JP2003107356A - Optical path bending zoom optical system - Google Patents
Optical path bending zoom optical systemInfo
- Publication number
- JP2003107356A JP2003107356A JP2001299728A JP2001299728A JP2003107356A JP 2003107356 A JP2003107356 A JP 2003107356A JP 2001299728 A JP2001299728 A JP 2001299728A JP 2001299728 A JP2001299728 A JP 2001299728A JP 2003107356 A JP2003107356 A JP 2003107356A
- Authority
- JP
- Japan
- Prior art keywords
- lens group
- lens
- optical system
- optical path
- prism
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 369
- 238000005452 bending Methods 0.000 title claims abstract description 135
- 230000005499 meniscus Effects 0.000 description 35
- 230000004075 alteration Effects 0.000 description 20
- 239000011521 glass Substances 0.000 description 13
- 238000000034 method Methods 0.000 description 10
- 239000000463 material Substances 0.000 description 7
- 230000007246 mechanism Effects 0.000 description 7
- 230000035945 sensitivity Effects 0.000 description 7
- 230000010365 information processing Effects 0.000 description 6
- 230000008859 change Effects 0.000 description 5
- 238000004891 communication Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 239000004973 liquid crystal related substance Substances 0.000 description 5
- 239000006059 cover glass Substances 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- 201000009310 astigmatism Diseases 0.000 description 3
- 238000010137 moulding (plastic) Methods 0.000 description 3
- GGCZERPQGJTIQP-UHFFFAOYSA-N sodium;9,10-dioxoanthracene-2-sulfonic acid Chemical compound [Na+].C1=CC=C2C(=O)C3=CC(S(=O)(=O)O)=CC=C3C(=O)C2=C1 GGCZERPQGJTIQP-UHFFFAOYSA-N 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 206010010071 Coma Diseases 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 101100214868 Autographa californica nuclear polyhedrosis virus AC54 gene Proteins 0.000 description 1
- 101100146536 Picea mariana RPS15 gene Proteins 0.000 description 1
- 101000689654 Rattus norvegicus Alpha-1D adrenergic receptor Proteins 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Landscapes
- Lenses (AREA)
- Studio Devices (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、光路折り曲げズー
ム光学系に関し、特に、ズーム光学系を搭載するデジタ
ルカメラ、携帯端末等の奥行き方向の薄型化を実現する
ために光路折り曲げプリズムを配置したズーム光学系に
関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical path bending zoom optical system, and more particularly to a zoom system in which an optical path bending prism is arranged in order to realize thinning in the depth direction of a digital camera, a portable terminal or the like having the zoom optical system. It relates to an optical system.
【0002】[0002]
【従来の技術】CCD等の電子撮像素子を用いた小型カ
メラや、携帯端末、携帯電話等への内蔵用の結像光学系
では、小型化、特に薄型化の要求が強い。2. Description of the Related Art A compact camera using an electronic image pickup device such as a CCD or an image forming optical system built in a mobile terminal, a mobile phone or the like is strongly required to be miniaturized, particularly thin.
【0003】このような中、特開平10−20191号
において、4群ズームレンズの群間に平凸レンズを接合
した三角プリズムを配置して光路を折り曲げてコンパク
ト化をすることが開示されている。Under such circumstances, Japanese Patent Laid-Open No. 10-20191 discloses that a triangular prism having a plano-convex lens cemented with each other is arranged between groups of four-group zoom lenses to bend the optical path for compactness.
【0004】また、ズームレンズではないが、光路折り
曲げ光学系の光路折り曲げ用のプリズムにパワー(屈折
力、発散力)を与えたものとして、特開平9−2112
87号、特開平10−239594号のものが知られて
いる。Although not a zoom lens, an optical path bending prism of an optical path bending optical system is provided with power (refractive power, divergence power) as disclosed in Japanese Patent Laid-Open No. 9-2112.
No. 87 and JP-A-10-239594 are known.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、特開平
10−20191号の場合は、プリズムを絞りの後に配
置しているため、薄型化に難がある。However, in the case of Japanese Patent Laid-Open No. 10-20191, it is difficult to reduce the thickness because the prism is arranged after the diaphragm.
【0006】また、プリズムにパワーを持たせる特開平
9−211287号、特開平10−239594号のも
のは、前記したように、ズームレンズではなく、また、
光学系の小型化、薄型化の観点からプリズムにパワーを
持たせたものではない。Further, as disclosed in Japanese Patent Laid-Open No. 9-212187 and Japanese Patent Laid-Open No. 10-239594, in which the prism has power, as described above, it is not a zoom lens, and
From the viewpoint of downsizing and thinning of the optical system, the prism does not have power.
【0007】本発明は従来技術のこのような状況に鑑み
てなされたものであり、その目的は、小型デジタルスチ
ルカメラ、携帯端末等に搭載可能な薄型ズーム光学系で
あって、薄型化のため光軸を曲げ、かつ、折り曲げプリ
ズムにパワーを持たせた光路折り曲げズーム光学系を提
供することである。The present invention has been made in view of such a situation of the prior art, and an object thereof is to provide a thin zoom optical system which can be mounted on a small digital still camera, a mobile terminal, etc. An object is to provide an optical path bending zoom optical system in which an optical axis is bent and a bending prism has power.
【0008】[0008]
【課題を解決するための手段】上記目的を達成する本発
明の第1の光路折り曲げズーム光学系は、少なくとも、
物体側から順に、負の屈折力を有する第1レンズ群、正
の屈折力を有する第2レンズ群、それ以降の少なくとも
1つのレンズ群からなっていて、広角端から望遠端に変
倍する際に、前記第2レンズ群を含んで光軸に沿って移
動する少なくとも1つのレンズ群を含むズーム光学系に
おいて、前記第1レンズ群が、光路を折り曲げるための
少なくとも1面の反射面と、入射面と、射出面とを含む
プリズムを有し、前記プリズムの入射面、射出面の少な
くとも一方は光軸に回転対称な曲面であることを特徴と
するものである。A first optical path bending zoom optical system according to the present invention which achieves the above-mentioned object is at least:
When zooming from the wide-angle end to the telephoto end, the first lens group having a negative refractive power, the second lens group having a positive refractive power, and at least one lens group after that are arranged in order from the object side. In a zoom optical system including at least one lens group that includes the second lens group and moves along the optical axis, the first lens group includes at least one reflecting surface for bending an optical path, and an incident surface. It has a prism including a surface and an exit surface, and at least one of the entrance surface and the exit surface of the prism is a curved surface rotationally symmetric with respect to the optical axis.
【0009】本発明の第2の光路折り曲げズーム光学系
は、少なくとも、物体側から順に、負の屈折力を有し、
少なくとも負の屈折力のプリズムを1つ含む第1レンズ
群、正の屈折力を有する第2レンズ群、それ以降の少な
くとも1つのレンズ群からなっていて、広角端から望遠
端に変倍する際に、前記第2レンズ群を含んで光軸に沿
って移動する少なくとも1つのレンズ群を含むズーム光
学系において、前記プリズムは、光路を折り曲げるため
の少なくとも1面の反射面と、入射面と、射出面とを含
み、かつ、前記入射面、射出面の少なくとも一方は曲面
であることを特徴とするものである。A second optical path bending zoom optical system of the present invention has a negative refracting power at least in order from the object side,
A first lens group including at least one prism having a negative refractive power, a second lens group having a positive refractive power, and at least one lens group after that, when zooming from the wide-angle end to the telephoto end. In the zoom optical system including at least one lens group that moves along the optical axis including the second lens group, the prism includes at least one reflecting surface for bending an optical path, and an incident surface. And an exit surface, and at least one of the entrance surface and the exit surface is a curved surface.
【0010】本発明の第3の光路折り曲げズーム光学系
は、少なくとも、物体側から順に、負の屈折力を有する
第1レンズ群、正の屈折力を有する第2レンズ群、それ
以降の少なくとも1つのレンズ群からなっていて、広角
端から望遠端に変倍する際に、前記第2レンズ群を含ん
で光軸に沿って移動する少なくとも1つのレンズ群を含
むズーム光学系において、前記第1レンズ群が、光路を
折り曲げるための少なくとも1面の反射面と、入射面
と、射出面とを含むプリズムを有し、前記プリズムの入
射面、射出面の少なくとも一方は曲面であり、前記プリ
ズムのd線における屈折率ndが以下の条件式(1)を
満たすことを特徴とするものである。In the third optical path bending zoom optical system of the present invention, at least in order from the object side, the first lens group having a negative refractive power, the second lens group having a positive refractive power, and at least one subsequent thereto. The zoom optical system includes at least one lens group that includes two lens groups and that moves along the optical axis when changing the magnification from the wide-angle end to the telephoto end. The lens group has a prism including at least one reflecting surface for bending an optical path, an entrance surface, and an exit surface, and at least one of the entrance surface and the exit surface of the prism is a curved surface. The refractive index nd at the d-line satisfies the following conditional expression (1).
【0011】
1.6<nd<2.0 ・・・(1)
以下に、本発明において上記構成をとる理由と作用を説
明する。1.6 <nd <2.0 (1) Hereinafter, the reason and action for adopting the above-mentioned configuration in the present invention will be described.
【0012】少なくとも、物体側から順に、第1レンズ
群、第2レンズ群、それ以降の少なくとも1つのレンズ
群からなっていて、広角端から望遠端に変倍する際に、
第2レンズ群を含んで光軸に沿って移動するズームレン
ズにおいては、第1レンズ群の屈折力を負とすると、第
2レンズ群以降の光線高を低く抑えることができ、光学
系の厚みを薄くすることができる。したがって、本発明
のズーム光学系においては、第1レンズ群を負の屈折力
を有する構成とし、それに伴って第2レンズ群を正の屈
折力を有する構成としている。At least, in order from the object side, a first lens group, a second lens group, and at least one lens group after that, when zooming from the wide-angle end to the telephoto end,
In a zoom lens that includes the second lens group and moves along the optical axis, if the refractive power of the first lens group is negative, the height of light rays after the second lens group can be kept low, and the optical system thickness can be reduced. Can be thinned. Therefore, in the zoom optical system of the present invention, the first lens group has a negative refractive power, and the second lens group has a positive refractive power accordingly.
【0013】そして、レンズ入射面を物体側に向けなお
かつ奥行きを薄くするには、 光路折り曲げを光学系ので
きるだけ物体側の位置で行うようにするとよい。レンズ
入射面を物体側に向けると、レンズ入射面から光路折り
曲げ位置までが光学系の奥行き方向となるため、光路を
折り曲げるプリズムをできるだけ物体側の位置、すなわ
ち、第1レンズ群中に配置すると、より奥行き方向を薄
くできる。In order to direct the lens entrance surface toward the object side and reduce the depth, it is preferable to bend the optical path at a position on the object side of the optical system as much as possible. When the lens entrance surface is directed to the object side, the depth direction of the optical system is from the lens entrance surface to the optical path bending position. Therefore, if the prism that bends the optical path is located on the object side as much as possible, that is, in the first lens group, The depth direction can be made thinner.
【0014】光路折り曲げのためにミラーを用いた場合
に比べて、 プリズムで光路を折り曲げる場合には、屈折
率が1より大きい媒質中を光が通るため、 同じ光路長で
も空気換算長が長くなる。そのため、プリズムで光路を
折り曲げた方が光学系の全長が短くでき、より光学系を
小型化できる。When the optical path is bent by the prism, the light passes through the medium having a refractive index larger than 1, so that the air-equivalent length becomes longer even when the optical path is bent, as compared with the case where the mirror is used for bending the optical path. . Therefore, when the optical path is bent by the prism, the total length of the optical system can be shortened, and the optical system can be further downsized.
【0015】また、プリズムの入射面、反射面の少なく
とも一方が曲面、例えば、光軸に回転対称な曲面である
と、プリズム自体に屈折力を持たせることができるた
め、プリズム以外のレンズ枚数を減らして光学系をより
小型化できる。また、レンズ枚数を同じとして、 より収
差を小さくすることもできる。If at least one of the incident surface and the reflecting surface of the prism is a curved surface, for example, a curved surface that is rotationally symmetric with respect to the optical axis, the prism itself can have a refractive power, so that the number of lenses other than the prism can be reduced. The optical system can be made smaller by reducing the number. Further, it is possible to reduce the aberration by making the number of lenses the same.
【0016】そして、プリズムの屈折力を負とすると、
プリズムより像側での光線高を低くすることができ、光
学系の厚みをより薄くできる。さらに、プリズムの屈折
力を負とすると、それを含む負の屈折力の第1レンズ群
の屈折力を分担できるため、第1レンズ群の構成枚数を
減らし、光学系の小型化につながる。If the refractive power of the prism is negative,
The light ray height on the image side of the prism can be lowered, and the thickness of the optical system can be made thinner. Further, if the refractive power of the prism is negative, the refractive power of the first lens group having negative refractive power including it can be shared, so that the number of constituent lenses of the first lens group can be reduced and the optical system can be downsized.
【0017】そして、プリズムの屈折率ndが条件式
(1)の下限値の1.6を越えると、プリズムの屈折力
が小さくなり、効果的に収差を補正したり、プリズム以
降の光線高を低く抑えたりすることができなくなる。プ
リズムの入射面あるいは射出面の曲面の曲率を大きくす
れば屈折力を大きくできるが、 曲率を大きくする程プリ
ズムの偏心感度が大きくなり、性能が低下しやすくな
る。また、条件式(1)の上限値の2.0を越えると、
媒質の分散が大きくなり、色収差が大きくなってしま
う。When the refractive index nd of the prism exceeds the lower limit of 1.6 of the conditional expression (1), the refractive power of the prism becomes small, so that the aberration can be corrected effectively and the ray height after the prism can be increased. It will not be possible to keep it low. The refractive power can be increased by increasing the curvature of the incident surface or the exit surface of the prism, but the larger the curvature, the greater the decentering sensitivity of the prism, and the performance tends to deteriorate. If the upper limit of 2.0 in conditional expression (1) is exceeded,
The dispersion of the medium becomes large and the chromatic aberration becomes large.
【0018】以上において、以下の条件式(2)を満た
すことが望ましい。In the above, it is desirable to satisfy the following conditional expression (2).
【0019】
−5.0<f1G/√(fw ×ft )<−0.3 ・・・(2)
ただし、f1Gは第1レンズ群の焦点距離、fw は広角端
での無限遠物点合焦時の全系の焦点距離、ft は望遠端
での無限遠物点合焦時の全系の焦点距離である。−5.0 <f 1G / √ (f w × f t ) <− 0.3 (2) where f 1G is the focal length of the first lens group and f w is the wide-angle end. The focal length of the entire system when focusing on an object point at infinity, and f t is the focal length of the entire system when focusing on an object point at infinity at the telephoto end.
【0020】条件式(2)はさらに、 −2.5<f1G/√(fw ×ft )<−0.5 ・・・(2−1) を満たすことが望ましい。[0020] Conditional expression (2) further, -2.5 <f 1G / √ ( f w × f t) <- it is desirable to satisfy the 0.5 (2-1).
【0021】さらに、 −1.7<f1G/√(fw ×ft )<−0.8 ・・・(2−2) を満たすことがより望ましい。 Furthermore, -1.7 <f 1G / √ ( f w × f t) <- it is more desirable to satisfy the 0.8 (2-2).
【0022】第1レンズ群及び第2レンズ群以降の偏心
感度を低く抑えながら光学系を薄くするためには、 条件
式(2)を満たすとよい。条件式(2)の上限値の−
0.3を越えると、第1レンズ群の屈折力が小さすぎる
ことになり、第2レンズ群以降での光線高が高くなって
しまい、第2レンズ群以降の偏心感度が高くなってしま
う。また、光学系が厚くなってしまう。条件式(2)の
下限値の−5.0を越えると、第1レンズ群の屈折力が
大きすぎることになり、第1レンズ群の偏心感度が高く
なってしまう。In order to make the optical system thin while suppressing the decentering sensitivity of the first lens group and the second lens group and thereafter, it is preferable to satisfy the conditional expression (2). Of the upper limit of conditional expression (2) −
If it exceeds 0.3, the refracting power of the first lens group becomes too small, the ray height after the second lens group becomes high, and the decentering sensitivity after the second lens group becomes high. In addition, the optical system becomes thick. When the lower limit of −5.0 to condition (2) is exceeded, the refractive power of the first lens group becomes too large, and the decentering sensitivity of the first lens group becomes high.
【0023】さらに、条件式(2−1)を満たすと、第
1レンズ群及び第2レンズ群以降の偏心感度をより低く
抑えながら光学系を薄くすることができ、より好まし
い。Further, if the conditional expression (2-1) is satisfied, the optical system can be made thinner while suppressing the decentering sensitivity after the first lens group and the second lens group to a lower level, which is more preferable.
【0024】さらに、条件式(2−2)を満たすと、第
1レンズ群及び第2レンズ群以降の偏心感度をさらに低
く抑えながら光学系を薄くすることができ、さらに好ま
しい。Further, if the conditional expression (2-2) is satisfied, the optical system can be made thinner while the decentering sensitivity of the first lens group and the second lens group and thereafter can be further reduced, which is more preferable.
【0025】また、第2レンズ群の後に、正の屈折力を
有する第3レンズ群を含み、広角端から望遠端に変倍す
る際に、第2レンズ群と第3レンズ群が相対的間隔を変
えながら光軸に沿って移動するようにすることが望まし
い。In addition, a third lens group having a positive refractive power is included after the second lens group, and when zooming from the wide-angle end to the telephoto end, the second lens group and the third lens group have a relative distance. It is desirable to move along the optical axis while changing.
【0026】すなわち、広角端から望遠端に変倍する際
に、正の屈折力を有する第2レンズ群と、正の屈折力を
有する第3レンズ群とが相対的間隔を変えながら移動す
るズーム方式は、スペースを効率良く使って変倍による
焦点位置補正を行いながら高い変倍率を稼ぐことができ
る。That is, when zooming from the wide-angle end to the telephoto end, the second lens group having a positive refractive power and the third lens group having a positive refractive power move while changing the relative distance. With this method, it is possible to use a space efficiently and to obtain a high zoom ratio while performing focus position correction by zooming.
【0027】この場合に、無限遠合焦時に広角端から望
遠端に変倍する際の第2レンズ群、第3レンズ群のそれ
ぞれの移動量をM2 、M3 とすると、以下の条件式
(3)を満足することが望ましい。In this case, if the moving amounts of the second lens group and the third lens group when zooming from the wide-angle end to the telephoto end during focusing at infinity are M 2 and M 3 , the following conditional expression is obtained. It is desirable to satisfy (3).
【0028】 0.3<M3 /M2 <3.0 ・・・(3) 条件式(3)はさらに、 0.5<M3 /M2 <2.0 ・・・(3−1) を満たすことが望ましい。0.3 <M 3 / M 2 <3.0 (3) Conditional expression (3) further includes 0.5 <M 3 / M 2 <2.0 (3-1 ) Is desirable.
【0029】さらに、 0.7<M3 /M2 <1.7 ・・・(3−2) を満たすことがより望ましい。Further, it is more preferable that the following condition is satisfied: 0.7 <M 3 / M 2 <1.7 (3-2).
【0030】第2レンズ群と第3レンズ群の移動量の比
M3 /M2 が、条件式(3)の上限の3.0を越える
と、第3レンズ群が非常に多く移動することになり、望
遠端では第2レンズ群と第3レンズ群の間隔が狭くなり
すぎて、第3レンズ群でフォーカスのために繰り出せる
空間が確保できず、フォーカス可能距離レンジを十分確
保できなくなる。また、フォーカス可能距離レンジを確
保すると、ズーム比を十分確保できなくなる。M3 /M
2 が、条件式(3)の下限の0.3を越えると、第3レ
ンズ群があまり移動しないことになり、ズーム比を十分
確保できなくなる。そのため、M3 /M2 は条件式
(3)を満たすことが望ましい。When the ratio M 3 / M 2 of the moving amounts of the second lens group and the third lens group exceeds 3.0, which is the upper limit of the conditional expression (3), the third lens group moves very much. Therefore, at the telephoto end, the distance between the second lens group and the third lens group becomes too narrow, so that a space for the third lens group to focus can not be secured, and a sufficient focusable distance range cannot be secured. Further, if the focusable distance range is secured, the zoom ratio cannot be secured sufficiently. M 3 / M
When the value of 2 exceeds the lower limit of 0.3 of the conditional expression (3), the third lens group does not move much, and it becomes impossible to secure a sufficient zoom ratio. Therefore, it is desirable that M 3 / M 2 satisfy the conditional expression (3).
【0031】また、条件式(3−1)を満たすようにす
ると、よりズーム比及びフォーカス可能距離レンジを確
保でき、より好ましい。It is more preferable to satisfy the conditional expression (3-1), because the zoom ratio and the focusable distance range can be secured more.
【0032】さらに、条件式(3−2)を満たすと、さ
らにズーム比及びフォーカス可能距離レンジを確保で
き、さらに好ましい。Further, if the conditional expression (3-2) is satisfied, the zoom ratio and the focusable distance range can be further secured, which is more preferable.
【0033】また、望遠端における第2レンズ群以降の
合成系の倍率βRtが、以下の条件式(4)を満足するこ
とが望ましい。It is desirable that the magnification β Rt of the combined system after the second lens group at the telephoto end satisfies the following conditional expression (4).
【0034】 1.0<−βRt<2.3 ・・・(4) 条件式(4)はさらに、 1.0<−βRt<2.1 ・・・(4−1) を満たすことが望ましい。1.0 <−β Rt <2.3 (4) Conditional expression (4) further satisfies 1.0 <−β Rt <2.1 (4−1) Is desirable.
【0035】さらに、 1.0<−βRt<1.9 ・・・(4−2) を満たすことがより望ましい。Further, it is more desirable that 1.0 <-β Rt <1.9 (4-2) is satisfied.
【0036】第2レンズ群と第3レンズ群の相対的間隔
変化をできるだけ小さく保つには、第2レンズ群以降の
合成系の倍率の絶対値が1倍より大きくできるだけ1倍
に近い位置にて変倍するのがよい。つまり、第2レンズ
群以降の望遠端における無限遠物点合焦時の合成倍率を
βRtとすると、条件式(4)を満たすことが望ましい。
条件式(4)の上限の2.3、下限の1.0何れを越え
ても、第2レンズ群と第3レンズ群の相対的間隔の変化
量が大きくなってしまう。In order to keep the relative distance change between the second lens group and the third lens group as small as possible, the absolute value of the magnification of the compound system after the second lens group is larger than 1 times and as close as possible to 1 times. It is better to change the magnification. That is, it is desirable to satisfy conditional expression (4), where β Rt is the combined magnification when focusing on an object point at infinity at the telephoto end after the second lens group.
When the upper limit of 2.3 or the lower limit of 1.0 of the conditional expression (4) is exceeded, the amount of change in the relative distance between the second lens group and the third lens group becomes large.
【0037】さらに、条件式(4−1)を満たすと、第
2レンズ群と第3レンズ群の相対的間隔変化をより小さ
く保つことができる。Further, if the conditional expression (4-1) is satisfied, the change in the relative distance between the second lens group and the third lens group can be kept small.
【0038】また、条件式(4−2)を満たすと、第2
レンズ群と第3レンズ群の相対的間隔変化をさらに小さ
く保つことができる。If conditional expression (4-2) is satisfied, the second condition is satisfied.
It is possible to keep the relative distance change between the lens group and the third lens group small.
【0039】また、本発明の光路折り曲げズーム光学系
において、最も像側のレンズ群に非球面を少なくとも1
面有することが望ましい。Further, in the optical path bending zoom optical system of the present invention, at least one aspherical surface is provided in the lens unit closest to the image side.
It is desirable to have a face.
【0040】最も像側のレンズ群では、最大光線高が高
い。そのため、この最も像側のレンズ群に非球面を少な
くとも1面配置すると、歪曲収差や非点収差、 コマ収差
等の軸外収差を効果的に補正することができる。In the lens group closest to the image side, the maximum ray height is high. Therefore, by disposing at least one aspherical surface in this most image-side lens group, it is possible to effectively correct off-axis aberrations such as distortion, astigmatism, and coma.
【0041】そして、その場合に、変倍時及び合焦時
に、最も像側のレンズ群は固定であることが望ましい。In this case, it is desirable that the lens unit closest to the image side be fixed during zooming and focusing.
【0042】最も像側のレンズ群は非球面を有し、この
非球面より物体側にて発生する収差、特に軸外収差をキ
ャンセルしており、ズームやフォーカスにより光軸方向
にその最も像側のレンズ群を動かすと、収差のバランス
を崩してしまう。そのため、最も像側のレンズ群は固定
とした方がよい。The lens group closest to the image side has an aspherical surface, and aberrations generated on the object side relative to this aspherical surface, particularly off-axis aberrations, are canceled, and zooming or focusing causes the lens to move to the most image side in the optical axis direction. If you move the lens group in, the aberration balance will be lost. Therefore, it is better to fix the lens unit closest to the image side.
【0043】その場合に、像側から2番目のレンズ群を
光軸方向に移動して合焦するようにすることが望まし
い。In this case, it is desirable that the second lens unit from the image side be moved in the optical axis direction to focus.
【0044】像側から2番目のレンズ群を用いてフォー
カスすると、フォーカスによる焦点距離や収差の変動が
少なく、性能を落とすことなくフォーカスを行うことが
できる。Focusing using the second lens group from the image side makes it possible to carry out focusing without degrading the performance, since there is little variation in focal length and aberration due to focusing.
【0045】また、本発明の光路折り曲げズーム光学系
において、第1レンズ群に非球面を少なくとも1面有す
ることが望ましい。In the optical path bending zoom optical system of the present invention, it is desirable that the first lens group have at least one aspherical surface.
【0046】第1レンズ群では光線高が高く、球面のみ
からなると軸外収差を抑えきれない。第1レンズ群に少
なくとも1面の非球面を配置することで、 軸外収差を効
果的に補正することができる。In the first lens group, the ray height is high, and off-axis aberration cannot be suppressed if it is composed of only spherical surfaces. By disposing at least one aspherical surface in the first lens group, off-axis aberrations can be effectively corrected.
【0047】この場合、変倍時及び合焦時に、第1レン
ズ群は固定であることが望ましい。In this case, it is desirable that the first lens group be fixed during zooming and focusing.
【0048】第1レンズ群は非球面を有し、この非球面
より物体側にて発生する収差、特に軸外収差をキャンセ
ルしており、ズームやフォーカスにより光軸方向に動か
すと、収差のバランスを崩してしまう。そのため、第1
レンズ群は固定とした方がよい。The first lens group has an aspherical surface, and cancels aberrations generated on the object side of the aspherical surface, particularly off-axis aberrations. When moved in the optical axis direction by zooming or focusing, the aberration balance is achieved. Will be destroyed. Therefore, the first
The lens group should be fixed.
【0049】また、本発明の光路折り曲げズーム光学系
において、プリズムより像側に配置されたレンズ群、又
は、プリズムより像側に配置されたレンズ群中の一部の
レンズを光軸方向に移動することで合焦することが望ま
しい。Further, in the optical path bending zoom optical system of the present invention, the lens group disposed on the image side of the prism or a part of the lens group disposed on the image side of the prism is moved in the optical axis direction. It is desirable to focus by doing so.
【0050】プリズムは折り曲げ系であるため、 ズーム
やフォーカスにより光軸方向に動かすと機構が複雑とな
る。また、プリズムより物体側のレンズ群あるいはレン
ズ群中の一部のレンズを動かすと、光学系の厚みが変化
することになり、薄くすることが困難になる。そのた
め、プリズムより像側に配置されたレンズ群又はそのレ
ンズ群中の一部のレンズを移動してフォーカスすること
が好ましい。Since the prism is a bending system, the mechanism becomes complicated when it is moved in the optical axis direction by zooming or focusing. Further, when the lens group on the object side of the prism or a part of the lenses in the lens group is moved, the thickness of the optical system changes, which makes it difficult to reduce the thickness. Therefore, it is preferable to move and focus the lens group disposed on the image side of the prism or a part of the lenses in the lens group.
【0051】また、像側から2番目のレンズ群を光軸方
向に移動して合焦する場合、像側から2番目のレンズ群
と3番目のレンズ群の望遠端での無限遠物点合焦時の光
軸上空気間隔DFTが以下の条件式(5)を満足するこ
とが望ましい。When the second lens group from the image side is moved in the optical axis direction for focusing, the infinity object point at the telephoto end of the second lens group and the third lens group from the image side is adjusted. It is desirable that the air distance DFT on the optical axis at the time of focusing satisfy the following conditional expression (5).
【0052】0.01<DFT/ft <2.0
・・・(5)ただし、ft は望遠端で
の無限遠物点合焦時の全系の焦点距離である。0.01 <DFT / f t <2.0
(5) However, f t is the focal length of the entire system when focusing on an object point at infinity at the telephoto end.
【0053】条件式(5)はさらに、 0.03<DFT/ft <1.5 ・・・(5−1) を満たすことが望ましい。It is desirable that the conditional expression (5) further satisfies 0.03 <DFT / ft <1.5 (5-1).
【0054】さらに、 0.05<DFT/ft <1.0 ・・・(5−2) を満たすことがより望ましい。Furthermore, it is more desirable to satisfy 0.05 <DFT / f t <1.0 (5-2).
【0055】望遠端での無限遠物点合焦時からより近距
離側へピント位置を変えると、フォーカスを行う像側か
ら2番目のレンズ群は物体側へ繰り出すことになる。こ
のとき、この像側から2番目のレンズ群と3番目のレン
ズ群の光軸上空気間隔DFTが小さすぎると、すなわち
条件式(5)の下限値の0.01を越えると、フォーカ
スで物体側に繰り出せる空間が狭くなり、フォーカス可
能距離レンジを十分にとることができなくなる。一方、
条件式(5)の上限値の2.0を越えると、変倍時に像
側から2番目と3番目のレンズ群の間隔をほとんど縮め
ることができず、ズーム比の確保が困難となる。そのた
め、DFTは条件式(5)を満たすとよい。When the focus position is changed to a closer distance side from the time of focusing on an object point at infinity at the telephoto end, the second lens group from the image side for focusing is extended to the object side. At this time, if the optical distance DFT on the optical axis between the second lens unit and the third lens unit from the image side is too small, that is, if the lower limit value of 0.01 of the conditional expression (5) is exceeded, the object is focused. The space that can be extended to the side becomes narrower, and it becomes impossible to achieve a sufficient focusable distance range. on the other hand,
When the upper limit of 2.0 to condition (5) is exceeded, the distance between the second and third lens units from the image side cannot be reduced during zooming, making it difficult to secure a zoom ratio. Therefore, the DFT should satisfy the conditional expression (5).
【0056】また、条件式(5−1)を満たすと、より
フォーカス可能距離レンジを確保でき、かつズーム比も
確保できるため、より好ましい。If the conditional expression (5-1) is satisfied, a more focusable distance range and a zoom ratio can be secured, which is more preferable.
【0057】さらに、条件式(5−2)を満たすと、さ
らにフォーカス可能距離レンジを確保でき、かつズーム
比も確保できるため、 さらに好ましい。Further, if the conditional expression (5-2) is satisfied, a more focusable distance range and a zoom ratio can be secured, which is more preferable.
【0058】また、正の屈折力を有する第3レンズ群を
含む場合に、第1レンズ群が、負の屈折力を有する1つ
のプリズムと、1枚の負レンズと、1枚の正レンズから
なり、第3レンズ群が1枚の正レンズからなることが望
ましい。When the third lens group having a positive refractive power is included, the first lens group includes one prism having a negative refractive power, one negative lens, and one positive lens. Therefore, it is desirable that the third lens group be composed of one positive lens.
【0059】第1レンズ群が、負の屈折力を有する1つ
のプリズムと、1枚の負レンズを含むため、 プリズム、
レンズの屈折力を大きくすることなく、第1レンズ群全
体の屈折力を大きくすることができる。また、第1レン
ズ群が負の屈折力を有し、その負の屈折力が大きくなる
と、第2レンズ群以降の最大光線高を低く抑えることが
でき、レンズの大きさを小さくでき、光学系をより薄型
にすることができる。また、第2レンズ群以降の偏心感
度を低く抑えることができる。Since the first lens group includes one prism having a negative refractive power and one negative lens, the prism,
It is possible to increase the refractive power of the entire first lens group without increasing the refractive power of the lens. Further, when the first lens group has a negative refracting power and the negative refracting power becomes large, the maximum ray height after the second lens group can be suppressed low, the size of the lens can be made small, and the optical system Can be made thinner. Further, it is possible to suppress the decentering sensitivity after the second lens group to be low.
【0060】また、正の屈折力を有する第3レンズ群を
含む場合に、第1レンズ群が、負の屈折力を有する1つ
のプリズムと、1枚の正レンズからなり、第3レンズ群
が、1枚の正レンズと、1枚の負レンズからなることが
望ましい。When the third lens group having a positive refractive power is included, the first lens group is composed of one prism having a negative refractive power and one positive lens, and the third lens group is It is desirable to have one positive lens and one negative lens.
【0061】第1レンズ群が、負の屈折力を有する1つ
のプリズムと、1枚の正レンズからなるため、最大光線
高が高くレンズの大きさが大きいレンズを少なくでき、
光学系全体の軽量化につながる。また、第3レンズ群
が、1枚の正レンズと、1枚の負レンズからなるため、
各レンズの屈折力を大きくすることなく第3レンズ群全
体の屈折力を大きくすることができる。そのため、第3
レンズ群の変倍時及び合焦時の移動量を小さく抑えるこ
とができ、ズーム比やフォーカス可能距離レンジをより
十分にとることができるようになる。Since the first lens group consists of one prism having a negative refractive power and one positive lens, it is possible to reduce the number of lenses having a large maximum ray height and a large lens size.
This leads to weight reduction of the entire optical system. Further, since the third lens group consists of one positive lens and one negative lens,
It is possible to increase the refractive power of the entire third lens group without increasing the refractive power of each lens. Therefore, the third
The amount of movement of the lens group during zooming and focusing can be suppressed to a small amount, and the zoom ratio and the focusable distance range can be more sufficiently taken.
【0062】以上において、第3レンズ群を光軸方向に
移動することにより合焦することが望ましい。In the above, it is desirable to focus by moving the third lens group in the optical axis direction.
【0063】第3レンズ群は1枚の正レンズ、あるいは
1枚の正レンズと1枚の負レンズとからなり、第3レン
ズ群のレンズ枚数が少なく、重量が軽い。そのため、こ
の第3レンズ群を移動して合焦すると、移動のために必
要な消費電力を小さくすることができる。The third lens group consists of one positive lens, or one positive lens and one negative lens, and the third lens group has a small number of lenses and a light weight. Therefore, if the third lens group is moved and focused, the power consumption required for the movement can be reduced.
【0064】以上において、第1レンズ群に非球面を有
する場合に、プリズムの入射面、射出面の少なくとも一
方が非球面であってもよい。In the above, when the first lens group has an aspherical surface, at least one of the entrance surface and the exit surface of the prism may be an aspherical surface.
【0065】プリズムでは光線高が高く、入射面、射出
面の少なくとも一方を非球面とすると、歪曲収差や非点
収差、コマ収差等の軸外収差を効果的に補正することが
できる。If the prism has a high ray height and at least one of the entrance surface and the exit surface is an aspherical surface, off-axis aberrations such as distortion, astigmatism, and coma can be effectively corrected.
【0066】以上において、第1レンズ群又は最も像側
のレンズ群に非球面を有する場合、非球面が形成された
レンズあるいはプリズムがガラスからなり、その転移点
Tgが以下の条件式(6)を満たすことが望ましい。In the above, when the first lens group or the lens group closest to the image side has an aspherical surface, the lens or prism on which the aspherical surface is formed is made of glass, and its transition point Tg has the following conditional expression (6). It is desirable to satisfy.
【0067】
60℃<Tg<620℃ ・・・(6)
非球面形状は、研磨では形状を正確に出すことができ
ず、また、研削では大量に加工することが困難である。
非球面が形成されたレンズあるいはプリズムが条件式
(6)を満たすようなガラスからなると、ガラス成形法
により加工することができ、容易に大量に生産すること
ができる。そのため、光学系が安価になる。60 ° C. <Tg <620 ° C. (6) The aspherical shape cannot be accurately formed by polishing, and it is difficult to process a large amount by grinding.
When the lens or prism having the aspherical surface is made of glass that satisfies the conditional expression (6), it can be processed by the glass molding method and can be easily mass-produced. Therefore, the optical system becomes inexpensive.
【0068】また、第1レンズ群又は最も像側のレンズ
群に非球面を有する場合、非球面が形成されたレンズあ
るいはプリズムが、ガラス成形法で加工されたものであ
ることが望ましい。When the first lens group or the lens group closest to the image side has an aspherical surface, it is desirable that the lens or prism having the aspherical surface be processed by a glass molding method.
【0069】非球面形状は、研磨では形状を正確に出す
ことができず、また、研削では大量に加工することが困
難である。非球面が形成されたレンズあるいはプリズム
をガラス成形法により加工すると、容易に大量に生産す
ることができ、光学系が安価になる。The aspherical shape cannot be accurately formed by polishing, and it is difficult to process a large amount by grinding. If a lens or prism having an aspherical surface is processed by a glass molding method, it can be easily mass-produced and the optical system becomes inexpensive.
【0070】また、第1レンズ群又は最も像側のレンズ
群に非球面を有する場合、非球面が形成されたレンズあ
るいはプリズムが、有機無機ハイブリッド材料からなる
ことが可能である。When the first lens group or the lens group closest to the image side has an aspherical surface, the lens or prism having the aspherical surface can be made of an organic-inorganic hybrid material.
【0071】有機無機ハイブリッド材料は、例えば特開
平7−90181号に記載されているように、無機材料
中に有機材料が分散されているもの、あるいは、有機材
料中に無機材料が分散されているものであり、ガラスに
比べると融点が低く、低い温度で成形して、容易に大量
に生産することができ、光学系が安価になる。また、プ
ラスチックに比べると高屈折率低分散の光学特性が得ら
れ、 また、耐熱性に優れる。さらに、傷も付き難く、例
えば光学系の前玉にも使用できる。したがって、少なく
とも非球面が形成されたレンズあるいはプリズムにこの
ような有機無機ハイブリッド材料を用いることが望まし
い。The organic-inorganic hybrid material is, for example, as described in JP-A-7-90181, one in which an organic material is dispersed in an inorganic material, or one in which an inorganic material is dispersed. Since it has a lower melting point than glass, it can be molded at a low temperature and easily mass-produced, and the optical system becomes inexpensive. Further, as compared with plastic, high refractive index and low dispersion optical characteristics are obtained, and heat resistance is excellent. Further, it is not easily scratched and can be used, for example, as a front lens of an optical system. Therefore, it is desirable to use such an organic-inorganic hybrid material for a lens or prism having at least an aspherical surface.
【0072】また、第1レンズ群又は最も像側のレンズ
群に非球面を有する場合、非球面が形成されたレンズあ
るいはプリズムが、プラスチックからなることが可能で
ある。When the first lens group or the lens group closest to the image side has an aspherical surface, the lens or prism on which the aspherical surface is formed can be made of plastic.
【0073】プリズムがプラスチックからなると、プラ
スチック成形法で容易に大量に非球面を有するプリズム
あるいはレンズを生産することができる。また、材料費
が安いため、 安価なプリズム及び安価な光学系を得るこ
とができる。また、プラスチックはガラスに比べ軽いた
め、 光学系の軽量化も図れる。When the prism is made of plastic, a large amount of prisms or lenses having an aspherical surface can be easily produced by a plastic molding method. Moreover, since the material cost is low, an inexpensive prism and an inexpensive optical system can be obtained. Also, because plastic is lighter than glass, the weight of the optical system can be reduced.
【0074】また、本発明の光路折り曲げズーム光学系
において、プリズムがプラスチックからなることが可能
である。In the optical path bending zoom optical system of the present invention, the prism can be made of plastic.
【0075】プリズムは他のレンズに比べ体積が大き
く、軽いプラスチックでプリズムを作れば、 軽量化に特
に効果がある。また、プラスチック成形法で生産するこ
とができ、容易に大量に生産することができる。さら
に、材料費が安いため、 安価な光学系を得ることができ
る。The prism has a larger volume than other lenses, and if the prism is made of light plastic, it is particularly effective in reducing the weight. Further, it can be produced by a plastic molding method, and can be easily produced in a large amount. Furthermore, since the material cost is low, an inexpensive optical system can be obtained.
【0076】また、本発明の光路折り曲げズーム光学系
において、全てのレンズ及びプリズムがプラスチックか
らなることが可能である。Further, in the optical path bending zoom optical system of the present invention, all lenses and prisms can be made of plastic.
【0077】全てのレンズ及びプリズムがプラスチック
からなると、全てのレンズ及びプリズムをプラスチック
成形法で生産することができ、容易に大量に生産するこ
とができる。また、材料費が安いため、 安価な光学系を
得ることができる。When all the lenses and the prisms are made of plastic, all the lenses and the prisms can be produced by the plastic molding method and can be easily produced in a large amount. Moreover, since the material cost is low, an inexpensive optical system can be obtained.
【0078】また、本発明の光路折り曲げズーム光学系
において、光軸の折り曲げ面が像面に配置される撮像素
子の撮像面の短辺に平行になるように光軸を折り曲げて
いることが望ましい。Further, in the optical path bending zoom optical system of the present invention, it is desirable that the optical axis is bent so that the bending surface of the optical axis is parallel to the short side of the image pickup surface of the image pickup device arranged on the image plane. .
【0079】像面に配置される例えばCCDの短辺方向
に光軸を折り曲げれば、 折り曲げた方向でのCCD上の
最も外側の位置が、長辺方向に折り曲げた場合に比べて
低くなる。そのため、反射面の大きさも小さくでき、プ
リズムの厚さを薄くでき、 光学系をより薄型にすること
ができる。If the optical axis is bent in the direction of the short side of, for example, the CCD arranged on the image plane, the outermost position on the CCD in the bending direction becomes lower than in the case of bending in the direction of the long side. Therefore, the size of the reflecting surface can be reduced, the thickness of the prism can be reduced, and the optical system can be made thinner.
【0080】また、本発明の光路折り曲げズーム光学系
において、プリズムは、変倍時に可動な全てのレンズ群
の最も物体側のレンズよりも物体側に配置されているこ
とが望ましい。Further, in the optical path bending zoom optical system of the present invention, it is preferable that the prism is arranged closer to the object side than the most object side lens of all the lens groups that are movable during zooming.
【0081】すなわち、ズームやフォーカス駆動系を複
雑化しないために、移動群は折り曲げ位置よりも像側と
するのがよい。That is, in order not to complicate the zoom or focus drive system, it is preferable that the moving group is closer to the image side than the bending position.
【0082】また、本発明の光路折り曲げズーム光学系
において、変倍時に移動するレンズ群は、広角端から望
遠端に変倍する際に、単調に物体側に移動するようにす
ることができる。In the optical path bending zoom optical system of the present invention, the lens group that moves during zooming can move monotonously toward the object side when zooming from the wide-angle end to the telephoto end.
【0083】変倍時に移動するレンズ群を、単調に物体
側に移動するものとすると、移動のための機構が簡単に
なる。If the lens unit that moves during zooming is monotonically moved to the object side, the mechanism for movement becomes simple.
【0084】また、本発明の光路折り曲げズーム光学系
において、プリズムより像側の光路上に少なくとも1つ
の開口絞りを配置することが望ましい。In the optical path bending zoom optical system of the present invention, it is desirable to dispose at least one aperture stop on the optical path on the image side of the prism.
【0085】開口絞りをプリズムより物体側に設ける
と、プリズムより物体側の光路長が長くなり、光学系の
厚さが厚くなってしまう。When the aperture stop is provided on the object side of the prism, the optical path length on the object side of the prism becomes long and the optical system becomes thick.
【0086】また、正の屈折力を有する第3レンズ群を
含む場合に、第3レンズ群を光軸方向に移動して合焦す
ることができる。When the third lens group having a positive refracting power is included, the third lens group can be moved in the optical axis direction for focusing.
【0087】第3レンズ群は変倍時に移動し、この第3
レンズ群で合焦すると、合焦時にも変倍用の移動機構を
利用することができ、機構が簡単になり、 機構も含む光
学系全体を小型化、軽量化できる。The third lens group moves during zooming, and
When focusing with the lens group, the moving mechanism for zooming can be used even during focusing, the mechanism is simple, and the entire optical system including the mechanism can be made compact and lightweight.
【0088】また、以上のような本発明のズーム光学系
と、そのズーム光学系によって形成された物体像を受光
する位置に配置された電子撮像素子と、その電子撮像素
子によって光電変換された電子信号を処理する処理手段
と、操作者がその処理手段に入力したい情報信号を入力
するための入力部と、その処理手段からの出力を表示す
る表示素子と、その処理手段からの出力を記録する記録
媒体とを含み、その処理手段は、ズーム光学系によって
電子撮像素子に受光された物体像を表示素子に表示する
ように構成されている情報処理装置を本発明に基づいて
構成することができる。Further, the zoom optical system of the present invention as described above, the electronic image pickup device arranged at a position for receiving the object image formed by the zoom optical system, and the electron photoelectrically converted by the electronic image pickup device. A processing means for processing a signal, an input section for an operator to input an information signal desired to be input to the processing means, a display element for displaying an output from the processing means, and an output from the processing means are recorded. An information processing apparatus including a recording medium, the processing means of which is configured to display an object image received by an electronic image pickup element by a zoom optical system on a display element, can be configured based on the present invention. .
【0089】この場合に、その入力部がキーボードにて
構成され、ズーム光学系と電子撮像素子とが表示素子の
周辺部又はキーボードの周辺部に内蔵されているパソコ
ン装置を本発明に基づいて構成することができる。In this case, according to the present invention, a personal computer device is constructed based on the present invention, the input unit of which is composed of a keyboard, and the zoom optical system and the electronic image pickup device are built in the peripheral portion of the display element or the peripheral portion of the keyboard. can do.
【0090】また、以上のような本発明のズーム光学系
と、そのズーム光学系によって形成された物体像を受光
する位置に配置された電子撮像素子と、電話信号を送信
及び受信するためのアンテナと、電話番号等の信号を入
力するための入力部と、その電子撮像素子によって受光
された物体像を送信可能な信号に変換する信号処理部と
を含んでいる電話装置を本発明に基づいて構成すること
ができる。Further, the zoom optical system of the present invention as described above, the electronic image pickup device arranged at a position for receiving the object image formed by the zoom optical system, and the antenna for transmitting and receiving telephone signals. Based on the present invention, there is provided a telephone device including an input unit for inputting a signal such as a telephone number, and a signal processing unit for converting an object image received by the electronic image pickup device into a transmittable signal. Can be configured.
【0091】また、以上のような本発明のズーム光学系
と、そのズーム光学系によって形成された物体像を受光
する位置に配置された電子撮像素子と、その電子撮像素
子によって光電変換された電子信号を処理する処理手段
と、その電子撮像素子で受光された物体像を観察可能に
表示する表示素子とを有し、電子撮像素子で受光された
物体像の像情報を記録するための記録部材を内蔵又は挿
脱するように構成され、その処理手段が、電子撮像素子
に受光された物体像を表示素子に表示する表示処理機能
と、電子撮像素子に受光された物体像を記録媒体に記録
する記録処理機能とを有する電子カメラ装置を本発明に
基づいて構成することができる。Further, the zoom optical system of the present invention as described above, the electronic image pickup device arranged at the position for receiving the object image formed by the zoom optical system, and the electron photoelectrically converted by the electronic image pickup device A recording member having a processing means for processing a signal and a display element for observably displaying an object image received by the electronic image sensor, and recording image information of the object image received by the electronic image sensor. And a processing function for displaying the object image received by the electronic image pickup device on the display device, and recording the object image received by the electronic image pickup device on the recording medium. An electronic camera device having a recording processing function for performing the above can be configured based on the present invention.
【0092】このように構成することで、デジタルカメ
ラ自体も薄くすることができる。また、例えば携帯型パ
ソコンや携帯電話等の携帯端末に撮像機能を搭載して
も、携帯端末のサイズを大きくしなくてすむ。With this configuration, the digital camera itself can be made thin. Further, even if a mobile terminal such as a mobile personal computer or a mobile phone is equipped with an image pickup function, it is not necessary to increase the size of the mobile terminal.
【0093】[0093]
【発明の実施の形態】以下、本発明の光路折り曲げズー
ム光学系の実施例1〜10について説明する。これらの
実施例の無限遠物点合焦時の広角端(a)、中間状態
(b)、望遠端(c)でのレンズ断面図をそれぞれ図1
〜図10に示す。各図中、第1レンズ群はG1、第2レ
ンズ群はG2、第3レンズ群はG3、第4レンズ群はG
4、光路折り曲げプリズムはP、開口絞りはS、近赤外
カットフィルター、ローパスフィルター、電子撮像素子
であるCCDのカバーガラス等の平行平面板群はF、C
CDの像面はIで示してあり、平行平面板群Fは最終レ
ンズ群と像面Iの間に固定配置されている。BEST MODE FOR CARRYING OUT THE INVENTION Examples 1 to 10 of the optical path bending zoom optical system of the present invention will be described below. FIG. 1 shows lens cross-sectional views at the wide-angle end (a), the intermediate state (b), and the telephoto end (c) when focusing on an object point at infinity in each of these examples.
~ Shown in FIG. In each drawing, the first lens group is G1, the second lens group is G2, the third lens group is G3, and the fourth lens group is G.
4. Optical path bending prism is P, aperture stop is S, near-infrared cut filter, low-pass filter, parallel plane plate group such as cover glass of CCD which is an electronic image pickup device is F, C
The image plane of the CD is indicated by I, and the plane-parallel plate group F is fixedly arranged between the final lens group and the image plane I.
【0094】実施例1の光路折り曲げズーム光学系は、
図1に示すように、両凹負レンズと等価な光路折り曲げ
プリズムPと、像面側に凸の負メニスカスレンズと、両
凸正レンズとからなる第1レンズ群G1、開口絞りS、
2枚の両凸正レンズと、物体側に凸の負メニスカスレン
ズとからなる第2レンズ群G2、両凸正レンズ1枚から
なる第3レンズ群G3、両凸正レンズ1枚からなる第4
レンズ群G4からなり、広角端から望遠端に変倍する際
は、第1レンズ群G1は固定で、開口絞りSと第2レン
ズ群G2は一体で物体側へ移動し、第3レンズ群G3は
第2レンズ群G2との間隔を一旦は広げた後に狭めなが
ら物体側へ移動し、第4レンズ群G4は固定である。The optical path bending zoom optical system of Example 1 is
As shown in FIG. 1, an optical path bending prism P equivalent to a biconcave negative lens, a negative meniscus lens convex on the image side, and a biconvex positive lens, a first lens group G1, an aperture stop S,
A second lens group G2 including two biconvex positive lenses and a negative meniscus lens convex toward the object side, a third lens group G3 including one biconvex positive lens, and a fourth lens group including one biconvex positive lens.
When zooming from the wide-angle end to the telephoto end, the first lens group G1 is fixed, the aperture stop S and the second lens group G2 move integrally to the object side, and the third lens group G3 is formed. Moves to the object side while narrowing the gap with the second lens group G2 and then narrowing it, and the fourth lens group G4 is fixed.
【0095】非球面は、第1レンズ群G1の光路折り曲
げプリズムPの入射面、負メニスカスレンズの物体側の
面、第2レンズ群G2の最も物体側の面、第4レンズ群
G4の物体側の面の4面に用いられている。The aspherical surfaces are the entrance surface of the optical path bending prism P of the first lens group G1, the object side surface of the negative meniscus lens, the most object side surface of the second lens group G2, and the object side surface of the fourth lens group G4. It is used on the four sides of the.
【0096】この実施例において、光路折り曲げプリズ
ムPはプラスチックからなる。In this embodiment, the optical path bending prism P is made of plastic.
【0097】実施例2の光路折り曲げズーム光学系は、
図2に示すように、両凹負レンズと等価な光路折り曲げ
プリズムPと、像面側に凸の負メニスカスレンズと、両
凸正レンズとからなる第1レンズ群G1、開口絞りS、
2枚の両凸正レンズと、物体側に凸の負メニスカスレン
ズとからなる第2レンズ群G2、物体側に凸の正メニス
カスレンズ1枚からなる第3レンズ群G3、両凸正レン
ズ1枚からなる第4レンズ群G4からなり、広角端から
望遠端に変倍する際は、第1レンズ群G1は固定で、開
口絞りSと第2レンズ群G2は一体で物体側へ移動し、
第3レンズ群G3は第2レンズ群G2との間隔を一旦は
広げた後に狭めながら物体側へ移動し、第4レンズ群G
4は固定である。The optical path bending zoom optical system of Example 2 is
As shown in FIG. 2, an optical path bending prism P equivalent to a biconcave negative lens, a negative meniscus lens convex on the image plane side, and a biconvex positive lens, a first lens group G1, an aperture stop S,
A second lens group G2 consisting of two biconvex positive lenses and a negative meniscus lens convex to the object side, a third lens group G3 consisting of one positive meniscus lens convex to the object side, and a biconvex positive lens When the magnification is changed from the wide-angle end to the telephoto end, the first lens group G1 is fixed, and the aperture stop S and the second lens group G2 move integrally to the object side.
The third lens group G3 moves toward the object side while narrowing the gap between the third lens group G3 and the second lens group G2 and then narrowing the gap.
4 is fixed.
【0098】非球面は、第1レンズ群G1の光路折り曲
げプリズムPの入射面、負メニスカスレンズの物体側の
面、第2レンズ群G2の最も物体側の面、第4レンズ群
G4の物体側の面の4面に用いられている。The aspherical surfaces are the incident surface of the optical path bending prism P of the first lens group G1, the object side surface of the negative meniscus lens, the most object side surface of the second lens group G2, and the object side surface of the fourth lens group G4. It is used on the four sides of the.
【0099】この実施例において、光路折り曲げプリズ
ムPはプラスチックからなる。In this embodiment, the optical path bending prism P is made of plastic.
【0100】実施例3の光路折り曲げズーム光学系は、
図3に示すように、物体側に凸の負メニスカスレンズと
等価な光路折り曲げプリズムPと、両凹負レンズと、物
体側に凸の正メニスカスレンズとからなる第1レンズ群
G1、開口絞りS、2枚の両凸正レンズと、物体側に凸
の負メニスカスレンズとからなる第2レンズ群G2、両
凸正レンズ1枚からなる第3レンズ群G3、像面側に凸
の正メニスカスレンズ1枚からなる第4レンズ群G4か
らなり、広角端から望遠端に変倍する際は、第1レンズ
群G1は固定で、開口絞りSは物体側へ移動し、第2レ
ンズ群G2は開口絞りSとの間隔を狭めながら物体側へ
移動し、第3レンズ群G3は第2レンズ群G2との間隔
を一旦は広げた後に狭めながら物体側へ移動し、第4レ
ンズ群G4は固定である。The optical path bending zoom optical system of Example 3 is
As shown in FIG. 3, a first lens group G1 including an optical path bending prism P equivalent to a negative meniscus lens convex to the object side, a biconcave negative lens, and a positive meniscus lens convex to the object side, an aperture stop S. A second lens group G2 consisting of two biconvex positive lenses and a negative meniscus lens convex to the object side, a third lens group G3 consisting of one biconvex positive lens, and a positive meniscus lens convex to the image side. It consists of a single fourth lens group G4. When zooming from the wide-angle end to the telephoto end, the first lens group G1 is fixed, the aperture stop S moves toward the object side, and the second lens group G2 opens. The third lens group G3 moves toward the object side while narrowing the distance from the diaphragm S, and the third lens group G3 moves toward the object side while narrowing the distance from the second lens group G2, and the fourth lens group G4 is fixed. is there.
【0101】非球面は、第1レンズ群G1の両凹負レン
ズの物体側の面、正メニスカスレンズの物体側の面、第
2レンズ群G2の最も物体側の面、第4レンズ群G4の
物体側の面の4面に用いられている。The aspherical surfaces are the object-side surface of the biconcave negative lens of the first lens group G1, the object-side surface of the positive meniscus lens, the most object-side surface of the second lens group G2, and the fourth lens group G4. It is used for four surfaces on the object side.
【0102】この実施例において、光路折り曲げプリズ
ムPを含めて全ての要素はガラスからなる。In this embodiment, all the elements including the optical path bending prism P are made of glass.
【0103】実施例4の光路折り曲げズーム光学系は、
図4に示すように、両凹負レンズと等価な光路折り曲げ
プリズムPと、両凸正レンズとからなる第1レンズ群G
1、開口絞りS、両凸正レンズと、物体側に凸の正メニ
スカスレンズと、物体側に凸の負メニスカスレンズとか
らなる第2レンズ群G2、物体側に凸の正メニスカスレ
ンズと、物体側に凸の負メニスカスレンズとからなる第
3レンズ群G3、物体側に凸の正メニスカスレンズ1枚
からなる第4レンズ群G4からなり、広角端から望遠端
に変倍する際は、第1レンズ群G1は固定で、開口絞り
Sは物体側へ移動し、第2レンズ群G2は開口絞りSと
の間隔を狭めながら物体側へ移動し、第3レンズ群G3
は第2レンズ群G2との間隔を一旦は広げた後に狭めな
がら物体側へ移動し、第4レンズ群G4は固定である。The optical path bending zoom optical system of Example 4 is as follows:
As shown in FIG. 4, a first lens group G including an optical path bending prism P equivalent to a biconcave negative lens and a biconvex positive lens.
1. A second lens group G2 including an aperture stop S, a biconvex positive lens, a positive meniscus lens convex to the object side, and a negative meniscus lens convex to the object side, a positive meniscus lens convex to the object side, and an object The third lens group G3 is composed of a negative meniscus lens having a convex surface on the side, and the fourth lens group G4 is composed of one positive meniscus lens having a convex surface on the object side. When zooming from the wide-angle end to the telephoto end, The lens group G1 is fixed, the aperture stop S moves to the object side, the second lens group G2 moves to the object side while narrowing the interval with the aperture stop S, and the third lens group G3.
Moves to the object side while narrowing the gap with the second lens group G2 and then narrowing it, and the fourth lens group G4 is fixed.
【0104】非球面は、第1レンズ群G1の光路折り曲
げプリズムPの入射面、両凸正レンズの物体側の面、第
2レンズ群G2の最も物体側の面、第4レンズ群G4の
物体側の面の4面に用いられている。The aspherical surfaces are the incident surface of the optical path bending prism P of the first lens group G1, the object-side surface of the biconvex positive lens, the most object-side surface of the second lens group G2, and the object of the fourth lens group G4. It is used on the four side surfaces.
【0105】この実施例において、光路折り曲げプリズ
ムPを含めて全ての要素はガラスからなる。In this embodiment, all the elements including the optical path bending prism P are made of glass.
【0106】実施例5の光路折り曲げズーム光学系は、
図5に示すように、両凹負レンズと等価な光路折り曲げ
プリズムPと、両凸正レンズとからなる第1レンズ群G
1、開口絞りS、両凸正レンズと、物体側に凸の正メニ
スカスレンズと、物体側に凸の負メニスカスレンズとか
らなる第2レンズ群G2、両凸正レンズと、像面側に凸
の負メニスカスレンズとからなる第3レンズ群G3、物
体側に凸の正メニスカスレンズ1枚からなる第4レンズ
群G4からなり、広角端から望遠端に変倍する際は、第
1レンズ群G1は固定で、開口絞りSは物体側へ移動
し、第2レンズ群G2は開口絞りSとの間隔を狭めなが
ら物体側へ移動し、第3レンズ群G3は第2レンズ群G
2との間隔を広げながら物体側へ移動し、第4レンズ群
G4は固定である。The optical path bending zoom optical system of Example 5 is as follows:
As shown in FIG. 5, a first lens group G including an optical path bending prism P equivalent to a biconcave negative lens and a biconvex positive lens.
1. A second lens group G2 including an aperture stop S, a biconvex positive lens, a positive meniscus lens having a convex surface on the object side, and a negative meniscus lens having a convex surface on the object side, a biconvex positive lens, and a convex surface on the image side. The third lens group G3 including a negative meniscus lens and the fourth lens group G4 including one positive meniscus lens having a convex surface on the object side. The first lens group G1 is used when zooming from the wide-angle end to the telephoto end. Is fixed, the aperture stop S moves to the object side, the second lens group G2 moves to the object side while narrowing the interval with the aperture stop S, and the third lens group G3 moves to the second lens group G3.
The fourth lens group G4 is fixed while moving toward the object side while widening the distance from 2.
【0107】非球面は、第1レンズ群G1の両凸正レン
ズの物体側の面、第2レンズ群G2の最も物体側の面、
第4レンズ群G4の物体側の面の3面に用いられてい
る。The aspherical surface is the object-side surface of the biconvex positive lens of the first lens group G1, the most object-side surface of the second lens group G2,
It is used for the three object-side surfaces of the fourth lens group G4.
【0108】この実施例において、光路折り曲げプリズ
ムPを含めて全ての要素はガラスからなる。In this embodiment, all the elements including the optical path bending prism P are made of glass.
【0109】実施例6の光路折り曲げズーム光学系は、
図6に示すように、両凹負レンズと等価な光路折り曲げ
プリズムPと、物体側に凸の正メニスカスレンズとから
なる第1レンズ群G1、開口絞りS、両凸正レンズと、
物体側に凸の正メニスカスレンズと、物体側に凸の負メ
ニスカスレンズとからなる第2レンズ群G2、物体側に
凸の正メニスカスレンズ1枚からなる第3レンズ群G
3、両凸正レンズ1枚からなる第4レンズ群G4からな
り、広角端から望遠端に変倍する際は、第1レンズ群G
1は固定で、開口絞りSは物体側へ移動し、第2レンズ
群G2は開口絞りSとの間隔を一旦は狭めた後に広げな
がら物体側へ移動し、第3レンズ群G3は第2レンズ群
G2との間隔を一旦は広げた後に狭めながら物体側へ移
動し、第4レンズ群G4は固定である。The optical path bending zoom optical system of the sixth embodiment is
As shown in FIG. 6, an optical path bending prism P equivalent to a biconcave negative lens, a first lens group G1 including a positive meniscus lens having a convex surface on the object side, an aperture stop S, and a biconvex positive lens,
A second lens group G2 including a positive meniscus lens convex on the object side and a negative meniscus lens convex on the object side, and a third lens group G including one positive meniscus lens convex on the object side.
3. The fourth lens group G4 is composed of one biconvex positive lens, and when changing the magnification from the wide-angle end to the telephoto end,
1 is fixed, the aperture stop S moves to the object side, the second lens group G2 moves to the object side while narrowing the interval with the aperture stop S and then widening, and the third lens group G3 moves to the second lens group G3. The fourth lens group G4 is fixed while the distance from the group G2 is once widened and then moved toward the object side while being narrowed.
【0110】非球面は、第1レンズ群G1の光路折り曲
げプリズムPの入射面、正メニスカスレンズの物体側の
面、第2レンズ群G2の最も物体側の面、第4レンズ群
G4の物体側の面の4面に用いられている。The aspherical surfaces are the incident surface of the optical path bending prism P of the first lens group G1, the object side surface of the positive meniscus lens, the most object side surface of the second lens group G2, and the object side surface of the fourth lens group G4. It is used on the four sides of the.
【0111】この実施例において、光路折り曲げプリズ
ムPはプラスチックからなる。In this embodiment, the optical path bending prism P is made of plastic.
【0112】実施例7の光路折り曲げズーム光学系は、
図7に示すように、両凹負レンズと等価な光路折り曲げ
プリズムPと、両凸正レンズとからなる第1レンズ群G
1、開口絞りS、2枚の両凸正レンズと、両凹負レンズ
とからなる第2レンズ群G2、両凸正レンズと、像面側
に凸の負メニスカスレンズとからなる第3レンズ群G
3、物体側に凸の正メニスカスレンズ1枚からなる第4
レンズ群G4からなり、広角端から望遠端に変倍する際
は、第1レンズ群G1は固定で、開口絞りSは物体側へ
移動し、第2レンズ群G2は開口絞りSとの間隔を狭め
ながら物体側へ移動し、第3レンズ群G3は第2レンズ
群G2との間隔を一旦は広げた後に狭めながら物体側へ
移動し、第4レンズ群G4は固定である。The optical path bending zoom optical system of Example 7 is as follows:
As shown in FIG. 7, a first lens group G including an optical path bending prism P equivalent to a biconcave negative lens and a biconvex positive lens.
1, an aperture stop S, a second lens group G2 including two biconvex positive lenses, and a biconcave negative lens, a biconvex positive lens, and a third lens group including a negative meniscus lens convex on the image side. G
3, 4th consisting of one positive meniscus lens convex on the object side
When zooming from the wide-angle end to the telephoto end, the first lens group G1 is fixed, the aperture stop S moves toward the object side, and the second lens group G2 sets the distance from the aperture stop S to the object side. The third lens group G3 moves toward the object side while narrowing, the gap between the third lens group G3 and the second lens group G2 is once widened, and then moves toward the object side while narrowing, and the fourth lens group G4 is fixed.
【0113】非球面は、第1レンズ群G1の両凸正レン
ズの物体側の面、第2レンズ群G2の最も物体側の面、
第4レンズ群G4の物体側の面の3面に用いられてい
る。The aspherical surface is the object-side surface of the biconvex positive lens of the first lens group G1, the most object-side surface of the second lens group G2,
It is used for the three object-side surfaces of the fourth lens group G4.
【0114】この実施例において、第2レンズ群G2の
3枚のレンズはプラスチックからなる。In this embodiment, the three lenses of the second lens group G2 are made of plastic.
【0115】実施例8の光路折り曲げズーム光学系は、
図8に示すように、両凹負レンズと等価な光路折り曲げ
プリズムPと、物体側に凸の正メニスカスレンズとから
なる第1レンズ群G1、開口絞りS、2枚の両凸正レン
ズと、両凹負レンズとからなる第2レンズ群G2、両凸
正レンズと、両凹負レンズとからなる第3レンズ群G
3、物体側に凸の正メニスカスレンズ1枚からなる第4
レンズ群G4からなり、広角端から望遠端に変倍する際
は、第1レンズ群G1は固定で、開口絞りSは物体側へ
移動し、第2レンズ群G2は開口絞りSとの間隔を狭め
ながら物体側へ移動し、第3レンズ群G3は第2レンズ
群G2との間隔を一旦は広げた後に狭めながら物体側へ
移動し、第4レンズ群G4は固定である。The optical path bending zoom optical system of Example 8 is as follows:
As shown in FIG. 8, an optical path bending prism P equivalent to a biconcave negative lens, a first lens group G1 including a positive meniscus lens convex on the object side, an aperture stop S, and two biconvex positive lenses, A second lens group G2 including a biconcave negative lens, a third lens group G including a biconvex positive lens, and a biconcave negative lens
3, 4th consisting of one positive meniscus lens convex on the object side
When zooming from the wide-angle end to the telephoto end, the first lens group G1 is fixed, the aperture stop S moves toward the object side, and the second lens group G2 sets the distance from the aperture stop S to the object side. The third lens group G3 moves toward the object side while narrowing, the gap between the third lens group G3 and the second lens group G2 is once widened, and then moves toward the object side while narrowing, and the fourth lens group G4 is fixed.
【0116】非球面は、第1レンズ群G1の光路折り曲
げプリズムPの入射面、正メニスカスレンズの物体側の
面、第2レンズ群G2の最も物体側の面、第3レンズ群
G3の最も物体側の面、第4レンズ群G4の物体側の面
の5面に用いられている。The aspherical surface is the entrance surface of the optical path bending prism P of the first lens group G1, the object side surface of the positive meniscus lens, the object side surface of the second lens group G2, and the object side of the third lens group G3. Side surface and five surfaces of the object side surface of the fourth lens group G4.
【0117】この実施例において、第1レンズ群G1か
ら第4レンズ群G4の全てのレンズ、プリズムはプラス
チックからなる。In this embodiment, all the lenses and prisms in the first lens group G1 to the fourth lens group G4 are made of plastic.
【0118】実施例9の光路折り曲げズーム光学系は、
図9に示すように、両凹負レンズと等価な光路折り曲げ
プリズムPと、両凹負レンズと、両凸正レンズとからな
る第1レンズ群G1、開口絞りS、2枚の両凸正レンズ
と、物体側に凸の負メニスカスレンズとからなる第2レ
ンズ群G2、物体側に凸の正メニスカスレンズ1枚から
なる第3レンズ群G3、両凸正レンズ1枚からなる第4
レンズ群G4からなり、広角端から望遠端に変倍する際
は、第1レンズ群G1は固定で、第2レンズ群G2は物
体側へ移動し、第1レンズ群G1と第2レンズ群G2の
間の開口絞りSは広角端から中間状態までは第2レンズ
群G2との間隔を狭めながら、また、中間状態から望遠
端までは第2レンズ群G2と一体で移動し、第3レンズ
群G3は第2レンズ群G2との間隔を一旦は広げた後に
狭めながら物体側へ移動し、第4レンズ群G4は固定で
ある。The optical path bending zoom optical system of the ninth embodiment is
As shown in FIG. 9, a first lens group G1 including an optical path bending prism P equivalent to a biconcave negative lens, a biconcave negative lens, and a biconvex positive lens, an aperture stop S, and two biconvex positive lenses. And a second lens group G2 including a negative meniscus lens convex toward the object side, a third lens group G3 including one positive meniscus lens facing toward the object side, and a fourth lens group G1 including one biconvex positive lens.
When the magnification is changed from the wide-angle end to the telephoto end, the first lens group G1 is fixed, the second lens group G2 moves toward the object side, and the first lens group G1 and the second lens group G2 are formed. The aperture stop S between is narrowing the interval with the second lens group G2 from the wide-angle end to the intermediate state, and moves integrally with the second lens group G2 from the intermediate state to the telephoto end, and the third lens group G3 is moved toward the object side while widening the gap with the second lens group G2 and then narrowing it, and the fourth lens group G4 is fixed.
【0119】非球面は、第1レンズ群G1の光路折り曲
げプリズムPの入射面、両凹負レンズの物体側の面、第
2レンズ群G2の最も物体側の面、第4レンズ群G4の
物体側の面の4面に用いられている。The aspherical surfaces are the incident surface of the optical path bending prism P of the first lens group G1, the object-side surface of the biconcave negative lens, the most object-side surface of the second lens group G2, and the object of the fourth lens group G4. It is used on the four side surfaces.
【0120】この実施例において、光路折り曲げプリズ
ムPはプラスチックからなる。In this embodiment, the optical path bending prism P is made of plastic.
【0121】実施例10の光路折り曲げズーム光学系
は、図10に示すように、両凹負レンズと等価な光路折
り曲げプリズムPと、両凹負レンズと、両凸正レンズと
からなる第1レンズ群G1、開口絞りS、2枚の両凸正
レンズと、物体側に凸の負メニスカスレンズとからなる
第2レンズ群G2、物体側に凸の正メニスカスレンズ1
枚からなる第3レンズ群G3、両凸正レンズ1枚からな
る第4レンズ群G4からなり、広角端から望遠端に変倍
する際は、第1レンズ群G1は固定で、開口絞りSは物
体側へ移動し、第2レンズ群G2は開口絞りSとの間隔
を狭めながら物体側へ移動し、第3レンズ群G3は第2
レンズ群G2との間隔を一旦は広げた後に狭めながら物
体側へ移動し、第4レンズ群G4は固定である。As shown in FIG. 10, the optical path bending zoom optical system of the tenth embodiment has a first lens composed of an optical path bending prism P equivalent to a biconcave negative lens, a biconcave negative lens and a biconvex positive lens. A second lens group G2 including a group G1, an aperture stop S, two biconvex positive lenses, and a negative meniscus lens convex on the object side, and a positive meniscus lens 1 convex on the object side.
It consists of a third lens group G3 consisting of one lens element and a fourth lens group G4 consisting of one biconvex positive lens element. When zooming from the wide-angle end to the telephoto end, the first lens group G1 is fixed and the aperture stop S is The second lens group G2 moves toward the object side while narrowing the distance from the aperture stop S, and moves toward the object side, and the third lens group G3 moves toward the second lens group G3.
The fourth lens group G4 is fixed while the distance from the lens group G2 is once widened and then moved toward the object side while being narrowed.
【0122】非球面は、第1レンズ群G1の光路折り曲
げプリズムPの入射面、両凹負レンズの物体側の面、第
2レンズ群G2の最も物体側の面、第4レンズ群G4の
物体側の面の4面に用いられている。The aspherical surfaces are the incident surface of the optical path bending prism P of the first lens group G1, the object-side surface of the biconcave negative lens, the most object-side surface of the second lens group G2, and the object of the fourth lens group G4. It is used on the four side surfaces.
【0123】この実施例において、光路折り曲げプリズ
ムPはプラスチックからなる。In this embodiment, the optical path bending prism P is made of plastic.
【0124】なお、以上の実施例1〜10において、何
れも第1レンズ群G1は負の屈折力、第2レンズ群G
2、第3レンズ群G3、第4レンズ群G4は正の屈折力
を有し、第3レンズ群G3を物体側に繰り出して近距離
物体へフォーカスするものである。In each of Examples 1 to 10 described above, the first lens group G1 has a negative refractive power and the second lens group G has a negative refractive power.
2, the third lens group G3 and the fourth lens group G4 have positive refracting power, and the third lens group G3 is extended to the object side to focus on a short-distance object.
【0125】以下に、上記各実施例の数値データを示す
が、記号は上記の外、fは全系焦点距離、2ωは画角、
FNOはFナンバー、WEは広角端、STは中間状態、T
Eは望遠端、r1 、r2 …は各レンズ面の曲率半径、d
1 、d2 …は各レンズ面間の間隔、nd1、nd2…は各レ
ンズのd線の屈折率、νd1、νd2…は各レンズのアッベ
数である。また、“RE”は反射面を示す。なお、非球
面形状は、xを光の進行方向を正とした光軸とし、yを
光軸と直交する方向にとると、下記の式にて表される。Numerical data of each of the above-mentioned embodiments will be shown below. Symbols are other than the above, f is the focal length of the entire system, 2ω is the angle of view,
F NO is the F number, WE is the wide-angle end, ST is the intermediate state, T
E is the telephoto end, r 1 , r 2 ... Is the radius of curvature of each lens surface, d
1 , d 2 ... Intervals between lens surfaces, n d1 , n d2 ..., Refractive index of d line of each lens, ν d1 , ν d2, ... Abbe number of each lens. Further, “RE” indicates a reflecting surface. The aspherical shape is represented by the following formula, where x is an optical axis with the traveling direction of light being positive and y is a direction orthogonal to the optical axis.
【0126】x=(y2 /r)/[1+{1−(K+
1)(y/r)2 }1/2 ]+A4y4 +A6y6 +A8y8 +
A10y10
ただし、rは近軸曲率半径、Kは円錐係数、A4、A6、
A8、A10 はそれぞれ4次、6次、8次、10次の非球面
係数である。X = (y 2 / r) / [1+ {1- (K +
1) (y / r) 2 } 1/2 ] + A 4 y 4 + A 6 y 6 + A 8 y 8 +
A 10 y 10 However, r is a paraxial radius of curvature, K is a conic coefficient, A 4 , A 6 ,
A 8 and A 10 are aspherical coefficients of the 4th, 6th, 8th and 10th orders, respectively.
【0127】 実施例1 r1 = -17.3764(非球面) d1 = 3.2840 nd1 =1.52540 νd1 =56.25 r2 = ∞(RE) d2 = 4.4140 nd2 =1.52540 νd2 =56.25 r3 = 6.9338 d3 = 2.0562 r4 = -5.7193(非球面) d4 = 0.6000 nd3 =1.58913 νd3 =61.14 r5 = -16.8060 d5 = 0.1089 r6 = 42.1844 d6 = 1.2031 nd4 =1.84666 νd4 =23.78 r7 = -23.2853 d7 = (可変) r8 = ∞(絞り) d8 = 0.9998 r9 = 10.8298(非球面) d9 = 1.6521 nd5 =1.48749 νd5 =70.23 r10= -15.4299 d10= 0.1148 r11= 8.3013 d11= 1.9637 nd6 =1.48749 νd6 =70.23 r12= -46.5864 d12= 0.3474 r13= 24.9162 d13= 2.8699 nd7 =1.84666 νd7 =23.78 r14= 5.3115 d14= (可変) r15= 11.2652 d15= 1.4981 nd8 =1.48749 νd8 =70.23 r16= -179.3191 d16= (可変) r17= 26.6599(非球面) d17= 1.3970 nd9 =1.48749 νd9 =70.23 r18= -19.7457 d18= 0.6066 r19= ∞ d19= 0.8000 nd10=1.51633 νd10=64.14 r20= ∞ d20= 1.8000 nd11=1.54771 νd11=62.84 r21= ∞ d21= 0.5000 r22= ∞ d22= 0.5000 nd12=1.51633 νd12=64.14 r23= ∞ d23= 1.2117 r24= ∞(像面) 非球面係数 第1面 K = 0 A4 = 4.5818 ×10-4 A6 =-4.6789 ×10-6 A8 = 6.9273 ×10-8 A10=-4.3726 ×10-10 第4面 K = 0 A4 =-2.8145 ×10-4 A6 = 1.5591 ×10-6 A8 =-3.6111 ×10-6 A10= 1.4914 ×10-7 第9面 K = 0 A4 =-4.3262 ×10-4 A6 =-1.1293 ×10-6 A8 = 4.8515 ×10-7 A10=-2.8317 ×10-8 第17面 K = 0 A4 =-5.5147 ×10-4 A6 = 2.6573 ×10-6 A8 =-2.2587 ×10-7 A10=-7.7929 ×10-9 ズームデータ(∞) WE ST TE f (mm) 4.624 7.795 13.319 FNO 2.800 3.497 4.579 2ω (°) 65.06 39.74 23.18 d7 11.7219 5.3659 0.9994 d14 5.3163 7.0392 1.4070 d16 0.3378 4.9904 14.9874 。Example 1 r 1 = -17.3764 (aspherical surface) d 1 = 3.2840 n d1 = 1.52540 ν d1 = 56.25 r 2 = ∞ (RE) d 2 = 4.4140 n d2 = 1.52540 ν d2 = 56.25 r 3 = 6.9338 d 3 = 2.0562 r 4 = -5.7193 (aspherical surface) d 4 = 0.6000 n d3 = 1.58913 ν d3 = 61.14 r 5 = -16.8060 d 5 = 0.1089 r 6 = 42.1844 d 6 = 1.2031 n d4 = 1.84666 ν d4 = 23.78 r 7 = -23.2853 d 7 = (variable) r 8 = ∞ (aperture) d 8 = 0.9998 r 9 = 10.8298 (aspherical surface) d 9 = 1.6521 n d5 = 1.48749 ν d5 = 70.23 r 10 = -15.4299 d 10 = 0.1148 r 11 = 8.3013 d 11 = 1.9637 n d6 = 1.48749 ν d6 = 70.23 r 12 = -46.5864 d 12 = 0.3474 r 13 = 24.9162 d 13 = 2.8699 n d7 = 1.84666 ν d7 = 23.78 r 14 = 5.3115 d 14 = ( Variable) r 15 = 11.2652 d 15 = 1.4981 n d8 = 1.48749 ν d8 = 70.23 r 16 = -179.3191 d 16 = (variable) r 17 = 26.6599 (aspherical surface) d 17 = 1.3970 n d9 = 1.48749 ν d9 = 70.23 r 18 = -19.7457 d 18 = 0.6066 r 19 = ∞ d 19 = 0.8000 n d10 = 1.51633 ν d10 = 64.14 r 20 = ∞ d 20 = 1.8000 n d11 = 1.54771 ν d11 = 62.84 r 21 = ∞ d 21 = 0.5000 r 22 = ∞ d 22 = 0.5000 n d12 = 1.51633 ν d12 = 64.14 r 23 = ∞ d 23 = 1.2117 r 24 = ∞ (image plane) Aspherical coefficient 1st surface K = 0 A 4 = 4.5818 × 10 -4 A 6 = -4.6789 × 10 -6 A 8 = 6.9273 × 10 -8 A 10 = -4.3726 × 10 -10 4th surface K = 0 A 4 = -2.8145 × 10 -4 A 6 = 1.5591 × 10 -6 A 8 = -3.6111 × 10 -6 A 10 = 1.4914 × 10 -7 9th surface K = 0 A 4 = -4.3262 × 10 -4 A 6 = -1.1293 × 10 -6 A 8 = 4.8515 × 10 -7 A 10 = -2.8317 × 10 -8 17th surface K = 0 A 4 = -5.5147 × 10 -4 A 6 = 2.6573 × 10 -6 A 8 = -2.2587 × 10 -7 A 10 = -7.7929 × 10 -9 Zoom data (∞) WE ST TE f (mm) 4.624 7.795 13.319 F NO 2.800 3.497 4.579 2ω ( °) 65.06 39.74 23.18 d 7 11.7219 5.3659 0.9994 d 14 5.3163 7.0392 1.4070 d 16 0.3378 4.9904 14.9874.
【0128】 実施例2 r1 = -16.2703(非球面) d1 = 3.3160 nd1 =1.52540 νd1 =56.25 r2 = ∞(RE) d2 = 4.3120 nd2 =1.52540 νd2 =56.25 r3 = 6.2340 d3 = 1.8658 r4 = -8.0126(非球面) d4 = 0.6000 nd3 =1.58913 νd3 =61.14 r5 = -87.5224 d5 = 0.0970 r6 = 17.7033 d6 = 1.2354 nd4 =1.84666 νd4 =23.78 r7 = -57.3681 d7 = (可変) r8 = ∞(絞り) d8 = 0.9976 r9 = 9.8247(非球面) d9 = 1.6026 nd5 =1.48749 νd5 =70.23 r10= -22.2883 d10= 0.0972 r11= 6.8874 d11= 2.0574 nd6 =1.48749 νd6 =70.23 r12= -49.1281 d12= 0.3490 r13= 12.1835 d13= 1.0043 nd7 =1.84666 νd7 =23.78 r14= 4.7572 d14= (可変) r15= 11.5898 d15= 1.4123 nd8 =1.48749 νd8 =70.23 r16= 82.0834 d16= (可変) r17= 18.9013(非球面) d17= 1.3793 nd9 =1.48749 νd9 =70.23 r18= -37.9025 d18= 0.6834 r19= ∞ d19= 0.8000 nd10=1.51633 νd10=64.14 r20= ∞ d20= 1.8000 nd11=1.54771 νd11=62.84 r21= ∞ d21= 0.5000 r22= ∞ d22= 0.5000 nd12=1.51633 νd12=64.14 r23= ∞ d23= 1.2115 r24= ∞(像面) 非球面係数 第1面 K = 0 A4 = 4.8235 ×10-4 A6 =-5.1018 ×10-6 A8 = 5.7666 ×10-8 A10=-2.9333 ×10-10 第4面 K = 0 A4 =-3.3016 ×10-4 A6 =-3.2719 ×10-5 A8 = 2.5224 ×10-6 A10=-1.5352 ×10-7 第9面 K = 0 A4 =-5.0596 ×10-4 A6 = 3.0757 ×10-6 A8 =-4.1244 ×10-7 A10= 8.2339 ×10-9 第17面 K = 0 A4 =-4.7915 ×10-4 A6 =-1.1388 ×10-5 A8 = 8.5208 ×10-7 A10=-4.0916 ×10-8 ズームデータ(∞) WE ST TE f (mm) 4.620 7.769 13.318 FNO 2.800 3.497 4.579 2ω (°) 64.92 39.72 23.14 d7 11.6223 5.3076 0.9969 d14 7.5065 8.5876 1.4683 d16 0.3508 5.6098 17.0450 。Example 2 r 1 = -16.2703 (aspherical surface) d 1 = 3.3160 n d1 = 1.52540 ν d1 = 56.25 r 2 = ∞ (RE) d 2 = 4.3120 n d2 = 1.52540 ν d2 = 56.25 r 3 = 6.2340 d 3 = 1.8658 r 4 = -8.0126 (aspherical surface) d 4 = 0.6000 n d3 = 1.58913 ν d3 = 61.14 r 5 = -87.5224 d 5 = 0.0970 r 6 = 17.7033 d 6 = 1.2354 n d4 = 1.84666 ν d4 = 23.78 r 7 = -57.3681 d 7 = (variable) r 8 = ∞ (aperture) d 8 = 0.9976 r 9 = 9.8247 (aspherical surface) d 9 = 1.6026 n d5 = 1.48749 ν d5 = 70.23 r 10 = -22.2883 d 10 = 0.0972 r 11 = 6.8874 d 11 = 2.0574 n d6 = 1.48749 ν d6 = 70.23 r 12 = -49.1281 d 12 = 0.3490 r 13 = 12.1835 d 13 = 1.0043 n d7 = 1.84666 ν d7 = 23.78 r 14 = 4.7572 d 14 = ( Variable) r 15 = 11.5898 d 15 = 1.4123 n d8 = 1.48749 ν d8 = 70.23 r 16 = 82.0834 d 16 = (variable) r 17 = 18.9013 (aspherical surface) d 17 = 1.3793 n d9 = 1.48749 ν d9 = 70.23 r 18 = -37.9025 d 18 = 0.6834 r 19 = ∞ d 19 = 0.8000 n d1 0 = 1.51633 ν d10 = 64.14 r 20 = ∞ d 20 = 1.8000 n d11 = 1.54771 ν d11 = 62.84 r 21 = ∞ d 21 = 0.5000 r 22 = ∞ d 22 = 0.5000 n d12 = 1.51633 ν d12 = 64.14 r 23 = ∞ d 23 = 1.2115 r 24 = ∞ (image plane) Aspheric coefficient 1st surface K = 0 A 4 = 4.8235 × 10 -4 A 6 = -5.1018 × 10 -6 A 8 = 5.7666 × 10 -8 A 10 = -2.9333 × 10 -10 4th surface K = 0 A 4 = -3.3016 × 10 -4 A 6 = -3.2719 × 10 -5 A 8 = 2.5224 × 10 -6 A 10 = -1.5352 × 10 -7 9th surface K = 0 A 4 = -5.0596 × 10 -4 A 6 = 3.0757 × 10 -6 A 8 = -4.1244 × 10 -7 A 10 = 8.2339 × 10 -9 17th surface K = 0 A 4 = -4.7915 × 10 -4 A 6 = -1.1388 × 10 -5 A 8 = 8.5208 × 10 -7 A 10 = -4.0916 × 10 -8 Zoom data (∞) WE ST TE f (mm) 4.620 7.769 13.318 F NO 2.800 3.497 4.579 2ω ( °) 64.92 39.72 23.14 d 7 11.6223 5.3076 0.9969 d 14 7.5065 8.5876 1.4683 d 16 0.3508 5.6098 17.0450.
【0129】 実施例3 r1 = 27.1044 d1 = 4.7220 nd1 =1.88300 νd1 =40.76 r2 = ∞(RE) d2 = 3.5955 nd2 =1.88300 νd2 =40.76 r3 = 4.9756 d3 = 2.3010 r4 = -11.9474(非球面) d4 = 0.6000 nd3 =1.58913 νd3 =61.14 r5 = 10.1822 d5 = 0.4447 r6 = 8.3844(非球面) d6 = 1.4272 nd4 =1.84666 νd4 =23.78 r7 = 45.6667 d7 = (可変) r8 = ∞(絞り) d8 = (可変) r9 = 10.7735(非球面) d9 = 1.8705 nd5 =1.48749 νd5 =70.23 r10= -14.9931 d10= 0.5376 r11= 7.0291 d11= 2.0442 nd6 =1.48749 νd6 =70.23 r12= -29.1724 d12= 0.2628 r13= 12.3764 d13= 0.7972 nd7 =1.84666 νd7 =23.78 r14= 4.9385 d14= (可変) r15= 11.8118 d15= 1.6243 nd8 =1.48749 νd8 =70.23 r16= -79.0013 d16= (可変) r17= -53.6897(非球面) d17= 1.0807 nd9 =1.48749 νd9 =70.23 r18= -15.5557 d18= 0.6894 r19= ∞ d19= 0.8000 nd10=1.51633 νd10=64.14 r20= ∞ d20= 1.8000 nd11=1.54771 νd11=62.84 r21= ∞ d21= 0.5000 r22= ∞ d22= 0.5000 nd12=1.51633 νd12=64.14 r23= ∞ d23= 1.2104 r24= ∞(像面) 非球面係数 第4面 K = 0 A4 = 2.3501 ×10-3 A6 =-6.3312 ×10-5 A8 =-6.9724 ×10-6 A10= 5.7489 ×10-7 第6面 K = 0 A4 =-1.1631 ×10-3 A6 = 3.6007 ×10-5 A8 = 4.4738 ×10-6 A10=-3.4837 ×10-7 第9面 K = 0 A4 =-5.7035 ×10-4 A6 =-5.4180 ×10-6 A8 = 5.3938 ×10-7 A10=-4.2901 ×10-8 第17面 K = 0 A4 =-8.5697 ×10-4 A6 = 2.2449 ×10-5 A8 =-2.4074 ×10-6 A10= 8.8890 ×10-8 ズームデータ(∞) WE ST TE f (mm) 4.623 7.950 13.702 FNO 2.859 3.591 4.730 2ω (°) 64.66 38.71 22.51 d7 9.9386 4.4841 0.9991 d8 1.7542 1.1944 0.8593 d14 6.0738 7.2831 1.4976 d16 0.8052 5.6280 15.2303 。 Example 3 r 1 = 27.1044 d 1 = 4.7220 n d1 = 1.88300 ν d1 = 40.76 r 2 = ∞ (RE) d 2 = 3.5955 n d2 = 1.88300 ν d2 = 40.76 r 3 = 4.9756 d 3 = 2.3010 r 4 = -11.9474 (aspherical surface) d 4 = 0.6000 n d3 = 1.58913 ν d3 = 61.14 r 5 = 10.1822 d 5 = 0.4447 r 6 = 8.3844 (aspherical surface) d 6 = 1.4272 nd d = 1.84666 ν d4 = 23.78 r 7 = 45.6667 d 7 = (variable) r 8 = ∞ (aperture) d 8 = (variable) r 9 = 10.7735 (aspherical surface) d 9 = 1.8705 n d5 = 1.48749 ν d5 = 70.23 r 10 = -14.9931 d 10 = 0.5376 r 11 = 7.0291 d 11 = 2.0442 n d6 = 1.48749 ν d6 = 70.23 r 12 = -29.1724 d 12 = 0.2628 r 13 = 12.3764 d 13 = 0.7972 n d7 = 1.84666 ν d7 = 23.78 r 14 = 4.9385 d 14 = (variable ) R 15 = 11.8118 d 15 = 1.6243 n d8 = 1.48749 ν d8 = 70.23 r 16 = -79.0013 d 16 = (variable) r 17 = -53.6897 (aspherical surface) d 17 = 1.0807 n d9 = 1.48749 ν d9 = 70.23 r 18 = -15.5557 d 18 = 0.6894 r 19 = ∞ d 19 = 0.8000 n d10 = 1.51633 ν d10 = 64.14 r 20 = ∞ d 20 = 1.8000 n d11 = 1.54771 ν d11 = 62.84 r 21 = ∞ d 21 = 0.5000 r 22 = ∞ d 22 = 0.5000 n d12 = 1.51633 ν d12 = 64.14 r 23 = ∞ d 23 = 1.2104 r 24 = ∞ (image plane) Aspheric coefficient 4th surface K = 0 A 4 = 2.3501 × 10 -3 A 6 = -6.3312 × 10 -5 A 8 = -6.9724 × 10 -6 A 10 = 5.7489 × 10 -7 6th surface K = 0 A 4 = -1.1631 × 10 -3 A 6 = 3.6007 × 10 -5 A 8 = 4.4738 × 10 -6 A 10 = -3.4837 × 10 -7 9th surface K = 0 A 4 = -5.7035 × 10 -4 A 6 = -5.4180 × 10 -6 A 8 = 5.3938 × 10 -7 A 10 = -4.2901 × 10 -8 17th surface K = 0 A 4 = -8.5697 × 10 -4 A 6 = 2.2449 × 10 -5 A 8 = -2.4074 × 10 -6 A 10 = 8.8890 × 10 -8 Zoom data (∞) WE ST TE f (mm) 4.623 7.950 13.702 F NO 2.859 3.591 4.730 2ω ( °) 64.66 38.71 22.51 d 7 9.9386 4.4841 0.9991 d 8 1.7542 1.1944 0.8593 d 14 6.0738 7.2831 1.4976 d 16 0.8052 5.6280 15.2303.
【0130】 実施例4 r1 = -16.4145(非球面) d1 = 3.5085 nd1 =1.80610 νd1 =40.92 r2 = ∞(RE) d2 = 3.5024 nd2 =1.80610 νd2 =40.92 r3 = 6.1870 d3 = 1.2716 r4 = 13.0384(非球面) d4 = 1.8330 nd3 =1.80809 νd3 =22.76 r5 = -71.4767 d5 = (可変) r6 = ∞(絞り) d6 = (可変) r7 = 5.4233(非球面) d7 = 2.6870 nd4 =1.48749 νd4 =70.23 r8 = -64.3346 d8 = 0.3381 r9 = 15.0638 d9 = 1.4457 nd5 =1.69680 νd5 =55.53 r10= 41.8538 d10= 0.1990 r11= 8.4846 d11= 0.7950 nd6 =1.84666 νd6 =23.78 r12= 4.1084 d12= (可変) r13= 7.7486 d13= 1.9936 nd7 =1.48749 νd7 =70.23 r14= 233.7602 d14= 0.2849 r15= 19.3480 d15= 1.0023 nd8 =1.84666 νd8 =23.78 r16= 13.9416 d16= (可変) r17= 18.1663(非球面) d17= 1.5276 nd9 =1.58913 νd9 =61.26 r18= 541.6115 d18= 0.9655 r19= ∞ d19= 0.8000 nd10=1.51633 νd10=64.14 r20= ∞ d20= 1.8000 nd11=1.54771 νd11=62.84 r21= ∞ d21= 0.5000 r22= ∞ d22= 0.5000 nd12=1.51633 νd12=64.14 r23= ∞ d23= 1.2298 r24= ∞(像面) 非球面係数 第1面 K = 0 A4 = 4.0309 ×10-4 A6 =-4.7575 ×10-6 A8 = 3.9047 ×10-8 A10= 0.0000 第4面 K = 0.1983 A4 = 1.9404 ×10-4 A6 = 5.6278 ×10-6 A8 = 1.4359 ×10-7 A10= 0.0000 第7面 K = 0 A4 =-7.1014 ×10-4 A6 =-1.1335 ×10-5 A8 =-6.4501 ×10-7 A10= 0.0000 第17面 K = 0 A4 =-5.7585 ×10-4 A6 = 4.3139 ×10-6 A8 =-8.6426 ×10-7 A10= 0.0000 ズームデータ(∞) WE ST TE f (mm) 4.678 7.851 13.217 FNO 2.800 3.802 4.902 2ω (°) 64.15 39.67 23.31 d5 11.9861 6.5855 1.2485 d6 3.2686 1.3388 1.0643 d12 2.9205 6.9804 4.6904 d16 1.1429 4.4758 12.3755 。 Example 4 r 1 = -16.4145 (aspherical surface) d 1 = 3.5085 n d1 = 1.80610 ν d1 = 40.92 r 2 = ∞ (RE) d 2 = 3.5024 n d2 = 1.80610 ν d2 = 40.92 r 3 = 6.1870 d 3 = 1.2716 r 4 = 13.0384 (aspherical surface) d 4 = 1.8330 n d3 = 1.80809 ν d3 = 22.76 r 5 = -71.4767 d 5 = (variable) r 6 = ∞ (aperture) d 6 = (variable) r 7 = 5.4233 (aspherical surface) d 7 = 2.6870 n d4 = 1.48749 ν d4 = 70.23 r 8 = -64.3346 d 8 = 0.3381 r 9 = 15.0638 d 9 = 1.4457 n d5 = 1.69680 ν d5 = 55.53 r 10 = 41.8538 d 10 = 0.1990 r 11 = 8.4846 d 11 = 0.7950 n d6 = 1.84666 ν d6 = 23.78 r 12 = 4.1084 d 12 = (variable) r 13 = 7.7486 d 13 = 1.9936 n d7 = 1.48749 ν d7 = 70.23 r 14 = 233.7602 d 14 = 0.2849 r 15 = 19.3480 d 15 = 1.0023 n d8 = 1.84666 ν d8 = 23.78 r 16 = 13.9416 d 16 = (variable) r 17 = 18.1663 (aspherical surface) d 17 = 1.5276 n d9 = 1.58913 ν d9 = 61.26 r 18 = 541.6115 d 18 = 0.9655 r 19 = ∞ d 19 = 0.8000 d10 = 1.51633 ν d10 = 64.14 r 20 = ∞ d 20 = 1.8000 n d11 = 1.54771 ν d11 = 62.84 r 21 = ∞ d 21 = 0.5000 r 22 = ∞ d 22 = 0.5000 n d12 = 1.51633 ν d12 = 64.14 r 23 = ∞ d 23 = 1.2298 r 24 = ∞ (image plane) Aspheric surface first surface K = 0 A 4 = 4.0309 × 10 -4 A 6 = -4.7575 × 10 -6 A 8 = 3.9047 × 10 -8 A 10 = 0.0000 4th surface K = 0.983 8 A 4 = 1.9404 × 10 -4 A 6 = 5.6278 × 10 -6 A 8 = 1.4359 × 10 -7 A 10 = 0.0000 7th surface K = 0 A 4 = -7.1014 × 10 -4 A 6 = -1.1335 × 10 -5 A 8 = -6.4501 × 10 -7 A 10 = 0.0000 17th surface K = 0 A 4 = -5.7585 × 10 -4 A 6 = 4.3139 × 10 -6 A 8 = -8.6426 × 10 -7 A 10 = 0.0000 Zoom data (∞) WE ST TE f (mm) 4.678 7.851 13.217 F NO 2.800 3.802 4.902 2ω (°) 64.15 39.67 23.31 d 5 11.9861 6.5855 1.2485 d 6 3.2686 1.3388 1.0643 d 12 2.9205 6.9804 4.6904 d 16 1.1429 4.4758 12.3755.
【0131】 実施例5 r1 = -129.7294 d1 = 4.0499 nd1 =1.80400 νd1 =46.57 r2 = ∞(RE) d2 = 4.5020 nd2 =1.80400 νd2 =46.57 r3 = 5.3898 d3 = 1.6465 r4 = 30.0332(非球面) d4 = 1.4609 nd3 =1.84666 νd3 =23.78 r5 = -35.8611 d5 = (可変) r6 = ∞(絞り) d6 = (可変) r7 = 9.6063(非球面) d7 = 2.7296 nd4 =1.48749 νd4 =70.23 r8 = -30.8421 d8 = 0.1469 r9 = 10.1172 d9 = 2.1277 nd5 =1.69680 νd5 =55.53 r10= 97.1974 d10= 0.0500 r11= 12.1982 d11= 0.7949 nd6 =1.84666 νd6 =23.78 r12= 5.7271 d12= (可変) r13= 14.2960 d13= 4.0342 nd7 =1.48749 νd7 =70.23 r14= -15.7323 d14= 0.1401 r15= -18.5671 d15= 1.1241 nd8 =1.84666 νd8 =23.78 r16= -29.8834 d16= (可変) r17= 46.3841(非球面) d17= 1.1752 nd9 =1.58913 νd9 =61.26 r18= 541.6142 d18= 0.4453 r19= ∞ d19= 0.8000 nd10=1.51633 νd10=64.14 r20= ∞ d20= 1.8000 nd11=1.54771 νd11=62.84 r21= ∞ d21= 0.5000 r22= ∞ d22= 0.5000 nd12=1.51633 νd12=64.14 r23= ∞ d23= 1.2588 r24= ∞(像面) 非球面係数 第4面 K =42.6072 A4 = 4.5281 ×10-4 A6 =-1.2752 ×10-6 A8 = 2.9327 ×10-7 A10= 0.0000 第7面 K = 0 A4 =-2.9136 ×10-4 A6 =-7.7511 ×10-7 A8 = 2.4221 ×10-8 A10= 0.0000 第17面 K = 0 A4 =-8.0585 ×10-4 A6 = 1.7583 ×10-5 A8 =-1.1309 ×10-6 A10= 0.0000 ズームデータ(∞) WE ST TE f (mm) 4.711 7.845 13.215 FNO 2.800 3.661 5.065 2ω (°) 63.83 38.71 23.29 d5 10.2014 4.7056 1.1213 d6 7.0902 5.5939 1.2485 d12 3.0827 9.7051 10.0440 d16 0.9858 1.2870 8.7262 。 Example 5 r 1 = -129.7294 d 1 = 4.0499 n d1 = 1.80400 ν d1 = 46.57 r 2 = ∞ (RE) d 2 = 4.5020 n d2 = 1.80400 ν d2 = 46.57 r 3 = 5.3898 d 3 = 1.6465 r 4 = 30.0332 (aspherical surface) d 4 = 1.4609 n d3 = 1.84666 ν d3 = 23.78 r 5 = -35.8611 d 5 = (variable) r 6 = ∞ (aperture) d 6 = (variable) r 7 = 9.6063 (non-spherical) Spherical surface) d 7 = 2.7296 n d4 = 1.48749 ν d4 = 70.23 r 8 = -30.8421 d 8 = 0.1469 r 9 = 10.1172 d 9 = 2.1277 n d5 = 1.69680 ν d5 = 55.53 r 10 = 97.1974 d 10 = 0.0500 r 11 = 12.1982 d 11 = 0.7949 n d6 = 1.84666 ν d6 = 23.78 r 12 = 5.7271 d 12 = (variable) r 13 = 14.2960 d 13 = 4.0342 n d7 = 1.48749 ν d7 = 70.23 r 14 = -15.7323 d 14 = 0.1401 r 15 = -18.5671 d 15 = 1.1241 n d8 = 1.84666 ν d8 = 23.78 r 16 = -29.8834 d 16 = (variable) r 17 = 46.3841 (aspherical) d 17 = 1.1752 n d9 = 1.58913 ν d9 = 61.26 r 18 = 541.6142 d 18 = 0.4453 r 19 = ∞ d 19 = 0.8000 n d10 = 1.5 1633 ν d10 = 64.14 r 20 = ∞ d 20 = 1.8000 n d11 = 1.54771 ν d11 = 62.84 r 21 = ∞ d 21 = 0.5000 r 22 = ∞ d 22 = 0.5000 n d12 = 1.51633 ν d12 = 64.14 r 23 = ∞ d 23 = 1.2588 r 24 = ∞ (Image plane) Aspheric coefficient 4th surface K = 42.6072 A 4 = 4.5281 × 10 -4 A 6 = -1.2752 × 10 -6 A 8 = 2.9327 × 10 -7 A 10 = 0.0000 7th surface K = 0 A 4 = -2.9136 × 10 -4 A 6 = -7.7511 × 10 -7 A 8 = 2.4221 × 10 -8 A 10 = 0.0000 17th surface K = 0 A 4 = -8.0585 × 10 -4 A 6 = 1.7583 × 10 -5 A 8 = -1.1309 × 10 -6 A 10 = 0.0000 Zoom data (∞) WE ST TE f (mm) 4.711 7.845 13.215 F NO 2.800 3.661 5.065 2ω (°) 63.83 38.71 23.29 d 5 10.2014 4.7056 1.1213 d 6 7.0902 5.5939 1.2485 d 12 3.0827 9.7051 10.0440 d 16 0.9858 1.2870 8.7262.
【0132】 実施例6 r1 = -13.4656(非球面) d1 = 3.8736 nd1 =1.52540 νd1 =56.25 r2 = ∞(RE) d2 = 3.9387 nd2 =1.52540 νd2 =56.25 r3 = 4.9554 d3 = 1.4026 r4 = 7.6282(非球面) d4 = 1.4221 nd3 =1.84666 νd3 =23.78 r5 = 12.9000 d5 = (可変) r6 = ∞(絞り) d6 = (可変) r7 = 5.2791(非球面) d7 = 1.7768 nd4 =1.48749 νd4 =70.23 r8 = -81.5664 d8 = 0.7630 r9 = 14.7728 d9 = 1.2036 nd5 =1.49700 νd5 =81.54 r10= 608.0924 d10= 0.2054 r11= 7.8327 d11= 0.7996 nd6 =1.84666 νd6 =23.78 r12= 4.0971 d12= (可変) r13= 7.5522 d13= 1.7117 nd7 =1.49700 νd7 =81.54 r14= 28.9115 d14= (可変) r15= 23.0879(非球面) d15= 1.2952 nd8 =1.48749 νd8 =70.23 r16= -44.5716 d16= 1.8191 r17= ∞ d17= 0.8000 nd9 =1.51633 νd9 =64.14 r18= ∞ d18= 1.8000 nd10=1.54771 νd10=62.84 r19= ∞ d19= 0.5000 r20= ∞ d20= 0.5000 nd11=1.51633 νd11=64.14 r21= ∞ d21= 1.1990 r22= ∞(像面) 非球面係数 第1面 K = 0 A4 = 5.7302 ×10-4 A6 =-7.8053 ×10-6 A8 = 1.0080 ×10-7 A10=-6.0371 ×10-10 第4面 K = 1.6311 A4 =-3.9850 ×10-4 A6 =-1.8434 ×10-5 A8 = 1.0561 ×10-6 A10=-7.3764 ×10-8 第7面 K = 0 A4 =-8.4136 ×10-4 A6 =-1.3853 ×10-6 A8 =-3.2987 ×10-6 A10= 1.8572 ×10-7 第15面 K = 0 A4 =-7.5523 ×10-4 A6 = 3.6444 ×10-5 A8 =-4.4066 ×10-6 A10= 1.5514 ×10-7 ズームデータ(∞) WE ST TE f (mm) 4.622 7.754 13.319 FNO 2.845 3.848 4.903 2ω (°) 64.02 40.11 23.15 d5 11.2074 6.2877 1.0095 d6 2.9126 0.9995 1.0725 d12 3.4738 6.9408 3.6978 d14 0.8821 4.2543 12.7013 。Example 6 r 1 = -13.4656 (aspherical surface) d 1 = 3.8736 n d1 = 1.52540 ν d1 = 56.25 r 2 = ∞ (RE) d 2 = 3.9387 n d2 = 1.52540 ν d2 = 56.25 r 3 = 4.9554 d 3 = 1.4026 r 4 = 7.6282 (aspherical surface) d 4 = 1.4221 n d3 = 1.84666 ν d3 = 23.78 r 5 = 12.9000 d 5 = (variable) r 6 = ∞ (aperture) d 6 = (variable) r 7 = 5.2791 (aspherical surface) d 7 = 1.7768 n d4 = 1.48749 ν d4 = 70.23 r 8 = -81.5664 d 8 = 0.7630 r 9 = 14.7728 d 9 = 1.2036 n d5 = 1.49700 ν d5 = 81.54 r 10 = 608.0924 d 10 = 0.2054 r 11 = 7.8327 d 11 = 0.7996 n d6 = 1.84666 ν d6 = 23.78 r 12 = 4.0971 d 12 = (variable) r 13 = 7.5522 d 13 = 1.7117 n d7 = 1.49700 ν d7 = 81.54 r 14 = 28.9115 d 14 = ( Variable) r 15 = 23.0879 (aspherical surface) d 15 = 1.2952 n d8 = 1.48749 ν d8 = 70.23 r 16 = -44.5716 d 16 = 1.8191 r 17 = ∞ d 17 = 0.8000 n d9 = 1.51633 ν d9 = 64.14 r 18 = ∞ d 18 = 1.8000 n d10 = 1.54771 ν d10 = 62.84 r 19 = d 19 = 0.5000 r 20 = ∞ d 20 = 0.5000 n d11 = 1.51633 ν d11 = 64.14 r 21 = ∞ d 21 = 1.1990 r 22 = ∞ ( image plane) aspheric coefficients first surface K = 0 A 4 = 5.7302 × 10 -4 A 6 = -7.8053 × 10 -6 A 8 = 1.0080 × 10 -7 A 10 = -6.0371 × 10 -10 4th surface K = 1.6311 A 4 = -3.9850 × 10 -4 A 6 = -1.8434 × 10 -5 A 8 = 1.0561 × 10 -6 A 10 = -7.3764 × 10 -8 7th surface K = 0 A 4 = -8.4136 × 10 -4 A 6 = -1.3853 × 10 -6 A 8 = -3.2987 × 10 -6 A 10 = 1.8572 × 10 -7 15th surface K = 0 A 4 = -7.5523 × 10 -4 A 6 = 3.6444 × 10 -5 A 8 = -4.4066 × 10 -6 A 10 = 1.5514 × 10 - 7 Zoom data (∞) WE ST TE f (mm) 4.622 7.754 13.319 F NO 2.845 3.848 4.903 2ω (°) 64.02 40.11 23.15 d 5 11.2074 6.2877 1.0095 d 6 2.9126 0.9995 1.0725 d 12 3.4738 6.9408 3.6978 d 14 0.8821 4.2543 12.7013.
【0133】 実施例7 r1 = -189.8868 d1 = 4.1631 nd1 =1.80400 νd1 =46.57 r2 = ∞(RE) d2 = 4.5800 nd2 =1.80400 νd2 =46.57 r3 = 5.2929 d3 = 1.8759 r4 = 50.8361(非球面) d4 = 1.4844 nd3 =1.84666 νd3 =23.78 r5 = -26.1318 d5 = (可変) r6 = ∞(絞り) d6 = (可変) r7 = 16.8412(非球面) d7 = 1.9033 nd4 =1.52540 νd4 =56.25 r8 = -17.4052 d8 = 0.1883 r9 = 7.9802 d9 = 3.3338 nd5 =1.52540 νd5 =56.25 r10= -8.6648 d10= 0.1854 r11= -11.0198 d11= 0.7914 nd6 =1.58423 νd6 =30.49 r12= 5.5614 d12= (可変) r13= 13.0659 d13= 3.4850 nd7 =1.48749 νd7 =70.23 r14= -19.6309 d14= 0.4098 r15= -39.9857 d15= 1.1678 nd8 =1.84666 νd8 =23.78 r16= -88.4920 d16= (可変) r17= 16.9088(非球面) d17= 1.9298 nd9 =1.58913 νd9 =61.26 r18= 541.6140 d18= 0.4530 r19= ∞ d19= 0.8000 nd10=1.51633 νd10=64.14 r20= ∞ d20= 1.8000 nd11=1.54771 νd11=62.84 r21= ∞ d21= 0.5000 r22= ∞ d22= 0.5000 nd12=1.51633 νd12=64.14 r23= ∞ d23= 1.2540 r24= ∞(像面) 非球面係数 第4面 K =60.6915 A4 = 5.9084 ×10-4 A6 = 6.4597 ×10-8 A8 = 7.6149 ×10-7 A10= 0.0000 第7面 K = 0 A4 =-3.0428 ×10-4 A6 =-8.2590 ×10-6 A8 =-4.8028 ×10-7 A10= 0.0000 第17面 K = 0 A4 =-4.9726 ×10-4 A6 = 7.2758 ×10-6 A8 =-7.4065 ×10-7 A10= 0.0000 ズームデータ(∞) WE ST TE f (mm) 4.718 7.844 13.225 FNO 2.800 3.508 4.967 2ω (°) 63.82 39.04 23.29 d5 10.9875 4.3903 1.1661 d6 5.3096 4.2799 1.0415 d12 2.4104 6.8272 4.8660 d16 0.9647 3.9776 12.1912 。 Example 7 r 1 = -189.8868 d 1 = 4.1631 n d1 = 1.80400 ν d1 = 46.57 r 2 = ∞ (RE) d 2 = 4.5800 n d2 = 1.80400 ν d2 = 46.57 r 3 = 5.2929 d 3 = 1.8759 r 4 = 50.8361 (aspherical surface) d 4 = 1.4844 n d3 = 1.84666 ν d3 = 23.78 r 5 = -26.1318 d 5 = (variable) r 6 = ∞ (aperture) d 6 = (variable) r 7 = 16.8412 (non-spherical) Spherical surface) d 7 = 1.9033 n d4 = 1.52540 ν d4 = 56.25 r 8 = -17.4052 d 8 = 0.1883 r 9 = 7.9802 d 9 = 3.3338 n d5 = 1.52540 ν d5 = 56.25 r 10 = -8.6648 d 10 = 0.1854 r 11 = -11.0198 d 11 = 0.7914 n d6 = 1.58423 ν d6 = 30.49 r 12 = 5.5614 d 12 = (variable) r 13 = 13.0659 d 13 = 3.4850 n d7 = 1.48749 ν d7 = 70.23 r 14 = -19.6309 d 14 = 0.4098 r 15 = -39.9857 d 15 = 1.1678 n d8 = 1.84666 ν d8 = 23.78 r 16 = -88.4920 d 16 = (variable) r 17 = 16.9088 (aspherical surface) d 17 = 1.9298 n d9 = 1.58913 ν d9 = 61.26 r 18 = 541.6140 d 18 = 0.4530 r 19 = ∞ d 19 = 0.8000 n d10 = 1. 51633 ν d10 = 64.14 r 20 = ∞ d 20 = 1.8000 n d11 = 1.54771 ν d11 = 62.84 r 21 = ∞ d 21 = 0.5000 r 22 = ∞ d 22 = 0.5000 n d12 = 1.51633 ν d12 = 64.14 r 23 = ∞ d 23 = 1.2540 r 24 = ∞ (image plane) Aspherical surface 4th surface K = 60.6915 A 4 = 5.9084 × 10 -4 A 6 = 6.4597 × 10 -8 A 8 = 7.6149 × 10 -7 A 10 = 0.0000 7th Surface K = 0 A 4 = -3.0428 × 10 -4 A 6 = -8.2590 × 10 -6 A 8 = -4.8028 × 10 -7 A 10 = 0.0000 17th surface K = 0 A 4 = -4.9726 × 10 -4 A 6 = 7.2758 × 10 -6 A 8 = -7.4065 × 10 -7 A 10 = 0.0000 Zoom data (∞) WE ST TE f (mm) 4.718 7.844 13.225 F NO 2.800 3.508 4.967 2ω (°) 63.82 39.04 23.29 d 5 10.9875 4.3903 1.1661 d 6 5.3096 4.2799 1.0415 d 12 2.4104 6.8272 4.8660 d 16 0.9647 3.9776 12.1912.
【0134】 実施例8 r1 = -10.1342(非球面) d1 = 4.2440 nd1 =1.52540 νd1 =56.25 r2 = ∞(RE) d2 = 4.3830 nd2 =1.52540 νd2 =56.25 r3 = 5.7723 d3 = 1.1659 r4 = 8.9304(非球面) d4 = 2.3980 nd3 =1.58423 νd3 =30.49 r5 = 135.1436 d5 = (可変) r6 = ∞(絞り) d6 = (可変) r7 = 6.0944(非球面) d7 = 2.0738 nd4 =1.52540 νd4 =56.25 r8 = -92.2200 d8 = 1.4429 r9 = 13.5033 d9 = 1.3149 nd5 =1.52540 νd5 =56.25 r10= -15.3665 d10= 0.0836 r11= -21.9405 d11= 0.7986 nd6 =1.58423 νd6 =30.49 r12= 4.5023 d12= (可変) r13= 8.3099(非球面) d13= 2.8876 nd7 =1.52540 νd7 =56.25 r14= -14.4805 d14= 0.4868 r15= -18.1422 d15= 0.4953 nd8 =1.58423 νd8 =30.49 r16= 33.3038 d16= (可変) r17= 9.5511(非球面) d17= 2.0015 nd9 =1.52540 νd9 =56.25 r18= 232.1965 d18= 0.5329 r19= ∞ d19= 0.8000 nd10=1.51633 νd10=64.14 r20= ∞ d20= 1.8000 nd11=1.54771 νd11=62.84 r21= ∞ d21= 0.5000 r22= ∞ d22= 0.5000 nd12=1.51633 νd12=64.14 r23= ∞ d23= 1.2086 r24= ∞(像面) 非球面係数 第1面 K = 0 A4 = 5.9562 ×10-4 A6 =-3.4519 ×10-6 A8 = 2.0786 ×10-8 A10= 6.1688 ×10-11 第4面 K = 0 A4 = 1.3932 ×10-4 A6 = 6.6203 ×10-7 A8 = 2.0911 ×10-7 A10= 5.6958 ×10-9 第7面 K = 0 A4 =-5.1119 ×10-4 A6 =-5.0518 ×10-6 A8 =-2.7967 ×10-7 A10=-1.1373 ×10-8 第13面 K = 0 A4 =-1.2137 ×10-4 A6 =-4.6940 ×10-7 A8 =-1.4077 ×10-7 A10= 6.1129 ×10-9 第17面 K = 0 A4 =-3.8511 ×10-4 A6 = 1.2674 ×10-5 A8 =-1.3956 ×10-6 A10= 2.6492 ×10-8 ズームデータ(∞) WE ST TE f (mm) 4.623 7.849 13.319 FNO 2.859 3.699 4.871 2ω (°) 64.94 40.44 23.42 d5 15.7229 7.1467 0.9953 d6 1.8689 0.7843 0.2389 d12 1.9376 7.2473 5.1743 d16 1.6578 6.0254 14.7931 。 Example 8 r 1 = -10.1342 (aspherical surface) d 1 = 4.2440 n d1 = 1.52540 ν d1 = 56.25 r 2 = ∞ (RE) d 2 = 4.3830 n d2 = 1.52540 ν d2 = 56.25 r 3 = 5.7723 d 3 = 1.1659 r 4 = 8.9304 (aspherical surface) d 4 = 2.3980 n d3 = 1.58423 ν d3 = 30.49 r 5 = 135.1436 d 5 = (variable) r 6 = ∞ (aperture) d 6 = (variable) r 7 = 6.0944 (aspherical surface) d 7 = 2.0738 n d4 = 1.52540 ν d4 = 56.25 r 8 = -92.2200 d 8 = 1.4429 r 9 = 13.5033 d 9 = 1.3149 n d5 = 1.52540 ν d5 = 56.25 r 10 = -15.3665 d 10 = 0.0836 r 11 = -21.9405 d 11 = 0.7986 n d6 = 1.58423 ν d6 = 30.49 r 12 = 4.5023 d 12 = (variable) r 13 = 8.3099 (aspherical surface) d 13 = 2.8876 n d7 = 1.52540 ν d7 = 56.25 r 14 = -14.4805 d 14 = 0.4868 r 15 = -18.1422 d 15 = 0.4953 n d8 = 1.58423 ν d8 = 30.49 r 16 = 33.3038 d 16 = (variable) r 17 = 9.5511 (aspherical surface) d 17 = 2.0015 n d9 = 1.52540 ν d9 = 56.25 r 18 = 232.1965 d 18 = 0.5329 r 19 = ∞ 19 = 0.8000 n d10 = 1.51633 ν d10 = 64.14 r 20 = ∞ d 20 = 1.8000 n d11 = 1.54771 ν d11 = 62.84 r 21 = ∞ d 21 = 0.5000 r 22 = ∞ d 22 = 0.5000 n d12 = 1.51633 ν d12 = 64.14 r 23 = ∞ d 23 = 1.2086 r 24 = ∞ ( image plane) aspheric coefficients first surface K = 0 A 4 = 5.9562 × 10 -4 A 6 = -3.4519 × 10 -6 A 8 = 2.0786 × 10 - 8 A 10 = 6.1688 × 10 -11 4th surface K = 0 A 4 = 1.3932 × 10 -4 A 6 = 6.6203 × 10 -7 A 8 = 2.0911 × 10 -7 A 10 = 5.6958 × 10 -9 7th surface K = 0 A 4 = -5.1119 × 10 -4 A 6 = -5.0518 × 10 -6 A 8 = -2.7967 × 10 -7 A 10 = -1.1373 × 10 -8 13th surface K = 0 A 4 = -1.2137 × 10 -4 A 6 = -4.6940 × 10 -7 A 8 = -1.4077 × 10 -7 A 10 = 6.1129 × 10 -9 17th surface K = 0 A 4 = -3.8511 × 10 -4 A 6 = 1.2674 × 10 -5 A 8 = -1.3956 × 10 -6 A 10 = 2.6492 × 10 -8 Zoom data (∞) WE ST TE f (mm) 4.623 7.849 13.319 F NO 2.859 3.699 4.871 2ω (°) 64.94 40.44 23.42 d 5 15.7229 7.1467 0.9953 d 6 1.8689 0.7843 0.2389 d 12 1.9376 7.2473 5.1743 d 16 1.6578 6.0254 14.7931.
【0135】 実施例9 r1 = -19.2526(非球面) d1 = 3.3870 nd1 =1.52540 νd1 =56.25 r2 = ∞(RE) d2 = 4.2171 nd2 =1.52540 νd2 =56.25 r3 = 7.3986 d3 = 1.7533 r4 = -6.8717(非球面) d4 = 0.6000 nd3 =1.58913 νd3 =61.14 r5 = 102.4738 d5 = 0.1041 r6 = 23.1052 d6 = 1.2073 nd4 =1.84666 νd4 =23.78 r7 = -28.8750 d7 = (可変) r8 = ∞(絞り) d8 = (可変) r9 = 10.8736(非球面) d9 = 1.7462 nd5 =1.48749 νd5 =70.23 r10= -17.3749 d10= 0.7800 r11= 7.8941 d11= 1.9466 nd6 =1.48749 νd6 =70.23 r12= -25.2485 d12= 0.1909 r13= 14.9995 d13= 0.9977 nd7 =1.84666 νd7 =23.78 r14= 5.5617 d14= (可変) r15= 11.8764 d15= 1.4461 nd8 =1.48749 νd8 =70.23 r16= 216.5874 d16= (可変) r17= 25.5732(非球面) d17= 1.3436 nd9 =1.48749 νd9 =70.23 r18= -30.6630 d18= 0.6739 r19= ∞ d19= 0.8000 nd10=1.51633 νd10=64.14 r20= ∞ d20= 1.8000 nd11=1.54771 νd11=62.84 r21= ∞ d21= 0.5000 r22= ∞ d22= 0.5000 nd12=1.51633 νd12=64.14 r23= ∞ d23= 1.2106 r24= ∞(像面) 非球面係数 第1面 K = 0 A4 = 3.9598 ×10-4 A6 =-2.6023 ×10-6 A8 = 2.3562 ×10-8 A10=-8.3693 ×10-11 第4面 K = 0 A4 =-3.8167 ×10-4 A6 =-3.1958 ×10-5 A8 = 1.2150 ×10-6 A10=-4.8364 ×10-8 第9面 K = 0 A4 =-5.3606 ×10-4 A6 = 2.8019 ×10-6 A8 =-4.5232 ×10-7 A10= 1.9681 ×10-8 第17面 K = 0 A4 =-6.4954 ×10-4 A6 = 1.3860 ×10-5 A8 =-1.5906 ×10-6 A10= 4.6245 ×10-8 ズームデータ(∞) WE ST TE f (mm) 4.620 7.913 13.319 FNO 2.800 3.627 4.696 2ω (°) 65.02 39.11 23.15 d7 10.2487 4.9877 0.9993 d8 1.7588 0.5222 0.5222 d14 7.6958 8.4509 1.6784 d16 0.3855 6.1464 16.9092 。 Example 9 r 1 = -19.2526 (aspherical surface) d 1 = 3.3870 n d1 = 1.52540 ν d1 = 56.25 r 2 = ∞ (RE) d 2 = 4.2171 n d2 = 1.52540 ν d2 = 56.25 r 3 = 7.3986 d 3 = 1.7533 r 4 = -6.8717 (aspherical surface) d 4 = 0.6000 n d3 = 1.58913 ν d3 = 61.14 r 5 = 102.4738 d 5 = 0.1041 r 6 = 23.1052 d 6 = 1.2073 n d4 = 1.84666 ν d4 = 23.78 r 7 = -28.8750 d 7 = (variable) r 8 = ∞ (aperture) d 8 = (variable) r 9 = 10.8736 (aspherical surface) d 9 = 1.7462 n d5 = 1.48749 ν d5 = 70.23 r 10 = -17.3749 d 10 = 0.7800 r 11 = 7.8941 d 11 = 1.9466 n d6 = 1.48749 ν d6 = 70.23 r 12 = -25.2485 d 12 = 0.1909 r 13 = 14.9995 d 13 = 0.9977 n d7 = 1.84666 ν d7 = 23.78 r 14 = 5.5617 d 14 = (Variable) r 15 = 11.8764 d 15 = 1.4461 n d8 = 1.48749 ν d8 = 70.23 r 16 = 216.5874 d 16 = (Variable) r 17 = 25.5732 (aspherical) d 17 = 1.3436 n d9 = 1.48749 ν d9 = 70.23 r 18 = -30.6630 d 18 = 0.6739 r 19 = ∞ d 19 = 0.800 0 n d10 = 1.51633 ν d10 = 64.14 r 20 = ∞ d 20 = 1.8000 n d11 = 1.54771 ν d11 = 62.84 r 21 = ∞ d 21 = 0.5000 r 22 = ∞ d 22 = 0.5000 n d12 = 1.51633 ν d12 = 64.14 r 23 = ∞ d 23 = 1.2106 r 24 = ∞ (image plane) Aspheric coefficient 1st surface K = 0 A 4 = 3.9598 × 10 -4 A 6 = -2.6023 × 10 -6 A 8 = 2.3562 × 10 -8 A 10 = -8.3693 × 10 -11 4th surface K = 0 A 4 = -3.8167 × 10 -4 A 6 = -3.1958 × 10 -5 A 8 = 1.2150 × 10 -6 A 10 = -4.8364 × 10 -8 9th surface K = 0 A 4 = -5.3606 × 10 -4 A 6 = 2.8019 × 10 -6 A 8 = -4.5232 × 10 -7 A 10 = 1.9681 × 10 -8 17th surface K = 0 A 4 = -6.4954 × 10 -4 A 6 = 1.3860 × 10 -5 A 8 = -1.5906 × 10 -6 A 10 = 4.6245 × 10 -8 Zoom data (∞) WE ST TE f (mm) 4.620 7.913 13.319 F NO 2.800 3.627 4.696 2ω (°) 65.02 39.11 23.15 d 7 10.2487 4.9877 0.9993 d 8 1.7588 0.5222 0.5222 d 14 7.6958 8.4509 1.6784 d 16 0.3855 6.1464 16.9092.
【0136】 実施例10 r1 = -20.8821(非球面) d1 = 4.0207 nd1 =1.52540 νd1 =56.25 r2 = ∞(RE) d2 = 3.5901 nd2 =1.52540 νd2 =56.25 r3 = 6.3359 d3 = 1.7900 r4 = -8.4727(非球面) d4 = 0.6000 nd3 =1.58913 νd3 =61.14 r5 = 68.9126 d5 = 0.2927 r6 = 17.5359 d6 = 1.2385 nd4 =1.84666 νd4 =23.78 r7 = -63.0628 d7 = (可変) r8 = ∞(絞り) d8 = (可変) r9 = 10.4538(非球面) d9 = 1.7744 nd5 =1.48749 νd5 =70.23 r10= -18.4306 d10= 0.7819 r11= 7.2340 d11= 1.9210 nd6 =1.48749 νd6 =70.23 r12= -40.1886 d12= 0.1762 r13= 12.7214 d13= 0.9941 nd7 =1.84666 νd7 =23.78 r14= 5.0951 d14= (可変) r15= 11.6216 d15= 1.4485 nd8 =1.48749 νd8 =70.23 r16= 121.4804 d16= (可変) r17= 20.4476(非球面) d17= 1.3615 nd9 =1.48749 νd9 =70.23 r18= -46.8568 d18= 0.7220 r19= ∞ d19= 0.8000 nd10=1.51633 νd10=64.14 r20= ∞ d20= 1.8000 nd11=1.54771 νd11=62.84 r21= ∞ d21= 0.5000 r22= ∞ d22= 0.5000 nd12=1.51633 νd12=64.14 r23= ∞ d23= 1.2105 r24= ∞(像面) 非球面係数 第1面 K = 0 A4 = 3.5893 ×10-4 A6 =-2.9343 ×10-6 A8 = 2.4501 ×10-8 A10=-5.9072 ×10-11 第4面 K = 0 A4 =-3.1690 ×10-4 A6 =-2.9007 ×10-5 A8 = 2.2534 ×10-6 A10=-1.4959 ×10-7 第9面 K = 0 A4 =-4.6904 ×10-4 A6 =-7.9492 ×10-6 A8 = 1.3859 ×10-6 A10=-8.9399 ×10-8 第17面 K = 0 A4 =-5.8918 ×10-4 A6 = 3.8393 ×10-6 A8 =-2.6557 ×10-7 A10=-9.7926 ×10-9 ズームデータ(∞) WE ST TE f (mm) 4.627 7.797 13.318 FNO 2.800 3.527 4.718 2ω (°) 64.82 39.60 23.15 d7 10.3069 4.6640 0.9983 d8 1.7881 1.1133 0.5900 d14 7.5155 8.4461 1.5276 d16 0.3719 5.7768 16.8824 。 Example 10 r 1 = −20.8821 (aspherical surface) d 1 = 4.0207 n d1 = 1.52540 ν d1 = 56.25 r 2 = ∞ (RE) d 2 = 3.5901 n d2 = 1.52540 ν d2 = 56.25 r 3 = 6.3359 d 3 = 1.7900 r 4 = -8.4727 (aspherical surface) d 4 = 0.6000 n d3 = 1.58913 ν d3 = 61.14 r 5 = 68.9126 d 5 = 0.2927 r 6 = 17.5359 d 6 = 1.2385 n d4 = 1.84666 ν d4 = 23.78 r 7 = -63.0628 d 7 = (variable) r 8 = ∞ (aperture) d 8 = (variable) r 9 = 10.4538 (aspherical surface) d 9 = 1.7744 n d5 = 1.48749 ν d5 = 70.23 r 10 = -18.4306 d 10 = 0.7819 r 11 = 7.2340 d 11 = 1.9210 n d6 = 1.48749 ν d6 = 70.23 r 12 = -40.1886 d 12 = 0.1762 r 13 = 12.7214 d 13 = 0.9941 n d7 = 1.84666 ν d7 = 23.78 r 14 = 5.0951 d 14 = (Variable) r 15 = 11.6216 d 15 = 1.4485 n d8 = 1.48749 ν d8 = 70.23 r 16 = 121.4804 d 16 = (Variable) r 17 = 20.4476 (aspherical) d 17 = 1.3615 n d9 = 1.48749 ν d9 = 70.23 r 18 = -46.8568 d 18 = 0.7220 r 19 = ∞ d 19 = 0.8 000 n d10 = 1.51633 ν d10 = 64.14 r 20 = ∞ d 20 = 1.8000 n d11 = 1.54771 ν d11 = 62.84 r 21 = ∞ d 21 = 0.5000 r 22 = ∞ d 22 = 0.5000 n d12 = 1.51633 ν d12 = 64.14 r 23 = ∞ d 23 = 1.2105 r 24 = ∞ (image plane) Aspheric coefficient 1st surface K = 0 A 4 = 3.5893 × 10 -4 A 6 = -2.9343 × 10 -6 A 8 = 2.4501 × 10 -8 A 10 = -5.9072 × 10 -11 4th surface K = 0 A 4 = -3.1690 × 10 -4 A 6 = -2.9007 × 10 -5 A 8 = 2.2534 × 10 -6 A 10 = -1.4959 × 10 -7 9th surface K = 0 A 4 = -4.6904 × 10 -4 A 6 = -7.9492 × 10 -6 A 8 = 1.3859 × 10 -6 A 10 = -8.9399 × 10 -8 17th surface K = 0 A 4 =- 5.8918 × 10 -4 A 6 = 3.8393 × 10 -6 A 8 = -2.6557 × 10 -7 A 10 = -9.7926 × 10 -9 Zoom data (∞) WE ST TE f (mm) 4.627 7.797 13.318 F NO 2.800 3.527 4.718 2ω (°) 64.82 39.60 23.15 d 7 10.3069 4.6640 0.9983 d 8 1.7881 1.1133 0.5900 d 14 7.5155 8.4461 1.5276 d 16 0.3719 5.7768 16.8824.
【0137】以上の実施例1の無限遠物点合焦時の収差
図を図11に示す。この収差図において、SAは球面収
差、ASは非点収差、CCは倍率色収差、DTは歪曲収
差を示す。図中、“FIY”は像高を表す。FIG. 11 is an aberration diagram of Example 1 upon focusing on an object point at infinity. In this aberration diagram, SA indicates spherical aberration, AS indicates astigmatism, CC indicates lateral chromatic aberration, and DT indicates distortion. In the figure, "FIY" represents the image height.
【0138】次に、上記各実施例における条件(1)〜
(5)に係わるnd,f1G/√(f w ×ft ),M3 /
M2 ,−βRt,DFT/ft の値を示す。
実施例 nd f1G/√(fw ×ft ) M3 /M2 −βRt DFT/ft
1 1.5254 -1.0699 1.365 1.586 0.106
2 1.5254 -1.0027 1.568 1.693 0.110
3 1.8830 -0.9083 1.465 1.895 0.109
4 1.8061 -1.3160 0.863 1.277 0.355
5 1.8040 -1.4003 0.533 1.196 0.760
6 1.5254 -1.2545 0.981 1.353 0.278
7 1.8040 -1.3917 0.826 1.203 0.368
8 1.5254 -1.6145 0.802 1.051 0.388
9 1.5254 -0.9674 1.651 1.755 0.126
10 1.5254 -0.9743 1.643 1.741 0.115
。Next, the conditions (1)-
Nd, f related to (5)1G/ √ (f wXft), M3/
M2, -ΒRt, DFT / ftIndicates the value of.
Example nd f1G/ √ (fwXft) M3/ M2 -ΒRt DFT / ft
1 1.5254 -1.0699 1.365 1.586 0.106
2 1.5254 -1.0027 1.568 1.693 0.110
3 1.8830 -0.9083 1.465 1.895 0.109
4 1.8061 -1.3160 0.863 1.277 0.355
5 1.8040 -1.4003 0.533 1.196 0.760
6 1.5254 -1.2545 0.981 1.353 0.278
7 1.8040 -1.3917 0.826 1.203 0.368
8 1.5254 -1.6145 0.802 1.051 0.388
9 1.5254 -0.9674 1.651 1.755 0.126
10 1.5254 -0.9743 1.643 1.741 0.115
.
【0139】以上の実施例1〜10において、以下のd
線の屈折率nd 、アッベ数νd を有するガラスの転移点
Tgは次の通りである。In the above Examples 1 to 10, the following d
The transition point Tg of a glass having a line refractive index n d and an Abbe number ν d is as follows.
【0140】 nd νd Tg(℃) 1.58913 61.14 525 1.48749 70.23 500 1.80809 22.76 552 1.58913 61.26 515 1.84666 23.78 619 。N d ν d Tg (° C.) 1.58913 61.14 525 1.48749 70.23 500 1.80809 22.76 552 1.58913 61.26 515 1.84666 23.78 619.
【0141】また、上記各実施例において、以下のd線
の屈折率nd 、アッベ数νd を有する媒体はプラスチッ
クである。In each of the above embodiments, the medium having the following d-line refractive index n d and Abbe number ν d is plastic.
【0142】 nd νd 1.52540 56.25 1.58423 30.49 。N d ν d 1.52540 56.25 1.58423 30.49.
【0143】なお、上記各実施例において、非球面を設
けた光路折り曲げプリズムPは全て、入射面に非球面を
設けているが、射出面に非球面を設けるようにしてもよ
い。In each of the above embodiments, the optical path bending prism P provided with the aspherical surface is provided with the aspherical surface on the incident surface, but the aspherical surface may be provided on the exit surface.
【0144】また、以上の実施例では全て、光学系の最
も物体側の第1要素としてプリズムPを用いているが、
図12に模式的に示すように、そのプリズムPの前側
(物体側)に単レンズ又は複数のレンズからなるレンズ
群Aを単数あるいは複数配置して、フォーカシングある
いはズーミングのために光軸に沿って移動させるように
してもよい。In all of the above embodiments, the prism P is used as the first element on the most object side of the optical system.
As schematically shown in FIG. 12, a single lens or a plurality of lens groups A including a plurality of lenses are arranged on the front side (object side) of the prism P, and the lens group A is arranged along the optical axis for focusing or zooming. You may make it move.
【0145】さて、以上のような本発明の光路折り曲げ
ズーム光学系は、ズームレンズ等の結像光学系で物体像
を形成しその像をCCDや銀塩フィルムといった撮像素
子に受光させて撮影を行う撮影装置、とりわけデジタル
カメラやビデオカメラ、情報処理装置の例であるパソコ
ン、電話、携帯端末、特に持ち運びに便利な携帯電話等
に用いることができる。以下に、その実施形態を例示す
る。In the optical path bending zoom optical system of the present invention as described above, an object image is formed by a focusing optical system such as a zoom lens, and the image is picked up by an image pickup device such as a CCD or a silver salt film for photographing. The present invention can be used for a photographing device to be performed, especially a digital camera or a video camera, a personal computer which is an example of an information processing device, a telephone, a mobile terminal, particularly a mobile phone which is convenient to carry. The embodiment will be exemplified below.
【0146】図13〜図15は、本発明によるズーム光
学系をデジタルカメラの撮影光学系41に組み込んだ構
成の概念図を示す。図13はデジタルカメラ40の外観
を示す前方斜視図、図14は同後方斜視図、図15はデ
ジタルカメラ40の構成を示す断面図である。デジタル
カメラ40は、この例の場合、撮影用光路42を有する
撮影光学系41、ファインダー用光路44を有するファ
インダー光学系43、シャッター45、フラッシュ4
6、液晶表示モニター47等を含み、カメラ40の上部
に配置されたシャッター45を押圧すると、それに連動
して撮影光学系41、例えば実施例5の光路折り曲げズ
ーム光学系を通して撮影が行われる。撮影光学系41に
よって形成された物体像が、平行平面板群F中の近赤外
カットフィルターと光学的ローパスフィルターを介して
CCD49の撮像面上に形成される。このCCD49で
受光された物体像は、処理手段51を介し、電子画像と
してカメラ背面に設けられた液晶表示モニター47に表
示される。また、この処理手段51には記録手段52が
接続され、撮影された電子画像を記録することもでき
る。なお、この記録手段52は処理手段51と別体に設
けてもよいし、フロッピー(登録商標)ディスクやメモ
リーカード、MO等により電子的に記録書込を行うよう
に構成してもよい。また、CCD49に代わって銀塩フ
ィルムを配置した銀塩カメラとして構成してもよい。FIGS. 13 to 15 are conceptual diagrams showing a configuration in which the zoom optical system according to the present invention is incorporated in the photographing optical system 41 of a digital camera. 13 is a front perspective view showing the external appearance of the digital camera 40, FIG. 14 is a rear perspective view of the same, and FIG. 15 is a sectional view showing the configuration of the digital camera 40. In this example, the digital camera 40 includes a photographing optical system 41 having a photographing optical path 42, a finder optical system 43 having a finder optical path 44, a shutter 45, and a flash 4.
6. When the shutter 45, which includes the liquid crystal display monitor 47 and the like and is disposed above the camera 40, is pressed, the photographing is performed through the photographing optical system 41, for example, the optical path bending zoom optical system of the fifth embodiment. The object image formed by the photographing optical system 41 is formed on the image pickup surface of the CCD 49 through the near infrared cut filter and the optical low pass filter in the plane-parallel plate group F. The object image received by the CCD 49 is displayed as an electronic image on the liquid crystal display monitor 47 provided on the rear surface of the camera via the processing means 51. Further, the recording means 52 is connected to the processing means 51, and the captured electronic image can be recorded. The recording means 52 may be provided separately from the processing means 51, or may be configured to record and write electronically by a floppy (registered trademark) disk, a memory card, an MO, or the like. Further, it may be configured as a silver salt camera in which a silver salt film is arranged instead of the CCD 49.
【0147】さらに、ファインダー用光路44上にはフ
ァインダー用対物光学系53が配置してある。このファ
インダー用対物光学系53によって形成された物体像
は、像正立部材であるポロプリズム55の視野枠57上
に形成される。このポリプリズム55の後方には、正立
正像にされた像を観察者眼球Eに導く接眼光学系59が
配置されている。なお、撮影光学系41及びファインダ
ー用対物光学系53の入射側、接眼光学系59の射出側
にそれぞれカバー部材50が配置されている。Further, a finder objective optical system 53 is arranged on the finder optical path 44. The object image formed by the finder objective optical system 53 is formed on the field frame 57 of the Porro prism 55 which is an image erecting member. Behind the poly prism 55, an eyepiece optical system 59 for guiding an erect image to the observer's eye E is arranged. A cover member 50 is arranged on each of the incident side of the photographing optical system 41 and the objective optical system 53 for the finder, and the exit side of the eyepiece optical system 59.
【0148】このように構成されたデジタルカメラ40
は、撮影光学系41が広画角で高変倍比であり、収差が
良好で、明るく、フィルター等が配置できるバックフォ
ーカスの大きなズームレンズであるので、高性能・低コ
スト化が実現できる。The digital camera 40 configured as described above
Since the photographic optical system 41 is a zoom lens having a wide angle of view, a high zoom ratio, good aberrations, a high brightness, and a large back focus in which filters and the like can be arranged, high performance and low cost can be realized.
【0149】なお、図15の例では、カバー部材50と
して平行平面板を配置しているが、パワーを持ったレン
ズを用いてもよい。In the example of FIG. 15, a plane parallel plate is arranged as the cover member 50, but a lens having power may be used.
【0150】次に、本発明のズーム光学系が対物光学系
として内蔵された情報処理装置の一例であるパソコンが
図16〜図18に示される。図16はパソコン300の
カバーを開いた前方斜視図、図17はパソコン300の
撮影光学系303の断面図、図18は図16の状態の側
面図である。図16〜図18に示されるように、パソコ
ン300は、外部から繰作者が情報を入力するためのキ
ーボード301と、図示を省略した情報処理手段や記録
手段と、情報を操作者に表示するモニター302と、操
作者自身や周辺の像を撮影するための撮影光学系303
とを有している。ここで、モニター302は、図示しな
いバックライトにより背面から照明する透過型液晶表示
素子や、前面からの光を反射して表示する反射型液晶表
示素子や、CRTディスプレイ等であってよい。また、
図中、撮影光学系303は、モニター302の右上に内
蔵されているが、その場所に限らず、モニター302の
周囲や、キーボード301の周囲のどこであってもよ
い。Next, FIGS. 16 to 18 show a personal computer as an example of an information processing apparatus in which the zoom optical system of the present invention is incorporated as an objective optical system. 16 is a front perspective view of the personal computer 300 with the cover opened, FIG. 17 is a sectional view of the taking optical system 303 of the personal computer 300, and FIG. 18 is a side view of the state of FIG. As shown in FIG. 16 to FIG. 18, the personal computer 300 includes a keyboard 301 for the preparer to input information from the outside, an information processing means and a recording means (not shown), and a monitor for displaying the information to the operator. 302 and a photographing optical system 303 for photographing an image of the operator himself or herself
And have. Here, the monitor 302 may be a transmissive liquid crystal display element that illuminates from the back side with a backlight (not shown), a reflective liquid crystal display element that reflects and displays light from the front side, a CRT display, or the like. Also,
In the figure, the photographing optical system 303 is built in the upper right of the monitor 302, but not limited to that location, it may be anywhere around the monitor 302 or around the keyboard 301.
【0151】この撮影光学系303は、撮影光路304
上に、本発明による光路折り曲げズーム光学系(図では
略記)からなる対物レンズ112と、像を受光する撮像
素子チップ162とを有している。これらはパソコン3
00に内蔵されている。This photographing optical system 303 has a photographing optical path 304.
An objective lens 112 including an optical path bending zoom optical system (abbreviated in the drawing) according to the present invention and an image pickup device chip 162 that receives an image are provided on the top. These are PC 3
It is built into 00.
【0152】ここで、撮像素子チップ162上には光学
的ローパスフィルターLFが付加的に貼り付けられて撮
像ユニット160として一体に形成され、対物レンズ1
12の鏡枠113の後端にワンタッチで嵌め込まれて取
り付け可能になっているため、対物レンズ112と撮像
素子チップ162の中心合わせや面間隔の調整が不要で
あり、組立が簡単となっている。また、鏡枠113の先
端(図示略)には、対物レンズ112を保護するための
カバーガラス114が配置されている。なお、鏡枠11
3中のズームレンズの駆動機構等は図示を省いてある。Here, an optical low-pass filter LF is additionally attached on the image pickup element chip 162 to integrally form an image pickup unit 160, and the objective lens 1
Since it can be fitted and attached to the rear end of the lens frame 113 of No. 12 with one touch, the centering of the objective lens 112 and the image pickup device chip 162 and the adjustment of the surface interval are unnecessary, and the assembly is easy. . Further, a cover glass 114 for protecting the objective lens 112 is arranged at the tip (not shown) of the lens frame 113. The lens frame 11
The drive mechanism and the like of the zoom lens in 3 are not shown.
【0153】撮像素子チップ162で受光された物体像
は、端子166を介して、パソコン300の処理手段に
入力され、電子画像としてモニター302に表示され
る、図16には、その一例として、操作者の撮影された
画像305が示されている。また、この画像305は、
処理手段を介し、インターネットや電話を介して、遠隔
地から通信相手のパソコンに表示されることも可能であ
る。The object image received by the image pickup device chip 162 is input to the processing means of the personal computer 300 via the terminal 166 and displayed on the monitor 302 as an electronic image. In FIG. A photographed image 305 of the person is shown. Also, this image 305
It is also possible to display it on a personal computer of a communication partner from a remote place via the processing means and the Internet or a telephone.
【0154】次に、本発明のズーム光学系が撮影光学系
として内蔵された情報処理装置の一例である電話、特に
持ち運びに便利な携帯電話が図19に示される。図19
(a)は携帯電話400の正面図、図19(b)は側面
図、図19(c)は撮影光学系405の断面図である。
図19(a)〜(c)に示されるように、携帯電話40
0は、操作者の声を情報として入力するマイク部401
と、通話相手の声を出力するスピーカ部402と、操作
者が情報を入力する入力ダイアル403と、操作者自身
や通話相手等の撮影像と電話番号等の情報を表示するモ
ニター404と、撮影光学系405と、通信電波の送信
と受信を行うアンテナ406と、画像情報や通信情報、
入力信号等の処理を行う処理手段(図示せず)とを有し
ている。ここで、モニター404は液晶表示素子であ
る。また、図中、各構成の配置位置は、特にこれらに限
られない。この撮影光学系405は、撮影光路407上
に配置された本発明による光路折り曲げズーム光学系
(図では略記)からなる対物レンズ112と、物体像を
受光する撮像素子チップ162とを有している。これら
は、携帯電話400に内蔵されている。Next, FIG. 19 shows a telephone, which is an example of an information processing apparatus in which the zoom optical system of the present invention is incorporated as a photographing optical system, particularly a portable telephone which is convenient to carry. FIG. 19
19A is a front view of the mobile phone 400, FIG. 19B is a side view, and FIG. 19C is a sectional view of the photographing optical system 405.
As shown in FIGS. 19A to 19C, the mobile phone 40
0 indicates a microphone unit 401 for inputting the operator's voice as information.
A speaker unit 402 for outputting the voice of the other party, an input dial 403 for the operator to input information, a monitor 404 for displaying a photographed image of the operator himself or the other party and information such as a telephone number, and photographing. An optical system 405, an antenna 406 for transmitting and receiving communication radio waves, image information and communication information,
And processing means (not shown) for processing the input signal and the like. Here, the monitor 404 is a liquid crystal display element. Further, in the drawing, the arrangement position of each component is not particularly limited to these. The photographing optical system 405 includes an objective lens 112 which is arranged on a photographing optical path 407 and includes an optical path bending zoom optical system (not shown in the figure) according to the present invention, and an image pickup element chip 162 which receives an object image. . These are built into the mobile phone 400.
【0155】ここで、撮像素子チップ162上には光学
的ローパスフィルターLFが付加的に貼り付けられて撮
像ユニット160として一体に形成され、対物レンズ1
12の鏡枠113の後端にワンタッチで嵌め込まれて取
り付け可能になっているため、対物レンズ112と撮像
素子チップ162の中心合わせや面間隔の調整が不要で
あり、組立が簡単となっている。また、鏡枠113の先
端(図示略)には、対物レンズ112を保護するための
カバーガラス114が配置されている。なお、鏡枠11
3中のズームレンズの駆動機構等は図示を省いてある。Here, an optical low-pass filter LF is additionally attached on the image pickup element chip 162 to integrally form an image pickup unit 160, and the objective lens 1
Since it can be fitted and attached to the rear end of the lens frame 113 of No. 12 with one touch, the centering of the objective lens 112 and the image pickup device chip 162 and the adjustment of the surface interval are unnecessary, and the assembly is easy. . Further, a cover glass 114 for protecting the objective lens 112 is arranged at the tip (not shown) of the lens frame 113. The lens frame 11
The drive mechanism and the like of the zoom lens in 3 are not shown.
【0156】撮影素子チップ162で受光された物体像
は、端子166を介して、図示していない処理手段に入
力され、電子画像としてモニター404に、又は、通信
相手のモニターに、又は、両方に表示される。また、通
信相手に画像を送信する場合、撮像素子チップ162で
受光された物体像の情報を、送信可能な信号へと変換す
る信号処理機能が処理手段には含まれている。The object image received by the image pickup element chip 162 is input to the processing means (not shown) via the terminal 166, and is displayed on the monitor 404 as an electronic image, on the monitor of the communication partner, or on both. Is displayed. Further, when transmitting an image to a communication partner, the processing means includes a signal processing function of converting the information of the object image received by the image sensor chip 162 into a transmittable signal.
【0157】以上の本発明の光路折り曲げズーム光学系
及びそれを用いた装置は例えば次のように構成すること
ができる。The above-described optical path bending zoom optical system of the present invention and an apparatus using the same can be configured as follows, for example.
【0158】〔1〕 少なくとも、物体側から順に、負
の屈折力を有する第1レンズ群、正の屈折力を有する第
2レンズ群、それ以降の少なくとも1つのレンズ群から
なっていて、広角端から望遠端に変倍する際に、前記第
2レンズ群を含んで光軸に沿って移動する少なくとも1
つのレンズ群を含むズーム光学系において、前記第1レ
ンズ群が、光路を折り曲げるための少なくとも1面の反
射面と、入射面と、射出面とを含むプリズムを有し、前
記プリズムの入射面、射出面の少なくとも一方は光軸に
回転対称な曲面であることを特徴とする光路折り曲げズ
ーム光学系。[1] At least a first lens group having a negative refracting power, a second lens group having a positive refracting power, and at least one lens group after that, in order from the object side, at a wide angle end. At least 1 that moves along the optical axis including the second lens group when zooming from the zoom lens to the telephoto end
In a zoom optical system including two lens groups, the first lens group has a prism including at least one reflecting surface for bending an optical path, an entrance surface, and an exit surface, and the entrance surface of the prism, An optical path bending zoom optical system, wherein at least one of the exit surfaces is a curved surface that is rotationally symmetric with respect to the optical axis.
【0159】〔2〕 少なくとも、物体側から順に、負
の屈折力を有し、少なくとも負の屈折力のプリズムを1
つ含む第1レンズ群、正の屈折力を有する第2レンズ
群、それ以降の少なくとも1つのレンズ群からなってい
て、広角端から望遠端に変倍する際に、前記第2レンズ
群を含んで光軸に沿って移動する少なくとも1つのレン
ズ群を含むズーム光学系において、前記プリズムは、光
路を折り曲げるための少なくとも1面の反射面と、入射
面と、射出面とを含み、かつ、前記入射面、射出面の少
なくとも一方は曲面であることを特徴とする光路折り曲
げズーム光学系。[2] At least in order from the object side, a prism having a negative refracting power and at least a negative refracting power is set to 1
And a second lens group having a positive refracting power, and at least one lens group thereafter, including the second lens group when zooming from the wide-angle end to the telephoto end. In the zoom optical system including at least one lens group that moves along the optical axis at, the prism includes at least one reflecting surface for bending an optical path, an entrance surface, and an exit surface, and At least one of the entrance surface and the exit surface is a curved surface.
【0160】〔3〕 少なくとも、物体側から順に、負
の屈折力を有する第1レンズ群、正の屈折力を有する第
2レンズ群、それ以降の少なくとも1つのレンズ群から
なっていて、広角端から望遠端に変倍する際に、前記第
2レンズ群を含んで光軸に沿って移動する少なくとも1
つのレンズ群を含むズーム光学系において、前記第1レ
ンズ群が、光路を折り曲げるための少なくとも1面の反
射面と、入射面と、射出面とを含むプリズムを有し、前
記プリズムの入射面、射出面の少なくとも一方は曲面で
あり、前記プリズムのd線における屈折率ndが以下の
条件式(1)を満たすことを特徴とする光路折り曲げズ
ーム光学系。[3] At least a first lens group having a negative refracting power, a second lens group having a positive refracting power, and at least one lens group after that in order from the object side, at the wide angle end. At least 1 that moves along the optical axis, including the second lens group, when zooming from the zoom lens to the telephoto end
In a zoom optical system including two lens groups, the first lens group has a prism including at least one reflecting surface for bending an optical path, an entrance surface, and an exit surface, and the entrance surface of the prism, At least one of the exit surfaces is a curved surface, and the refractive index nd of the prism at the d-line satisfies the following conditional expression (1), the optical path bending zoom optical system.
【0161】
1.6<nd<2.0 ・・・(1)
〔4〕 上記1から3の何れか1項において、以下の条
件式(2)を満たすことを特徴とする光路折り曲げズー
ム光学系。1.6 <nd <2.0 (1) [4] In any one of the above items 1 to 3, the following optical path bending zoom optics is characterized by satisfying the following conditional expression (2). system.
【0162】
−5.0<f1G/√(fw ×ft )<−0.3 ・・・(2)
ただし、f1Gは第1レンズ群の焦点距離、fw は広角端
での無限遠物点合焦時の全系の焦点距離、ft は望遠端
での無限遠物点合焦時の全系の焦点距離である。−5.0 <f 1G / √ (f w × f t ) <− 0.3 (2) where f 1G is the focal length of the first lens group and f w is the wide-angle end. The focal length of the entire system when focusing on an object point at infinity, and f t is the focal length of the entire system when focusing on an object point at infinity at the telephoto end.
【0163】〔5〕 上記1から3の何れか1項におい
て、前記第2レンズ群の後に、正の屈折力を有する第3
レンズ群を含み、広角端から望遠端に変倍する際に、前
記第2レンズ群と前記第3レンズ群が相対的間隔を変え
ながら光軸に沿って移動することを特徴とする光路折り
曲げズーム光学系。[5] In any one of the above items 1 to 3, the third lens element having a positive refractive power is provided after the second lens group.
An optical path bending zoom including a lens group, wherein the second lens group and the third lens group move along the optical axis while changing the relative distance when zooming from the wide-angle end to the telephoto end. Optical system.
【0164】〔6〕 上記5において、無限遠合焦時に
広角端から望遠端に変倍する際の前記第2レンズ群、前
記第3レンズ群のそれぞれの移動量をM2 、M3 とする
と、以下の条件式(3)を満足することを特徴とする光
路折り曲げズーム光学系。[6] In the above-mentioned item 5, the moving amounts of the second lens unit and the third lens unit at the time of zooming from the wide-angle end to the telephoto end when focusing on infinity are M 2 and M 3 , respectively. An optical path bending zoom optical system characterized by satisfying the following conditional expression (3).
【0165】
0.3<M3 /M2 <3.0 ・・・(3)
〔7〕 上記5において、望遠端における第2レンズ群
以降の合成系の倍率βRtが、以下の条件式(4)を満足
することを特徴とする光路折り曲げズーム光学系。0.3 <M 3 / M 2 <3.0 (3) [7] In the above 5, the magnification β Rt of the compound system after the second lens group at the telephoto end is the following conditional expression: An optical path bending zoom optical system characterized by satisfying (4).
【0166】
1.0<−βRt<2.3 ・・・(4)
〔8〕 上記1から3の何れか1項において、最も像側
のレンズ群に非球面を少なくとも1面有することを特徴
とする光路折り曲げズーム光学系。1.0 <−β Rt <2.3 (4) [8] In any one of the above items 1 to 3, the lens group closest to the image side has at least one aspherical surface. A characteristic optical path bending zoom optical system.
【0167】[0167]
〔9〕 上記8において、変倍時及び合焦
時に、最も像側のレンズ群は固定であることを特徴とす
る光路折り曲げズーム光学系。[9] In the above-mentioned 8, the optical path bending zoom optical system is characterized in that the lens unit closest to the image side is fixed during zooming and focusing.
【0168】〔10〕 上記9において、像側から2番
目のレンズ群を光軸方向に移動して合焦することを特徴
とする光路折り曲げズーム光学系。[10] The optical path bending zoom optical system as described in 9 above, wherein the second lens unit from the image side is moved in the optical axis direction for focusing.
【0169】〔11〕 上記1から3の何れか1項にお
いて、前記第1レンズ群に非球面を少なくとも1面有す
ることを特徴とする光路折り曲げズーム光学系。[11] The optical path bending zoom optical system described in any one of 1 to 3 above, wherein the first lens group has at least one aspherical surface.
【0170】〔12〕 上記11において、変倍時及び
合焦時に、前記第1レンズ群は固定であることを特徴と
する光路折り曲げズーム光学系。[12] In the above-mentioned 11, the optical path bending zoom optical system is characterized in that the first lens group is fixed during zooming and focusing.
【0171】〔13〕 上記1から3の何れか1項にお
いて、前記プリズムより像側に配置されたレンズ群、又
は、前記プリズムより像側に配置されたレンズ群中の一
部のレンズを光軸方向に移動することで合焦することを
特徴とする光路折り曲げズーム光学系。[13] In any one of the above items 1 to 3, the lens group disposed on the image side of the prism or a part of the lenses in the lens group disposed on the image side of the prism is irradiated with light. An optical path bending zoom optical system characterized by focusing by moving in the axial direction.
【0172】〔14〕 上記10において、像側から2
番目のレンズ群と3番目のレンズ群の望遠端での無限遠
物点合焦時の光軸上空気間隔DFTが以下の条件式
(5)を満足することを特徴とする光路折り曲げズーム
光学系。[14] In the above item 10, 2 from the image side
An optical path bending zoom optical system characterized in that the air distance DFT on the optical axis at the time of focusing on an object point at infinity at the telephoto end of the third lens group and the third lens group satisfies the following conditional expression (5). .
【0173】
0.01<DFT/ft <2.0 ・・・(5)
ただし、ft は望遠端での無限遠物点合焦時の全系の焦
点距離である。0.01 <DFT / f t <2.0 (5) where f t is the focal length of the entire system when focusing on an object point at infinity at the telephoto end.
【0174】〔15〕 上記5において、前記第1レン
ズ群が、負の屈折力を有する1つのプリズムと、1枚の
負レンズと、1枚の正レンズからなり、前記第3レンズ
群が1枚の正レンズからなることを特徴とする光路折り
曲げズーム光学系。[15] In the above-mentioned 5, the first lens group is composed of one prism having a negative refractive power, one negative lens and one positive lens, and the third lens group is one. An optical path bending zoom optical system, which is composed of a single positive lens.
【0175】〔16〕 上記5において、前記第1レン
ズ群が、負の屈折力を有する1つのプリズムと、1枚の
正レンズからなり、前記第3レンズ群が、1枚の正レン
ズと、1枚の負レンズからなることを特徴とする光路折
り曲げズーム光学系。[16] In the above-mentioned 5, the first lens group includes one prism having a negative refractive power and one positive lens, and the third lens group includes one positive lens. An optical path bending zoom optical system comprising one negative lens.
【0176】〔17〕 上記15又は16において、前
記第3レンズ群を光軸方向に移動することにより合焦す
ることを特徴とする光路折り曲げズーム光学系。[17] An optical path bending zoom optical system as described in 15 or 16 above, wherein focusing is performed by moving the third lens group in the optical axis direction.
【0177】〔18〕 上記11において、前記プリズ
ムの入射面、射出面の少なくとも一方が非球面であるこ
とを特徴とする光路折り曲げズーム光学系。[18] The optical path bending zoom optical system as described in 11 above, wherein at least one of the entrance surface and the exit surface of the prism is an aspherical surface.
【0178】〔19〕 上記8又は11において、非球
面が形成されたレンズあるいはプリズムがガラスからな
り、その転移点Tgが以下の条件式(6)を満たすこと
を特徴とする光路折り曲げズーム光学系。[19] The optical path bending zoom optical system according to the above 8 or 11, wherein the lens or prism having an aspherical surface is made of glass and the transition point Tg thereof satisfies the following conditional expression (6). .
【0179】
60℃<Tg<620℃ ・・・(6)
〔20〕 上記8又は11において、非球面が形成され
たレンズあるいはプリズムが、ガラス成形法で加工され
たことを特徴とする光路折り曲げズーム光学系。60 ° C. <Tg <620 ° C. (6) [20] In the above 8 or 11, the lens or prism having an aspherical surface is processed by a glass molding method to bend an optical path. Zoom optics.
【0180】〔21〕 上記8又は11において、非球
面が形成されたレンズあるいはプリズムが、有機無機ハ
イブリッド材料からなることを特徴とする光路折り曲げ
ズーム光学系。[21] The optical path bending zoom optical system described in 8 or 11 above, wherein the lens or prism having an aspherical surface is made of an organic-inorganic hybrid material.
【0181】〔22〕 上記8又は11において、非球
面が形成されたレンズあるいはプリズムが、プラスチッ
クからなることを特徴とする光路折り曲げズーム光学
系。[22] The optical path bending zoom optical system according to the above 8 or 11, wherein the lens or prism having an aspherical surface is made of plastic.
【0182】〔23〕 上記1から3の何れか1項にお
いて、プリズムがプラスチックからなることを特徴とす
る光路折り曲げズーム光学系。[23] The optical path bending zoom optical system as described in any one of 1 to 3 above, wherein the prism is made of plastic.
【0183】〔24〕 上記1から3の何れか1項にお
いて、全てのレンズ及びプリズムがプラスチックからな
ることを特徴とする光路折り曲げズーム光学系。[24] An optical path bending zoom optical system according to any one of 1 to 3 above, wherein all the lenses and prisms are made of plastic.
【0184】〔25〕 上記1から3の何れか1項にお
いて、光軸の折り曲げ面が像面に配置される撮像素子の
撮像面の短辺に平行になるように光軸を折り曲げている
ことを特徴とする光路折り曲げズーム光学系。[25] In any one of the above items 1 to 3, the optical axis is bent so that the bent surface of the optical axis is parallel to the short side of the image pickup surface of the image pickup element arranged on the image plane. Optical path bending zoom optical system characterized by.
【0185】〔26〕 上記1から3の何れか1項にお
いて、前記プリズムは、変倍時に可動な全てのレンズ群
の最も物体側のレンズよりも物体側に配置されているこ
とを特徴とする光路折り曲げズーム光学系。[26] In any one of the above items 1 to 3, the prism is arranged closer to the object side than the most object side lens of all the lens groups that are movable during zooming. Optical path bending zoom optical system.
【0186】〔27〕 上記1から3の何れか1項にお
いて、変倍時に移動するレンズ群は、広角端から望遠端
に変倍する際に、単調に物体側に移動することを特徴と
する光路折り曲げズーム光学系。[27] In any one of items 1 to 3 above, the lens group that moves during zooming moves monotonously to the object side when zooming from the wide-angle end to the telephoto end. Optical path bending zoom optical system.
【0187】〔28〕 上記1から3の何れか1項にお
いて、前記プリズムより像側の光路上に少なくとも1つ
の開口絞りを配置したことを特徴とする光路折り曲げズ
ーム光学系。[28] An optical path bending zoom optical system according to any one of 1 to 3 above, wherein at least one aperture stop is arranged on the optical path on the image side of the prism.
【0188】〔29〕 上記5において、前記第3レン
ズ群を光軸方向に移動して合焦することを特徴とする光
路折り曲げズーム光学系。[29] The optical path bending zoom optical system as described in 5 above, wherein the third lens group is moved in the optical axis direction for focusing.
【0189】〔30〕 上記1から29の何れか1項記
載の光路折り曲げズーム光学系と、前記光路折り曲げズ
ーム光学系によって形成された物体像を受光する位置に
配置された電子撮像素子と、前記電子撮像素子によって
光電変換された電子信号を処理する処理手段と、操作者
が前記処理手段に入力したい情報信号を入力するための
入力部と、前記処理手段からの出力を表示する表示素子
と、前記処理手段からの出力を記録する記録媒体とを含
み、前記処理手段は、前記光路折り曲げズーム光学系に
よって前記電子撮像素子に受光された物体像を前記表示
素子に表示するように構成されていることを特徴とする
情報処理装置。[30] The optical path bending zoom optical system described in any one of the above items 1 to 29, an electronic image pickup device arranged at a position for receiving an object image formed by the optical path bending zoom optical system, Processing means for processing an electronic signal photoelectrically converted by the electronic image pickup device, an input section for an operator to input an information signal desired to be input to the processing means, and a display element for displaying an output from the processing means, A recording medium for recording the output from the processing means, wherein the processing means is configured to display an object image received by the electronic image pickup device by the optical path bending zoom optical system on the display device. An information processing device characterized by the above.
【0190】〔31〕 上記30において、前記入力部
がキーボードにて構成され、前記光路折り曲げズーム光
学系と前記電子撮像素子とが前記表示素子の周辺部又は
前記キーボードの周辺部に内蔵されていることを特徴と
するパソコン装置。[31] In the above item 30, the input unit is constituted by a keyboard, and the optical path bending zoom optical system and the electronic image pickup device are built in the peripheral portion of the display element or the peripheral portion of the keyboard. A personal computer device characterized in that
【0191】〔32〕 上記1から29の何れか1項記
載の光路折り曲げズーム光学系と、前記光路折り曲げズ
ーム光学系によって形成された物体像を受光する位置に
配置された電子撮像素子と、電話信号を送信及び受信す
るためのアンテナと、電話番号等の信号を入力するため
の入力部と、前記電子撮像素子によって受光された物体
像を送信可能な信号に変換する信号処理部とを含んでい
ることを特徴とする電話装置。[32] The optical path bending zoom optical system according to any one of the above items 1 to 29, an electronic image pickup device arranged at a position for receiving an object image formed by the optical path bending zoom optical system, and a telephone. An antenna for transmitting and receiving signals, an input unit for inputting a signal such as a telephone number, and a signal processing unit for converting an object image received by the electronic image pickup device into a transmittable signal are included. A telephone device characterized by being installed.
【0192】〔33〕 上記1から29の何れか1項記
載の光路折り曲げズーム光学系と、前記光路折り曲げズ
ーム光学系によって形成された物体像を受光する位置に
配置された電子撮像素子と、前記電子撮像素子によって
光電変換された電子信号を処理する処理手段と、前記電
子撮像素子で受光された物体像を観察可能に表示する表
示素子とを有し、前記電子撮像素子で受光された物体像
の像情報を記録するための記録部材を内蔵又は挿脱する
ように構成され、前記処理手段が、前記電子撮像素子に
受光された物体像を前記表示素子に表示する表示処理機
能と、前記電子撮像素子に受光された物体像を前記記録
媒体に記録する記録処理機能とを有することを特徴とす
る電子カメラ装置。[33] The optical path bending zoom optical system described in any one of the above items 1 to 29, an electronic image pickup element arranged at a position for receiving an object image formed by the optical path bending zoom optical system, and An object image received by the electronic image pickup device, which has a processing means for processing an electronic signal photoelectrically converted by the electronic image pickup device and a display device for observably displaying the object image received by the electronic image pickup device. A recording member for recording image information of the electronic device, the processing device displaying the object image received by the electronic image pickup device on the display device, and the electronic device. An electronic camera device having a recording processing function of recording an object image received by an image sensor on the recording medium.
【0193】[0193]
【発明の効果】以上の説明から明らかなように、本発明
によると、小型デジタルスチルカメラ、携帯端末等に搭
載可能な薄型ズーム光学系であって、薄型化のため光軸
を曲げ、かつ、折り曲げプリズムにパワーを持たせた光
路折り曲げズーム光学系を提供することができる。As is apparent from the above description, according to the present invention, there is provided a thin zoom optical system that can be mounted on a compact digital still camera, a mobile terminal, etc. It is possible to provide an optical path bending zoom optical system in which a bending prism has power.
【図1】本発明の光路折り曲げズーム光学系の実施例1
の無限遠物点合焦時の広角端(a)、中間状態(b)、
望遠端(c)でのレンズ断面図である。FIG. 1 is a first embodiment of an optical path bending zoom optical system according to the present invention.
Wide-angle end (a), intermediate state (b) when focusing on an object point at infinity of
It is a lens cross-sectional view at the telephoto end (c).
【図2】実施例2の光路折り曲げズーム光学系の図1と
同様のレンズ断面図である。2 is a lens cross-sectional view similar to FIG. 1 of an optical path bending zoom optical system of Example 2. FIG.
【図3】実施例3の光路折り曲げズーム光学系の図1と
同様のレンズ断面図である。3 is a lens cross-sectional view similar to FIG. 1 of an optical path bending zoom optical system of Example 3. FIG.
【図4】実施例4の光路折り曲げズーム光学系の図1と
同様のレンズ断面図である。FIG. 4 is a lens cross-sectional view similar to FIG. 1 of an optical path bending zoom optical system of Example 4.
【図5】実施例5の光路折り曲げズーム光学系の図1と
同様のレンズ断面図である。5 is a lens cross-sectional view similar to FIG. 1 of the optical path bending zoom optical system of Example 5. FIG.
【図6】実施例6の光路折り曲げズーム光学系の図1と
同様のレンズ断面図である。6 is a lens cross-sectional view similar to FIG. 1 of the optical path bending zoom optical system of Example 6. FIG.
【図7】実施例7の光路折り曲げズーム光学系の図1と
同様のレンズ断面図である。7 is a lens cross-sectional view similar to FIG. 1 of the optical path bending zoom optical system of Example 7. FIG.
【図8】実施例8の光路折り曲げズーム光学系の図1と
同様のレンズ断面図である。8 is a lens cross-sectional view similar to FIG. 1 of the optical path bending zoom optical system of Example 8. FIG.
【図9】実施例9の光路折り曲げズーム光学系の図1と
同様のレンズ断面図である。9 is a lens cross-sectional view similar to FIG. 1 of the optical path bending zoom optical system of Example 9. FIG.
【図10】実施例10の光路折り曲げズーム光学系の図
1と同様のレンズ断面図である。10 is a lens cross-sectional view similar to FIG. 1 of the optical path bending zoom optical system of Example 10. FIG.
【図11】実施例1の無限遠物点合焦時の収差図であ
る。FIG. 11 is an aberration diagram for Example 1 upon focusing on an object point at infinity.
【図12】本発明の光路折り曲げズーム光学系の変形例
の構成を模式的に示す図である。FIG. 12 is a diagram schematically showing a configuration of a modified example of the optical path bending zoom optical system of the present invention.
【図13】本発明による光路折り曲げズーム光学系を組
み込んだデジタルカメラの外観を示す前方斜視図であ
る。FIG. 13 is a front perspective view showing the appearance of a digital camera incorporating the optical path bending zoom optical system according to the present invention.
【図14】図13のデジタルカメラの後方斜視図であ
る。FIG. 14 is a rear perspective view of the digital camera shown in FIG.
【図15】図13のデジタルカメラの断面図である。15 is a cross-sectional view of the digital camera shown in FIG.
【図16】本発明による光路折り曲げズーム光学系を対
物光学系として組み込れたパソコンのカバーを開いた前
方斜視図である。FIG. 16 is a front perspective view of the personal computer in which the optical path bending zoom optical system according to the present invention is incorporated as an objective optical system with the cover open.
【図17】パソコンの撮影光学系の断面図である。FIG. 17 is a sectional view of a photographing optical system of a personal computer.
【図18】図16の状態の側面図である。FIG. 18 is a side view of the state of FIG.
【図19】本発明による光路折り曲げズーム光学系を対
物光学系として組み込れた携帯電話の正面図、側面図、
その撮影光学系の断面図である。FIG. 19 is a front view, a side view, and a side view of a mobile phone in which the optical path bending zoom optical system according to the present invention is incorporated as an objective optical system.
It is a sectional view of the photographing optical system.
G1…第1レンズ群 G2…第2レンズ群 G3…第3レンズ群 G4…第4レンズ群 P…光路折り曲げプリズム S…開口絞り(独立の場合) F…平行平面板群 I…像面 A…フォーカシングレンズ群又はズーミングレンズ群 E…観察者眼球 LF…光学的ローパスフィルター 40…デジタルカメラ 41…撮影光学系 42…撮影用光路 43…ファインダー光学系 44…ファインダー用光路 45…シャッター 46…フラッシュ 47…液晶表示モニター 49…CCD 50…カバー部材 51…処理手段 52…記録手段 53…ファインダー用対物光学系 55…ポロプリズム 57…視野枠 59…接眼光学系 112…対物レンズ 113…鏡枠 114…カバーガラス 160…撮像ユニット 162…撮像素子チップ 166…端子 300…パソコン 301…キーボード 302…モニター 303…撮影光学系 304…撮影光路 305…画像 400…携帯電話 401…マイク部 402…スピーカ部 403…入力ダイアル 404…モニター 405…撮影光学系 406…アンテナ 407…撮影光路 G1 ... First lens group G2: Second lens group G3 ... Third lens group G4 ... 4th lens group P ... Optical path bending prism S ... Aperture stop (when independent) F: Parallel plane plate group I ... Image plane A: Focusing lens group or zooming lens group E ... Observer eye LF ... Optical low pass filter 40 ... Digital camera 41 ... Shooting optical system 42 ... Optical path for photography 43 ... Finder optical system 44 ... Optical path for finder 45 ... Shutter 46 ... Flash 47 ... LCD monitor 49 ... CCD 50 ... Cover member 51 ... Processing means 52 ... Recording means 53 ... Objective optical system for viewfinder 55 ... Porro prism 57 ... Field of view frame 59 ... Eyepiece optical system 112 ... Objective lens 113 ... Mirror frame 114 ... Cover glass 160 ... Imaging unit 162 ... Image sensor chip 166 ... Terminal 300 ... PC 301 ... Keyboard 302 ... Monitor 303 ... Shooting optical system 304 ... Shooting optical path 305 ... Image 400 ... Mobile phone 401 ... Microphone part 402 ... Speaker unit 403 ... Input dial 404 ... Monitor 405 ... Photography optical system 406 ... Antenna 407 ... Shooting optical path
フロントページの続き (72)発明者 永岡 利之 東京都渋谷区幡ヶ谷2丁目43番2号 オリ ンパス光学工業株式会社内 Fターム(参考) 2H087 KA03 PA08 PA17 PB08 QA02 QA03 QA17 QA19 QA21 QA22 QA25 QA32 QA34 QA41 QA42 QA45 QA46 RA05 RA12 RA13 RA36 RA41 RA42 RA44 SA22 SA26 SA29 SA32 SA63 SA64 SA72 SA75 SB03 SB04 SB14 SB22 SB23 SB32 TA01 TA03 UA01 5C022 AA13 AB66 AC54 AC55 Continued front page (72) Inventor Toshiyuki Nagaoka 2-43 Hatagaya, Shibuya-ku, Tokyo Ori Inside Npus Optical Industry Co., Ltd. F term (reference) 2H087 KA03 PA08 PA17 PB08 QA02 QA03 QA17 QA19 QA21 QA22 QA25 QA32 QA34 QA41 QA42 QA45 QA46 RA05 RA12 RA13 RA36 RA41 RA42 RA44 SA22 SA26 SA29 SA32 SA63 SA64 SA72 SA75 SB03 SB04 SB14 SB22 SB23 SB32 TA01 TA03 UA01 5C022 AA13 AB66 AC54 AC55
Claims (3)
力を有する第1レンズ群、正の屈折力を有する第2レン
ズ群、それ以降の少なくとも1つのレンズ群からなって
いて、広角端から望遠端に変倍する際に、前記第2レン
ズ群を含んで光軸に沿って移動する少なくとも1つのレ
ンズ群を含むズーム光学系において、 前記第1レンズ群が、光路を折り曲げるための少なくと
も1面の反射面と、入射面と、射出面とを含むプリズム
を有し、前記プリズムの入射面、射出面の少なくとも一
方は光軸に回転対称な曲面であることを特徴とする光路
折り曲げズーム光学系。1. A first lens unit having a negative refracting power, a second lens unit having a positive refracting power, and at least one lens unit after that, in order from the object side, from the wide-angle end. In a zoom optical system including at least one lens group that includes the second lens group and moves along the optical axis when zooming to the telephoto end, the first lens group includes at least one lens for bending an optical path. An optical path bending zoom optical system having a prism including a reflecting surface, an entrance surface, and an exit surface, and at least one of the entrance surface and the exit surface of the prism is a curved surface rotationally symmetrical with respect to an optical axis. system.
力を有し、少なくとも負の屈折力のプリズムを1つ含む
第1レンズ群、正の屈折力を有する第2レンズ群、それ
以降の少なくとも1つのレンズ群からなっていて、広角
端から望遠端に変倍する際に、前記第2レンズ群を含ん
で光軸に沿って移動する少なくとも1つのレンズ群を含
むズーム光学系において、 前記プリズムは、光路を折り曲げるための少なくとも1
面の反射面と、入射面と、射出面とを含み、かつ、前記
入射面、射出面の少なくとも一方は曲面であることを特
徴とする光路折り曲げズーム光学系。2. A first lens group having a negative refracting power and including at least one prism having a negative refracting power in order from the object side, a second lens group having a positive refracting power, and thereafter. In a zoom optical system including at least one lens group, the zoom optical system including at least one lens group including the second lens group and moving along the optical axis when zooming from the wide-angle end to the telephoto end, The prism has at least one for bending the optical path.
An optical path bending zoom optical system including a reflecting surface, an entrance surface, and an exit surface, and at least one of the entrance surface and the exit surface is a curved surface.
力を有する第1レンズ群、正の屈折力を有する第2レン
ズ群、それ以降の少なくとも1つのレンズ群からなって
いて、広角端から望遠端に変倍する際に、前記第2レン
ズ群を含んで光軸に沿って移動する少なくとも1つのレ
ンズ群を含むズーム光学系において、 前記第1レンズ群が、光路を折り曲げるための少なくと
も1面の反射面と、入射面と、射出面とを含むプリズム
を有し、前記プリズムの入射面、射出面の少なくとも一
方は曲面であり、前記プリズムのd線における屈折率n
dが以下の条件式(1)を満たすことを特徴とする光路
折り曲げズーム光学系。 1.6<nd<2.0 ・・・(1)3. A first lens group having a negative refracting power, a second lens group having a positive refracting power, and at least one lens group after that at least in order from the object side, from the wide-angle end. In a zoom optical system including at least one lens group that includes the second lens group and moves along the optical axis when zooming to the telephoto end, the first lens group includes at least one lens for bending an optical path. A prism including a reflecting surface, an entrance surface, and an exit surface, at least one of the entrance surface and the exit surface of the prism is a curved surface, and the refractive index n at the d line of the prism is
An optical path bending zoom optical system, wherein d satisfies the following conditional expression (1). 1.6 <nd <2.0 (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001299728A JP4869522B2 (en) | 2001-09-28 | 2001-09-28 | Optical path bending zoom optical system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001299728A JP4869522B2 (en) | 2001-09-28 | 2001-09-28 | Optical path bending zoom optical system |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2003107356A true JP2003107356A (en) | 2003-04-09 |
JP2003107356A5 JP2003107356A5 (en) | 2008-10-02 |
JP4869522B2 JP4869522B2 (en) | 2012-02-08 |
Family
ID=19120427
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001299728A Expired - Fee Related JP4869522B2 (en) | 2001-09-28 | 2001-09-28 | Optical path bending zoom optical system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4869522B2 (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004348082A (en) * | 2003-05-26 | 2004-12-09 | Olympus Corp | Optical path bending optical system |
JP2005121799A (en) * | 2003-10-15 | 2005-05-12 | Olympus Corp | Zoom lens and electronic imaging device using the same |
WO2006018885A1 (en) * | 2004-08-19 | 2006-02-23 | Mitsubishi Denki Kabushiki Kaisha | Imaging optical system and camera having same |
JP2006065026A (en) * | 2004-08-27 | 2006-03-09 | Canon Inc | Zoom lens and image projection device having the same |
JP2006106089A (en) * | 2004-09-30 | 2006-04-20 | Nikon Corp | Zoom lens |
JP2006106071A (en) * | 2004-09-30 | 2006-04-20 | Olympus Corp | Electronic image pickup device |
JP2006251037A (en) * | 2005-03-08 | 2006-09-21 | Sony Corp | Bent optical system and imaging apparatus |
US7227706B2 (en) | 2004-05-24 | 2007-06-05 | Konica Minolta Photo Imaging, Inc. | Image-taking lens apparatus |
JP2007156061A (en) * | 2005-12-05 | 2007-06-21 | Konica Minolta Opto Inc | Bending optical system, imaging lens device, and digital apparatus |
US7679834B2 (en) | 2005-09-21 | 2010-03-16 | Olympus Imaging Corp. | Zoom optical system and image pickup apparatus provided with the same |
JP2017044887A (en) * | 2015-08-27 | 2017-03-02 | コニカミノルタ株式会社 | Imaging lens, imaging optical device, and digital instrument |
EP3462223A1 (en) * | 2017-09-30 | 2019-04-03 | Beijing Xiaomi Mobile Software Co., Ltd. | Camera module and electronic apparatus |
CN112673295A (en) * | 2018-09-13 | 2021-04-16 | 华为技术有限公司 | Ray path folding structure for imaging system and electronic device including the same |
CN115201999A (en) * | 2021-04-01 | 2022-10-18 | 亚洲光学股份有限公司 | Imaging lens |
US12124016B2 (en) | 2021-04-01 | 2024-10-22 | Sintai Optical (Shenzhen) Co., Ltd. | Lens assembly |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10139601B2 (en) | 2015-05-08 | 2018-11-27 | Samsung Electronics Co., Ltd. | Thin telephoto lens and image pickup apparatus including the same |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH075360A (en) * | 1993-06-16 | 1995-01-10 | Olympus Optical Co Ltd | Real image type variable power finder |
JPH11194267A (en) * | 1998-01-07 | 1999-07-21 | Olympus Optical Co Ltd | Image-formation optical system |
-
2001
- 2001-09-28 JP JP2001299728A patent/JP4869522B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH075360A (en) * | 1993-06-16 | 1995-01-10 | Olympus Optical Co Ltd | Real image type variable power finder |
JPH11194267A (en) * | 1998-01-07 | 1999-07-21 | Olympus Optical Co Ltd | Image-formation optical system |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004348082A (en) * | 2003-05-26 | 2004-12-09 | Olympus Corp | Optical path bending optical system |
JP2005121799A (en) * | 2003-10-15 | 2005-05-12 | Olympus Corp | Zoom lens and electronic imaging device using the same |
US7227706B2 (en) | 2004-05-24 | 2007-06-05 | Konica Minolta Photo Imaging, Inc. | Image-taking lens apparatus |
WO2006018885A1 (en) * | 2004-08-19 | 2006-02-23 | Mitsubishi Denki Kabushiki Kaisha | Imaging optical system and camera having same |
JP2006065026A (en) * | 2004-08-27 | 2006-03-09 | Canon Inc | Zoom lens and image projection device having the same |
JP2006106089A (en) * | 2004-09-30 | 2006-04-20 | Nikon Corp | Zoom lens |
JP2006106071A (en) * | 2004-09-30 | 2006-04-20 | Olympus Corp | Electronic image pickup device |
JP2006251037A (en) * | 2005-03-08 | 2006-09-21 | Sony Corp | Bent optical system and imaging apparatus |
US7944619B2 (en) | 2005-09-21 | 2011-05-17 | Olympus Imaging Corp. | Zoom optical system and image pickup apparatus provided with the same |
US7679834B2 (en) | 2005-09-21 | 2010-03-16 | Olympus Imaging Corp. | Zoom optical system and image pickup apparatus provided with the same |
JP2007156061A (en) * | 2005-12-05 | 2007-06-21 | Konica Minolta Opto Inc | Bending optical system, imaging lens device, and digital apparatus |
JP2017044887A (en) * | 2015-08-27 | 2017-03-02 | コニカミノルタ株式会社 | Imaging lens, imaging optical device, and digital instrument |
EP3462223A1 (en) * | 2017-09-30 | 2019-04-03 | Beijing Xiaomi Mobile Software Co., Ltd. | Camera module and electronic apparatus |
US11480852B2 (en) | 2017-09-30 | 2022-10-25 | Beijing Xiaomi Mobile Software Co., Ltd. | Camera module and electronic apparatus |
CN112673295A (en) * | 2018-09-13 | 2021-04-16 | 华为技术有限公司 | Ray path folding structure for imaging system and electronic device including the same |
CN115201999A (en) * | 2021-04-01 | 2022-10-18 | 亚洲光学股份有限公司 | Imaging lens |
CN115201999B (en) * | 2021-04-01 | 2024-02-06 | 亚洲光学股份有限公司 | imaging lens |
US12124016B2 (en) | 2021-04-01 | 2024-10-22 | Sintai Optical (Shenzhen) Co., Ltd. | Lens assembly |
Also Published As
Publication number | Publication date |
---|---|
JP4869522B2 (en) | 2012-02-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5846792B2 (en) | Zoom lens and imaging apparatus using the same | |
JP5726464B2 (en) | Imaging optical system and electronic imaging apparatus having the same | |
JP4901270B2 (en) | Zoom lens | |
JP2007248952A (en) | Bending variable power optical system | |
JP2001133687A (en) | Zoom lens | |
JP2007156385A (en) | Zoom optical system and image taking apparatus using the same | |
JP2008083125A (en) | Zoom lens and imaging apparatus using the same | |
JP2000321499A (en) | Zoom lens | |
JP4869522B2 (en) | Optical path bending zoom optical system | |
JP2000292692A (en) | Photographing optical system | |
JP2007086307A (en) | Zoom optical system and imaging apparatus equipped with the same | |
JP5226888B2 (en) | Bending imaging optical system | |
JP4573378B2 (en) | Zoom lens | |
JP4766933B2 (en) | Optical path folding zoom lens and image pickup apparatus having the same | |
JP2012003077A (en) | Imaging optical system and electronic imaging apparatus having the same | |
JP2007108696A (en) | Imaging optical system and electronic imaging device having it | |
JP4766929B2 (en) | Image pickup apparatus having an optical path folding zoom lens | |
JP4947990B2 (en) | IMAGING DEVICE AND ELECTRONIC DEVICE HAVING THE SAME | |
JP4813102B2 (en) | Zoom lens and electronic imaging apparatus using the same | |
JP4503957B2 (en) | Three-group zoom lens and electronic imaging apparatus using the same | |
JP2008122874A (en) | Photographic optical system and imaging apparatus with this photographic optical system | |
JP2007248951A (en) | Bending variable power optical system | |
JP4454996B2 (en) | Imaging device | |
JP2001141998A (en) | Zoom lens | |
JP2013218256A (en) | Zoom lens, imaging apparatus and information processing apparatus using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080818 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080818 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110518 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110525 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110720 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20110720 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110809 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110824 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111013 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111102 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111116 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141125 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |