JP2003113418A - Fatigue life improvement treatment method and long life metal material by it - Google Patents
Fatigue life improvement treatment method and long life metal material by itInfo
- Publication number
- JP2003113418A JP2003113418A JP2001308355A JP2001308355A JP2003113418A JP 2003113418 A JP2003113418 A JP 2003113418A JP 2001308355 A JP2001308355 A JP 2001308355A JP 2001308355 A JP2001308355 A JP 2001308355A JP 2003113418 A JP2003113418 A JP 2003113418A
- Authority
- JP
- Japan
- Prior art keywords
- fatigue life
- treatment
- ultrasonic impact
- fatigue
- treatment method
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
(57)【要約】
【課題】 従来の応力集中を減らす金属材の疲労向上処
理法及び圧縮応力を導入する金属材の疲労向上処理法に
おける、施工上の効率、施工者の熟練の問題、及び処理
後の効果を計測する手段がなく品質管理を行うことがで
きないという問題を解決する新たな疲労向上処理法を提
供することを目的とする。
【解決手段】 金属材の疲労が問題となる箇所につい
て、前処理を行った後、超音波衝撃処理を行い、さらに
その後、品質保証検査を行うことによって、当該金属材
の疲労寿命を向上させることを特徴とした疲労寿命向上
処理法。
(57) [Summary] [PROBLEMS] To improve the efficiency of construction and the skill of a constructor in conventional methods for improving fatigue of metal materials to reduce stress concentration and for improving fatigue of metal materials by introducing compressive stress, and An object of the present invention is to provide a new fatigue improvement processing method that solves the problem that quality control cannot be performed because there is no means for measuring the effect after processing. SOLUTION: To improve the fatigue life of a metal material by performing a pretreatment, performing an ultrasonic impact treatment, and then performing a quality assurance inspection on a portion where the fatigue of the metal material becomes a problem. Fatigue life improvement treatment method characterized by the following.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、例えば、橋梁の橋
桁などの大型溶接構造物、自動車の足回り部分などの金
属溶接製品、自動車のホイールなどの溶接を持たない金
属材などに係り、特に疲労によって損傷を受ける部位に
おける疲労亀裂に関する耐久性を高め、長寿命化を図る
ようにした疲労寿命向上処理法およびその処理法を用い
て処理された金属材に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to, for example, large welded structures such as bridge girders of bridges, metal welded products such as undercarriage parts of automobiles, and metal materials without welding such as wheels of automobiles. TECHNICAL FIELD The present invention relates to a fatigue life improving treatment method for improving the durability of fatigue cracks in a portion damaged by fatigue and extending the life, and a metal material treated by the treatment method.
【0002】[0002]
【従来の技術】金属製品の耐久性は、しばしば疲労によ
って規定される。このような疲労強度を向上させるため
には、設計的に断面を大きくして応力を現象させるのが
一般的ではあるが、その他、様々な疲労向上処理法が取
られている。The durability of metal products is often defined by fatigue. In order to improve such fatigue strength, it is general to increase the cross-section by design to cause a stress phenomenon, but various other fatigue improvement treatment methods have been adopted.
【0003】疲労向上処理法は大きく分けて2種類あ
り、まず、疲労が問題となる部分の形状を変えて応力集
中を少なくする、グラインディング、TIGドレッシン
グなどがある。また、疲労が問題となる部分に圧縮残留
応力を与えて、実質的な繰り返し応力範囲を小さくす
る、ハンマーピーニング、ニードルピーニング、ショッ
トピーニング、低温変態溶材などがある。このうち、ハ
ンマーピーニングに関しては、応力集中を少なくする効
果と圧縮応力を導入する効果の両方を持つとされてい
る。There are roughly two types of fatigue improving treatment methods. First, there are grinding, TIG dressing, etc., in which the stress concentration is reduced by changing the shape of the portion where fatigue is a problem. Further, there are hammer peening, needle peening, shot peening, low temperature transformation molten material, etc., which give a compressive residual stress to a portion where fatigue becomes a problem to reduce a substantial repeated stress range. Among them, hammer peening is said to have both the effect of reducing stress concentration and the effect of introducing compressive stress.
【0004】上記の疲労向上処理法のうち、応力集中を
少なくする処理法の効果は目に見えて明らかであるが、
実際には、疲労が問題となる箇所においてはわずかな傷
などが疲労強度をむしろ悪化させる原因となることがあ
るために、グラインダー処理などに関しては処理に熟練
が必要のみならず、作業に時間が必要であり、大きなコ
スト増加要因となる。Among the above fatigue improving treatment methods, the effect of the treatment method for reducing stress concentration is visibly apparent,
Actually, in a place where fatigue is a problem, even slight scratches may cause the fatigue strength to worsen. It is necessary and causes a large cost increase.
【0005】また、TIGドレッシングに関しても、作
業には熟練者が必要なのと、適用部位に熱を加えるため
に、橋梁の補修に使う場合などについては、応力変動に
起因する溶接材料の高温割れを防ぐために作業中は交通
を止める必要があるなど、やはり大きなコスト増加要因
となる。Also, regarding TIG dressing, a skilled person is required for the work, and when it is used for repairing a bridge in order to apply heat to the application site, hot cracking of the welding material due to stress fluctuation is caused. In order to prevent it, it is necessary to stop the traffic during the work, which is also a major factor of cost increase.
【0006】一方、圧縮残留応力を導入する方法である
が、圧縮残留応力は目に見えないために、処理後の影響
が測定しにくく、検査によって効果を保証することが困
難であるということが問題となり、品質管理上の観点か
ら、判断・診断能力あるエンジニアが立ち会えないよう
な状況では、通常は使われない。On the other hand, the method of introducing the compressive residual stress is that since the compressive residual stress is invisible, it is difficult to measure the effect after the treatment and it is difficult to guarantee the effect by inspection. It is usually not used in a situation where an engineer with judgment / diagnosis ability cannot be present from a quality control point of view, which is a problem.
【0007】また、ハンマーピーニングでは、処理部に
大きな塑性変形を与えることができるため、処理の痕跡
を大きくし、実施後に処理を特定することはできるが、
処理時にできる表面の傷がかえって応力集中をもたら
し、疲労強度を低下させることがあるのと、その塑性変
形を与えるときの大きな反動のために著しく作業性が悪
いために、細かいコントロールが困難であり、品質管理
が非常に難しい。Further, in hammer peening, since a large plastic deformation can be given to the processing portion, the trace of the processing can be increased and the processing can be specified after the execution, but
Scratches on the surface during processing may rather cause stress concentration and reduce fatigue strength, and due to the large recoil when giving plastic deformation, the workability is extremely poor, so it is difficult to control finely. , Quality control is very difficult.
【0008】また、上記のような圧縮残留応力を導入す
る疲労向上処理法を特に補修に用いる場合、疲労亀裂の
発生初期である寸法1mm以下の小さな時点では、浸透
探傷試験、磁粉探傷試験、渦流探傷試験などの現在の検
査法では検出は不可能であるが、このような亀裂を残し
ている状態で、上記の疲労寿命向上処理法を適用して
も、亀裂の進展を止めることができないために、圧縮残
留応力導入による疲労寿命向上効果はほとんど無いと考
えられる。Further, when the above-mentioned fatigue improving treatment method for introducing a compressive residual stress is used for repair, at a small time point of 1 mm or less at the initial stage of fatigue crack initiation, a penetrant flaw test, a magnetic particle flaw test, and an eddy current It cannot be detected by the current inspection methods such as flaw detection test, but even if the above fatigue life improvement treatment method is applied in the state where such a crack is left, the progress of the crack cannot be stopped. In addition, it is considered that there is almost no effect of improving fatigue life by introducing compressive residual stress.
【0009】また、低温変態溶材についても、止端部に
圧縮残留応力を導入する場合についても、高強度鋼では
効果が大きいが、低強度鋼では効果がほとんど無くなっ
てしまうという特性があるのと、やはり、溶接による熱
が加えられることから、TIGドレッシング同様、施工
上の問題があって使いにくい部分があり、また、他の処
理法と同様に導入した圧縮残留応力の効果が設測しにく
い。[0009] Further, with respect to the low temperature transformation molten material and the case where the compressive residual stress is introduced into the toe portion, the effect is large in the high strength steel, but the effect is almost lost in the low strength steel. As with TIG dressing, there are some problems in construction due to the heat applied by welding, which makes it difficult to use, and it is difficult to measure the effect of the compressive residual stress introduced like other treatment methods. .
【0010】[0010]
【発明が解決しようとする課題】上記のように、応力集
中を減らす疲労向上処理法には、主に施工上の効率、施
工者の熟練の問題があり、一方、圧縮応力を導入する疲
労向上処理法には、その効果を計測して、品質管理を行
うことができないことが問題であり、そのために、この
ような疲労寿命向上処理法を一般的に使うことは困難で
あった。As described above, the fatigue improvement treatment method for reducing stress concentration mainly has problems in efficiency of construction and skill of the operator, while fatigue improvement treatment by introducing compressive stress. A problem with the treatment method is that it is not possible to measure its effect and perform quality control. Therefore, it is difficult to generally use such a fatigue life improving treatment method.
【0011】本発明は、上記の事情に鑑みてなされたも
ので、疲労向上処理法として、超音波で先端を振幅20
μm〜60μm、周波数15kHz〜60kHzで振動
させる工具を用いて、金属表面を打撃するピーニングを
行う超音波衝撃処理という処理を行うと共に、その超音
波衝撃処理が処理を行う金属に与える特性を利用した前
処理及び検査を併せて行うことによってその効果を保証
することにより、長寿命を実現する疲労向上処理法、お
よび、それによる長寿命を持つ金属材を得ることを目的
とする。The present invention has been made in view of the above circumstances, and as a fatigue improving method, ultrasonic waves are applied to the tip end of an amplitude of 20.
Using a tool that vibrates at a frequency of 15 to 60 kHz at a frequency of 15 μm to 60 μm, an ultrasonic shock treatment for peening the metal surface is performed, and the characteristics of the ultrasonic shock treatment given to the metal to be treated are used. The purpose of the present invention is to obtain a fatigue-improving treatment method that achieves a long life and a metal material that has a long life due to the fatigue improvement treatment method by guaranteeing its effect by performing both pretreatment and inspection.
【0012】[0012]
【課題を解決するための手段】上記した課題を解決する
ために、第1の発明は、金属材の疲労が問題となる箇所
について、前処理を行った後、超音波衝撃処理を行い、
さらにその後、品質保証検査を行うことによって、当該
金属材の疲労寿命を向上させることを特徴とする。In order to solve the above-mentioned problems, the first invention is to subject a portion where fatigue of a metal material is a problem to pretreatment and then ultrasonic impact treatment,
Furthermore, after that, a quality assurance inspection is performed to improve the fatigue life of the metal material.
【0013】また、第2の発明は、上記第1の発明の前
処理において、金属材の超音波衝撃処理を行う部分とそ
の近傍部分について、塑性加工や、変形矯正、熱処理、
溶接など金属内部応力、表面応力を変化させるプロセス
を行ったのち、超音波衝撃処理を実施し、超音波衝撃処
理後にはそのような金属内部応力、表面応力を変化させ
るプロセスを行わないことを特徴とする。A second aspect of the present invention is the pretreatment of the first aspect of the present invention, wherein the portion of the metal material subjected to ultrasonic impact treatment and the portion in the vicinity thereof are subjected to plastic working, deformation correction, heat treatment,
Characterized by performing ultrasonic impact treatment after performing a process such as welding that changes the internal metal stress and surface stress, and not performing a process that changes such internal metal stress and surface stress after the ultrasonic impact treatment. And
【0014】また、第3の発明は、上記第1の発明の前
処理において、金属材の超音波衝撃処理を行う部分とそ
の近傍部分について、塑性加工や、変形矯正、熱処理、
溶接など金属内部応力、表面応力を変化させるプロセス
を行ったのち、非破壊検査と超音波衝撃処理を実施し、
超音波衝撃処理後にはそのような金属内部応力、表面応
力を変化させるプロセスを行わないことを特徴とする。A third aspect of the present invention is the pretreatment of the first aspect of the invention, wherein the portion of the metal material subjected to ultrasonic impact treatment and the portion in the vicinity thereof are subjected to plastic working, deformation correction, heat treatment,
After performing the process of changing the metal internal stress and surface stress such as welding, non-destructive inspection and ultrasonic impact treatment are performed,
It is characterized in that after the ultrasonic impact treatment, a process of changing such internal stress of metal and surface stress is not performed.
【0015】また、第4の発明は、上記第1の発明の前
処理において、疲労寿命の問題となる箇所について、目
視検査、浸透探傷検査、磁粉探傷検査、渦流探傷検査な
どを実施した上で、亀裂検出されればその亀裂をグライ
ンダーやガウジングなどで除去することを特徴とする。In a fourth aspect of the present invention, in the pretreatment of the first aspect of the invention, a visual inspection, a penetrant flaw detection inspection, a magnetic particle flaw detection inspection, an eddy current flaw detection inspection, etc. are performed on a portion having a fatigue life problem. If a crack is detected, the crack is removed by a grinder or gouging.
【0016】また、第5の発明は、上記第4の発明の亀
裂除去において、除去深さが5mm以上と深くなった場
合は、溶接肉盛りを行った後、グラインダーで平滑に仕
上げ、さらに目視検査、浸透探傷検査、磁粉探傷検査、
渦流探傷検査などを実施した上で、亀裂が検出されない
ことを確認することを特徴とする。Further, in a fifth aspect of the present invention, in the crack removal of the fourth aspect, when the removal depth becomes deeper than 5 mm, the weld overlay is carried out, then smoothed with a grinder, and further visually inspected. Inspection, penetrant inspection, magnetic particle inspection,
It is characterized by conducting an eddy current flaw detection test and confirming that no cracks are detected.
【0017】また、第6の発明は、上記第1の発明の超
音波衝撃処理において、金属材の溶接部における、止端
部、HAZ部、溶接部に対して処理を行い、形状を応力
集中を生じにくいよう変形させると共に、圧縮残留応力
を導入し、疲労発生の起点となる微小な欠陥を無害化
し、亀裂の発生を抑制することを特徴とする。A sixth aspect of the present invention is the ultrasonic impact treatment according to the first aspect, wherein the toe portion, HAZ portion, and welded portion of the welded portion of the metal material are treated so that the shape is stress-concentrated. In addition to deforming so as to prevent the occurrence of cracks, a compressive residual stress is introduced to detoxify the minute defects that are the starting points of fatigue occurrence, and suppress the occurrence of cracks.
【0018】また、第7の発明は、上記第1の発明の超
音波衝撃処理において、金属材の鋸、せん断、ガス、レ
ーザー、プラズマ等による切断による切断面およびその
近傍に対して処理を行い、形状を応力集中が生じにくい
よう変形させると共に、圧縮残留応力を導入し、疲労発
生の起点となる微小な欠陥や極端に硬化した部分を無害
化し、亀裂の発生を抑制することを特徴とする。A seventh aspect of the present invention is the ultrasonic impact treatment according to the first aspect of the present invention, wherein a treatment is performed on a cut surface of a metal material by sawing, shearing, gas, laser, plasma or the like and the vicinity thereof. In addition to deforming the shape so that stress concentration is unlikely to occur, compressive residual stress is introduced to make harmless to minute defects and extremely hardened parts that are the starting points of fatigue occurrence, and suppress the occurrence of cracks. .
【0019】また、第8の発明は、上記第1の発明の超
音波衝撃処理において、非破壊検査での検出限界以下の
亀裂に超音波衝撃処理を用いた打撃による圧縮応力を導
入し、進展を止めることを特徴とする。The eighth invention, in the ultrasonic impact treatment of the above-mentioned first invention, introduces compressive stress due to striking using the ultrasonic impact treatment to a crack below the detection limit in the nondestructive inspection, and progresses. It is characterized by stopping.
【0020】また、第9の発明は、上記第1の発明の超
音波衝撃処理において、疲労亀裂の発生が懸念される構
造物及び構造品の局所について、同一箇所について2パ
ス以上超音波衝撃処理を行うことによって、非破壊検査
での検出限界以下の亀裂に打撃による圧縮応力を導入
し、より確実に進展を止めることを特徴とする。A ninth aspect of the invention is the ultrasonic impact treatment of the first aspect of the invention, wherein the ultrasonic impact treatment is performed for two or more passes at the same location with respect to the structure and the local portion of the structure where the fatigue crack may occur. By carrying out, the compressive stress due to the impact is introduced into the crack below the detection limit in the nondestructive inspection, and the progress is more reliably stopped.
【0021】また、第10の発明は、上記第1の発明の
品質保証検査において、歯科用形象材などの型取り材を
用いて、またはレーザー変位計などの高精度計測機でス
キャンを行って、超音波衝撃処理後の形状の型を取り、
その処理面の局面が処理に用いた超音波衝撃処理の工具
先端のR(半径)とほぼ一致していること、また、処理
前から0.05mm以上の深さで塑性変形を生じている
こと、を確認することによって、処理を行った部分で形
状が改善され、圧縮残留応力が導入されたことによって
疲労寿命が向上したことを確認することを特徴とする。A tenth aspect of the invention is to perform the quality assurance inspection of the first aspect of the invention by using a molding material such as a dental shape material or scanning with a high precision measuring instrument such as a laser displacement meter. , Take the shape mold after ultrasonic impact treatment,
The processed surface should be approximately the same as the R (radius) of the tool tip of the ultrasonic impact processing used for processing, and that plastic deformation had occurred at a depth of 0.05 mm or more before processing. Is confirmed to improve the shape of the treated part, and to introduce the compressive residual stress to improve the fatigue life.
【0022】また、第11の発明は、上記第1の発明の
品質保証検査において、定常プロセスとして超音波衝撃
処理が行われる場合、超音波衝撃処理先端工具の確認、
機器出力設定の確認と、目視による処理部分における塑
性変形の発生の確認により、処理を行った部分で形状が
改善され、圧縮残留応力が導入されたことによって疲労
寿命が向上したことを確認することを特徴する。The eleventh aspect of the invention is to check the ultrasonic impact treatment tip tool when ultrasonic impact treatment is carried out as a steady process in the quality assurance inspection of the first aspect of the invention.
By confirming the equipment output setting and visually confirming the occurrence of plastic deformation in the treated part, confirm that the shape has been improved in the treated part and the fatigue life has been improved by the introduction of compressive residual stress. Characterize
【0023】また、第12の発明は、上記第1の発明の
品質保証検査において、変形が超音波衝撃処理によって
形成されたものか疑念が生じた場合、金属表面に形成さ
れた変形の計測にあたって、処理表面をスンプ法によっ
て金属の最表面の組織を観察し、処理されていない他の
部分よりも組織が細粒化していることを確認することに
より、その変形が超音波衝撃処理により形成されたこと
を判別することを特徴とする。The twelfth aspect of the invention is, in the quality assurance inspection of the first aspect of the invention, in measuring the deformation formed on the metal surface when it is doubtful that the deformation was formed by ultrasonic impact treatment. By observing the texture of the outermost surface of the metal by the sump method on the treated surface and confirming that the texture is finer than other untreated parts, the deformation is formed by ultrasonic impact treatment. The feature is that it is determined.
【0024】また、第13の発明は、上記第1の発明の
品質保証検査において、変形が超音波衝撃処理によって
形成されたものか疑念が生じた場合、金属表面に形成さ
れた変形の計測にあたって、処理表面を超音波粒径計測
装置によって金属の最表面の粒径を計測し、処理されて
いない他の部分よりも組織が細粒化していることを確認
することにより、その変形が超音波衝撃処理により形成
されたことを判別することを特徴とする。The thirteenth invention is, in the quality assurance inspection of the first invention, in measuring the deformation formed on the metal surface when it is doubtful that the deformation was formed by ultrasonic impact treatment. By measuring the grain size of the outermost surface of the metal with an ultrasonic grain size measuring device on the treated surface and confirming that the tissue is finer than other untreated parts, the deformation is ultrasonic. It is characterized in that it is formed by impact processing.
【0025】また、第14の発明は、上記第1の発明の
品質保証検査において、変形が超音波衝撃処理によって
形成されたものか疑念が生じた場合、金属表面に形成さ
れた変形の計測にあたって、粗度計やレーザー変位計に
より処理表面の粗度を計測し、形成されたR(半径)を
横断する方向について処理されていない他の部分よりも
表面が平滑になっていることを確認することにより、そ
の変形が超音波衝撃処理により形成されたことを判別す
ることを特徴とする。Further, the fourteenth invention is, in the quality assurance inspection of the first invention, in measuring the deformation formed on the metal surface when it is doubtful that the deformation was formed by ultrasonic impact treatment. Roughness of the treated surface is measured with a roughness meter or laser displacement meter, and it is confirmed that the surface is smoother in the direction crossing the formed R (radius) than other untreated portions. Thus, it is characterized that the deformation is formed by ultrasonic impact treatment.
【0026】また、第15の発明は、上記第1の発明の
品質保証検査において、変形が超音波衝撃処理によって
形成されたものか疑念が生じた場合、金属表面に形成さ
れた変形の計測にあたり、処理表面のピッカース試験な
どにより硬さを計測し、処理されていない他の部分より
も表面硬度が20%以上100%未満の割合で硬化して
いることを確認することにより、その変形が超音波衝撃
処理により形成されたことを判別することを特徴とす
る。The fifteenth aspect of the invention is to measure the deformation formed on the metal surface in the quality assurance inspection of the first aspect, when it is doubtful that the deformation was formed by ultrasonic impact treatment. , The hardness of the treated surface is measured by a Pickers test, etc., and it is confirmed that the surface hardness is 20% or more and less than 100% of that of the other untreated portion, so that the deformation is superb. It is characterized in that it is formed by a sound wave impact process.
【0027】また、第16の発明は、上記第1の発明の
品質保証検査において、品質保証検査合格後の超音波衝
撃処理部に対して、その後の使用時に亀裂が発生する
と、塗膜内部に備えたマイクロカプセルがその亀裂部分
で割れて、亀裂を発生したことを外部に容易に指示す
る、別色の塗料を浸出させる塗料を塗布することによ
り、その後の亀裂発生を示すことを特徴とする。The 16th aspect of the present invention is, in the quality assurance inspection of the first aspect of the invention, that when a crack is generated during subsequent use with respect to the ultrasonic impact treatment portion after passing the quality assurance inspection, the inside of the coating film is inspected. The provided microcapsule is characterized in that it breaks at the cracked portion and easily indicates to the outside that cracking has occurred, by applying a paint that leaches out a paint of another color, and shows subsequent cracking. .
【0028】また、第17の発明は、上記第1〜16の
発明のいずれかの疲労寿命向上処理法を用いて処理され
た金属材であることを特徴とする。The seventeenth invention is characterized in that it is a metal material treated by the fatigue life improving treatment method according to any one of the first to sixteenth inventions.
【0029】[0029]
【発明の実施の形態】金属の疲労破壊の発生は、応力集
中と残留応力に大きく影響される。荷重を受ける金属材
においては応力集中部に転移がたまり、それがすべり線
の蓄積となって亀裂に発展し、亀裂が発生後はそれが進
展して行く。残留応力は、通常、溶接部などで引張残留
応力として存在し、実効的な繰り返し応力範囲を拡大さ
せて亀裂を発生しやすくするとともに、生成した亀裂の
開口を促進すると考えられている。そのため、金属材料
の疲労寿命を向上させるには、応力集中を緩和するとと
もに、残留応力をできるだけ圧縮状態に近づけることが
必要となってくる。BEST MODE FOR CARRYING OUT THE INVENTION The occurrence of fatigue fracture of metal is greatly influenced by stress concentration and residual stress. In a metal material that receives a load, dislocations accumulate in the stress concentration part, which accumulates slip lines and develops into cracks, and after cracks develop, they progress. Residual stress usually exists as a tensile residual stress in a welded part and the like, and it is considered that the effective repetitive stress range is expanded to easily cause a crack and the opening of the generated crack is promoted. Therefore, in order to improve the fatigue life of the metal material, it is necessary to relax the stress concentration and make the residual stress as close to the compression state as possible.
【0030】金属の溶接部には、表面形状の急変部と引
っ張り残留応力の両方が存在し、疲労強度的に最も弱点
となる。この表面形状の急変部が切り欠きとして作用
し、応力集中部となるために、この応力集中部に塑性変
形を与え、なだらかな止端半径が大きな曲面によって形
成された表面を形成することが、応力集中部を緩和する
ことになる。また、このとき金属の板厚方向に塑性変形
を与えれば、その塑性化した金属が周囲の金属によって
拘束されることによって圧縮力が導入される。The welded portion of metal has both a sudden change in surface shape and a tensile residual stress, which is the weakest point in terms of fatigue strength. This sudden change in the surface shape acts as a notch, and since it becomes a stress concentration part, plastic deformation is applied to this stress concentration part and it is possible to form a surface formed by a curved surface with a gentle toe radius. The stress concentration part will be relaxed. Further, at this time, if plastic deformation is applied to the metal in the plate thickness direction, the plasticized metal is constrained by the surrounding metal to introduce a compressive force.
【0031】また、金属の切断端面にも、表面の急変部
と、切断に伴う引っ張り応力、せん断応力が存在するた
めに、疲労的な弱点になる。これも、端面に対して直角
方向に塑性変形を与える。または、端面の角を曲面上に
するように塑性変形を与えることによって、形状改善と
圧縮応力の導入ができる。Further, the cut end face of metal also has a sudden change portion of the surface and tensile stress and shear stress associated with cutting, which is a weak point of fatigue. This also gives plastic deformation in the direction perpendicular to the end face. Alternatively, the shape can be improved and the compressive stress can be introduced by giving plastic deformation so that the corners of the end faces are curved.
【0032】このような、金属に対する塑性加工を可能
とする手段として、超音波で先端を振幅20μm〜60
μm、周波数15kHz〜60kHzで振動させる工具
を用いて、金属表面を打撃するピーニングを行う超音波
衝撃処理という処理がある。この手法を用いることによ
って、金属表面に塑性加工を行い、深さ1.5mmほど
にまで圧縮残留応力を導入することができる。As a means for enabling such plastic working of metal, ultrasonic waves are applied to the tip of an amplitude of 20 μm to 60 μm.
There is a process called ultrasonic impact treatment that performs peening to hit a metal surface with a tool that vibrates at a frequency of 15 μm and a frequency of 15 kHz to 60 kHz. By using this method, it is possible to perform plastic working on the metal surface and introduce compressive residual stress to a depth of about 1.5 mm.
【0033】この超音波衝撃処理という手法は、基本的
にはハンマーピーニングと疲労強度向上に関する基本メ
カニズムは変わらないが、一回一回の打撃のエネルギー
を小さい変わりに、1秒間に1万回以上の打撃を与える
ことによって、同じような塑性変形を実現している。し
かも、一回一回の打撃力は小さいために、機器に生じる
反動はほとんどまったく無く、ハンマーピーニングと比
較して使用性、施工性の面で非常に有利である。This ultrasonic impact treatment method basically does not change the basic mechanism of hammer peening and fatigue strength improvement, but the impact energy of each impact is reduced to 10,000 times or more per second. The same plastic deformation is realized by applying the impact of. Moreover, since the impact force of each time is small, there is almost no recoil in the equipment, which is very advantageous in terms of usability and workability as compared with hammer peening.
【0034】また、この超音波衝撃処理という処理は、
この金属表面に対し非常に多くの回数の打撃を与えてい
るということで、鋼材表面に対して従来のハンマーピー
ニングには無い効果をもたらしている。また、一回一回
の打撃エネルギーがショットピーニングより大きいこと
で、従来のショットピーニングにも無い効果をもたらし
ている。Further, this ultrasonic impact treatment is
Since the metal surface is hit with a very large number of times, it has an effect on the surface of the steel material that the conventional hammer peening does not have. Further, since the hitting energy for each shot is larger than that for shot peening, it brings about an effect which is not available in conventional shot peening.
【0035】まず、回数を多く表面を叩くことで、処理
の均一性が得られる。ハンマーピーニングでも数パスを
同一線上で実施すればある程度の均一性が得られること
は知られているが、超音波衝撃処理の打撃サイクル数は
15〜60kHzであり、その得られる均一性はハンマ
ーピーニングと全く異なるレベルにあり、処理スピード
が0.5m/分程度であれば、ほとんど金属表面を均一
に仕上げ、欠陥を全く残すことがない。First, by hitting the surface a large number of times, the uniformity of processing can be obtained. It is known that even with hammer peening, a certain degree of uniformity can be obtained by performing several passes on the same line, but the impact cycle number of ultrasonic impact treatment is 15 to 60 kHz, and the obtained uniformity is hammer peening. If the processing speed is about 0.5 m / min, the metal surface is almost evenly finished and no defects are left.
【0036】また、その処理後の表面は著しい平滑さを
持つ。図2(a)、(b)に示さる処理前後の金属表面
の平滑度を比較すると、超音波衝撃処理による処理後の
平滑さは、グラインダー仕上げ後の金属表面よりも著し
く平滑であることがわかる。Further, the surface after the treatment has a remarkable smoothness. Comparing the smoothness of the metal surface before and after the treatment shown in FIGS. 2A and 2B, it is found that the smoothness after the ultrasonic impact treatment is significantly smoother than that after the grinder finishing. Recognize.
【0037】また、処理後の金属表面の組織は超音波を
利用して塑性加工を数多く繰り返すことによって、著し
く組織が細かくなることがわかっている。(Surfa
ceNanocrystallization(SN
C)of metallicMaterials−Pr
esentation of the Concept
behind a New Approach,J.
Master.Sci.Technol.Vol.15 N
o.3,1999)Further, it is known that the structure of the metal surface after the treatment is remarkably fined by repeating the plastic working many times by utilizing ultrasonic waves. (Surfa
ceNanocrystallization (SN
C) of metallicMaterials-Pr
orientation of the Concept
behind a New Approach, J.
Master.Sci.Technol.Vol.15 N
o. 3, 1999)
【0038】実際、超音波衝撃処理を疲労向上の目的で
鋼材に使った結果、処理前後で鋼材組織は大きく変化し
ている。このような、鋼材の組織を細かくする効果は、
特に鋼材の組織が粗大化する溶接近傍のHAZ部で顕著
であり、通常は100μmまで粗大化するHAZの粒径
が、超音波衝撃処理の処理後はほとんど粒径が観察でき
ないほどの寸法に小さくなっており、独特な鋼材組織が
超音波衝撃処理によって達成されている。Actually, as a result of applying ultrasonic impact treatment to a steel material for the purpose of improving fatigue, the steel material structure is largely changed before and after the treatment. Such an effect of refining the structure of the steel material is
In particular, the HAZ part near the weld where the structure of the steel material coarsens is remarkable, and the grain size of the HAZ that coarsens up to 100 μm is so small that the grain size is hardly observable after the ultrasonic impact treatment. And a unique steel structure has been achieved by ultrasonic impact treatment.
【0039】また、超音波衝撃処理によって鋼材の表面
での鋼材の組織が細かくなるのに伴って、硬さが増す。
図3に超音波衝撃処理後の母材部、溶金部、HAZ部の
硬さの分布を示すが、特に溶接鋼構造物によく用いられ
る強度の鋼については、硬さが20%以上増しているこ
とがわかる。ほか、材質と処理時間によっては、硬さは
最大、処理前の約2倍まで増加することがあるが、ただ
し、これは固くてもろいマルテンサイトとなったわけで
はなく、主に、細粒化による効果と、転移の蓄積による
加工硬化であるため、溶接割れをもたらすような種類の
硬さの増加ではない。Further, as the structure of the steel material on the surface of the steel material becomes finer by the ultrasonic impact treatment, the hardness increases.
Fig. 3 shows the hardness distributions of the base metal part, the molten metal part, and the HAZ part after ultrasonic impact treatment. Especially for strength steels often used for welded steel structures, the hardness increases by 20% or more. You can see that In addition, depending on the material and treatment time, the hardness may increase up to about twice as much as before treatment. However, this does not mean that it is hard and brittle martensite, and it is mainly due to fine graining. The effect and work hardening due to the accumulation of dislocations is not an increase in the kind of hardness that causes weld cracking.
【0040】鋼板の疲労破壊は、亀裂の発生と進展から
構成される。亀裂発生寿命と亀裂進展寿命の合計が疲労
亀裂にいたる全寿命となる。そして、応力集中や、残留
応力が厳しい箇所から亀裂が発生する場合が多く、発生
した亀裂は、さらに進展を継続して最終的に部材の破断
に至る。鋼板の疲労破壊の寿命を向上させるためには、
疲労亀裂の発生及び疲労亀裂の進展を抑制することが必
要である。Fatigue fracture of a steel sheet consists of crack initiation and propagation. The total of the life of crack initiation and the life of crack propagation is the total life leading to fatigue cracking. In many cases, a crack is generated from a location where stress concentration or residual stress is severe, and the crack that has continued further progresses to eventually break the member. In order to improve the fatigue fracture life of steel sheets,
It is necessary to suppress the occurrence of fatigue cracks and the development of fatigue cracks.
【0041】しかし、通常はいったん鋼材に亀裂が発生
すると、その亀裂先端での応力集中は極めて大きく、こ
の進行を止めることは極めて困難であるとされている。
例えば、先端にストップホールをあけ、その穴を高力ボ
ルトで締め上げても、亀裂先端を残した場合はボルト内
部に亀裂が進展して、切断してしまうことすらある。However, normally, once a crack is generated in the steel material, the stress concentration at the crack tip is extremely large, and it is extremely difficult to stop this progress.
For example, even if a stop hole is formed at the tip and the hole is tightened with a high-strength bolt, if a crack tip is left, the crack may propagate inside the bolt and even cut.
【0042】初期の疲労亀裂を観察すると、まわし溶接
試験体の疲労試験中のひずみ計測により、発生を検知し
た時点の亀裂の状態である初期の疲労亀裂を観察する
と、この時点でまわし溶接継ぎ手での普通の疲労寿命の
約1割が経過しており、残りの9割の寿命は、この亀裂
の進展寿命であり、この亀裂を取り除かない限りほとん
ど決まってしまう状態にある。Observing the initial fatigue crack, the strain measurement during the fatigue test of the swirl-welded test specimen was performed to observe the initial fatigue crack, which is the state of the crack at the time of occurrence detection. About 10% of the normal fatigue life has passed, and the remaining 90% of the life is the growth life of this crack, which is almost determined unless the crack is removed.
【0043】しかしながら、この状態の亀裂は通常の浸
透探傷試験や、磁粉探傷試験では検知することができな
い。もし、この状態で従来の疲労寿命向上手法であるハ
ンマーピーニングやショットピーニングを行ったとする
と、この亀裂を残したまま処理を行ってしまうため、見
かけ上は処理面には塑性変形が生じているが、亀裂の進
展は止められないために、改善効果は形状改良による応
力集中の低減程度しかなく、寿命がほとんど伸びないと
いう状況が考えられる。However, cracks in this state cannot be detected by a normal penetration flaw detection test or a magnetic particle flaw detection test. If hammer peening or shot peening, which is a conventional fatigue life improving method, is performed in this state, the treatment is performed while leaving these cracks, so that apparently plastic deformation occurs on the treated surface. However, since the progress of cracks cannot be stopped, the improvement effect is only the reduction of stress concentration due to the shape improvement, and it is considered that the life is hardly extended.
【0044】ところが、この状態でも超音波衝撃処理を
行うと、深さ1.5mm程度まで塑性変形による圧縮応
力を導入するために、亀裂を叩き潰し、亀裂先端を開口
しないようにしてしまうことができる。もちろん、圧縮
応力を導入できる深さは、ハンマーピーニングでも同程
度以上の深さが可能であるが、ハンマーピーニングは処
理効果にむらがあり、亀裂を叩けずに残す部分が多いと
考えられ、その点、超音波衝撃処理は前述のように打撃
回数が著しく多いために、均一に亀裂の開口を抑制する
ことができる。However, if the ultrasonic impact treatment is carried out even in this state, in order to introduce a compressive stress due to plastic deformation to a depth of about 1.5 mm, the crack may be crushed and the tip of the crack may not be opened. it can. Of course, the depth at which compressive stress can be introduced can be as deep as or more than that in hammer peening, but hammer peening has uneven treatment effects, and it is considered that there are many parts to leave without hitting cracks, On the other hand, in the ultrasonic impact treatment, since the number of hits is extremely large as described above, it is possible to uniformly suppress the opening of cracks.
【0045】よって、効果的に疲労寿命向上効果を得る
には、溶接金属製品については超音波衝撃処理を溶接部
の止端部を中心に、溶接金属部、HAZ部に処理するこ
とが基本である。もっとも疲労的な弱点になる溶接金属
とHAZの境界面を疲労に対して強化する、また、溶接
金属部表面に生じる高温割れの悪影響も著しく緩和でき
る。ただし、低温の水素割れについてはほとんど効果を
持たないと考えられるので注意が必要である。Therefore, in order to effectively obtain the fatigue life improving effect, it is basically necessary to subject the weld metal product to ultrasonic impact treatment to the weld metal portion and the HAZ portion, centering on the toe portion of the weld portion. is there. The interface between the weld metal and the HAZ, which is the weakest point of fatigue, is strengthened against fatigue, and the adverse effects of hot cracking on the surface of the weld metal can be significantly reduced. However, caution is required because it is considered to have little effect on hydrogen cracking at low temperatures.
【0046】また、溶接が無くても疲労的な弱点となる
金属の、鋸、せん断、ガス、レーザー、プラズマなどに
よる切断面からの疲労に対して、効果的に疲労寿命を得
るには、切断端面に対して超音波衝撃処理を行う。これ
により、切断に伴って端面に入る過大な引っ張り応力、
せん断応力を緩和し、また、圧縮応力を導入すると共
に、切断に伴ってできるバリなどの応力集中部を塑性変
形により、なだらかな曲面に整形し、また特にガス、レ
ーザー、プラズマなどの熱の入力を伴う切断方法に伴っ
て端面に生じる、極端に硬化した層を無害化することが
できる。このとき、出力を上げすぎて、端面に有害な変
形を与えないように注意することが必要であるが、これ
は反動が少なく、コントロールが容易な超音波衝撃処理
でようやく可能となることであり、従来のハンマーピー
ニングでは実行不可能であり、ショットピーニングでは
効率が上がらなかった。In order to effectively obtain a fatigue life against the fatigue of a metal, which is a weak point of fatigue without welding, from a cut surface due to saw, shear, gas, laser, plasma, etc. Ultrasonic impact treatment is applied to the end faces. With this, excessive tensile stress entering the end face with cutting,
In addition to relieving shear stress and introducing compressive stress, the stress concentration part such as burrs caused by cutting is shaped into a smooth curved surface by plastic deformation, and especially heat input of gas, laser, plasma etc. It is possible to render the extremely hardened layer, which is generated on the end face by the cutting method accompanied by, harmless. At this time, it is necessary to be careful not to raise the output too much and give harmful deformation to the end face, but this is only possible with ultrasonic impact treatment that has little recoil and is easy to control. , The conventional hammer peening is not feasible, and the shot peening is not efficient.
【0047】このような、溶接部、切断端部などでの処
理にあたっては、1処理線での処理回数は1パスでも充
分であるが、より均一性を高めたい場合や、よりコント
ロール性を向上させたり、過大な塑性変形を防止するた
めに、処理1回あたりの入力パワーを押えたい場合は、
2回以上の処理を同一線上に対して行うことにより、よ
り確実な疲労寿命向上効果を得ることができる。For such processing at the welded portion, the cut end, etc., one pass is sufficient for the number of treatments on one treatment line, but when it is desired to increase the uniformity or to improve the controllability. If you want to suppress the input power per processing in order to prevent or prevent excessive plastic deformation,
By performing the treatment twice or more on the same line, a more reliable fatigue life improving effect can be obtained.
【0048】前記説明の通り、超音波衝撃処理によって
金属の組織は、他の圧縮応力導入系の疲労寿命向上処理
手法による効果と比較してユニークな変化を生じるた
め、処理金属表面の、粗度、硬さ、組織状態(粒径)
を、観察することによって、比較的容易に金属表面に生
じた塑性変形の痕跡について、超音波衝撃処理によるも
のかどうかを判別することができる。As described above, the ultrasonic impact treatment causes a unique change in the microstructure of the metal as compared with the effect of the fatigue life improving treatment method of the other compressive stress introduction system. , Hardness, microstructure (grain size)
By observing, it is possible to determine relatively easily whether the trace of the plastic deformation generated on the metal surface is due to the ultrasonic impact treatment.
【0049】このような処理後の表面状態は、スンプ法
のように複製を作成して組織観察することも可能である
し、変位計などで走査して直接計測することも可能であ
る。また、硬さはヴィッカース試験などを用いて容易に
計測することができる。さらに、粒径だけを計測するの
であれば、超音波を用いた粒径計測機などの利用が簡易
である。The surface state after such treatment can be duplicated as in the Sump method to observe the tissue, or can be directly measured by scanning with a displacement meter or the like. The hardness can be easily measured using a Vickers test or the like. Furthermore, if only the particle size is measured, it is easy to use a particle size measuring device using ultrasonic waves.
【0050】また、応力集中の度合いは、処理後の形状
を計測することによって容易に達成される。処理前後の
溶接部止端の状況を観察すると、止端形状が処理先端工
具の形状に合わせて変形していることがわかる。応力集
中部に超音波衝撃処理によって形成された曲面の持つ曲
率は、もちろん大きければ大きいほど応力集中係数が下
がるが、超音波衝撃処理の場合、導入される圧縮応力と
の関係もあるために、経験的にR(半径)が0.5mm
〜3.0mm程度の曲面を持つ工具で処理を行うと疲労
向上効果が高いため、おおむねこの曲率で応力集中部が
加工される。The degree of stress concentration can be easily achieved by measuring the shape after processing. By observing the condition of the weld toe before and after the treatment, it can be seen that the toe shape is deformed according to the shape of the treated tip tool. The curvature of the curved surface formed by the ultrasonic impact treatment in the stress concentration portion is, of course, the larger the curvature is, the lower the stress concentration coefficient is.However, in the case of the ultrasonic impact treatment, there is a relationship with the compressive stress to be introduced. Empirically, R (radius) is 0.5 mm
Since the fatigue improving effect is high when processing is performed with a tool having a curved surface of about 3.0 mm, the stress concentrated portion is processed with approximately this curvature.
【0051】そして、導入される圧縮応力の大きさは、
処理前の表面から、処理後に金属の深さ方向にどれだけ
塑性変形したかによって、類推される。基本的には、深
さ方向への塑性変形量が大きければ大きいほど導入され
る圧縮力は増加すると考えられるが、上述のように超音
波衝撃処理によって形成される塑性変形量、および、そ
れによって得られる疲労向上効果は、工具のもつ曲率と
も関係するため、Rが小さければ塑性変形深さは大き
く、Rが大きければ塑性変形深さは小さくなるが、経験
的にはRが0.5mm〜3.0mm程度で、塑性変形深
さは0.05mm以上、1.0mm以下程度にあれば、
十分に疲労向上効果が得られる。Then, the magnitude of the compressive stress introduced is
It can be inferred by the plastic deformation of the surface before the treatment in the depth direction of the metal after the treatment. Basically, the greater the amount of plastic deformation in the depth direction, the greater the amount of compressive force introduced, but as described above, the amount of plastic deformation formed by ultrasonic impact treatment, and Since the effect of improving fatigue obtained is also related to the curvature of the tool, if R is small, the plastic deformation depth is large, and if R is large, the plastic deformation depth is small, but empirically, R is 0.5 mm to If the plastic deformation depth is about 3.0 mm and about 0.05 mm or more and 1.0 mm or less,
Fatigue improving effect is sufficiently obtained.
【0052】このような処理後の形状は、歯科用形象材
のような不定形材料を用いて複製を作成して検査するこ
とが一般的で容易であるが、レーザー変位計などで走査
して直接計測することも可能である。It is general and easy to inspect the shape after such treatment by making a duplicate using an amorphous material such as a dental shape material, but scanning with a laser displacement meter or the like. It is also possible to measure directly.
【0053】ただし、超音波衝撃処理の機器が工場のラ
インに設置されて、新規に金属材を制作している場合な
どに関しては、前処理における亀裂の検査は、通常の材
料に対するレベルの目視での有害な傷の有無の確認で代
えることができ、また、処理後の品質管理においても、
超音波衝撃処理による処理は明白であるために、超音波
衝撃処理の先端工具の確認、および、その出力設定の確
認、そして、目視での製品に超音波衝撃処理による塑性
変形発生の有無の確認のみで代えることができる。However, in the case where a device for ultrasonic impact treatment is installed in a factory line and a new metal material is produced, the cracks in the pretreatment should be visually inspected at the level of ordinary materials. It can be replaced by checking for the presence or absence of harmful scratches, and also in quality control after processing,
Since the treatment by ultrasonic impact treatment is obvious, check the tip tool of ultrasonic impact treatment, check the output setting, and visually check whether plastic deformation occurs in the product by ultrasonic impact treatment. Can be replaced with only.
【0054】圧縮残留応力を与える疲労寿命向上手法で
留意しなければならないのは、その金属材の超音波衝撃
処理を行う部分とその部分に影響を及ぼす可能性のある
近傍部分については、超音波衝撃処理によって導入され
た圧縮残留応力を、その金属材の製作のために必要な他
の、曲げ加工、矯正、熱処理、さらに溶接などの塑性変
形を伴うプロセスによって変えてしまわないようにする
ことが必要である。すなわち、当該箇所について、それ
らの全てのプロセスをすませた後で、最後に超音波衝撃
処理を行うという順番を遵守することが必要である。In the method of improving the fatigue life of giving a compressive residual stress, it should be noted that the portion of the metal material to be subjected to ultrasonic impact treatment and the portion near the portion which may affect the portion are subjected to ultrasonic wave treatment. To prevent the compressive residual stress introduced by impact treatment from being changed by other processes required for producing the metal material, such as bending, straightening, heat treatment, and plastic deformation, such as welding. is necessary. That is, it is necessary to comply with the order in which the ultrasonic impact treatment is finally performed on the relevant portion after all the processes are completed.
【0055】品質保証検査で所定の性能を持つことを確
認した後、その効果をさらに高める手段がある。それ
は、処理後に、処理箇所に施す塗装に機能性を持たせる
ことである。塗装には、別の色の塗料を入れたマイクロ
カプセルを混入させることができる。これにより、外部
からのその塗装への刺激により、マイクロカプセルを割
ることによって、内部の塗料を浸出させることが可能と
なる。After it is confirmed by the quality assurance inspection that it has a predetermined performance, there is a means for further enhancing the effect. That is, after the treatment, the coating applied to the treated portion has functionality. For coating, microcapsules containing another color of paint can be mixed. This allows the paint inside to be leached out by breaking the microcapsules by an external stimulus to the paint.
【0056】このような機能性塗装として、亀裂が生じ
た時点で、その塗装に生じたひずみによってマイクロカ
プセルが割れるようにして、亀裂の位置を示すことので
きるスマートペイント(US 5,534,239)と
呼ばれるものを、超音波衝撃処理の場所に塗布すれば、
目視がしやすくなり、使用開始後の検査が容易になる。As such a functional coating, smart paint (US Pat. No. 5,534,239) capable of indicating the position of the crack by causing the microcapsule to be cracked by the strain generated in the coating when the crack is generated. If you apply what is called) to the place of ultrasonic impact treatment,
It is easy to see and the inspection after use is easy.
【0057】図1は、本願発明の疲労寿命向上処理法を
フローチャートで示したものである。以上説明したよう
な、超音波衝撃処理の持つ特性を利用して、確実に疲労
向上効果が得られるように、大きくは、前処理、超音波
衝撃処理、品質検査の順番で規定をしている。FIG. 1 is a flow chart showing the fatigue life improving treatment method of the present invention. Using the characteristics of ultrasonic shock treatment as described above, in order to ensure the fatigue improvement effect, the rules are roughly defined in the order of pretreatment, ultrasonic shock treatment, and quality inspection. .
【0058】この発明によって得られた効果を確認する
ために疲労実験を実施した。この疲労実験は、まず、初
期疲労が発生するまで疲労載荷を行い、その後、前処理
として磁粉探傷試験を行い、その時点で疲労亀裂が見つ
からなかったので、特に疲労亀裂の除去等は無く超音波
衝撃処理を行い、それから再度、疲労実験を行ったもの
である。最初の載荷によって導入された疲労亀裂は無害
化され、疲労寿命は200MPaで30万回から150
万回以上と5倍以上に向上した。A fatigue experiment was conducted to confirm the effect obtained by the present invention. In this fatigue experiment, first, fatigue loading was performed until initial fatigue occurred, and then a magnetic particle flaw detection test was performed as a pretreatment.Since no fatigue crack was found at that time, there was no particular fatigue crack removal, etc. The impact treatment was performed, and then the fatigue test was performed again. The fatigue cracks introduced by the first loading are rendered harmless, and the fatigue life is 200 MPa at 300,000 to 150 times.
It has improved more than 10,000 times and more than 5 times.
【0059】この発明の特徴は、検出不可能なレベルの
疲労亀裂であれば亀裂先端への塑性変形と圧縮応力の導
入によって無害化することができるために、通常の手法
と異なり、亀裂が発見されていない箇所についても、検
査時に疲労発生予防措置として処理を行うことができ
る。これによって、疲労の向上が見込めるために、処理
をした金属製品の疲労に関わる定期検査の間隔を長くと
れ、メンテナンスコストの削減が可能になる。The feature of the present invention is that since a fatigue crack at an undetectable level can be rendered harmless by introducing plastic deformation and compressive stress at the crack tip, the crack is found unlike the usual method. Even a portion that has not been processed can be treated as a fatigue occurrence preventive measure at the time of inspection. As a result, fatigue can be expected to be improved, so that it is possible to increase the interval between regular inspections related to fatigue of the processed metal product and reduce maintenance costs.
【0060】また、処理後に亀裂検査を容易とするよう
な機能性塗料を塗布することによって、メンテナンスコ
ストの削減が可能になる。Further, the maintenance cost can be reduced by applying a functional paint which facilitates the crack inspection after the treatment.
【0061】このように、この発明を用いて処理した金
属製品は、通常に使う繰り返し作用応力の領域では、確
実に3倍以上の疲労寿命を確保することができる。As described above, the metal product treated according to the present invention can surely secure the fatigue life of three times or more in the region of the repeated action stress which is usually used.
【0062】[0062]
【発明の効果】このように、本発明に係る疲労寿命向上
手法および、それによって処理された金属製品によれ
ば、超音波衝撃処理という新しい疲労寿命向上処理法
を、適切な前処理と処理後の品質検査法と組み合わせる
ことによって、新設、補修、溶接の有無、などにかかわ
らず確実に金属表面から発生する疲労を抑制し、疲労寿
命の向上を図ることができるという顕著な効果を奏する
ものである。また、従来の非破壊検査で検出し得ない小
さな寸法の疲労亀裂を残した状態でも、疲労強度の向上
を図ることができるため、検出可能な疲労亀裂の発生を
待つことなく、予防的に金属製品にこの疲労向上手法を
適用することが可能となり、さらに、その後の亀裂の発
見を容易にする機能性塗料を、処理後に塗布することに
より、特に橋梁などの鋼構造物に関してはメンテナンス
コストの削減が可能となる。As described above, according to the fatigue life improving method of the present invention and the metal product treated by the fatigue life improving method, a new fatigue life improving treatment method called ultrasonic impact treatment is applied to an appropriate pretreatment and post treatment. By combining with the quality inspection method of No. 1, it is possible to reliably suppress the fatigue generated from the metal surface regardless of new installation, repair, welding, etc., and it is possible to improve the fatigue life. is there. In addition, even if fatigue cracks with small dimensions that cannot be detected by conventional non-destructive inspection are left, the fatigue strength can be improved, so that it is possible to prevent the occurrence of detectable fatigue cracks and prevent the metal This fatigue improvement method can be applied to products, and a functional coating that facilitates the subsequent discovery of cracks can be applied after treatment, which reduces maintenance costs especially for steel structures such as bridges. Is possible.
【図面の簡単な説明】[Brief description of drawings]
【図1】本願発明の疲労寿命向上処理法をフローチャー
トで示した図。FIG. 1 is a flow chart showing a fatigue life improving treatment method of the present invention.
【図2】グラインダー仕上げ後の金属表面の平滑度と、
本願発明の超音波衝撃処理後の金属表面の平滑度を表す
図。FIG. 2 is the smoothness of the metal surface after finishing with a grinder,
The figure showing the smoothness of the metal surface after ultrasonic impact processing of the present invention.
【図3】本願発明の超音波衝撃処理前後の金属表面の硬
さを比較した図。FIG. 3 is a diagram comparing the hardness of the metal surface before and after the ultrasonic impact treatment of the present invention.
フロントページの続き (72)発明者 石川 忠 富津市新富20−1 新日本製鐵株式会社技 術開発本部内 (72)発明者 糟谷 正 富津市新富20−1 新日本製鐵株式会社技 術開発本部内 (72)発明者 本間 宏二 富津市新富20−1 新日本製鐵株式会社技 術開発本部内Continued front page (72) Inventor Tadashi Ishikawa 20-1 Shintomi, Futtsu City Nippon Steel Co., Ltd. Inside the surgical development headquarters (72) Inventor Tadashi Kasuya 20-1 Shintomi, Futtsu City Nippon Steel Co., Ltd. Inside the surgical development headquarters (72) Inventor Koji Honma 20-1 Shintomi, Futtsu City Nippon Steel Co., Ltd. Inside the surgical development headquarters
Claims (17)
て、前処理を行った後、超音波衝撃処理を行い、さらに
その後、品質保証検査を行うことによって、当該金属材
の疲労寿命を向上させることを特徴とした疲労寿命向上
処理法。1. A fatigue life of a metal material is improved by performing pretreatment, ultrasonic impact treatment, and quality assurance inspection on a portion where fatigue of the metal material is a problem. A fatigue life improving treatment method characterized by the above.
処理において、金属材の超音波衝撃処理を行う部分とそ
の近傍部分について、塑性加工や、変形矯正、熱処理、
溶接など金属内部応力、表面応力を変化させるプロセス
を行ったのち、超音波衝撃処理を実施し、超音波衝撃処
理後にはそのような金属内部応力、表面応力を変化させ
るプロセスを行わないことを特徴とした疲労寿命向上処
理法。2. The pretreatment of the fatigue life improving treatment method according to claim 1, wherein a portion of the metal material subjected to ultrasonic impact treatment and a portion in the vicinity thereof are subjected to plastic working, deformation correction, heat treatment,
Characterized by performing ultrasonic impact treatment after performing a process such as welding that changes the internal metal stress and surface stress, and not performing a process that changes such internal metal stress and surface stress after the ultrasonic impact treatment. Fatigue life improvement treatment method.
処理において、金属材の超音波衝撃処理を行う部分とそ
の近傍部分について、塑性加工や、変形矯正、熱処理、
溶接など金属内部応力、表面応力を変化させるプロセス
を行ったのち、非破壊検査と超音波衝撃処理を実施し、
超音波衝撃処理後にはそのような金属内部応力、表面応
力を変化させるプロセスを行わないことを特徴とした疲
労寿命向上処理法。3. The pretreatment of the fatigue life improving treatment method according to claim 1, wherein a portion of the metal material subjected to ultrasonic impact treatment and a portion in the vicinity thereof are subjected to plastic working, deformation correction, heat treatment,
After performing the process of changing the metal internal stress and surface stress such as welding, non-destructive inspection and ultrasonic impact treatment are performed,
A fatigue life improving method characterized by not performing a process for changing such internal stress and surface stress of metal after ultrasonic impact treatment.
処理において、疲労寿命の問題となる箇所について、目
視検査、浸透探傷検査、磁粉探傷検査、過流探傷検査な
どを実施した上で、亀裂が検出されればその亀裂をグラ
インダーやガウジングなどで除去することを特徴とした
疲労寿命向上処理法。4. In the pretreatment of the fatigue life improving treatment method according to claim 1, after performing a visual inspection, a penetrant flaw detection inspection, a magnetic particle flaw detection inspection, an eddy current flaw detection inspection, etc. on a portion having a fatigue life problem. Then, if a crack is detected, the crack is removed with a grinder or gouging to improve the fatigue life.
裂除去において、除去深さが5mm以上と深くなった場
合は、溶接肉盛りを行った後、グラインダーで平滑に仕
上げ、さらに目視検査、浸透探傷検査、磁粉探傷検査、
渦流探傷検査などを実施した上で、亀裂が検出されない
ことを確認することを特徴とした疲労寿命向上処理法。5. When removing the cracks in the fatigue life improving treatment method according to claim 4, when the depth of removal becomes as deep as 5 mm or more, after welding build-up, finish smooth with a grinder and further visually Inspection, penetrant inspection, magnetic particle inspection,
Fatigue life improvement treatment method characterized by confirming that cracks are not detected after performing eddy current flaw detection.
音波衝撃処理において、金属材の溶接部における、止端
部、HAZ部、溶接部に対して処理を行い、形状を応力
集中を生じにくいよう変形させると共に、圧縮残留応力
を導入し、疲労発生の起点となる微小な欠陥を無害化
し、亀裂の発生を抑制することを特徴とした疲労寿命向
上処理法。6. The ultrasonic impact treatment of the fatigue life improving treatment method according to claim 1, wherein the toe portion, the HAZ portion and the welded portion in the welded portion of the metal material are treated to concentrate the shape of stress. The fatigue life improving treatment method is characterized in that it is deformed so that it does not easily occur, and that compressive residual stress is introduced to detoxify the minute defects that are the starting point of fatigue generation and suppress the generation of cracks.
音波衝撃処理において、金属材の鋸、せん断、ガス、レ
ーザー、プラズマ等による切断による切断面およびその
近傍に対して処理を行い、形状を応力集中が生じにくい
よう変形させると共に、圧縮残留応力を導入し、疲労発
生の起点となる微小な欠陥や極端に硬化した部分を無害
化し、亀裂の発生を抑制することを特徴とした疲労寿命
向上処理法。7. In the ultrasonic impact treatment of the fatigue life improving treatment method according to claim 1, a treatment is performed on a cut surface of a metal material by sawing, shearing, gas, laser, plasma or the like and the vicinity thereof. In addition to deforming the shape so that stress concentration does not easily occur, compressive residual stress is introduced to make harmless to minute defects and extremely hardened parts that are the starting points of fatigue occurrence, and suppress the occurrence of cracks. Fatigue life improvement treatment method.
音波衝撃処理において、非破壊検査での検出限界以下の
亀裂に超音波衝撃処理を用いて打撃による圧縮応力を導
入し、進展を止めることを特徴とした疲労寿命向上処理
法。8. In the ultrasonic impact treatment of the fatigue life improving treatment method according to claim 1, a compressive stress due to impact is introduced into a crack below a detection limit in a nondestructive inspection by using the ultrasonic impact treatment to develop the crack. Fatigue life improvement treatment method characterized by stopping.
音波衝撃処理において、疲労亀裂の発生が懸念される構
造物及び構造品の局所について、同一箇所について2パ
ス以上超音波衝撃処理を行うことによって、非破壊検査
での検出限界以下の亀裂に打撃による圧縮応力を導入
し、より確実に進展を止めることを特徴とした疲労寿命
向上処理法。9. The ultrasonic impact treatment of the fatigue life improving treatment method according to claim 1, wherein two or more passes of ultrasonic impact treatment are applied to the same portion of a structure or a structure part where a fatigue crack may occur. The fatigue life improving treatment method is characterized by introducing compressive stress due to impact to cracks below the detection limit in non-destructive inspection and stopping the progress more reliably by performing.
品質保証検査において、歯科用形象材などの型取り材を
用いて、またはレーザー変位計などの高精度計測機でス
キャンを行って、超音波衝撃処理後の形状の型を取り、
その処理面の局面が処理に用いた超音波衝撃処理の工具
先端のR(半径)とほぼ一致していること、また、処理
前に比べ0.05mm以上の深さで塑性変形を生じてい
ること、を確認することによって、処理を行った部分で
形状が改善され、圧縮残留応力が導入されたことによっ
て疲労寿命が向上したことを確認することを特徴とした
疲労寿命向上処理法。10. In the quality assurance inspection of the fatigue life improving treatment method according to claim 1, scanning is performed using a molding material such as a dental shape material or a high precision measuring device such as a laser displacement meter. , Take the shape mold after ultrasonic impact treatment,
The surface of the treated surface is almost the same as the R (radius) of the tool tip of the ultrasonic impact treatment used for the treatment, and plastic deformation occurs at a depth of 0.05 mm or more compared to before treatment. By confirming that, the shape of the treated portion is improved, and it is confirmed that the fatigue life is improved by the introduction of compressive residual stress.
品質保証検査において、定常プロセスとして超音波衝撃
処理が行われる場合、超音波衝撃処理先端工具の確認、
機器出力設定の確認と、目視による処理部分における塑
性変形の発生の確認により、処理を行った部分で形状が
改善され、圧縮残留応力が導入されたことによって疲労
寿命が向上したことを確認することを特徴とした疲労寿
命向上処理法。11. In the quality assurance inspection of the fatigue life improving treatment method according to claim 1, when ultrasonic impact treatment is performed as a steady process, confirmation of ultrasonic impact treatment tip tool,
By confirming the equipment output setting and visually confirming the occurrence of plastic deformation in the treated part, confirm that the shape has been improved in the treated part and the fatigue life has been improved by the introduction of compressive residual stress. Fatigue life improvement treatment method characterized by.
品質保証検査において、変形が超音波衝撃処理によって
形成されたものか疑念が生じた場合、金属表面に形成さ
れた変形の計測にあたって、処理表面をスンプ法によっ
て金属の最表面の組織を観察し、処理されていない他の
部分よりも組織が細粒化していることを確認することに
より、その変形が超音波衝撃処理により形成されたこと
を判別することを特徴とした疲労寿命向上処理法。12. In the quality assurance inspection of the fatigue life improving treatment method according to claim 1, when it is doubtful that the deformation is formed by ultrasonic impact treatment, the deformation formed on the metal surface is measured. By observing the texture of the outermost surface of the metal by the sump method on the treated surface and confirming that the texture is finer than other untreated parts, the deformation is formed by ultrasonic impact treatment. A method for improving fatigue life, which is characterized by determining the fact.
品質保証検査において、変形が超音波衝撃処理によって
形成されたものか疑念が生じた場合、金属表面に形成さ
れた変形の計測にあたって、処理表面を超音波粒径計測
装置によって金属の最表面の粒径を計測し、処理されて
いない他の部分よりも組織が細粒化していることを確認
することにより、その変形が超音波衝撃処理により形成
されたことを判別することを特徴とした疲労寿命向上処
理法。13. In the quality assurance inspection of the fatigue life improving treatment method according to claim 1, in case of doubt that the deformation is formed by ultrasonic impact treatment, the deformation formed on the metal surface is measured. By measuring the grain size of the outermost surface of the metal with an ultrasonic grain size measuring device on the treated surface and confirming that the tissue is finer than other untreated parts, the deformation is ultrasonic. A fatigue life improving treatment method characterized by determining that it has been formed by impact treatment.
品質保証検査において、変形が超音波衝撃処理によって
形成されたものか疑念が生じた場合、金属表面に形成さ
れた変形の計測にあたって、粗度計やレーザー変位計に
より処理表面の粗度を計測し、形成されたR(半径)を
横断する方向について処理されていない他の部分よりも
表面が平滑になっていることを確認することにより、そ
の変形が超音波衝撃処理により形成されたことを判別す
ることを特徴とした疲労寿命向上処理法。14. In the quality assurance inspection of the fatigue life improving treatment method according to claim 1, in the case of doubt that the deformation was formed by ultrasonic impact treatment, the deformation formed on the metal surface is measured. Roughness of the treated surface is measured with a roughness meter or laser displacement meter, and it is confirmed that the surface is smoother in the direction crossing the formed R (radius) than other untreated portions. Thus, the fatigue life improving method is characterized in that it is determined that the deformation is formed by ultrasonic impact processing.
品質保証検査において、変形が超音波衝撃処理によって
形成されたものか疑念が生じた場合、金属表面に形成さ
れた変形の計測にあたり、処理表面のピッカース試験な
どにより硬さを計測し、処理されていない他の部分より
も表面硬度が20%以上100%未満の割合で硬化して
いることを確認することにより、その変形が超音波衝撃
処理により形成されたことを判別することを特徴とした
疲労寿命向上処理法。15. In the quality assurance inspection of the fatigue life improving treatment method according to claim 1, when it is doubtful that the deformation is formed by ultrasonic impact treatment, the deformation formed on the metal surface is measured. , The hardness of the treated surface is measured by a Pickers test, etc., and it is confirmed that the surface hardness is 20% or more and less than 100% of that of the other untreated portion, so that the deformation is superb. A method for improving fatigue life, which is characterized in that it is formed by ultrasonic impact treatment.
品質保証検査において、品質保証検査合格後の超音波衝
撃処理部に対して、その後の使用時に亀裂が発生する
と、塗膜内部に備えたマイクロカプセルがその亀裂部分
で割れて、亀裂を発生したことを外部に容易に指示す
る、別色の塗料を浸出させる塗料を塗布することによ
り、その後の亀裂発生を示すことを特徴とする疲労寿命
向上処理法。16. In the quality assurance inspection of the fatigue life improving treatment method according to claim 1, when a crack is generated in the ultrasonic impact treated portion after passing the quality assurance inspection during subsequent use, the inside of the coating film The provided microcapsule is characterized in that it breaks at the cracked portion and easily indicates to the outside that cracking has occurred, by applying a paint that leaches out a paint of another color, and shows subsequent cracking. Fatigue life improvement treatment method.
上処理法を用いて処理されたことを特徴とする金属材。17. A metal material treated by the fatigue life improving treatment method according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001308355A JP2003113418A (en) | 2001-10-04 | 2001-10-04 | Fatigue life improvement treatment method and long life metal material by it |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001308355A JP2003113418A (en) | 2001-10-04 | 2001-10-04 | Fatigue life improvement treatment method and long life metal material by it |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003113418A true JP2003113418A (en) | 2003-04-18 |
Family
ID=19127684
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001308355A Pending JP2003113418A (en) | 2001-10-04 | 2001-10-04 | Fatigue life improvement treatment method and long life metal material by it |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003113418A (en) |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004040022A1 (en) * | 2002-10-31 | 2004-05-13 | Nippon Steel Corporation | Metal structure product with excellent environmental cracking resistance and method of enhancing environmental cracking resistance of metal structure product |
WO2004040023A1 (en) * | 2002-10-30 | 2004-05-13 | Nippon Steel Corporation | Method of increasing toughness of heat-affected part of steel product welded joint |
WO2004042093A1 (en) * | 2002-11-06 | 2004-05-21 | Nippon Steel Corporation | Iron structure product and metal structure product excelling in resistance to liquid metal embrittlement and process for producing the same |
WO2004046397A1 (en) * | 2002-11-18 | 2004-06-03 | Nippon Steel Corporation | Method of increasing strength of cold worked part by ultrasonic shock treatment, and metal product with high fracture toughness and fatigue strength |
WO2004046395A1 (en) * | 2002-11-19 | 2004-06-03 | Nippon Steel Corporation | Method of setting ultrasonic shock treatment conditions for metal material |
WO2004046396A1 (en) * | 2002-11-18 | 2004-06-03 | Nippon Steel Corporation | Method of increasing fatigue strength of cut face of metal by ultrasonic shock treatment and long life metal product |
WO2004046393A1 (en) * | 2002-11-18 | 2004-06-03 | Nippon Steel Corporation | Long life rotating body with excellent fatigue strength and method of manufacturing the rotating body |
WO2004046394A1 (en) * | 2002-11-19 | 2004-06-03 | Nippon Steel Corporation | Method of manufacturing metal product having nano-crystallized surface layer part |
WO2004046392A1 (en) * | 2002-11-19 | 2004-06-03 | Nippon Steel Corporation | Delayed fracture prevention method for steel structure and steel structure manufacturing method |
WO2004106577A1 (en) * | 2003-05-30 | 2004-12-09 | Furukawa Co., Ltd. | Method for producing high strength ultra plastic material |
WO2006030800A1 (en) * | 2004-09-17 | 2006-03-23 | Nippon Steel Corporation | High strength machine parts and shaft excellent in fatigue characteristics, and method for improving fatigue characteristics thereof |
JP2006104552A (en) * | 2004-10-08 | 2006-04-20 | Nippon Steel Corp | Suspension parts for automobiles with excellent fatigue characteristics and methods for improving the fatigue characteristics |
JP2006111962A (en) * | 2004-09-17 | 2006-04-27 | Nippon Steel Corp | Shaft with excellent fatigue resistance and method for improving fatigue characteristics |
JP2006175512A (en) * | 2004-12-24 | 2006-07-06 | Nippon Steel Corp | Method for improving fatigue strength of welded part and welded structure using the same |
JP2006297398A (en) * | 2005-04-15 | 2006-11-02 | Nippon Steel Corp | Friction welded parts with excellent fatigue resistance and methods for improving the fatigue characteristics |
JP2007283355A (en) * | 2006-04-17 | 2007-11-01 | Nippon Steel Corp | Ultrasonic impact treatment method for weld toe and weld toe with excellent fatigue resistance after ultrasonic impact treatment |
US7399371B2 (en) | 2004-04-16 | 2008-07-15 | Nippon Steel Corporation | Treatment method for improving fatigue life and long-life metal material treated by using same treatment |
JP2008290125A (en) * | 2007-05-25 | 2008-12-04 | Nippon Steel Corp | Ships with excellent fatigue durability and methods for improving ship fatigue durability |
US7475978B2 (en) | 2004-01-15 | 2009-01-13 | Sony Corporation | Recording liquid, liquid cartridge, liquid ejection cartridge, liquid ejection apparatus, and liquid ejection method |
EP1775391A4 (en) * | 2004-07-15 | 2009-04-22 | Nippon Steel Corp | ARM SEGMENT FOR CONSTRUCTION MACHINE, WHERE WELDING PROVIDES HIGH RESISTANCE TO FATIGUE, AND METHOD FOR IMPROVING FATIGUE RESISTANCE |
JP2009291918A (en) * | 2008-06-09 | 2009-12-17 | Jfe Steel Corp | Method of extending fatigue life of metal material subjected to repeated load history |
CN102837155A (en) * | 2011-06-21 | 2012-12-26 | 祁成 | Carrier roller repair mechanism |
JP2014213373A (en) * | 2013-04-30 | 2014-11-17 | 新日鐵住金株式会社 | Ultrasonic impact treatment method |
KR20150052291A (en) * | 2012-09-07 | 2015-05-13 | 누보 피그노네 에스피에이 | Method for repairing a turbomachine component |
CN108637586A (en) * | 2018-05-14 | 2018-10-12 | 合肥东方节能科技股份有限公司 | A kind of guide and guard surface repairing method |
CN110193730A (en) * | 2019-05-05 | 2019-09-03 | 广东精一智能制造有限公司 | A kind of kitchen ventilator robot automatic welding sanding and polishing line |
JP2020159098A (en) * | 2019-03-27 | 2020-10-01 | ヤマダインフラテクノス株式会社 | Preventive maintenance method for steel bridge |
JP2021023947A (en) * | 2019-07-31 | 2021-02-22 | 日本製鉄株式会社 | Method for improving fatigue life of weld zone in existing bridge and for repairing crack in weld zone therein |
-
2001
- 2001-10-04 JP JP2001308355A patent/JP2003113418A/en active Pending
Cited By (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004040023A1 (en) * | 2002-10-30 | 2004-05-13 | Nippon Steel Corporation | Method of increasing toughness of heat-affected part of steel product welded joint |
US7754033B2 (en) | 2002-10-30 | 2010-07-13 | Nippon Steel Corporation | Method of improvement of toughness of heat affected zone at welded joint of steel plate |
WO2004040022A1 (en) * | 2002-10-31 | 2004-05-13 | Nippon Steel Corporation | Metal structure product with excellent environmental cracking resistance and method of enhancing environmental cracking resistance of metal structure product |
WO2004042093A1 (en) * | 2002-11-06 | 2004-05-21 | Nippon Steel Corporation | Iron structure product and metal structure product excelling in resistance to liquid metal embrittlement and process for producing the same |
CN100379883C (en) * | 2002-11-18 | 2008-04-09 | 新日本制铁株式会社 | Method for improving strength of cold-worked part by ultrasonic shock treatment and metal product |
WO2004046397A1 (en) * | 2002-11-18 | 2004-06-03 | Nippon Steel Corporation | Method of increasing strength of cold worked part by ultrasonic shock treatment, and metal product with high fracture toughness and fatigue strength |
WO2004046396A1 (en) * | 2002-11-18 | 2004-06-03 | Nippon Steel Corporation | Method of increasing fatigue strength of cut face of metal by ultrasonic shock treatment and long life metal product |
WO2004046393A1 (en) * | 2002-11-18 | 2004-06-03 | Nippon Steel Corporation | Long life rotating body with excellent fatigue strength and method of manufacturing the rotating body |
WO2004046395A1 (en) * | 2002-11-19 | 2004-06-03 | Nippon Steel Corporation | Method of setting ultrasonic shock treatment conditions for metal material |
WO2004046394A1 (en) * | 2002-11-19 | 2004-06-03 | Nippon Steel Corporation | Method of manufacturing metal product having nano-crystallized surface layer part |
WO2004046392A1 (en) * | 2002-11-19 | 2004-06-03 | Nippon Steel Corporation | Delayed fracture prevention method for steel structure and steel structure manufacturing method |
US7857918B2 (en) | 2002-11-19 | 2010-12-28 | Nippon Steel Corporation | Method of production of steel product with nanocrystallized surface layer |
WO2004106577A1 (en) * | 2003-05-30 | 2004-12-09 | Furukawa Co., Ltd. | Method for producing high strength ultra plastic material |
GB2414952B (en) * | 2003-05-30 | 2006-05-31 | Furukawa Co Ltd | Method for producing high strength superplastic material |
GB2414952A (en) * | 2003-05-30 | 2005-12-14 | Furukawa Co Ltd | Method for producing high strength ultra plastic material |
US7475978B2 (en) | 2004-01-15 | 2009-01-13 | Sony Corporation | Recording liquid, liquid cartridge, liquid ejection cartridge, liquid ejection apparatus, and liquid ejection method |
US7399371B2 (en) | 2004-04-16 | 2008-07-15 | Nippon Steel Corporation | Treatment method for improving fatigue life and long-life metal material treated by using same treatment |
EP1775391A4 (en) * | 2004-07-15 | 2009-04-22 | Nippon Steel Corp | ARM SEGMENT FOR CONSTRUCTION MACHINE, WHERE WELDING PROVIDES HIGH RESISTANCE TO FATIGUE, AND METHOD FOR IMPROVING FATIGUE RESISTANCE |
US8146794B2 (en) | 2004-07-15 | 2012-04-03 | Nippon Steel Corporation | Boom and arm member of construction machine excellent in weld zone fatigue strength and method of improvement of its fatigue strength |
JP2006111962A (en) * | 2004-09-17 | 2006-04-27 | Nippon Steel Corp | Shaft with excellent fatigue resistance and method for improving fatigue characteristics |
WO2006030800A1 (en) * | 2004-09-17 | 2006-03-23 | Nippon Steel Corporation | High strength machine parts and shaft excellent in fatigue characteristics, and method for improving fatigue characteristics thereof |
JP2006104552A (en) * | 2004-10-08 | 2006-04-20 | Nippon Steel Corp | Suspension parts for automobiles with excellent fatigue characteristics and methods for improving the fatigue characteristics |
JP2006175512A (en) * | 2004-12-24 | 2006-07-06 | Nippon Steel Corp | Method for improving fatigue strength of welded part and welded structure using the same |
JP2006297398A (en) * | 2005-04-15 | 2006-11-02 | Nippon Steel Corp | Friction welded parts with excellent fatigue resistance and methods for improving the fatigue characteristics |
JP2007283355A (en) * | 2006-04-17 | 2007-11-01 | Nippon Steel Corp | Ultrasonic impact treatment method for weld toe and weld toe with excellent fatigue resistance after ultrasonic impact treatment |
JP2008290125A (en) * | 2007-05-25 | 2008-12-04 | Nippon Steel Corp | Ships with excellent fatigue durability and methods for improving ship fatigue durability |
JP2009291918A (en) * | 2008-06-09 | 2009-12-17 | Jfe Steel Corp | Method of extending fatigue life of metal material subjected to repeated load history |
CN102837155A (en) * | 2011-06-21 | 2012-12-26 | 祁成 | Carrier roller repair mechanism |
KR20150052291A (en) * | 2012-09-07 | 2015-05-13 | 누보 피그노네 에스피에이 | Method for repairing a turbomachine component |
JP2015535899A (en) * | 2012-09-07 | 2015-12-17 | ヌオーヴォ ピニォーネ ソチエタ レスポンサビリタ リミタータNuovo Pignone S.R.L. | How to repair turbomachine parts |
KR102176957B1 (en) * | 2012-09-07 | 2020-11-11 | 누보 피그노네 에스피에이 | Method for repairing a turbomachine component |
JP2014213373A (en) * | 2013-04-30 | 2014-11-17 | 新日鐵住金株式会社 | Ultrasonic impact treatment method |
CN108637586A (en) * | 2018-05-14 | 2018-10-12 | 合肥东方节能科技股份有限公司 | A kind of guide and guard surface repairing method |
JP2020159098A (en) * | 2019-03-27 | 2020-10-01 | ヤマダインフラテクノス株式会社 | Preventive maintenance method for steel bridge |
JP7359411B2 (en) | 2019-03-27 | 2023-10-11 | ヤマダインフラテクノス株式会社 | Preventive maintenance method for steel bridges |
CN110193730A (en) * | 2019-05-05 | 2019-09-03 | 广东精一智能制造有限公司 | A kind of kitchen ventilator robot automatic welding sanding and polishing line |
JP2021023947A (en) * | 2019-07-31 | 2021-02-22 | 日本製鉄株式会社 | Method for improving fatigue life of weld zone in existing bridge and for repairing crack in weld zone therein |
JP7365095B2 (en) | 2019-07-31 | 2023-10-19 | 日本製鉄株式会社 | Method for improving fatigue life and repairing cracks in welded parts of existing bridges |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2003113418A (en) | Fatigue life improvement treatment method and long life metal material by it | |
US7399371B2 (en) | Treatment method for improving fatigue life and long-life metal material treated by using same treatment | |
CN101403114B (en) | Surface crack renovation method for key elements of chain grate | |
Galtier et al. | The influence of ultrasonic impact treatment on fatigue behaviour of welded joints in high-strength steel | |
JP3793501B2 (en) | Rail reinforcement and repair method | |
JP3965106B2 (en) | Girder structure reinforcement method | |
EP1731824A2 (en) | Method of Impeding Crack Propagation | |
JP4441166B2 (en) | Method for improving environmentally-assisted cracking resistance of steel structure products | |
JP5052918B2 (en) | Welded joint, welded structure excellent in crack initiation propagation characteristics, and method for improving crack initiation propagation characteristics | |
Kinoshita et al. | Fatigue strength improvement of welded joints of existing steel bridges by shot-peening | |
Kudryavtsev et al. | Fatigue improvement of welded elements and structures by ultrasonic peening | |
JP2006175512A (en) | Method for improving fatigue strength of welded part and welded structure using the same | |
JP4351433B2 (en) | Iron structure products having excellent resistance to liquid metal embrittlement and methods for producing the same | |
JP5919986B2 (en) | Hammer peening treatment method and welded joint manufacturing method using the same | |
Ryabtsev et al. | Fatigue life of specimens after wear-resistant, manufacturing and repair surfacing | |
CA2464172A1 (en) | Treatment method for improving fatigue life and long-life metal material treated by using same treatment | |
Becker | The effect of laser shock peening and shot peening on the fatigue performance of aluminium alloy 7075 | |
JP3900490B2 (en) | Fatigue reinforcement method for girders with flange gussets | |
JP4351427B2 (en) | Method for improving fatigue strength of steel working edge | |
JP4000051B2 (en) | Repair method of girder structure with flange gusset | |
JPS6188994A (en) | Weld repairing method | |
Manurung et al. | Structural life enhancement on friction stir welded AA6061 with optimized process and HFMI/PIT parameters | |
Nitschke-Pagel et al. | Residual stresses and near-surface material condition of welded high strength steels after different mechanical post-weld treatments | |
Nussbaumer | Course on fatigue and fracture mechanics: influence of residual stresses and post-welding improvement methods | |
JP4235176B2 (en) | Method for improving fatigue strength of metal cut surface by ultrasonic impact treatment and long-life metal product |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20041116 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20041130 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050131 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20050222 |