5、6内の圧力を調整することに
より、不凍液容器5、6間に圧力差を生じさせる。この
圧力差により水分離膜7を透過する水量を調整すること
で、不凍液容器5内の溶液の凝固点降下剤濃度を調整
し、最終的には、冷却水内の凝固点降下剤濃度を調整す
る。さらに、それぞれの圧力調整バルブ13、14をコ
ントローラ9に接続し、コントローラ9では燃料電池シ
ステムの環境温度を測定する温度計測器10からの測定
結果に基づきそれらの圧力調整バルブ13、14を制御
する。
The antifreeze container 5 is connected to the cooling water tank 1 of the cooling water circulation system 12 via the pressure adjusting valve 8. In addition, pressure control valves 13 and 14 are provided in the antifreeze containers 5 and 6, respectively.
Is installed and the pressure in the antifreezing liquid containers 5 and 6 is adjusted to cause a pressure difference between the antifreezing liquid containers 5 and 6. By adjusting the amount of water passing through the water separation membrane 7 by this pressure difference, the freezing point depressant concentration of the solution in the antifreeze container 5 is adjusted, and finally the freezing point depressant concentration in the cooling water is adjusted. Further, the pressure adjusting valves 13 and 14 are connected to the controller 9, and the controller 9 controls the pressure adjusting valves 13 and 14 based on the measurement result from the temperature measuring device 10 that measures the environmental temperature of the fuel cell system. .

【0041】コントローラ9では、測定された環境温度
下で冷却水が凍結しない凝固点降下剤濃度を図2のマッ
プにより決定する。凝固点降下剤温度が決定したら不凍
液容器5内の溶液を、図2により決定した凝固点降下剤
濃度にするのに必要な、または、余分な水量を判断す
る。そして、その量だけ水が水分離膜7を透過するよう
な不凍液容器5、6間の圧力差を算出し、圧力調整バル
ブ13、14を調整する。
The controller 9 determines the concentration of the freezing point depressant at which the cooling water does not freeze under the measured environmental temperature according to the map shown in FIG. When the freezing point depressant temperature is determined, the amount of water required to bring the solution in the antifreezing liquid container 5 to the freezing point depressant concentration determined according to FIG. Then, the pressure difference between the antifreezing liquid containers 5 and 6 that allows water to pass through the water separation membrane 7 by that amount is calculated, and the pressure adjusting valves 13 and 14 are adjusted.

【0042】その結果、水分離膜7を介して隣接する不
凍液容器5、6内は水分離膜7を通じて水が透過するの
に必要な浸透圧に調整され、その浸透圧に応じた凝固点
降下剤濃度に調整される。
As a result, the insides of the antifreeze containers 5 and 6 adjacent to each other through the water separation membrane 7 are adjusted to the osmotic pressure necessary for water to permeate through the water separation membrane 7, and the freezing point depressant depending on the osmotic pressure. Adjusted to concentration.

【0043】このように凝固点降下剤濃度を調整された
溶液は、圧力調整弁8を介して冷却水循環系12に供給
される。圧力調整弁8を不凍液容器5内の圧力に応じて
調整することにより、不凍液容器5内の圧力が高いとき
でも冷却水循環系12へ及ぼす影響を緩和させることが
できる。こうして、冷却水循環系12と凝固点降下剤濃
度調整系11内の圧力を独立させることができる。
The solution whose freezing point depressant concentration has been adjusted in this way is supplied to the cooling water circulation system 12 via the pressure adjusting valve 8. By adjusting the pressure adjusting valve 8 according to the pressure in the antifreeze liquid container 5, the influence on the cooling water circulation system 12 can be alleviated even when the pressure in the antifreeze liquid container 5 is high. In this way, the pressures in the cooling water circulation system 12 and the freezing point depressant concentration adjusting system 11 can be made independent.

【0044】ここで、図4に示した水分離膜7は、0.
05μm以下の細孔径からなる限外ろ過膜(圧力を加え
て濃度を制御するときに用いられるろ過膜。圧力に耐え
る強度を持つ)からなり、溶液中の凝固点降下剤である
エチレングリコールの分子径と水分子径の大きさの違い
を利用して、不凍液容器5、6間において水分子のみろ
過膜を透過させる。
Here, the water separation membrane 7 shown in FIG.
It consists of an ultrafiltration membrane with a pore size of less than 05 μm (a filtration membrane used when pressure is applied to control the concentration. It has strength to withstand pressure), and the molecular diameter of ethylene glycol, which is a freezing point depressant in a solution. Using the difference in the size of the water molecule, only the water molecules are allowed to pass through the filtration membrane between the antifreeze containers 5 and 6.

【0045】水分離膜7における限外ろ過膜は、ポリア
クリロニトリル、酢酸セルロース、ポリスルフォンなど
様々な材料を用いて製膜によって多孔質膜が形成され
る。材料としては、とくに限定しないが、圧力の調整に
て水分離を行うことから耐久性の高い材料を選択するほ
うが好ましい。
As the ultrafiltration membrane in the water separation membrane 7, a porous membrane is formed by membrane formation using various materials such as polyacrylonitrile, cellulose acetate and polysulfone. The material is not particularly limited, but it is preferable to select a highly durable material because water separation is performed by adjusting the pressure.

【0046】このように、計測した環境温度に適した濃
度に冷却水の濃度を調整し、冷却水を循環させること
で、冷却水の熱容量の低下及び粘度の増大を抑制しなが
ら燃料電池3内での凍結を防ぐことができる。また、こ
のような冷却装置を備えた燃料電池システムを車に搭載
した場合には、寒冷地への移動或いは寒冷地での支障の
ない稼動を考慮した冷却水を被冷却装置の冷却に用いる
ことが出来るとともに、冷却系の除熱・循環効率を向上
できる。
As described above, by adjusting the concentration of the cooling water to a concentration suitable for the measured environmental temperature and circulating the cooling water, the decrease of the heat capacity of the cooling water and the increase of the viscosity are suppressed, and the inside of the fuel cell 3 is suppressed. Can be prevented from freezing. Also, when a fuel cell system equipped with such a cooling device is installed in a vehicle, use cooling water for cooling the device to be cooled in consideration of movement to a cold region or operation without hindrance in the cold region. In addition, the heat removal and circulation efficiency of the cooling system can be improved.

【0047】図5に第2の実施形態における冷却水循環
装置の概略構成を示す。ここでは、凝固点降下剤の濃度
を決定する温度を被冷却装置である燃料電池3の冷却面
の温度とする。
FIG. 5 shows a schematic configuration of the cooling water circulation device in the second embodiment. Here, the temperature that determines the concentration of the freezing point depressant is the temperature of the cooling surface of the fuel cell 3, which is the device to be cooled.

【0048】つまり、温度計測器10を被冷却装置であ
る燃料電池3に設置し、測定した温度をコントローラ9
に入力する。コントローラ9では、測定した温度から除
去しなければならない熱量を計算し、除去するために必
要な熱容量や粘度を考慮して図1のようなマップにより
冷却水の凝固点降下剤濃度を決定する。濃度を決定した
ら、第1の実施形態と同様に不凍液容器5、6間の圧力
差から溶液の濃度を調整し、冷却水循環系12に供給す
ることにより好適な冷却水を得ることができる。
That is, the temperature measuring device 10 is installed in the fuel cell 3 which is the device to be cooled, and the measured temperature is measured by the controller 9
To enter. The controller 9 calculates the amount of heat to be removed from the measured temperature, and determines the freezing point depressant concentration of the cooling water according to the map as shown in FIG. 1 in consideration of the heat capacity and the viscosity required for the removal. Once the concentration is determined, the concentration of the solution is adjusted from the pressure difference between the antifreeze containers 5 and 6 as in the first embodiment, and the solution is supplied to the cooling water circulation system 12 to obtain suitable cooling water.

【0049】このように燃料電池3の温度によって凝固
点降下剤濃度を決定することで、熱除去に必要な冷却水
を循環することができるので、燃料電池システムの効率
を向上することができる。
By thus determining the freezing point depressant concentration according to the temperature of the fuel cell 3, the cooling water required for heat removal can be circulated, and the efficiency of the fuel cell system can be improved.

【0050】ここで、温度計測器10により環境温度お
よび燃料電池温度の両方を計測可能とすると、寒冷地で
の保管時には環境温度に適応した凝固点降下剤濃度とす
ることで冷却水の凍結を防ぎ、燃料電池システム運転時
には燃料電池3の温度に適応した凝固点降下剤濃度とす
ることで、効率的な循環・冷却を行うことができる。
Here, if both the environmental temperature and the fuel cell temperature can be measured by the temperature measuring device 10, freezing of the cooling water is prevented by setting the freezing point depressant concentration suitable for the environmental temperature during storage in cold regions. During the operation of the fuel cell system, by setting the concentration of the freezing point depressant suitable for the temperature of the fuel cell 3, efficient circulation / cooling can be performed.

【0051】なお、本発明は上記実施形態に限定される
わけではなく、特許請求の範囲に記載した技術的思想の
範囲以内で様々な変更が成し得ることは言うまでもな
い。
It is needless to say that the present invention is not limited to the above embodiment, and various modifications can be made within the scope of the technical idea described in the claims.

【図面の簡単な説明】[Brief description of drawings]

【図1】水の熱容量、および粘度を1としたときの相対
比燃料電池3環境温度と凝固点降下剤としてのエチレン
グリコール濃度の関係である。
FIG. 1 is a relationship between the heat capacity of water and the relative ratio of the fuel cell 3 when the viscosity is 1, and the concentration of ethylene glycol as a freezing point depressant.

【図2】環境温度に対して適したエチレングリコール濃
度を表す図である。
FIG. 2 is a diagram showing an ethylene glycol concentration suitable for an ambient temperature.

【図3】第1の実施形態における冷却水循環装置のブロ
ック図である。
FIG. 3 is a block diagram of a cooling water circulation device according to the first embodiment.

【図4】濃度調整のための水分離膜のイメージ図であ
る。
FIG. 4 is an image diagram of a water separation membrane for concentration adjustment.

【図5】第2の実施形態における冷却水循環装置のブロ
ック図である。
FIG. 5 is a block diagram of a cooling water circulation device according to a second embodiment.

【符号の説明】[Explanation of symbols]

3 燃料電池 5 不凍液容器 6 不凍液容器 7 水分離膜 8 圧力調整弁 10 温度計測器 11 凝固点降下剤濃度調整系(凝固点降下剤濃度調整
手段) 12 冷却水循環系(冷却水循環手段) 13 圧力調整バルブ(圧力調整手段) 14 圧力調整バルブ(圧力調整手段)
3 Fuel Cell 5 Antifreeze Container 6 Antifreeze Container 7 Water Separation Membrane 8 Pressure Adjustment Valve 10 Temperature Measuring Device 11 Freezing Point Depressant Concentration Adjusting System (Freezing Point Depressant Concentration Adjusting Means) 12 Cooling Water Circulation System (Cooling Water Circulating Means) 13 Pressure Adjusting Valve ( Pressure adjusting means) 14 Pressure adjusting valve (pressure adjusting means)

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】水に凝固点降下剤を混合した冷却水を循環
させる径路の途中に冷却水で冷却する被冷却装置を設置
した冷却水循環手段と、 前記冷却水循環手段の前記凝固点降下剤の含有濃度を調
整する凝固点降下剤濃度調整手段と、を備えることを特
徴とする冷却水循環装置。
1. A cooling water circulating means in which a device to be cooled for cooling with cooling water is installed in the middle of a path for circulating cooling water in which water is mixed with a freezing point depressant, and a content concentration of the freezing point depressant in the cooling water circulating means. And a freezing point depressant concentration adjusting means for adjusting the cooling water circulating device.
【請求項2】前記被冷却装置を固体高分子形燃料電池発
電システムの燃料電池とする請求項1に記載の冷却水循
環装置。
2. The cooling water circulation device according to claim 1, wherein the cooled device is a fuel cell of a polymer electrolyte fuel cell power generation system.
【請求項3】前記凝固点降下剤濃度調整手段は、前記凝
固点降下剤濃度が異なる溶液を収容する不凍液容器を複
数個備え、前記不凍液容器間を水のみを通過させる水分
離膜を介在させて連結させ、それぞれの前記不凍液容器
内の水量を調整することにより凝固点降下剤濃度を調整
する請求項1または2に記載の冷却水循環装置。
3. The freezing point depressant concentration adjusting means comprises a plurality of antifreeze containers for containing solutions having different freezing point depressant concentrations, and the antifreeze containers are connected to each other with a water separation membrane interposed between them to pass only water. The cooling water circulation device according to claim 1 or 2, wherein the freezing point depressant concentration is adjusted by adjusting the amount of water in each antifreeze container.
【請求項4】前記不凍液容器内の圧力を外部から調整で
きる圧力調整手段を備え、前記圧力調整手段により前記
水分離膜を透過する水量を調整することで、前記不凍液
容器内の水量を調整する請求項3に記載の冷却水循環装
置。
4. An amount of water in the antifreezing liquid container is adjusted by providing a pressure adjusting means capable of adjusting the pressure in the antifreezing liquid container from the outside, and adjusting the amount of water passing through the water separation membrane by the pressure adjusting device. The cooling water circulation device according to claim 3.
【請求項5】前記凝固点降下剤濃度調整手段は、前記被
冷却装置の環境の温度に応じて、前記圧力調整手段を制
御する請求項4に記載の冷却水循環装置。
5. The cooling water circulating device according to claim 4, wherein the freezing point depressant concentration adjusting means controls the pressure adjusting means in accordance with the temperature of the environment of the device to be cooled.
【請求項6】前記凝固点降下剤濃度調整手段は、前記被
冷却装置の温度に応じて、前記圧力手段を制御する請求
項4に記載の冷却水循環装置。
6. The cooling water circulating device according to claim 4, wherein the freezing point depressant concentration adjusting means controls the pressure means according to the temperature of the device to be cooled.
【請求項7】前記冷却水循環手段と前記凝固点降下剤濃
度調整手段を圧力調整弁を介して連結し、前記冷却水循
環手段と前記凝固点降下剤濃度調整手段の内部圧力を独
立して制御する請求項1から6のいずれか一つに記載の
冷却水循環装置。
7. The cooling water circulating means and the freezing point depressant concentration adjusting means are connected via a pressure adjusting valve, and the internal pressures of the cooling water circulating means and the freezing point depressant concentration adjusting means are independently controlled. The cooling water circulation device according to any one of 1 to 6.
JP2001307132A 2001-10-03 2001-10-03 Cooling water circulation device Expired - Fee Related JP3698083B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001307132A JP3698083B2 (en) 2001-10-03 2001-10-03 Cooling water circulation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001307132A JP3698083B2 (en) 2001-10-03 2001-10-03 Cooling water circulation device

Publications (2)

Publication Number Publication Date
JP2003114083A true JP2003114083A (en) 2003-04-18
JP3698083B2 JP3698083B2 (en) 2005-09-21

Family

ID=19126650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001307132A Expired - Fee Related JP3698083B2 (en) 2001-10-03 2001-10-03 Cooling water circulation device

Country Status (1)

Country Link
JP (1) JP3698083B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009521780A (en) * 2005-12-23 2009-06-04 ユーティーシー パワー コーポレイション Non-circulating refrigerant solid polymer fuel cell power generator with antifreeze back-pressure air discharge system
CN103808100A (en) * 2014-01-27 2014-05-21 中国北方发动机研究所(天津) Circulating cooling water system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9351431B2 (en) 2012-10-11 2016-05-24 International Business Machines Corporation Cooling system with automated seasonal freeze protection
CN103791672B (en) * 2014-02-21 2018-10-09 西安格睿能源动力科技有限公司 A kind of global optimization method of recirculating cooling water system
IT202200026964A1 (en) * 2022-12-28 2024-06-28 Next Generation Systems S R L SYSTEM AND METHOD OF LOADING THE HEAT TRANSFER FLUID AND SYSTEM EQUIPPED WITH THIS SYSTEM

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009521780A (en) * 2005-12-23 2009-06-04 ユーティーシー パワー コーポレイション Non-circulating refrigerant solid polymer fuel cell power generator with antifreeze back-pressure air discharge system
CN103808100A (en) * 2014-01-27 2014-05-21 中国北方发动机研究所(天津) Circulating cooling water system
CN103808100B (en) * 2014-01-27 2015-08-26 中国北方发动机研究所(天津) A kind of recirculating cooling water system

Also Published As

Publication number Publication date
JP3698083B2 (en) 2005-09-21

Similar Documents

Publication Publication Date Title
US6713204B2 (en) Fuel cell system
US9093679B2 (en) Method of shutting down fuel cell system
US20050048338A1 (en) Polymer electrolyte fuel cell system and operation method thereof
JP4644064B2 (en) Fuel cell system
JP2019114351A (en) Fuel cell system and control method thereof
JP2003518712A (en) Direct antifreeze-cooled fuel cell power plant system
US20040001985A1 (en) Fuel cell cooling system
US6916571B2 (en) PEM fuel cell passive water management
JPH08185877A (en) Fuel cell system
CN116093378B (en) Fuel cell system and shutdown control method thereof
KR102778257B1 (en) Fuel cell system and operating method thereof
JP6315715B2 (en) Method for stopping power generation in fuel cell system
JP3698083B2 (en) Cooling water circulation device
JP2000208156A (en) Solid polymer fuel cell system
US7494730B2 (en) Apparatus for cooling fuel cell
JP6307536B2 (en) Low temperature startup method for fuel cell system
JP2004335154A (en) Cooling device of fuel cell
JP2008524812A (en) Passive micro coolant loop for electrochemical fuel cells
US20090011288A1 (en) Circulation of Gas-Entrained Fuel Cell Coolant
KR102755445B1 (en) Fuel cell membrane humidifier and fuel cell system comprising it
JP2004319206A (en) Cooling device of fuel cell
JP2005259636A (en) Cooling system
US20250070208A1 (en) Steady and transient state operation of fuel cells
JP2007299627A (en) Fuel cell and fuel cell system
JP2006073340A (en) Fuel cell system

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050627

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees