[go: up one dir, main page]

JP2003107244A - Liquid crystal polymer film and method for producing the same - Google Patents

Liquid crystal polymer film and method for producing the same

Info

Publication number
JP2003107244A
JP2003107244A JP2001298240A JP2001298240A JP2003107244A JP 2003107244 A JP2003107244 A JP 2003107244A JP 2001298240 A JP2001298240 A JP 2001298240A JP 2001298240 A JP2001298240 A JP 2001298240A JP 2003107244 A JP2003107244 A JP 2003107244A
Authority
JP
Japan
Prior art keywords
liquid crystal
groove
polymer
shaped recesses
transparent film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001298240A
Other languages
Japanese (ja)
Inventor
Tomoko Tano
朋子 田野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP2001298240A priority Critical patent/JP2003107244A/en
Publication of JP2003107244A publication Critical patent/JP2003107244A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)
  • Laminated Bodies (AREA)

Abstract

(57)【要約】 【課題】入射側に反射偏光板を備えた液晶表示装置に、
明るく、コントラストの良い表示を行なわせることがで
きる液晶ポリマーフィルムを提供する。 【解決手段】一方の面に複数の溝状凹部4が互いに平行
に形成され、これらの溝状凹部4の互いに対向する2つ
の壁面4a,4bのうち、一方の壁面4aが傾斜面に形
成された光学的に等方性な透明フィルム3の複数の溝状
凹部4内に、光学的に異方性で、前記溝状凹部4の長さ
方向と平行な方向の屈折率が前記透明フィルム3の屈折
率よりも大きい液晶ポリマー層5を設けた。
(57) [Summary] [PROBLEMS] To provide a liquid crystal display device having a reflective polarizing plate on the incident side,
Provided is a liquid crystal polymer film which can perform bright and high-contrast display. A plurality of groove-shaped recesses are formed on one surface in parallel with each other, and one of the two wall surfaces facing each other of the groove-shaped recesses is formed on an inclined surface. The optically anisotropic transparent film 3 has a plurality of groove-shaped recesses 4 in which optically anisotropic refractive index in a direction parallel to the longitudinal direction of the groove-shaped recesses 4 is provided. Is provided with a liquid crystal polymer layer 5 having a refractive index larger than the refractive index of the liquid crystal polymer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、入射側に反射偏
光板を備えた液晶表示装置の表示品質を向上させるため
の液晶ポリマーフィルム及びその製造方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal polymer film for improving the display quality of a liquid crystal display device having a reflective polarizing plate on the incident side and a method for manufacturing the same.

【0002】[0002]

【従来の技術】液晶表示装置は、一対の透明基板間に、
これらの基板の内面にそれぞれ設けられた透明電極間に
印加される電界に応じて透過光の偏光状態を制御する液
晶層が設けられてなる液晶素子を挟んで、入射光を直線
偏光として前記液晶素子に入射させるための偏光子と、
前記液晶素子を透過した光の透過をその偏光状態に応じ
て制御して画像光を得るための検光子とを配置した構成
となっている。
2. Description of the Related Art A liquid crystal display device includes a pair of transparent substrates,
The liquid crystal element, which is provided with a liquid crystal layer that controls the polarization state of transmitted light according to an electric field applied between transparent electrodes provided on the inner surfaces of these substrates, sandwiches the incident light into linearly polarized light to form the liquid crystal. A polarizer for entering the device,
An analyzer for controlling transmission of light transmitted through the liquid crystal element according to its polarization state to obtain image light is arranged.

【0003】前記液晶素子の入射側に配置される偏光子
としては、互いにほぼ直交する方向に吸収軸と透過軸と
をもった吸収偏光板、または、互いにほぼ直交する方向
に反射軸と透過軸とをもった反射偏光板が用いられてお
り、前記液晶素子の出射側に配置される検光子として
は、一般に吸収偏光板が用いられている。
The polarizer disposed on the incident side of the liquid crystal element is an absorption polarizing plate having an absorption axis and a transmission axis in directions substantially orthogonal to each other, or a reflection axis and a transmission axis in directions substantially orthogonal to each other. A reflective polarizing plate having the above is used, and an absorption polarizing plate is generally used as an analyzer arranged on the emission side of the liquid crystal element.

【0004】[0004]

【発明が解決しようとする課題】しかし、吸収偏光板
は、入射光のうち、透過軸に沿った偏光成分の光を透過
させ、吸収軸に沿った偏光成分の光を吸収するため、偏
光度は高いが、光の透過率が低い。
However, since the absorption polarizing plate transmits the light of the polarization component along the transmission axis of the incident light and absorbs the light of the polarization component along the absorption axis, it has a polarization degree of Is high, but the light transmittance is low.

【0005】そのため、入射側に吸収偏光板を備えた液
晶表示装置は、前記吸収偏光板を透過する直線偏光の強
度が低く、明るい表示が得られない。
Therefore, in the liquid crystal display device having the absorption polarizing plate on the incident side, the intensity of the linearly polarized light transmitted through the absorption polarizing plate is low and a bright display cannot be obtained.

【0006】一方、反射偏光板は、入射光のうち、透過
軸に沿った偏光成分の光を透過させ、反射軸に沿った偏
光成分の光を反射するが、この反射偏光板は偏光度が低
いため、前記反射軸に沿った偏光成分の光もある程度透
過してしまうという光漏れがある。
On the other hand, the reflection polarizing plate transmits the light of the polarization component along the transmission axis of the incident light and reflects the light of the polarization component along the reflection axis. Since it is low, there is a light leakage that the light of the polarized component along the reflection axis is also transmitted to some extent.

【0007】そのため、入射側に反射偏光板を備えた液
晶表示装置は、前記反射偏光板を透過して前記液晶素子
に入射する直線偏光が、前記反射軸に沿った偏光成分の
漏光を含んだ偏光度の低い光であり、したがって、表示
の明るさは液晶素子の入射面に前記吸収偏光板を配置し
た液晶表示装置に比べて明るいが、コントラストの良い
表示が得られない。
Therefore, in the liquid crystal display device having the reflection polarizing plate on the incident side, the linearly polarized light which passes through the reflection polarizing plate and is incident on the liquid crystal element includes the leakage of the polarization component along the reflection axis. Since the light has a low degree of polarization, the display brightness is brighter than that of a liquid crystal display device in which the absorption polarizing plate is arranged on the incident surface of a liquid crystal element, but a display with good contrast cannot be obtained.

【0008】ところで、前記反射偏光板は、入射光のう
ち、透過軸に沿った偏光成分の光を透過させ、反射軸に
沿った偏光成分の光を反射するため、前記反射偏光板に
より反射された光を、その偏光状態を変化させて前記反
射偏光板に再び入射させることができれば、前記反射偏
光板を透過して前記液晶素子に入射する直線偏光の強度
をより高くするとともに偏光度も充分にし、前記入射側
に反射偏光板を配置した液晶表示装置に、明るく、コン
トラストの良い表示を行なわせることができる。
By the way, the reflection polarizing plate transmits the light of the polarization component along the transmission axis of the incident light and reflects the light of the polarization component along the reflection axis, so that it is reflected by the reflection polarizing plate. If the reflected light can be made incident on the reflective polarizing plate again by changing its polarization state, the intensity of the linearly polarized light that passes through the reflective polarizing plate and is incident on the liquid crystal element is further increased and the degree of polarization is sufficient. In addition, it is possible to make the liquid crystal display device having the reflection polarizing plate disposed on the incident side display bright and good contrast.

【0009】そのためには、例えば、前記反射偏光板の
入射側に位相板を配置し、前記反射偏光板により反射さ
れて前記位相板に入射した光を、前記位相板により内面
反射させるとともに、その光の偏光状態を前記位相板の
位相差により変化させて前記反射偏光板に再び入射させ
ればよい。
For that purpose, for example, a phase plate is arranged on the incident side of the reflective polarizing plate, and the light reflected by the reflective polarizing plate and incident on the phase plate is internally reflected by the phase plate, and It suffices to change the polarization state of light according to the phase difference of the phase plate and make it enter the reflection polarizing plate again.

【0010】しかし、前記反射偏光板の入射側に単に位
相板を配置しただけでは、前記反射偏光板に反射された
光のほとんどが、前記位相板により内面反射されること
なく、この位相板を透過してしまうため、前記反射偏光
板により反射された光を、その偏光状態を変化させて前
記反射偏光板に再び入射させるという効果がほとんど得
られない。
However, by simply disposing the phase plate on the incident side of the reflective polarizing plate, most of the light reflected by the reflective polarizing plate will not be internally reflected by the phase plate, and this phase plate will not be reflected. Since the light is transmitted, there is almost no effect of changing the polarization state of the light reflected by the reflective polarizing plate and making it enter the reflective polarizing plate again.

【0011】この発明は、直交する2つの偏光成分を持
つ光に対して、一方の偏光成分の光を屈折させずに透過
し、他方の偏光成分の光を入射角よりも大きい出射角に
屈折させて透過する液晶ポリマーフィルムを提供するこ
とを目的とする。
According to the present invention, for light having two orthogonal polarization components, light of one polarization component is transmitted without being refracted, and light of the other polarization component is refracted at an emission angle larger than the incident angle. An object of the present invention is to provide a liquid crystal polymer film which is made transparent.

【0012】また、この発明は、液晶素子の入射側に配置
された反射偏光板と、この反射偏光板の入射側に配置す
る位相板との間に介在させることにより、入射光のうち
の前記反射偏光板により反射された光を効率良く前記位
相板により内面反射させ、前記位相板の位相差により偏
光状態を変えた光を前記反射偏光板を透過させて液晶素
子に入射させるようにし、入射側に反射偏光板を備えた
液晶表示装置に、明るく、コントラストの良い表示を行
なわせることができる液晶ポリマーフィルム、及びその
液晶ポリマーフィルムの製造方法を提供することを目的
としたものである。
Further, according to the present invention, by interposing the reflective polarizing plate disposed on the incident side of the liquid crystal element and the phase plate disposed on the incident side of the reflective polarizing plate, the above The light reflected by the reflective polarizing plate is efficiently internally reflected by the phase plate, and the light whose polarization state is changed by the phase difference of the phase plate is transmitted through the reflective polarizing plate to be incident on the liquid crystal element. An object of the present invention is to provide a liquid crystal polymer film capable of causing a liquid crystal display device having a reflective polarizing plate on its side to perform bright display with good contrast, and a method for producing the liquid crystal polymer film.

【0013】[0013]

【課題を解決するための手段】この発明の液晶ポリマー
フィルムは、一方の面に複数の溝状凹部が互いに平行に
形成され、これらの溝状凹部の互いに対向する2つの壁
面のうち、少なくとも一方の壁面が傾斜面に形成された
光学的に等方性な透明フィルムと、前記透明フィルムの
複数の溝状凹部内に設けられた、光学的に異方性で、前
記溝状凹部の長さ方向と実質的に平行な方向の屈折率が
前記透明フィルムの屈折率よりも大きい液晶ポリマー層
とからなることを特徴とするものである。
A liquid crystal polymer film of the present invention has a plurality of groove-shaped recesses formed on one surface thereof in parallel with each other, and at least one of two wall surfaces of the groove-shaped recesses facing each other. An optically isotropic transparent film whose wall surface is formed into an inclined surface and an optically anisotropic, groove-shaped recess provided in the plurality of groove-shaped recesses of the transparent film. And a liquid crystal polymer layer having a refractive index in a direction substantially parallel to the direction larger than that of the transparent film.

【0014】この液晶ポリマーフィルムは、前記溝状凹
部の長さ方向と直交する方向に振動面を有する偏光成分
の光は屈折させずに透過させ、前記液晶ポリマー層が設
けられた一方の面側から入射した光のうち、前記溝状凹
部の長さ方向に沿った振動面を有する偏光成分の光を、
前記液晶ポリマー層と前記透明フィルムの溝状凹部の壁
面との界面により、前記透明フィルムの他方の面の法線
に対する角度が大きくなる方向に屈折させて前記透明フ
ィルムの他方の面側に出射する。
This liquid crystal polymer film allows light of a polarized component having an oscillating surface in a direction orthogonal to the lengthwise direction of the groove-like recess to pass without refraction, and one surface side provided with the liquid crystal polymer layer. Of the light incident from the, the light of the polarization component having a vibrating surface along the length direction of the groove-like recess,
By the interface between the liquid crystal polymer layer and the wall surface of the groove-shaped recess of the transparent film, the liquid crystal polymer layer is refracted in the direction in which the angle with respect to the normal line of the other surface of the transparent film increases, and is emitted to the other surface side of the transparent film. .

【0015】そのため、前記液晶ポリマーフィルムを、
液晶素子の入射側に配置された反射偏光板とこの反射偏
光板の入射側に配置する位相板との間に、前記液晶ポリ
マー層が設けられた一方の面を前記反射偏光板に対向さ
せ、前記透明フィルムの他方の面を前記位相板に対向さ
せるとともに、前記透明フィルムの複数の溝状凹部の長
さ方向を前記反射偏光板の反射軸と実質的に平行にして
介在させることにより、入射光のうちの前記反射偏光板
により反射された光を前記位相板により効率良く内面反
射させ、前記位相板の位相差により偏光状態を変えた光
を前記反射偏光板を透過させて液晶素子に入射させるこ
とができ、したがって、前記反射偏光板を透過して液晶
素子に入射する直線偏光の強度を高くするとともに偏光
度も充分にし、入射側に反射偏光板を備えた液晶表示装
置に、明るく、コントラストの良い表示を行なわせるこ
とができる。
Therefore, the liquid crystal polymer film is
Between the reflective polarizing plate disposed on the incident side of the liquid crystal element and the phase plate disposed on the incident side of the reflective polarizing plate, one surface provided with the liquid crystal polymer layer is opposed to the reflective polarizing plate, The other surface of the transparent film is opposed to the phase plate, and the lengthwise direction of the plurality of groove-shaped recesses of the transparent film is made substantially parallel to the reflection axis of the reflection polarizing plate so as to be incident. Of the light, the light reflected by the reflective polarizing plate is efficiently internally reflected by the phase plate, and the light whose polarization state is changed by the phase difference of the phase plate is transmitted through the reflective polarizing plate and incident on the liquid crystal element. Therefore, the intensity of linearly polarized light that passes through the reflective polarizing plate and enters the liquid crystal element is increased, and the degree of polarization is also sufficient, so that the liquid crystal display device having the reflective polarizing plate on the incident side is bright and Ko It is possible to perform a good display of trust.

【0016】また、この発明の液晶ポリマーフィルムの
製造方法は、一方の面に複数の溝状凹部が互いに平行に
形成され、これらの溝状凹部の互いに対向する2つの壁
面のうち、少なくとも一方の壁面が傾斜面に形成された
光学的に等方性な透明フィルムの前記複数の溝状凹部内
に高分子液晶を充填してその液晶分子を前記溝状凹部の
長さ方向に分子長軸が揃うように配向させることによ
り、前記透明フィルムの複数の溝状凹部内に、光学的に
異方性で、且つ前記溝状凹部の長さ方向と実質的に平行
な方向の屈折率が前記透明フィルムの屈折率よりも大き
い液晶ポリマー層を形成することを特徴とするものであ
り、この製造方法によれば、前記液晶ポリマーフィルム
を製造することができる。
Further, in the method for producing a liquid crystal polymer film of the present invention, a plurality of groove-shaped recesses are formed in parallel on one surface, and at least one of the two wall surfaces of the groove-shaped recesses facing each other is formed. Polymer liquid crystal is filled in the plurality of groove-shaped recesses of the optically isotropic transparent film having the wall surface formed on the inclined surface, and the liquid crystal molecules are aligned in the lengthwise direction of the groove-shaped recesses with a molecular long axis. By orienting so as to align, the optically transparent anisotropic refractive index in the plurality of groove-shaped recesses of the transparent film in a direction substantially parallel to the lengthwise direction of the groove-shaped recesses is transparent. The present invention is characterized in that a liquid crystal polymer layer having a refractive index larger than that of the film is formed. According to this production method, the liquid crystal polymer film can be produced.

【0017】この発明の液晶ポリマーフィルムの製造方
法において、前記液晶ポリマー層は、前記透明フィルム
の複数の溝状凹部の壁面に、前記複数の溝状凹部の長さ
方向に沿う配向処理を施した後、前記複数の溝状凹部内
に高分子液晶を充填してその液晶分子を前記配向処理の
方向に配向させ、その後に前記高分子液晶をポリマー化
することにより形成するのが好ましい。
In the method for producing a liquid crystal polymer film of the present invention, in the liquid crystal polymer layer, the wall surfaces of the plurality of groove-shaped recesses of the transparent film are subjected to an alignment treatment along the length direction of the groove-shaped recesses. After that, it is preferable that the plurality of groove-shaped recesses be filled with a polymer liquid crystal to align the liquid crystal molecules in the direction of the alignment treatment, and then the polymer liquid crystal is polymerized.

【0018】その場合は、前記透明フィルムの複数の溝
状凹部内に充填された高分子液晶をアイソトロピック相
を示す温度に加熱し、その後に徐冷してネマティック相
に戻すことにより、前記高分子液晶の液晶分子を、前記
溝状凹部の壁面に施された配向処理の方向に配向させる
のがさらに好ましい。
In this case, the polymer liquid crystal filled in the plurality of groove-shaped recesses of the transparent film is heated to a temperature exhibiting an isotropic phase, and then gradually cooled to return to the nematic phase, whereby It is further preferable that the liquid crystal molecules of the molecular liquid crystal are aligned in the direction of the alignment treatment applied to the wall surface of the groove-shaped recess.

【0019】また、この発明の液晶ポリマーフィルムの
製造方法において、前記液晶ポリマー層は、前記透明フ
ィルムの複数の溝状凹部内にポリマー化した熱軟化性の
高分子液晶を充填した後、前記高分子液晶の外面に板材
を密着させ、前記高分子液晶を液晶分子が自由に動ける
状態に軟化する直前の温度に温めた状態で前記板材を前
記透明フィルムに対し、前記溝状凹部の長さ方向に沿っ
て一方向にずらすことにより、前記高分子液晶の液晶分
子を前記板材のずらし方向に配向させて形成してもよ
い。
Further, in the method for producing a liquid crystal polymer film according to the present invention, the liquid crystal polymer layer is formed by filling a plurality of groove-shaped concave portions of the transparent film with a polymerized thermosoftening polymer liquid crystal, and The plate material is adhered to the outer surface of the molecular liquid crystal, and the plate material with respect to the transparent film is warmed to a temperature just before the polymer liquid crystal is softened to a state in which liquid crystal molecules can freely move, and The liquid crystal molecules of the polymer liquid crystal may be aligned in the shift direction of the plate material by shifting in one direction along the direction.

【0020】[0020]

【発明の実施の形態】図1はこの発明の液晶ポリマーフ
ィルムの一実施例を示す側面図である。
1 is a side view showing an embodiment of a liquid crystal polymer film of the present invention.

【0021】この実施例の液晶ポリマーフィルム1は、
図1に示したように、ベースフィルム2と、一方の面に
複数の溝状凹部4が互いに平行に形成され、前記ベース
フィルム2の上に積層された透明フィルム3と、前記透
明フィルム3の複数の溝状凹部4内にそれぞれ設けられ
た液晶ポリマー層5とからなっている。
The liquid crystal polymer film 1 of this example is
As shown in FIG. 1, a base film 2, a plurality of groove-shaped recesses 4 formed on one surface of the base film 2 in parallel with each other, and a transparent film 3 laminated on the base film 2; The liquid crystal polymer layer 5 is provided in each of the plurality of groove-shaped recesses 4.

【0022】前記透明フィルム3は、アクリル系樹脂等
の光学的に等方性な透明樹脂からなっており、この透明
フィルム3の前記ベースフィルム2に対向する面は平坦
面に形成され、反対側の面の全域に、この透明フィルム
3の全幅にわたる長さの複数の溝状凹部4がその溝幅方
向に連続させて形成されている。
The transparent film 3 is made of an optically isotropic transparent resin such as an acrylic resin, and the surface of the transparent film 3 facing the base film 2 is formed into a flat surface and the opposite side. A plurality of groove-shaped recesses 4 having a length over the entire width of the transparent film 3 are formed continuously over the entire surface of the transparent film 3 in the groove width direction.

【0023】また、前記ベースフィルム2は、TAC
(トリアセチルセルロース)等の光学的に等方性な透明
樹脂からなっており、前記透明フィルム3は、その他方
の面(平坦面)を前記ベースフィルム2に粘着させて前
記ベースフィルム2の上に積層されている。
The base film 2 is made of TAC.
The transparent film 3 is made of an optically isotropic transparent resin such as (triacetyl cellulose), and the transparent film 3 has the other surface (flat surface) adhered to the base film 2 so that it is on the base film 2. Are stacked on.

【0024】前記透明フィルム3の一方の面に形成され
た複数の溝状凹部4はそれぞれ、その互いに対向する2
つの壁面4a,4bのうち、少なくとも一方の壁面が、
前記透明フィルム3の他方の面(ベースフィルム2に対
向する面)の法線hに対し、前記透明フィルム3の一方
の面に向かって前記法線hから離れる方向に傾斜する傾
斜面に形成された断面形状が三角形状の凹部であり、こ
の実施例では、前記溝状凹部4の一方の壁面(図1にお
いて右側の壁面)4aを、前記透明フィルム3の他方の
面の法線hに対する角度θ1が40〜60度の傾斜面と
し、他方の壁面(図1において左側の壁面)4bを、前
記法線hに対する角度θ2が0〜10度の急角度の面と
している。
A plurality of groove-shaped recesses 4 formed on one surface of the transparent film 3 are respectively opposed to each other 2
At least one of the two wall surfaces 4a and 4b is
It is formed as an inclined surface that is inclined in a direction away from the normal line h toward one surface of the transparent film 3 with respect to the normal line h of the other surface of the transparent film 3 (a surface facing the base film 2). In this embodiment, one wall surface (wall surface on the right side in FIG. 1) 4a of the groove-shaped recess 4 is formed at an angle with respect to the normal line h of the other surface of the transparent film 3. θ1 is an inclined surface of 40 to 60 degrees, and the other wall surface (wall surface on the left side in FIG. 1) 4b is a surface having an acute angle of 0 to 10 degrees with respect to the normal line h.

【0025】すなわち、前記複数の溝状凹部4は、その
一方の壁面4aが傾斜面に形成され、他方の壁面4bが
急角度の面に形成された形状をなしており、したがっ
て、前記透明フィルム3の一方の面は、断面形状が鋸歯
状の凹凸面となっている。
That is, the plurality of groove-shaped recesses 4 have a shape in which one wall surface 4a is formed as an inclined surface and the other wall surface 4b is formed as a steep angle surface. One surface of No. 3 is an uneven surface having a sawtooth cross section.

【0026】なお、図では前記複数の溝状凹部4を大き
く誇張して示しているが、前記複数の溝状凹部4は、2
5μm〜50μm程度の極く小さいピッチで形成されて
いる。
Although the plurality of groove-shaped recesses 4 are greatly exaggerated in the drawing, the plurality of groove-shaped recesses 4 are 2
It is formed with an extremely small pitch of about 5 μm to 50 μm.

【0027】一方、前記透明フィルム3の複数の溝状凹
部4内にそれぞれ設けられた液晶ポリマー層5は、液晶
分子が前記溝状凹部4の長さ方向に分子長軸が揃うよう
に配向した高分子液晶からなっている。
On the other hand, in the liquid crystal polymer layer 5 provided in each of the plurality of groove-shaped recesses 4 of the transparent film 3, the liquid crystal molecules are aligned so that the major axes of the molecules are aligned in the lengthwise direction of the groove-shaped recesses 4. It is made of polymer liquid crystal.

【0028】この液晶ポリマー層5は、前記高分子液晶
の液晶分子が前記溝状凹部4の長さ方向に分子長軸が揃
うように配向しているため、光学的に異方性であり、前
記液晶分子の配向方向に沿った方向の屈折率が、前記液
晶分子の配向方向と直交する方向の屈折率よりも大き
い。
The liquid crystal polymer layer 5 is optically anisotropic because the liquid crystal molecules of the polymer liquid crystal are oriented so that the major axes of the molecules are aligned in the lengthwise direction of the groove-shaped recess 4. The refractive index in the direction along the alignment direction of the liquid crystal molecules is higher than the refractive index in the direction orthogonal to the alignment direction of the liquid crystal molecules.

【0029】この液晶ポリマー層5の前記液晶分子の配
向方向に沿った方向、つまり前記透明フィルム3の溝状
凹部4の長さ方向と実質的に平行な方向の屈折率は、前
記透明フィルム3の屈折率よりも大きく、前記液晶分子
の配向方向と直交する方向、つまり前記透明フィルム3
の溝状凹部4の長さ方向と実質的に直交する方向の屈折
率は、前記透明フィルム3の屈折率と同じである。
The refractive index of the liquid crystal polymer layer 5 in the direction along the alignment direction of the liquid crystal molecules, that is, in the direction substantially parallel to the lengthwise direction of the groove-shaped recess 4 of the transparent film 3, is the transparent film 3. Which is larger than the refractive index of the liquid crystal molecules and is orthogonal to the alignment direction of the liquid crystal molecules, that is, the transparent film 3
The refractive index in the direction substantially orthogonal to the lengthwise direction of the groove-shaped recess 4 is the same as the refractive index of the transparent film 3.

【0030】なお、前記液晶ポリマー層5は、前記透明
フィルム3の複数の溝状凹部4内にそれぞれ、前記溝状
凹部4の開放縁と面一に、且つこれらの液晶ポリマー層
5の外面が、前記透明フィルム3の他方の面(平坦面)
と平行な平坦面になるように充填されている。
The liquid crystal polymer layer 5 is flush with the open edges of the groove-shaped recesses 4 in the plurality of groove-shaped recesses 4 of the transparent film 3, and the outer surfaces of these liquid crystal polymer layers 5 are flush with each other. , The other surface of the transparent film 3 (flat surface)
It is filled so that it becomes a flat surface parallel to.

【0031】次に、前記液晶ポリマーフィルム1の製造
方法を説明する。図2および図3はこの発明の液晶ポリ
マーフィルムの製造方法の第1の実施例を示しており、
図2は前記ベースフィルム2と透明フィルム3の積層体
を作製する工程の側面図、図3は前記透明フィルム3の
複数の溝状凹部4内に液晶ポリマー層5を形成する工程
の側面図である。
Next, a method for producing the liquid crystal polymer film 1 will be described. 2 and 3 show a first embodiment of the method for producing a liquid crystal polymer film of the present invention,
FIG. 2 is a side view of the step of producing a laminate of the base film 2 and the transparent film 3, and FIG. 3 is a side view of the step of forming the liquid crystal polymer layer 5 in the plurality of groove-shaped recesses 4 of the transparent film 3. is there.

【0032】この実施例の製造方法は、前記液晶ポリマ
ー層5を、光重合性高分子液晶を用いて形成する方法で
あり、前記ベースフィルム2と透明フィルム3の積層体
を作製した後、前記透明フィルム3の複数の溝状凹部4
内に光重合性高分子液晶5aを充填し、その光重合性高
分子液晶5aを、液晶分子を前記溝状凹部4の長さ方向
に分子長軸が揃うように配向させた状態でポリマー化し
て液晶ポリマー層5を形成する。
The manufacturing method of this embodiment is a method of forming the liquid crystal polymer layer 5 by using a photopolymerizable polymer liquid crystal, and after manufacturing a laminate of the base film 2 and the transparent film 3, A plurality of groove-shaped recesses 4 in the transparent film 3
The inside is filled with a photopolymerizable polymer liquid crystal 5a, and the photopolymerizable polymer liquid crystal 5a is polymerized in a state in which liquid crystal molecules are aligned so that the long axes of the molecules are aligned in the longitudinal direction of the groove-shaped recess 4. Thus, the liquid crystal polymer layer 5 is formed.

【0033】まず、前記ベースフィルム2と透明フィル
ム3の積層体の作製について説明すると、この積層体
は、図2に示したように、前記透明フィルム3の厚さに
対応する深さに形成されるとともに、底面に前記透明フ
ィルム3の一方の面に形成する複数の溝状凹部4に対応
する形状の鋸歯状面が形成された凹入部を有する金型6
内に、光重合性高分子材料(例えばアクリル系樹脂材
料)4aを流し込み、その上に、一方の面(透明フィル
ム3に対向する面)に粘着性処理を施したベースフィル
ム2を重ねて平坦に押圧し、前記高分子材料4aの上面
を平坦化した後、前記ベースフィルム2の上方から紫外
線を照射して前記高分子材料4aをポリマー化すること
により前記透明フィルム3を形成する方法で製造する。
First, the production of a laminate of the base film 2 and the transparent film 3 will be described. This laminate is formed to a depth corresponding to the thickness of the transparent film 3 as shown in FIG. And a die 6 having a recessed portion on the bottom surface in which sawtooth-shaped surfaces having a shape corresponding to the plurality of groove-shaped recesses 4 formed on one surface of the transparent film 3 are formed.
A photopolymerizable polymer material (for example, an acrylic resin material) 4a is poured into the inside, and a base film 2 having an adhesive treatment on one surface (the surface facing the transparent film 3) is superposed thereon and flattened. Manufactured by a method of forming the transparent film 3 by pressing the above to flatten the upper surface of the polymer material 4a, and then irradiating ultraviolet rays from above the base film 2 to polymerize the polymer material 4a. To do.

【0034】次に、前記透明フィルム3の一方の面に設
けられた複数の溝状凹部4内にそれぞれ設ける液晶ポリ
マー層5の形成について説明すると、前記液晶ポリマー
層5は、次のような手順で形成する。
Next, the formation of the liquid crystal polymer layer 5 provided in each of the plurality of groove-shaped recesses 4 provided on one surface of the transparent film 3 will be described. The liquid crystal polymer layer 5 is formed by the following procedure. To form.

【0035】まず、図3の(a)に示したように、前記
透明フィルム3の他方の面(平坦面)粘着された前記ベ
ースフィルム2の外面に、ガラス板等の支持材7を光学
糊8等により貼り付け、前記ベースフィルム2と透明フ
ィルム3の積層体を前記支持材7により補強した状態
で、前記透明フィルム3の複数の溝状凹部4の壁面4
a,4bに、前記溝状凹部4の長さ方向に沿う配向処理
を施す。
First, as shown in FIG. 3A, a supporting material 7 such as a glass plate is optically glued to the outer surface of the base film 2 which is adhered to the other surface (flat surface) of the transparent film 3. Wall surfaces 4 of the plurality of groove-shaped recesses 4 of the transparent film 3 in a state in which the laminated body of the base film 2 and the transparent film 3 is reinforced by the support material 7 by being attached with 8 or the like.
The a and 4b are subjected to an alignment treatment along the longitudinal direction of the groove-shaped recess 4.

【0036】この配向処理は、前記透明フィルム3の複
数の溝状凹部4の壁面4a,4bに水平配向剤(図示せ
ず)をスピンコート法により塗布して乾燥させた後、そ
の配向剤の膜面を、毛足の細かいラビング布により前記
溝状凹部4の長さ方向に沿って同じ方向に数回ラビング
することにより行なう。
In this alignment treatment, a horizontal aligning agent (not shown) is applied to the wall surfaces 4a and 4b of the plurality of groove-shaped recesses 4 of the transparent film 3 by a spin coating method and dried, and then the aligning agent The film surface is rubbed several times in the same direction along the lengthwise direction of the groove-shaped recess 4 with a rubbing cloth having fine fur.

【0037】なお、前記配向剤のスピンコート法による
塗布は、前記透明フィルム3の複数の溝状凹部4の壁面
4a,4bにその全面にわたって配向剤を均一な膜厚に
塗布することができるように、前記支持材7により補強
した前記積層体を、スピンナー上に、前記透明フィルム
3の複数の溝状凹部4の長さ方向を前記スピンナーの径
方向に合わせて固定して行なうのが好ましい。
The application of the aligning agent by the spin coating method allows the aligning agent to be applied to the wall surfaces 4a and 4b of the plurality of groove-shaped recesses 4 of the transparent film 3 in a uniform film thickness over the entire surfaces thereof. In addition, it is preferable that the laminated body reinforced by the support material 7 is fixed on the spinner in such a manner that the lengthwise directions of the plurality of groove-shaped recesses 4 of the transparent film 3 are aligned with the radial direction of the spinner.

【0038】また、前記配向剤には、前記透明フィルム
3が変形しない温度範囲で塗布することができる可溶性
ポリイミドのγ―ブチロラクトン溶液を用いるのが好ま
しく、その場合は、前記スピンナーを2500rpmの
回転数で約30秒間回転させて前記透明フィルム3の複
数の溝状凹部4の壁面4a,4bに塗布した後、80℃
のオーブン内で約1時間乾燥させればよい。
Further, it is preferable to use a γ-butyrolactone solution of soluble polyimide which can be applied in a temperature range in which the transparent film 3 is not deformed as the aligning agent. In this case, the spinner is rotated at a rotation speed of 2500 rpm. After being rotated for about 30 seconds at about 80 ° C. after coating on the wall surfaces 4a, 4b of the plurality of groove-shaped recesses 4 of the transparent film 3.
It may be dried in the oven for about 1 hour.

【0039】次に、図3の(b)のように、前記透明フ
ィルム3上に液状の光重合性高分子液晶5aを滴下し、
前記透明フィルム3の複数の溝状凹部4内に、前記高分
子液晶5aを、その外面が前記溝状凹部4の開放縁と面
一になるように充填する。
Next, as shown in FIG. 3B, a liquid photopolymerizable polymer liquid crystal 5a is dropped on the transparent film 3,
The polymer liquid crystal 5a is filled in the plurality of groove-shaped recesses 4 of the transparent film 3 such that the outer surface thereof is flush with the open edge of the groove-shaped recess 4.

【0040】前記光重合性高分子液晶5aは、室温で液
状の液晶でも、シクロペンタノン等の溶媒に溶解させて
液状にしたものでもよい。
The photopolymerizable polymer liquid crystal 5a may be a liquid crystal which is liquid at room temperature or a liquid which is dissolved in a solvent such as cyclopentanone.

【0041】前記透明フィルム3上に滴下した高分子液
晶5aの前記複数の溝状凹部4内への充填は、前記高分
子液晶5aを自然流動により前記溝状凹部4の全域に均
等に行きわたらせることにより行なう。
The filling of the polymer liquid crystals 5a dropped on the transparent film 3 into the plurality of groove-shaped recesses 4 is performed by allowing the polymer liquid crystals 5a to uniformly spread over the entire area of the groove-shaped recesses 4 by natural flow. By doing.

【0042】なお、溶媒に溶解させた高分子液晶5aを
前記複数の溝状凹部4内に充填する場合は、その溶液を
エバポレータにより濃縮して粘度を高くし、前記透明フ
ィルム3上に滴下した高分子液晶5aを、図3の(b)
に仮想線(二点鎖線)で示したロッド9により押し均
し、前記透明フィルム3の複数の溝状凹部4内の全域
に、その開放縁と面一になるように充填してもよい。そ
の場合、前記ロッド9は、液晶を汚染することが無い金
属、例えばステンレス鋼製のものが好ましい。なお、前
記ロッド9の移動方向は任意でよい。
When the polymer liquid crystals 5a dissolved in a solvent are filled in the plurality of groove-shaped recesses 4, the solution is concentrated by an evaporator to increase the viscosity and dropped on the transparent film 3. The polymer liquid crystal 5a is shown in FIG.
It is also possible to push and smooth with a rod 9 indicated by an imaginary line (two-dot chain line) and fill the entire area of the plurality of groove-shaped recesses 4 of the transparent film 3 so as to be flush with the open edge thereof. In that case, the rod 9 is preferably made of a metal that does not contaminate the liquid crystal, for example, stainless steel. The moving direction of the rod 9 may be arbitrary.

【0043】このように、前記透明フィルム3の複数の
溝状凹部4内に液状の高分子液晶5aを充填すると、そ
の高分子液晶5aの液晶分子が、前記溝状凹部4の壁面
4a,4bに施された配向処理の方向、つまり前記溝状
凹部4の長さ方向に分子長軸が揃うように配向する。
As described above, when the liquid crystalline polymer liquid crystal 5a is filled in the plurality of groove-shaped recesses 4 of the transparent film 3, the liquid crystal molecules of the polymer liquid crystal 5a are wall surfaces 4a and 4b of the groove-shaped recess 4. The orientation is performed so that the long axes of the molecules are aligned in the direction of the orientation treatment performed on the substrate, that is, in the lengthwise direction of the groove-shaped recess 4.

【0044】次に、図3の(c)のように、前記透明フ
ィルム3の複数の溝状凹部4内に充填した高分子液晶5
aの上に、一方の面を同じ方向に方向に数回ラビングし
たTACフィルム等からなる配向処理フィルム10を、
その配向処理方向(ラビング方向)を前記溝状凹部4の
壁面4a,4bに前記溝状凹部4の長さ方向に沿って施
した配向処理方向と正反対の方向(平行で且つ逆向きの
方向)に向けるとともに、その配向処理面を前記高分子
液晶5aの外面に接触させて重ねるとともに、前記配向
処理フィルム10の上に、ガラス板等の透明板11をそ
の外周部が前記配向処理フィルム10の周囲に突出する
状態で重ね、前記透明板11の外周部を枠状の加圧治具
12により軽くプレスして、前記配向処理フィルム10
を前記高分子液晶5aの上面に押し付ける。
Next, as shown in FIG. 3C, the polymer liquid crystal 5 filled in the plurality of groove-shaped recesses 4 of the transparent film 3 is filled.
On a, an orientation-treated film 10 made of a TAC film or the like having one surface rubbed several times in the same direction,
The orientation processing direction (rubbing direction) is the opposite direction (parallel and opposite direction) to the orientation processing direction applied to the wall surfaces 4a and 4b of the groove-shaped recess 4 along the length direction of the groove-shaped recess 4. And a transparent plate 11 such as a glass plate is provided on the orientation-treated film 10 so that the outer peripheral portion of the orientation-treated surface is in contact with the outer surface of the polymer liquid crystal 5a. The orientation-treated film 10 is formed by stacking them in a state of protruding to the periphery, and lightly pressing the outer peripheral portion of the transparent plate 11 with a frame-shaped pressing jig 12.
Is pressed against the upper surface of the polymer liquid crystal 5a.

【0045】なお、前記透明フィルム3の複数の溝状凹
部4内に充填した高分子液晶5aが、溶媒に溶解させた
ものであるときは、前記溶媒の蒸発温度に加熱した真空
オーブン内で前記溶媒を除去し、その後に、前記高分子
液晶5aの上に前記配向処理フィルム10を重ねる。
When the polymer liquid crystal 5a filled in the plurality of groove-shaped recesses 4 of the transparent film 3 is dissolved in a solvent, the polymer liquid crystal 5a is heated in a vacuum oven heated to the evaporation temperature of the solvent. The solvent is removed, and then the alignment treatment film 10 is stacked on the polymer liquid crystal 5a.

【0046】次に、前記透明フィルム3の複数の溝状凹
部4内に充填された高分子液晶5aを、図示しないオー
ブン内で、前記高分子液晶5aがアイソトロピック相を
示す温度(ネマティック―アイソトロピック相転移温度
以上の温度)に加熱し、その後に徐冷して前記高分子液
晶5aをネマティック相に戻す。
Next, the polymer liquid crystal 5a filled in the plurality of groove-shaped recesses 4 of the transparent film 3 is heated in an oven (not shown) at a temperature at which the polymer liquid crystal 5a exhibits an isotropic phase (nematic-isolation). The polymer liquid crystal 5a is returned to the nematic phase by heating to a temperature above the tropic phase transition temperature) and then gradually cooling.

【0047】このように、前記高分子液晶5aを加熱し
て一旦アイソトロピック相に転移させ、その後に徐冷し
てネマティック相に戻すことにより、前記高分子液晶5
aがアイソトロピック相からネマティック相に戻る過程
で、その液晶分子が、前記溝状凹部4の壁面4a,4b
の配向処理方向および前記配向処理フィルム10の配向
処理方向に沿って再配向し、前記高分子液晶5aのほと
んどの液晶分子が、前記溝状凹部4の長さ方向に分子長
軸が揃った配向状態になる。
As described above, the polymer liquid crystal 5a is heated to once transition to the isotropic phase, and then gradually cooled to return to the nematic phase, whereby the polymer liquid crystal 5 is formed.
In the process of a returning from the isotropic phase to the nematic phase, the liquid crystal molecules are converted into
Realignment is performed along the alignment treatment direction and the alignment treatment direction of the alignment treatment film 10, and most of the liquid crystal molecules of the polymer liquid crystal 5a are aligned with their long axes aligned in the longitudinal direction of the groove-shaped recess 4. It becomes a state.

【0048】次に、前記透明板11の外面側から紫外線
を照射することにより、前記透明フィルム3の複数の溝
状凹部4内に充填された光重合性高分子液晶5aをポリ
マー化して液晶ポリマー層5を形成し、その後に、前記
透明板11と配向処理フィルム10を取り外すととも
に、前記支持材7を剥ぎ取って、図1に示した液晶ポリ
マーフィルム1を完成する。
Next, by irradiating ultraviolet rays from the outer surface side of the transparent plate 11, the photopolymerizable polymer liquid crystals 5a filled in the plurality of groove-shaped recesses 4 of the transparent film 3 are polymerized to form a liquid crystal polymer. After forming the layer 5, the transparent plate 11 and the orientation-treated film 10 are removed, and the supporting material 7 is peeled off to complete the liquid crystal polymer film 1 shown in FIG.

【0049】このように、上記実施例の液晶ポリマーフ
ィルム1の製造方法は、一方の面に複数の溝状凹部4が
互いに平行に形成され、前記溝状凹部4の2つの壁面4
a,4bのうち、一方の壁面4aが傾斜面に形成される
とともに他方の壁面4bが急角度の面に形成された光学
的に等方性な透明フィルム3の前記複数の溝状凹部4内
に光重合性高分子液晶5aを充填し、その高分子液晶5
aの液晶分子を前記溝状凹部4の長さ方向に分子長軸が
揃うように配向させることにより、前記透明フィルム3
の複数の溝状凹部4内に、光学的に異方性で、且つ前記
溝状凹部4の長さ方向と実質的に平行な方向の屈折率が
前記透明フィルム3の屈折率よりも大きい液晶ポリマー
層5を形成するものであり、この製造方法によれば、上
記図1に示した液晶ポリマーフィルム1を製造すること
ができる。
As described above, in the method for manufacturing the liquid crystal polymer film 1 of the above-mentioned embodiment, the plurality of groove-shaped recesses 4 are formed in parallel on one surface, and the two wall surfaces 4 of the groove-shaped recess 4 are formed.
In the plurality of groove-shaped concave portions 4 of the optically isotropic transparent film 3 in which one wall surface 4a of a and 4b is formed as an inclined surface and the other wall surface 4b is formed of a steep angle surface. The photopolymerizable polymer liquid crystal 5a is filled in the
By aligning the liquid crystal molecules of a in the longitudinal direction of the groove-shaped recess 4 so that the long axes of the molecules are aligned, the transparent film 3
Liquid crystal which is optically anisotropic in the plurality of groove-shaped recesses 4 and has a refractive index in a direction substantially parallel to the longitudinal direction of the groove-shaped recesses 4 is larger than that of the transparent film 3. The polymer layer 5 is formed, and according to this manufacturing method, the liquid crystal polymer film 1 shown in FIG. 1 can be manufactured.

【0050】また、この実施例の製造方法においては、
前記液晶ポリマー層5を、前記透明フィルム3の複数の
溝状凹部4の壁面4a,4bに、前記溝状凹部4の長さ
方向に沿う配向処理を施した後、前記複数の溝状凹部4
内に、高分子液晶5aを充填し、その液晶分子を前記配
向処理の方向に配向させ、その後に前記高分子液晶5a
をポリマー化することにより形成しているため、前記高
分子液晶5aの液晶分子を前記溝状凹部4の長さ方向に
分子長軸が揃うように配向させた、光学的に異方性で、
且つ前記溝状凹部4の長さ方向と実質的に平行な方向の
屈折率が前記透明フィルム3の屈折率よりも大きい液晶
ポリマー層5を形成することができる。
Further, in the manufacturing method of this embodiment,
The liquid crystal polymer layer 5 is subjected to an alignment treatment on the wall surfaces 4a, 4b of the plurality of groove-shaped recesses 4 of the transparent film 3 along the lengthwise direction of the groove-shaped recesses 4, and then the plurality of groove-shaped recesses 4 are formed.
Polymer liquid crystal 5a is filled therein, and the liquid crystal molecules are aligned in the direction of the alignment treatment.
Since it is formed by polymerizing, the liquid crystal molecules of the polymer liquid crystal 5a are oriented so that the long axes of the molecules are aligned in the lengthwise direction of the groove-shaped recess 4 and are optically anisotropic.
Further, it is possible to form the liquid crystal polymer layer 5 whose refractive index in the direction substantially parallel to the lengthwise direction of the groove-shaped recess 4 is larger than that of the transparent film 3.

【0051】しかも、上記実施例の製造方法では、前記
透明フィルム3の複数の溝状凹部4内に充填した高分子
液晶5aの上に、一方の方向に配向処理が施された配向
処理フィルム10を、その配向処理方向を前記溝状凹部
4の壁面4a,4bに施した配向処理方向と正反対の方
向に向けて重ね、その状態で前記高分子液晶5aをアイ
ソトロピック相を示す温度に加熱し、その後に徐冷して
ネマティック相に戻すことにより、前記高分子液晶5a
の液晶分子を、前記溝状凹部4の壁面4a,4bおよび
前記配向処理フィルム10の配向処理方向に再配向させ
ているため、前記高分子液晶5aのほとんどの液晶分子
を前記溝状凹部4の長さ方向に配向させ、より良好な配
向状態の液晶ポリマー層5を形成することができる。
Moreover, in the manufacturing method of the above-described embodiment, the orientation-treated film 10 in which the orientation treatment is applied in one direction on the polymer liquid crystal 5a filled in the plurality of groove-shaped recesses 4 of the transparent film 3. With the orientation treatment direction facing the direction opposite to the orientation treatment direction applied to the wall surfaces 4a, 4b of the groove-shaped recess 4, and the polymer liquid crystal 5a is heated to a temperature exhibiting an isotropic phase in that state. The polymer liquid crystal 5a is then cooled by slowly cooling it back to the nematic phase.
Most of the liquid crystal molecules of the polymer liquid crystal 5a are realigned in the alignment treatment direction of the wall surfaces 4a and 4b of the groove-shaped recess 4 and the alignment-treated film 10 in the groove-shaped recess 4. By aligning in the length direction, the liquid crystal polymer layer 5 having a better alignment state can be formed.

【0052】なお、上記実施例の製造方法では、前記透
明フィルム3の複数の溝状凹部4内に充填した高分子液
晶5aの上に前記配向処理フィルム10を重ねた状態
で、前記高分子液晶5aをアイソトロピック相を示す温
度に加熱した後に徐冷してネマティック相に戻す再配向
処理を行なっているが、前記再配向処理は、前記高分子
液晶5aの上に前記配向処理フィルム10を重ねずに行
なってもよい。
In the manufacturing method of the above embodiment, the polymer liquid crystal 5a filled in the plurality of groove-shaped recesses 4 of the transparent film 3 with the alignment treatment film 10 stacked thereon is used. 5a is heated to a temperature showing an isotropic phase and then slowly cooled to return to a nematic phase. The realignment treatment is performed by stacking the alignment treatment film 10 on the polymer liquid crystal 5a. You may do without.

【0053】その場合、前記透明フィルム3の複数の溝
状凹部4内に充填した高分子液晶5aが、溶媒に溶解さ
せたものであるときは、前記溶媒を蒸発させて除去する
工程と、前記高分子液晶5aをアイソトロピック相を示
す温度に加熱する処理とを連続して行なってもよい。
In that case, when the polymer liquid crystal 5a filled in the plurality of groove-shaped recesses 4 of the transparent film 3 is dissolved in a solvent, the step of evaporating and removing the solvent, The treatment of heating the polymer liquid crystal 5a to a temperature exhibiting an isotropic phase may be continuously performed.

【0054】さらに、上記実施例の製造方法では、前記
透明フィルム3の複数の溝状凹部4内に充填した高分子
液晶5aを、アイソトロピック相を示す温度に加熱した
後に徐冷してネマティック相に戻すことにより再配向さ
せているが、上述したように、前記透明フィルム3の複
数の溝状凹部4内に液状の高分子液晶5aを充填する
と、その高分子液晶5aの液晶分子が、前記溝状凹部4
の壁面4a,4bの配向処理方向(溝状凹部4の長さ方
向)に分子長軸が揃うように配向するため、前記再配向
処理は、必ずしも必要ではない。
Further, in the manufacturing method of the above-mentioned embodiment, the polymer liquid crystal 5a filled in the plurality of groove-shaped recesses 4 of the transparent film 3 is heated to a temperature exhibiting an isotropic phase and then gradually cooled to a nematic phase. However, as described above, when the liquid crystalline polymer liquid crystals 5a are filled in the plurality of groove-shaped concave portions 4 of the transparent film 3, the liquid crystal molecules of the polymeric liquid crystal molecules 5a become Groove-shaped recess 4
The reorientation treatment is not always necessary because the molecules are oriented so that the long axes of the molecules are aligned in the orientation direction of the wall surfaces 4a and 4b (the lengthwise direction of the groove-shaped recess 4).

【0055】図4はこの発明の液晶ポリマーフィルムの
製造方法の第2の実施例を示す前記透明フィルム3の複
数の溝状凹部4内に液晶ポリマー層5を形成する工程の
斜視図である。
FIG. 4 is a perspective view of a step of forming a liquid crystal polymer layer 5 in a plurality of groove-shaped recesses 4 of the transparent film 3 showing a second embodiment of the method for producing a liquid crystal polymer film of the present invention.

【0056】この実施例の製造方法は、前記液晶ポリマ
ー層5をポリマー化した熱軟化性高分子液晶を用いて形
成する方法であり、上述した第1の実施例の製造方法と
同様にして前記ベースフィルム2と透明フィルム3の積
層体を作製した後、前記透明フィルム3の複数の溝状凹
部4内に軟化性高分子液晶5bを充填し、その液晶分子
を前記溝状凹部4の長さ方向に分子長軸が揃うように配
向させて液晶ポリマー層5を形成する。
The manufacturing method of this embodiment is a method of forming the liquid crystal polymer layer 5 using a polymerized thermosoftening polymer liquid crystal, and is the same as the manufacturing method of the first embodiment described above. After the laminated body of the base film 2 and the transparent film 3 is prepared, the plurality of groove-shaped recesses 4 of the transparent film 3 are filled with the softening polymer liquid crystal 5b, and the liquid crystal molecules are filled in the length of the groove-shaped recesses 4. The liquid crystal polymer layer 5 is formed by orienting so that the long axes of the molecules are aligned with each other.

【0057】なお、第1の実施例の製造方法では、前記
透明フィルム3の複数の溝状凹部4の壁面4a,4bに
配向処理を施しているが、この実施例の製造方法では、
前記透明フィルム3の複数の溝状凹部4の壁面4a,4
bに配向処理を施す必要はない。
In the manufacturing method of the first embodiment, the wall surfaces 4a and 4b of the plurality of groove-shaped recesses 4 of the transparent film 3 are subjected to the orientation treatment, but in the manufacturing method of this embodiment,
Wall surfaces 4a, 4 of the plurality of groove-shaped recesses 4 of the transparent film 3
It is not necessary to subject b to orientation treatment.

【0058】この実施例の製造方法による前記液晶ポリ
マー層5の形成について説明すると、この実施例では、
ポリマー化した熱軟化性高分子液晶5bをトルエンまた
はキシレン等の少量の溶媒に溶かして流動性をもたせ、
その熱軟化性高分子液晶5bを前記透明フィルム3上に
滴下して図3の(b)に仮想線で示したロッド9により
押し均すことにより、前記熱軟化性高分子液晶5bを、
前記透明フィルム3の複数の溝状凹部4内の全域に、そ
の開放縁と面一になるように充填する。
The formation of the liquid crystal polymer layer 5 by the manufacturing method of this embodiment will be described. In this embodiment,
The polymerized thermo-softening polymer liquid crystal 5b is dissolved in a small amount of solvent such as toluene or xylene to have fluidity,
The thermosoftening polymer liquid crystal 5b is dropped on the transparent film 3 and is evenly pressed by the rod 9 shown by a virtual line in FIG.
The entire area of the plurality of groove-shaped recesses 4 of the transparent film 3 is filled so as to be flush with the open edges.

【0059】次に、前記高分子液晶5bを溶かした溶媒
の蒸発温度に加熱した真空オーブン内で前記溶媒を除去
し、その後、前記熱軟化性高分子液晶5bの軟化温度よ
りも若干低い温度のホットプレート(図示せず)上で、
前記高分子液晶5bを液晶分子が自由に動ける状態に軟
化する直前の温度に温めながら、その上に、図4(a)
に示したようにガラス板または樹脂フィルムからなる透
明な板材13を載せ、この板材13を前記高分子液晶5
bの外面に密着させる。
Next, the solvent is removed in a vacuum oven heated to the evaporation temperature of the solvent in which the polymer liquid crystal 5b is dissolved, and then the temperature is slightly lower than the softening temperature of the thermosoftening polymer liquid crystal 5b. On a hot plate (not shown),
While warming the polymer liquid crystal 5b to a temperature just before the liquid crystal molecules are softened to a freely movable state, the polymer liquid crystal 5b is further heated to the temperature shown in FIG.
As shown in FIG. 5, a transparent plate material 13 made of a glass plate or a resin film is placed, and the plate material 13 is attached to the polymer liquid crystal 5
Adhere to the outer surface of b.

【0060】なお、前記ポリマー化した熱軟化性高分子
液晶5bは、室温では完全に固体であり、80℃弱の温
度で液晶分子が自由に動ける状態に軟化し始める物性の
ものが好ましく、このような物性の熱軟化性高分子液晶
5bが軟化し始める直前の温度は70℃程度であるた
め、前記透明フィルム3を変形させることなく、前記高
分子液晶5bを、液晶分子が自由に動ける状態に軟化す
る直前の温度に温めることができる。
The polymerized thermo-softening polymer liquid crystal 5b is preferably completely solid at room temperature and has physical properties such that the liquid crystal molecules start to soften at a temperature of a little less than 80 ° C. Since the temperature immediately before the thermosoftening polymer liquid crystal 5b having such physical properties starts to soften is about 70 ° C., the polymer liquid crystal 5b can freely move without deforming the transparent film 3. It can be warmed to the temperature just before softening.

【0061】次に、前記高分子液晶5bを前記温度(液
晶分子が自由に動ける状態に軟化する直前の温度)に温
めた状態を維持しながら、図4の(b)に示したよう
に、前記高分子液晶5bの上面に密着させた前記板材1
3を、前記透明フィルム3に対し、前記溝状凹部4の長
さ方向に沿って一方向に僅かにずらし、前記複数の溝状
凹部4内の高分子液晶5bの液晶分子に剪断力を加える
ことにより、前記高分子液晶を前記板材13のずらし方
向に配向させ、前記液晶分子が前記溝状凹部4の長さ方
向に分子長軸が揃うように配向した液晶ポリマー層5を
形成する。
Next, as shown in FIG. 4B, while maintaining the state where the polymer liquid crystal 5b is warmed to the above temperature (the temperature just before the liquid crystal molecules are softened to the freely movable state), The plate material 1 adhered to the upper surface of the polymer liquid crystal 5b
3 is slightly shifted in one direction along the lengthwise direction of the groove-shaped recess 4 with respect to the transparent film 3, and shearing force is applied to the liquid crystal molecules of the polymer liquid crystal 5b in the groove-shaped recesses 4. As a result, the polymer liquid crystal is aligned in the displacement direction of the plate member 13 to form the liquid crystal polymer layer 5 in which the liquid crystal molecules are aligned so that their long axes are aligned in the lengthwise direction of the groove-shaped recess 4.

【0062】この後は、徐冷または強制冷却により室温
まで温度を下げ、前記液晶ポリマー層5の高分子液晶5
bを完全な固体にするとともに、前記板材13を剥ぎ取
り、さらにベースフィルム2の外面に貼り付けた支持材
7を剥ぎ取って、図1に示した液晶ポリマーフィルム1
を完成する。
After that, the temperature is lowered to room temperature by slow cooling or forced cooling, and the polymer liquid crystal 5 of the liquid crystal polymer layer 5 is cooled.
b is made completely solid, the plate material 13 is peeled off, and further the support material 7 attached to the outer surface of the base film 2 is peeled off to obtain the liquid crystal polymer film 1 shown in FIG.
To complete.

【0063】このように、この実施例の製造方法は、前
記透明フィルム3の複数の溝状凹部4内にポリマー化し
た熱軟化性高分子液晶5bを充填した後、前記高分子液
晶5bの外面に板材13を密着させ、前記高分子液晶5
bを液晶分子が自由に動ける状態に軟化する直前の温度
に温めた状態で、前記板材13を前記透明フィルム3に
対し、前記溝状凹部4の長さ方向に沿って一方向にずら
すことにより、前記高分子液晶5bの液晶分子を前記板
材13ずらし方向に配向させて液晶ポリマー層5を形成
するものであり、この製造方法によれば、ポリマー化し
た高分子液晶5bを用いて前記液晶ポリマー層5を形成
することができる。
As described above, according to the manufacturing method of this embodiment, after filling the plurality of groove-shaped recesses 4 of the transparent film 3 with the polymerized thermosoftening polymer liquid crystal 5b, the outer surface of the polymer liquid crystal 5b is filled. The plate material 13 is closely attached to the polymer liquid crystal 5
By shifting b in one direction along the length direction of the groove-shaped recess 4 with respect to the transparent film 3 while warming b to a temperature immediately before softening to a state where liquid crystal molecules can freely move, The liquid crystal molecules of the polymer liquid crystal 5b are aligned in the displacement direction of the plate material 13 to form the liquid crystal polymer layer 5. According to this manufacturing method, the polymerized polymer liquid crystal 5b is used to form the liquid crystal polymer. The layer 5 can be formed.

【0064】なお、この実施例の製造方法では、前記透
明フィルム3の複数の溝状凹部4内に充填した熱軟化性
高分子液晶5bを液晶分子が自由に動ける状態に軟化す
る直前の温度に温めながら、その上に前記板材13を載
せることにより、この板材13を前記高分子液晶5bの
外面に密着させているが、前記板材13は、前記高分子
液晶5bの外面に光硬化性接着剤等により貼り付けて密
着させてもよく、その場合は、前記高分子液晶5bの外
面に前記板材13を貼り付けた後に、前記液晶分子が自
由に動ける状態に軟化する直前の温度に温め、その状態
で、前記板材13を前記透明フィルム3に対し、前記溝
状凹部4の長さ方向に沿って一方向にずらすことによ
り、前記高分子液晶5bの液晶分子を前記板材13のず
らし方向に配向させて液晶ポリマー層5を形成すればよ
い。この場合も、前記板材13は、前記液晶ポリマー層
5を形成した後に剥ぎ取る。
In the manufacturing method of this embodiment, the thermosoftening polymer liquid crystal 5b filled in the plurality of groove-shaped recesses 4 of the transparent film 3 is heated to a temperature immediately before it is softened so that liquid crystal molecules can freely move. While the plate material 13 is placed on the polymer liquid crystal 5b while being warmed, the plate material 13 is brought into close contact with the outer surface of the polymer liquid crystal 5b. The plate material 13 is a photocurable adhesive on the outer surface of the polymer liquid crystal 5b. It may be adhered by adhering by means such as, and in that case, after adhering the plate material 13 to the outer surface of the polymer liquid crystal 5b, the liquid crystal molecules are warmed to a temperature just before softening to a freely movable state, In this state, the plate material 13 is displaced in one direction along the lengthwise direction of the groove-shaped recess 4 with respect to the transparent film 3 so that the liquid crystal molecules of the polymer liquid crystal 5b are aligned in the displacement direction of the plate material 13. Let It may be formed of the liquid crystal polymer layer 5. Also in this case, the plate material 13 is peeled off after the liquid crystal polymer layer 5 is formed.

【0065】上記液晶ポリマーフィルム1は、一方の面
に複数の溝状凹部4が互いに平行に形成され、これらの
溝状凹部4の互いに対向する2つの壁面4a,4bのう
ち、一方の壁面4aが傾斜面に形成され、他方の壁面4
bが急角度の面に形成された光学的に等方性な透明フィ
ルム3と、前記透明フィルム3の複数の溝状凹部4内に
設けられた、光学的に異方性で、前記溝状凹部4の長さ
方向と実質的に平行な方向の屈折率が前記透明フィルム
3の屈折率よりも大きい液晶ポリマー層5とからなって
いるため、前記液晶ポリマー層5が設けられた一方の面
側から入射した光のうち、前記溝状凹部4の長さ方向に
沿った振動面を有する偏光成分の光を、前記液晶ポリマ
ー層5と前記透明フィルム3の溝状凹部4の壁面4a,
4bとの界面により、前記透明フィルム3の他方の面の
法線hに対する角度が大きくなる方向に屈折させて前記
透明フィルム3の他方の面側に出射する。
The liquid crystal polymer film 1 has a plurality of groove-shaped recesses 4 formed on one surface in parallel with each other, and one wall surface 4a of the two wall surfaces 4a, 4b of the groove-shaped recesses 4 facing each other. Is formed on the inclined surface, and the other wall surface 4
b is an optically isotropic transparent film 3 formed on a surface with a steep angle, and the optically anisotropic and groove-shaped transparent films 3 are provided in a plurality of groove-shaped recesses 4 of the transparent film 3. One surface provided with the liquid crystal polymer layer 5 because the liquid crystal polymer layer 5 has a refractive index in a direction substantially parallel to the lengthwise direction of the concave portion 4 is larger than that of the transparent film 3. Of the light incident from the side, the light of the polarized component having the vibrating surface along the length direction of the groove-shaped recess 4 is converted into the liquid crystal polymer layer 5 and the wall surface 4a of the groove-shaped recess 4 of the transparent film 3,
By the interface with 4b, the light is refracted in the direction in which the angle of the other surface of the transparent film 3 with respect to the normal line h increases, and the light is emitted to the other surface side of the transparent film 3.

【0066】なお、前記液晶ポリマー層5の液晶分子の
配向方向と直交する方向、つまり前記透明フィルム3の
溝状凹部4の長さ方向と実質的に直交する方向の屈折率
は、前記透明フィルム3の屈折率と同じであるため、前
記溝状凹部4の長さ方向に対して直交する方向に沿った
振動面を有する偏光成分の光は、ほとんど屈折させるこ
となく透過させる。
The refractive index in the direction orthogonal to the alignment direction of the liquid crystal molecules of the liquid crystal polymer layer 5, that is, in the direction substantially orthogonal to the longitudinal direction of the groove-shaped recess 4 of the transparent film 3, is the transparent film. Since it has the same refractive index as that of 3, the light of the polarized component having the vibrating surface along the direction orthogonal to the lengthwise direction of the groove-shaped recess 4 is transmitted with almost no refraction.

【0067】また、前記透明フィルム3の他方の面は前
記ベースフィルム2の上に粘着されているが、前記ベー
スフィルム2は前記透明フィルム3と同様に光学的に等
方性であるため、前記透明フィルム3の他方の面側に出
射した光は、ほとんど屈折することなく前記ベースフィ
ルム2を透過して、このベースフィルム2の外側に出射
する。
The other surface of the transparent film 3 is adhered onto the base film 2, but since the base film 2 is optically isotropic like the transparent film 3, The light emitted to the other surface side of the transparent film 3 passes through the base film 2 with almost no refraction and is emitted to the outside of the base film 2.

【0068】そのため、前記液晶ポリマーフィルム1
を、液晶素子の入射側に配置された反射偏光板とこの反
射偏光板の入射側に配置する位相板との間に、前記液晶
ポリマー層5が設けられた一方の面を前記反射偏光板に
対向させ、前記透明フィルム3の他方の面(ベースフィ
ルム2の外面)を前記位相板に対向させるとともに、前
記透明フィルム3の複数の溝状凹部4の長さ方向を前記
反射偏光板の反射軸と実質的に平行にして介在させるこ
とにより、入射光のうちの前記反射偏光板により反射さ
れた光を、前記位相板により効率良く内面反射させ、前
記位相板の位相差により偏光状態を変えた光を前記反射
偏光板を透過させて液晶素子に入射させることができ、
したがって、前記反射偏光板を透過して液晶素子に入射
する直線偏光の強度を高くするとともに偏光度も充分に
し、入射側に反射偏光板を備えた液晶表示装置に、明る
く、コントラストの良い表示を行なわせることができ
る。
Therefore, the liquid crystal polymer film 1
Between the reflective polarizing plate disposed on the incident side of the liquid crystal element and the phase plate disposed on the incident side of the reflective polarizing plate, one surface on which the liquid crystal polymer layer 5 is provided is used as the reflective polarizing plate. The other surface of the transparent film 3 (the outer surface of the base film 2) is opposed to the phase plate, and the lengthwise direction of the plurality of groove-shaped recesses 4 of the transparent film 3 is set to the reflection axis of the reflection polarizing plate. The light reflected by the reflective polarizing plate among the incident light is efficiently internally reflected by the phase plate by changing the polarization state by the phase difference of the phase plate by interposing the phase plate substantially parallel to Light can be transmitted through the reflective polarizing plate and incident on a liquid crystal element,
Therefore, the intensity of the linearly polarized light that passes through the reflective polarizing plate and enters the liquid crystal element is increased, and the degree of polarization is also sufficient, so that a liquid crystal display device having a reflective polarizing plate on the incident side can display a bright and good contrast. Can be done.

【0069】図5は、前記液晶ポリマーフィルム1を備
えた液晶表示装置の一例を示す側面図であり、この液晶
表示装置は、その使用環境の光である外光を利用して表
示する反射型液晶表示装置であり、液晶素子20と、こ
の液晶素子20の入射面である前側に偏光子として配置
された反射偏光板(以下、前側反射偏光板と言う)21
と、その前側(入射側)に配置された位相板22と、前
記反射偏光板21と位相板22との間に配置された前記
液晶ポリマーフィルム1と、前記液晶素子20の後側
に、検光子を兼ねる反射手段として配置された反射偏光
板(以下、後側反射偏光板と言う)23と、前記反射偏
光板23の背後に配置された吸収膜24と、前記液晶素
子20と前記反射偏光板23との間に配置された拡散層
25とからなっている。
FIG. 5 is a side view showing an example of a liquid crystal display device provided with the liquid crystal polymer film 1. This liquid crystal display device is a reflection type device that utilizes external light, which is the light of the environment in which the liquid crystal display device is used. It is a liquid crystal display device, and a liquid crystal element 20 and a reflective polarizing plate (hereinafter referred to as front reflective polarizing plate) 21 arranged as a polarizer on the front side which is the incident surface of the liquid crystal element 20.
A phase plate 22 arranged on the front side (incident side) thereof, the liquid crystal polymer film 1 arranged between the reflection polarizing plate 21 and the phase plate 22, and a rear side of the liquid crystal element 20. A reflective polarizing plate (hereinafter referred to as a rear reflective polarizing plate) 23 arranged as a reflecting means that also serves as a photon, an absorption film 24 arranged behind the reflective polarizing plate 23, the liquid crystal element 20, and the reflected polarized light. The diffusion layer 25 is disposed between the plate 23 and the plate 23.

【0070】なお、前記液晶素子20は、アクティブマ
トリックス型または単純マトリックス型のものであり、
その構造は図示しないが、一対の透明基板間に、これら
の基板の内面にそれぞれ設けられた透明電極間に印加さ
れる電界に応じて透過光の偏光状態を制御する液晶層が
設けられたものである。
The liquid crystal element 20 is of an active matrix type or a simple matrix type,
Although its structure is not shown, a liquid crystal layer for controlling the polarization state of transmitted light according to an electric field applied between transparent electrodes provided on the inner surfaces of the pair of transparent substrates is provided between the pair of transparent substrates. Is.

【0071】また、前記前側反射偏光板21と後側反射
偏光板23はいずれも、互いに直交する方向に反射軸と
透過軸とをもち、入射光の互いに直交する2つの偏光成
分のうち、前記透過軸に沿った振動面を有する偏光成分
(以下、透過軸に沿った偏光成分と言う)の光を透過さ
せ、前記反射軸に沿った振動面を有する偏光成分(以
下、反射軸に沿った偏光成分と言う)の光を反射するも
のであり、この前側反射偏光板21と後側反射偏光板2
3はそれぞれ、その反射軸と透過軸を予め定められた方
向に向けて配置されている。
Further, both the front-side reflection polarizing plate 21 and the back-side reflection polarizing plate 23 have a reflection axis and a transmission axis in directions orthogonal to each other, and among the two polarization components of incident light which are orthogonal to each other, A polarized light component having a vibration plane along the transmission axis (hereinafter referred to as a polarization component along the transmission axis) is transmitted, and a polarization component having a vibration plane along the reflection axis (hereinafter, referred to as a reflection axis (Referred to as a polarization component), which reflects the light.
3 are arranged so that their reflection axis and transmission axis are oriented in a predetermined direction.

【0072】また、前記後側反射偏光板23の背後に配
置された吸収膜24は、黒色膜からなっており、前記液
晶素子20と前記後側反射偏光板23との間に配置され
た拡散層25は、表面を粗面化した透明樹脂フィルムま
たは散乱粒子を分散させた透明樹脂層からなっている。
Further, the absorption film 24 arranged behind the rear reflection polarizing plate 23 is made of a black film, and is diffused between the liquid crystal element 20 and the rear reflection polarizing plate 23. The layer 25 is composed of a transparent resin film having a roughened surface or a transparent resin layer in which scattering particles are dispersed.

【0073】一方、前記前側反射偏光板23の前側に配
置された位相板22は、透過する光の常光と異常光との
間に1/4波長の位相差を与えるλ/4位相差フィルム
からなっている。
On the other hand, the phase plate 22 arranged on the front side of the front side reflection polarizing plate 23 is made of a λ / 4 phase difference film which gives a phase difference of ¼ wavelength between the ordinary ray and the extraordinary ray of the transmitted light. Has become.

【0074】図6および図7は、前記前側反射偏光板2
1と、前記位相板22と、前記前側反射偏光板21と位
相板22との間に配置された前記液晶ポリマーフィルム
1の一部分の拡大図および斜視図であり、前記位相板2
2は、その遅相軸22aを、前記前側反射偏光板21の
反射軸21sと透過軸21pとの両方に対して略45°
の角度で交差させて配置されている。
6 and 7 show the front side reflection polarizing plate 2
1 is an enlarged view and a perspective view of a part of the liquid crystal polymer film 1 disposed between the front reflection polarizing plate 21 and the phase plate 22;
2, the slow axis 22a is approximately 45 ° with respect to both the reflection axis 21s and the transmission axis 21p of the front side reflection polarizing plate 21.
Are crossed at an angle of.

【0075】そして、前記液晶ポリマーフィルム1は、
前記液晶ポリマー層5が設けられた一方の面を前記前側
反射偏光板21に対向させ、前記透明フィルム3の他方
の面(ベースフィルム2の外面)を前記位相板22に対
向させるとともに、前記透明フィルム3の複数の溝状凹
部4の長さ方向を、前記前側反射偏光板21の反射軸2
1sと実質的に平行な方向に向けて前記前側反射偏光板
21と位相板22との間に介在されている。
The liquid crystal polymer film 1 is
One of the surfaces provided with the liquid crystal polymer layer 5 faces the front-side reflective polarizing plate 21, the other surface of the transparent film 3 (the outer surface of the base film 2) faces the phase plate 22, and the transparent The lengthwise direction of the plurality of groove-shaped recesses 4 of the film 3 is defined by the reflection axis 2 of the front side reflection polarizing plate 21.
It is interposed between the front reflective polarizing plate 21 and the phase plate 22 in a direction substantially parallel to 1 s.

【0076】なお、外光を利用して表示する反射型液晶
表示装置は、その画面の法線に対して前記画面の上縁側
(図5〜図7において右側)に傾いた方向を明るい外光
が得られる方向に向けて使用されるのが普通であり、し
たがって、最も明るい外光は、前記画面の法線に対して
前記画面の上縁方向に傾いた方向から入射する。
The reflection type liquid crystal display device which displays by utilizing external light is bright external light in the direction inclined to the upper edge side (right side in FIGS. 5 to 7) of the screen with respect to the normal line of the screen. Is usually used in such a direction that the light is obtained, so that the brightest external light enters from a direction inclined toward the upper edge direction of the screen with respect to the normal line of the screen.

【0077】そのため、この液晶表示装置では、図7に
示したように、前記前側反射偏光板21を、その反射軸
21sを前記前記画面の法線と前記最も明るい外光の入
射方向から入射する光の光路とを含む入射方位面Aに対
して実質的に直交させ、透過軸21pを前記入射方位面
Aと実質的に平行にして配置し、前記液晶ポリマーフィ
ルム1を、前記透明フィルム3の複数の溝状凹部4の長
さ方向を前記入射方位面Aに対して実質的に直交させる
とともに、前記溝状凹部4の互いに対向する2つの壁面
4a,4bのうち、傾斜面に形成された一方の壁面4a
を、最も明るい外光の入射方向である前記画面の上縁側
に向けて配置している。
Therefore, in this liquid crystal display device, as shown in FIG. 7, the reflection axis 21s of the front side reflection polarizing plate 21 is incident from the normal line of the screen and the incident direction of the brightest external light. The liquid crystal polymer film 1 is disposed so that the transmission axis 21p is substantially parallel to the incident azimuth plane A including the optical path of light and the transmission axis 21p is substantially parallel to the incident azimuth plane A. The lengthwise direction of the plurality of groove-shaped recesses 4 is made substantially orthogonal to the incident azimuth plane A, and the two wall surfaces 4a and 4b of the groove-shaped recesses 4 facing each other are formed on the inclined surfaces. One wall surface 4a
Are arranged toward the upper edge side of the screen, which is the direction of incidence of the brightest external light.

【0078】この液晶表示装置は、表示の観察側である
前側から入射した外光を、前記前側反射偏光板21の透
過軸21pに沿った直線偏光として液晶素子20に入射
させるとともに、この液晶素子20を透過してその後側
に出射した光のうち、前記後側反射偏光板23の反射軸
に沿った偏光成分の光を、この後側反射偏光板23によ
り反射して前側に出射するとともに、前記後側反射偏光
板23の透過軸に沿った偏光成分の光を、この後側反射
偏光板23を透過させて吸収膜24により吸収すること
により画像を表示する。
In this liquid crystal display device, external light incident from the front side, which is the viewing side of the display, is incident on the liquid crystal element 20 as linearly polarized light along the transmission axis 21p of the front reflective polarizing plate 21, and at the same time, this liquid crystal element is used. Of the light transmitted through 20 and emitted to the rear side, light having a polarization component along the reflection axis of the rear reflective polarizing plate 23 is reflected by the rear reflective polarizing plate 23 and emitted to the front side, An image is displayed by transmitting light having a polarization component along the transmission axis of the rear reflective polarizing plate 23 through the rear reflective polarizing plate 23 and absorbing it by the absorbing film 24.

【0079】すなわち、前記液晶表示装置にその前側か
ら入射した外光は、その光路を図6および図7に矢線で
示したように、前記位相板22を透過し、さらに、前記
液晶ポリマーフィルム1を透過して前側反射偏光板21
に入射する。
That is, the external light incident on the liquid crystal display device from the front side thereof passes through the phase plate 22 as shown by the arrow in FIGS. 6 and 7, and further, the liquid crystal polymer film. 1 through which the front side reflective polarizing plate 21 is transmitted.
Incident on.

【0080】なお、前記外光は非偏光の光であり、前記
位相板22と液晶ポリマーフィルム1を透過してもその
偏光状態は変わらないため、前記前側反射偏光板21に
入射する光は非偏光の光である。
Since the outside light is non-polarized light and its polarization state does not change even if it passes through the phase plate 22 and the liquid crystal polymer film 1, the light incident on the front side reflection polarizing plate 21 is non-polarized. It is polarized light.

【0081】そして、前記前側反射偏光板21に入射し
た光のうち、この前側反射偏光板21の透過軸21pに
沿った偏光成分の光pは、この前側反射偏光板21を透
過して液晶素子20に入射する。
Of the light incident on the front reflection polarizing plate 21, the light p of the polarization component along the transmission axis 21p of the front reflection polarizing plate 21 is transmitted through the front reflection polarizing plate 21 and the liquid crystal element. It is incident on 20.

【0082】一方、前側から前記位相板22と液晶ポリ
マーフィルム1を透過して前記前側反射偏光板21に入
射した光のうち、前記前側反射偏光板21の反射軸21
sに沿った偏光成分の光sは、この前側反射偏光板21
により反射される。
On the other hand, of the light that has passed through the phase plate 22 and the liquid crystal polymer film 1 from the front side and is incident on the front reflection polarization plate 21, the reflection axis 21 of the front reflection polarization plate 21 is included.
The light s of the polarization component along s is reflected by the front side reflection polarizing plate 21.
Is reflected by.

【0083】前記前側反射偏光板21により反射された
光sは、前記液晶ポリマーフィルム1にその後側から入
射し、前記透明フィルム3の複数の溝状凹部4の壁面4
a,4bと液晶ポリマー層5との界面により前記透明フ
ィルム3の他方の面の法線に対して角度が大きくなる方
向に屈折されて前記液晶ポリマーフィルム1の前側に出
射し、前記位相板22にその後側から入射する。
The light s reflected by the front reflective polarizing plate 21 is incident on the liquid crystal polymer film 1 from the rear side thereof, and the wall surfaces 4 of the plurality of groove-shaped recesses 4 of the transparent film 3 are made.
The interface between a and 4b and the liquid crystal polymer layer 5 is refracted in a direction in which the angle with respect to the normal line of the other surface of the transparent film 3 becomes large, and is emitted to the front side of the liquid crystal polymer film 1, and the phase plate 22 Is incident from the rear side.

【0084】すなわち、前記液晶ポリマーフィルム1
は、その透明フィルム3の複数の溝状凹部4の長さ方向
を前記前側反射偏光板21の反射軸21sと実質的に平
行にして配置されているため、前記前側反射偏光板21
により反射されて前記液晶ポリマーフィルム1にその後
側(液晶ポリマー層5が設けられた一方の面側)から入
射する光は、前記前側反射偏光板21の反射軸21sに
沿った偏光成分の光sである。
That is, the liquid crystal polymer film 1
Is arranged such that the lengthwise direction of the plurality of groove-shaped recesses 4 of the transparent film 3 is substantially parallel to the reflection axis 21s of the front-side reflection polarizing plate 21, and thus the front-side reflection polarizing plate 21.
The light that is reflected by the liquid crystal polymer film 1 and enters the liquid crystal polymer film 1 from the rear side (one surface side where the liquid crystal polymer layer 5 is provided) is the light s of the polarization component along the reflection axis 21s of the front side reflection polarizing plate 21. Is.

【0085】そして、前記液晶ポリマーフィルム1は、
上述したように、前記液晶ポリマー層5が設けられた一
方の面側から入射した光のうち、前記透明フィルム3の
溝状凹部4の長さ方向に沿った振動面を有する偏光成分
の光を、前記液晶ポリマー層5と前記透明フィルム3の
溝状凹部4の壁面4a,4bとの界面により前記透明フ
ィルム3の他方の面の法線hに対する角度が大きくなる
方向に屈折させて前記透明フィルム3の他方の面側に出
射するため、前記前側反射偏光板21により反射された
光sは、前記液晶ポリマーフィルム1により前記透明フ
ィルム3の他方の面の法線に対して角度が大きくなる方
向に屈折されて前記位相板22にその後側から入射す
る。
The liquid crystal polymer film 1 is
As described above, among the light incident from the one surface side where the liquid crystal polymer layer 5 is provided, the light of the polarization component having the vibrating surface along the length direction of the groove-shaped recess 4 of the transparent film 3 is The transparent film is refracted by an interface between the liquid crystal polymer layer 5 and the wall surfaces 4a, 4b of the groove-shaped recess 4 of the transparent film 3 in a direction in which an angle with respect to a normal line h of the other surface of the transparent film 3 increases. 3, the light s reflected by the front-side reflection polarization plate 21 is emitted to the other surface side of the transparent film 3, and the liquid crystal polymer film 1 increases the angle with respect to the normal line of the other surface of the transparent film 3. The light is refracted into and enters the phase plate 22 from the rear side.

【0086】そのため、前記位相板22にその後側から
入射した光のほとんどが、この位相板22の前面で内面
反射(位相板22の前面と外気である空気との界面で全
反射)され、前記位相板22を往復して透過する間にそ
の位相差により偏光状態を変えた光が、前記位相板22
の後側に出射し、前記液晶ポリマーフィルム1を再び透
過して前記前側反射偏光板21に入射する。
Therefore, most of the light incident on the phase plate 22 from the rear side is internally reflected by the front surface of the phase plate 22 (total reflection at the interface between the front surface of the phase plate 22 and the air as the outside air), The light whose polarization state is changed by the phase difference while reciprocating through the phase plate 22 is transmitted to the phase plate 22.
The light is emitted to the rear side, passes through the liquid crystal polymer film 1 again, and is incident on the front reflective polarizing plate 21.

【0087】なお、前記位相板22はλ/4位相差フィ
ルムからなっているため、前記反射偏光板21により反
射されて前記位相板22にその後側から入射した光(前
側反射偏光板21の反射軸21sに沿った偏光成分の
光)sは、この位相板22を往復する間に、前記位相板
22の位相差により常光と異常光との間に1/2波長の
位相差を与えられ、前記前側反射偏光板21により反射
された光(前側反射偏光板21の反射軸21sに沿った
偏光成分の光)sに対して90度回転した光、つまり前
記反射偏光板21の透過軸21pに沿った偏光成分の光
pとなって前記位相板22の後側に出射する。
Since the phase plate 22 is made of a λ / 4 retardation film, the light reflected by the reflective polarizing plate 21 and incident on the phase plate 22 from the rear side (reflection of the front reflective polarizing plate 21). The light s of the polarized component along the axis 21s is reciprocated in the phase plate 22, and is given a phase difference of ½ wavelength between the ordinary light and the extraordinary light due to the phase difference of the phase plate 22. Light rotated by 90 degrees with respect to the light reflected by the front reflective polarizing plate 21 (light having a polarization component along the reflective axis 21s of the front reflective polarizing plate 21), that is, the transmission axis 21p of the reflective polarizing plate 21. The light p of the polarized component is emitted to the rear side of the phase plate 22.

【0088】そして、前記液晶ポリマーフィルム1は、
上述したように、前記透明フィルム3の溝状凹部4の長
さ方向に対して直交する方向に沿った振動面を有する偏
光成分の光はほとんど屈折させることなく透過させるた
め、前記反射偏光板21の透過軸21pに沿った偏光成
分の光pとなって前記位相板22の後側に出射した光
は、前記液晶ポリマーフィルム1をほとんど屈折される
ことなく透過して前記液晶素子に入射する。
The liquid crystal polymer film 1 is
As described above, since the light of the polarized component having the vibrating surface along the direction orthogonal to the lengthwise direction of the groove-shaped recess 4 of the transparent film 3 is transmitted with almost no refraction, the reflective polarizing plate 21. The light p, which is the polarized component along the transmission axis 21p and is emitted to the rear side of the phase plate 22, passes through the liquid crystal polymer film 1 with almost no refraction and enters the liquid crystal element.

【0089】このように、この液晶表示装置は、前側か
ら入射した外光のうち、前記前側反射偏光板21の透過
軸21pに沿った偏光成分の光pを前側反射偏光板21
を透過させて液晶素子20に入射させるとともに、前記
前側反射偏光板21により反射された光(前側反射偏光
板21の反射軸21sに沿った偏光成分の光)sのほと
んどを、前記位相板22により内面反射するとともに前
記前側反射偏光板21の透過軸21pに沿った偏光成分
の光pに変化させ、その光pも前記前側反射偏光板21
を透過させて前記液晶素子20に入射させるようにした
ものであり、したがって、前記液晶素子20に、強度が
高く、偏光度も充分な直線偏光を入射させることができ
る。
As described above, in this liquid crystal display device, of the external light incident from the front side, the light p of the polarization component along the transmission axis 21p of the front side reflection polarization plate 21 is reflected.
While being incident on the liquid crystal element 20, most of the light (polarized component light along the reflection axis 21s of the front reflection polarizing plate 21) s reflected by the front reflection polarizing plate 21 is transmitted to the phase plate 22. Is reflected on the inner surface of the front reflection polarizing plate 21 and is changed into light p of a polarization component along the transmission axis 21p of the front reflection polarizing plate 21.
Therefore, linearly polarized light having a high intensity and a sufficient degree of polarization can be made incident on the liquid crystal element 20.

【0090】なお、前記前側反射偏光板21を透過して
前記液晶素子20に入射した光(前側反射偏光板21の
透過軸21pに沿った偏光成分の光)pは、この液晶素
子20の液晶層を透過する過程で液晶分子の配向状態に
応じた複屈折作用を受けて偏光状態を変え、その光が前
記液晶素子20の後側に出射し、拡散層25により拡散
されて後側反射偏光板23に入射する。
The light (light having a polarization component along the transmission axis 21p of the front reflection polarizing plate 21) p that has passed through the front reflection polarizing plate 21 and is incident on the liquid crystal element 20 is the liquid crystal of the liquid crystal element 20. In the process of passing through the layer, the polarization state is changed by receiving the birefringence effect according to the alignment state of the liquid crystal molecules, the light is emitted to the rear side of the liquid crystal element 20, and is diffused by the diffusion layer 25 to be the rear reflection polarized light. It is incident on the plate 23.

【0091】そして、前記後側反射偏光板23に入射し
た光のうち、前記後側反射偏光板23の反射軸に沿った
偏光成分の光は、この後側反射偏光板23により反射さ
れ、その反射光が、前記拡散層25と液晶素子20と前
側反射偏光板21と液晶ポリマーフィルム1と位相板2
2とを透過して前側に出射し、前記後側反射偏光板23
の透過軸に沿った偏光成分の光は、この後側反射偏光板
23を透過して吸収膜24により吸収される。
Of the light incident on the rear reflective polarizing plate 23, the light having the polarization component along the reflection axis of the rear reflective polarizing plate 23 is reflected by the rear reflective polarizing plate 23, and The reflected light reflects the diffusion layer 25, the liquid crystal element 20, the front reflection polarizing plate 21, the liquid crystal polymer film 1, and the phase plate 2.
2 and the light is emitted to the front side, and the rear side reflection polarizing plate 23
The light of the polarization component along the transmission axis of (1) is transmitted through the rear reflection polarization plate 23 and is absorbed by the absorption film 24.

【0092】上記のように、この液晶表示装置は、前記
液晶ポリマーフィルム1を、液晶素子20の入射側に配
置された反射偏光板21とこの反射偏光板21の入射側
に配置した位相板22との間に、前記液晶ポリマー層5
が設けられた一方の面を前記反射偏光板21に対向さ
せ、前記透明フィルム3の他方の面を前記位相板22に
対向させるとともに、前記透明フィルム3の複数の溝状
凹部4の長さ方向を前記反射偏光板21の反射軸21s
と実質的に平行にして介在させたものであるため、入射
光のうちの前記反射偏光板21により反射された光を、
前記位相板22により効率良く内面反射させ、前記位相
板22の位相差により偏光状態を変えた光を前記反射偏
光板21を透過させて液晶素子20に入射させることが
でき、したがって、前記反射偏光板21を透過して液晶
素子に入射する直線偏光の強度を高くするとともに偏光
度も充分にし、明るく、コントラストの良い表示を行な
うことができる。
As described above, in this liquid crystal display device, the liquid crystal polymer film 1 is provided with the reflective polarizing plate 21 disposed on the incident side of the liquid crystal element 20 and the phase plate 22 disposed on the incident side of the reflective polarizing plate 21. Between the liquid crystal polymer layer 5
One surface provided with is opposed to the reflective polarizing plate 21, the other surface of the transparent film 3 is opposed to the phase plate 22, and the lengthwise direction of the plurality of groove-shaped recesses 4 of the transparent film 3 is provided. Is the reflection axis 21s of the reflection polarizing plate 21.
The light reflected by the reflective polarizing plate 21 of the incident light is
The light internally reflected efficiently by the phase plate 22 and the light whose polarization state is changed by the phase difference of the phase plate 22 can be transmitted through the reflective polarizing plate 21 and incident on the liquid crystal element 20. It is possible to increase the intensity of the linearly polarized light that passes through the plate 21 and is incident on the liquid crystal element, and to make the degree of polarization sufficient, so that a bright display with good contrast can be displayed.

【0093】また、前記液晶ポリマーフィルム1の透明
フィルム3の複数の溝状凹部4のピッチは、上述したよ
うに25μm〜50μm程度であり、前記液晶素子20
の画素のピッチ(100μm〜200μm程度)に比べ
て充分に小さいため、上記液晶表示装置に前記液晶ポリ
マーフィルム1を備えさせても、前記液晶素子20の各
画素からの出射光輝度を均一にし、輝度むらの無い良好
な表示を得ることができる。
The pitch of the plurality of groove-shaped recesses 4 of the transparent film 3 of the liquid crystal polymer film 1 is about 25 μm to 50 μm as described above, and the liquid crystal element 20
Since it is sufficiently smaller than the pixel pitch (about 100 μm to 200 μm), even if the liquid crystal display device is provided with the liquid crystal polymer film 1, the brightness of light emitted from each pixel of the liquid crystal element 20 is made uniform, It is possible to obtain a good display without uneven brightness.

【0094】なお、上記液晶表示装置は、液晶素子20
の後側に検光子を兼ねる反射手段として反射偏光板23
を配置し、その後側に吸収膜24を配置したものである
が、前記液晶ポリマーフィルム1は、液晶素子の前側に
偏光子として反射偏光板を配置し、前記液晶素子の後側
に検光子として吸収偏光板(吸収軸に沿った偏光成分の
光を吸収し、透過軸に沿った偏光成分の光を透過させる
偏光板)を配置するとともに、その後側に反射板を配置
した構成の反射型液晶表示装置にも利用することができ
る。
The liquid crystal display device has the liquid crystal element 20.
A reflection polarizing plate 23 is provided on the rear side as a reflection means also serving as an analyzer.
The liquid crystal polymer film 1 has a reflective polarizing plate as a polarizer on the front side of the liquid crystal element and an absorption film 24 on the rear side thereof as an analyzer. A reflective liquid crystal having a structure in which an absorption polarizing plate (a polarizing plate that absorbs light having a polarization component along the absorption axis and transmits light having a polarization component along the transmission axis) is arranged, and a reflecting plate is arranged on the rear side thereof. It can also be used for a display device.

【0095】さらに、前記液晶ポリマーフィルム1は、
液晶素子の後面を入射面とし、前記液晶素子の後側に偏
光子として反射偏光板を設けるともにその後側に面光源
を配置し、前記液晶素子の前側に検光子として反射偏光
板を配置した透過型の液晶表示装置にも利用することが
でき、その場合は、前記液晶素子の後側に配置された前
記反射偏光板の後側(入射側)に位相板を配置し、前記
反射偏光板と位相板の間に前記液晶ポリマーフィルム1
を配置すればよい。
Further, the liquid crystal polymer film 1 is
The rear surface of the liquid crystal element is used as an incident surface, a reflective polarizing plate is provided as a polarizer on the rear side of the liquid crystal element, a surface light source is arranged on the rear side thereof, and a reflective polarizing plate is arranged as an analyzer on the front side of the liquid crystal element. Type liquid crystal display device, and in that case, a phase plate is disposed on the rear side (incident side) of the reflective polarizing plate disposed on the rear side of the liquid crystal element, and The liquid crystal polymer film 1 between the phase plates
Should be placed.

【0096】また、上記実施例の液晶ポリマーフィルム
1は、液晶ポリマー層5を、前記透明フィルム3の複数
の溝状凹部4内にそれぞれ、その外面が前記溝状凹部4
の開放縁と面一になるように形成したものであるが、前
記液晶ポリマー層5は、隣り合う液晶ポリマー層5の外
面部分が互いに連続するように、前記溝状凹部4の深さ
よりも厚く形成してもよい。
Further, in the liquid crystal polymer film 1 of the above-mentioned embodiment, the liquid crystal polymer layer 5 is placed in each of the plurality of groove-shaped recesses 4 of the transparent film 3, and the outer surface thereof is the groove-shaped recess 4.
However, the liquid crystal polymer layer 5 is thicker than the groove-shaped recess 4 so that the outer surface portions of the adjacent liquid crystal polymer layers 5 are continuous with each other. You may form.

【0097】さらに、上記実施例の液晶ポリマーフィル
ム1は、前記透明フィルム3の複数の溝状凹部4の一方
の壁面4aを傾斜面とし、他方の壁面4bをの急角度の
面としたものであるが、前記透明フィルム3の複数の溝
状凹部4は、その互いに対向する2つの壁面4a,4b
の両方を傾斜面とした形状に形成してもよい。
Further, in the liquid crystal polymer film 1 of the above-mentioned embodiment, one wall surface 4a of the plurality of groove-shaped recesses 4 of the transparent film 3 is an inclined surface, and the other wall surface 4b is a steep angle surface. However, the plurality of groove-shaped recesses 4 of the transparent film 3 have two wall surfaces 4a and 4b facing each other.
Both may be formed into an inclined surface.

【0098】また、前記液晶ポリマー層5の液晶分子の
配向方向と直交する方向、つまり前記透明フィルム3の
溝状凹部4の長さ方向と実質的に直交する方向の屈折率
は、必ずしも前記透明フィルム3の屈折率と同じでなく
てもよく、それに近い値であればよいなお、この発明の
液晶ポリマーフィルム1は、液晶表示装置に限らず、入
射光を屈折させて出射する光学フィルムとしても利用す
ることができる。
The refractive index in the direction orthogonal to the alignment direction of the liquid crystal molecules of the liquid crystal polymer layer 5, that is, in the direction substantially orthogonal to the lengthwise direction of the groove-shaped recess 4 of the transparent film 3, is not necessarily the transparent one. The liquid crystal polymer film 1 of the present invention is not limited to the liquid crystal display device and may be used as an optical film that refracts incident light and emits it. Can be used.

【0099】[0099]

【発明の効果】この発明の液晶ポリマーフィルムは、一
方の面に複数の溝状凹部が互いに平行に形成され、これ
らの溝状凹部の互いに対向する2つの壁面のうち、少な
くとも一方の壁面が傾斜面に形成された光学的に等方性
な透明フィルムと、前記透明フィルムの複数の溝状凹部
内に設けられた、光学的に異方性で、前記溝状凹部の長
さ方向と実質的に平行な方向の屈折率が前記透明フィル
ムの屈折率よりも大きい液晶ポリマー層とからなるもの
であるため、前記溝状凹部の長さ方向と直交する方向に
振動面を有する偏光成分の光は屈折させずに透過させ、
前記液晶ポリマー層が設けられた一方の面側から入射し
た光のうち、前記溝状凹部の長さ方向に沿った振動面を
有する偏光成分の光を、前記液晶ポリマー層と前記透明
フィルムの溝状凹部の壁面との界面により、前記透明フ
ィルムの他方の面の法線に対する角度が大きくなる方向
に屈折させて前記透明フィルムの他方の面側に出射する
ことができる。
According to the liquid crystal polymer film of the present invention, a plurality of groove-shaped recesses are formed in parallel with each other on one surface, and at least one of the two wall surfaces facing each other of these groove-shaped recesses is inclined. An optically isotropic transparent film formed on the surface, and optically anisotropic provided in the plurality of groove-shaped recesses of the transparent film, and substantially in the longitudinal direction of the groove-shaped recesses. Since it is composed of a liquid crystal polymer layer whose refractive index in a direction parallel to is larger than that of the transparent film, light of a polarized component having a vibrating surface in a direction orthogonal to the lengthwise direction of the groove-shaped recess is Pass through without refracting,
Of the light incident from one surface side on which the liquid crystal polymer layer is provided, the polarized component light having an oscillating surface along the length direction of the groove-shaped recess is converted into the groove of the liquid crystal polymer layer and the transparent film. By the interface with the wall surface of the concave portion, the light can be refracted in a direction in which the angle with respect to the normal line of the other surface of the transparent film increases, and the light can be emitted to the other surface side of the transparent film.

【0100】そのため、この液晶ポリマーフィルムを、
液晶素子の入射側に配置された反射偏光板とこの反射偏
光板の入射側に配置する位相板との間に、前記液晶ポリ
マー層が設けられた一方の面を前記反射偏光板に対向さ
せ、前記透明フィルムの他方の面を前記位相板に対向さ
せるとともに、前記透明フィルムの複数の溝状凹部の長
さ方向を前記反射偏光板の反射軸と実質的に平行にして
介在させることにより、入射光のうちの前記反射偏光板
により反射された光を前記位相板により効率良く内面反
射させ、前記位相板の位相差により偏光状態を変えた光
を前記反射偏光板を透過させて液晶素子に入射させるこ
とができ、したがって、前記反射偏光板を透過して液晶
素子に入射する直線偏光の強度を高くするとともに偏光
度も充分にし、入射側に反射偏光板を備えた前記液晶表
示装置に、明るく、コントラストの良い表示を行なわせ
ることができる。
Therefore, this liquid crystal polymer film is
Between the reflective polarizing plate disposed on the incident side of the liquid crystal element and the phase plate disposed on the incident side of the reflective polarizing plate, one surface provided with the liquid crystal polymer layer is opposed to the reflective polarizing plate, The other surface of the transparent film is opposed to the phase plate, and the lengthwise direction of the plurality of groove-shaped recesses of the transparent film is made substantially parallel to the reflection axis of the reflection polarizing plate so as to be incident. Of the light, the light reflected by the reflective polarizing plate is efficiently internally reflected by the phase plate, and the light whose polarization state is changed by the phase difference of the phase plate is transmitted through the reflective polarizing plate to enter the liquid crystal element. Therefore, the intensity of linearly polarized light that passes through the reflective polarizing plate and enters the liquid crystal element is increased, and the degree of polarization is also sufficient, so that the liquid crystal display device having the reflective polarizing plate on the incident side is bright. It is possible to perform good display contrast.

【0101】また、この発明の液晶ポリマーフィルムの
製造方法は、一方の面に複数の溝状凹部が互いに平行に
形成され、これらの溝状凹部の互いに対向する2つの壁
面のうち、少なくとも一方の壁面が傾斜面に形成された
光学的に等方性な透明フィルムの前記複数の溝状凹部内
に高分子液晶を充填し、その高分子液晶の液晶分子を前
記溝状凹部の長さ方向に分子長軸が揃うように配向させ
ることにより、前記透明フィルムの複数の溝状凹部内
に、光学的に異方性で、且つ前記溝状凹部の長さ方向と
実質的に平行な方向の屈折率が前記透明フィルムの屈折
率よりも大きい液晶ポリマー層を形成するものであり、
この製造方法によれば、前記液晶ポリマーフィルムを製
造することができる。
Further, in the method for producing a liquid crystal polymer film of the present invention, a plurality of groove-shaped recesses are formed in parallel on one surface, and at least one of the two wall surfaces of the groove-shaped recesses facing each other is formed. Polymer liquid crystal is filled in the plurality of groove-shaped recesses of an optically isotropic transparent film having a wall surface formed on an inclined surface, and liquid crystal molecules of the polymer liquid crystal are arranged in the lengthwise direction of the groove-shaped recess. By orienting so that the molecular long axes are aligned, refraction in the plurality of groove-shaped recesses of the transparent film is optically anisotropic and in a direction substantially parallel to the length direction of the groove-shaped recesses. To form a liquid crystal polymer layer whose index is higher than the refractive index of the transparent film,
According to this manufacturing method, the liquid crystal polymer film can be manufactured.

【0102】この発明の液晶ポリマーフィルムの製造方
法において、透明フィルムの複数の溝状凹部の壁面に、
前記溝状凹部の長さ方向に沿う配向処理を施した後、前
記複数の溝状凹部内に高分子液晶を充填してその液晶分
子を前記配向処理の方向に配向させ、その後に前記高分
子液晶をポリマー化することにより形成するのが好まし
く、このようにすることにより、前記高分子液晶の液晶
分子を前記溝状凹部の長さ方向に分子長軸が揃うように
配向させた、光学的に異方性で、且つ前記溝状凹部の長
さ方向と実質的に平行な方向の屈折率が前記透明フィル
ムの屈折率よりも大きい液晶ポリマー層を形成すること
ができる。
In the method for producing a liquid crystal polymer film of the present invention, the transparent film is provided with a plurality of groove-shaped recesses on the wall surfaces thereof.
After performing an alignment treatment along the lengthwise direction of the groove-shaped recesses, polymer liquid crystals are filled in the groove-shaped recesses to align the liquid crystal molecules in the direction of the alignment treatment, and then the polymer. It is preferable to form the liquid crystal by polymerizing it, and by doing so, the liquid crystal molecules of the polymer liquid crystal are aligned so that the long axes of the molecules are aligned in the longitudinal direction of the groove-like recess, It is possible to form a liquid crystal polymer layer which is anisotropic and has a refractive index in a direction substantially parallel to the lengthwise direction of the groove-shaped recesses larger than that of the transparent film.

【0103】その場合、透明フィルムの複数の溝状凹部
内に充填された高分子液晶をアイソトロピック相を示す
温度に加熱し、その後に徐冷してネマティック相に戻す
ことにより、前記高分子液晶の液晶分子を、前記溝状凹
部の壁面に施された配向処理の方向に配向させるのがさ
らに好ましく、このようにすることにより、前記高分子
液晶のほとんどの液晶分子を前記溝状凹部の長さ方向に
配向させ、より良好な配向状態の液晶ポリマー層を形成
することができる。
In this case, the polymer liquid crystal filled in the plurality of groove-shaped recesses of the transparent film is heated to a temperature exhibiting an isotropic phase, and then gradually cooled to return to the nematic phase. It is more preferable that the liquid crystal molecules of (1) are aligned in the direction of the alignment treatment applied to the wall surface of the groove-like recess, and by doing so, most of the liquid crystal molecules of the polymer liquid crystal are extended in the length of the groove-like recess. The liquid crystal polymer layer can be formed in a better alignment state by aligning in the vertical direction.

【0104】また、この発明の液晶ポリマーフィルムの
製造方法においては、液晶ポリマー層は、透明フィルム
の複数の溝状凹部内にポリマー化した熱軟化性の高分子
液晶を充填した後、前記高分子液晶の外面に板材を密着
させ、前記高分子液晶を液晶分子が自由に動ける状態に
軟化する直前の温度に温めた状態で前記板材を前記透明
フィルムに対し、前記溝状凹部の長さ方向に沿って一方
向にずらすことにより、前記高分子液晶の液晶分子を前
記板材のずらし方向に配向させて形成してもよく、この
ようにすることにより、ポリマー化した高分子液晶を用
いて前記液晶ポリマー層を形成することができる。
Further, in the method for producing a liquid crystal polymer film according to the present invention, the liquid crystal polymer layer is prepared by filling a plurality of groove-shaped concave portions of a transparent film with a polymerized thermosoftening polymer liquid crystal, and then polymerizing the polymer. A plate material is adhered to the outer surface of the liquid crystal, and the plate material is heated to a temperature immediately before the liquid crystal molecule is softened to a state in which the liquid crystal molecules can freely move. It may be formed by aligning the liquid crystal molecules of the polymer liquid crystal in the shift direction of the plate material by displacing the liquid crystal molecules in one direction along the same direction. A polymer layer can be formed.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の液晶ポリマーフィルムの一実施例を
示す側面図。
FIG. 1 is a side view showing an embodiment of a liquid crystal polymer film of the present invention.

【図2】この発明の液晶ポリマーフィルムの製造方法の
第1の実施例を示すベースフィルムと透明フィルムの積
層体を作製する工程の側面図。
FIG. 2 is a side view of a step of producing a laminate of a base film and a transparent film, showing a first embodiment of the method for producing a liquid crystal polymer film of the present invention.

【図3】第1の実施例の製造方法を示す透明フィルムの
複数の溝状凹部内に液晶ポリマー層を形成する工程の側
面図。
FIG. 3 is a side view of a step of forming a liquid crystal polymer layer in a plurality of groove-shaped recesses of a transparent film, which shows the manufacturing method of the first embodiment.

【図4】この発明の液晶ポリマーフィルムの製造方法の
第2の実施例を示す透明フィルムの複数の溝状凹部4内
に液晶ポリマー層を形成する工程の斜視図。
FIG. 4 is a perspective view of a step of forming a liquid crystal polymer layer in a plurality of groove-shaped recesses 4 of a transparent film, showing a second embodiment of the method for producing a liquid crystal polymer film of the present invention.

【図5】この発明の液晶ポリマーフィルムを備えた液晶
表示装置の一例を示す側面図。
FIG. 5 is a side view showing an example of a liquid crystal display device including the liquid crystal polymer film of the present invention.

【図6】前記液晶表示装置の液晶素子の前側に配置され
た反射偏光板および位相板と、その間に介在された液晶
ポリマーフィルムの一部分の拡大図。
FIG. 6 is an enlarged view of a reflective polarizing plate and a phase plate arranged on the front side of a liquid crystal element of the liquid crystal display device, and a part of a liquid crystal polymer film interposed therebetween.

【図7】前記反射偏光板と位相板と液晶ポリマーフィル
ム斜視図。
FIG. 7 is a perspective view of the reflective polarizing plate, a phase plate, and a liquid crystal polymer film.

【符号の説明】[Explanation of symbols]

1…液晶ポリマーフィルム 2…ベースフィルム 3…透明フィルム 4…溝状凹部 4a,4b…壁面 5…液晶ポリマー層 5a…光重合性高分子液晶 5b…軟化性高分子液晶 10…配向処理フィルム 13…板材 1 ... Liquid crystal polymer film 2 ... Base film 3 ... Transparent film 4 ... Groove-shaped recess 4a, 4b ... Wall surface 5 ... Liquid crystal polymer layer 5a ... Photopolymerizable polymer liquid crystal 5b ... Softening polymer liquid crystal 10 ... Orientation-treated film 13 ... Plate material

フロントページの続き Fターム(参考) 2H049 BA05 BA06 BA12 BA42 BA43 BA47 BB03 BB49 BB62 BC01 BC05 BC22 2H088 EA47 MA06 2H091 FA07X FA15X FD06 LA03 LA17 4F100 AK25 AK80B AT00A BA02 BA03 BA21 DD05A EJ42B EJ50B GB41 JN01A JN18B JN30 JN30A JN30B Continued front page    F-term (reference) 2H049 BA05 BA06 BA12 BA42 BA43                       BA47 BB03 BB49 BB62 BC01                       BC05 BC22                 2H088 EA47 MA06                 2H091 FA07X FA15X FD06 LA03                       LA17                 4F100 AK25 AK80B AT00A BA02                       BA03 BA21 DD05A EJ42B                       EJ50B GB41 JN01A JN18B                       JN30 JN30A JN30B

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】一方の面に複数の溝状凹部が互いに平行に
形成され、これらの溝状凹部の互いに対向する2つの壁
面のうち、少なくとも一方の壁面が傾斜面に形成された
光学的に等方性な透明フィルムと、前記透明フィルムの
複数の溝状凹部内に設けられた、光学的に異方性で、前
記溝状凹部の長さ方向と実質的に平行な方向の屈折率が
前記透明フィルムの屈折率よりも大きい液晶ポリマー層
とからなることを特徴とする液晶ポリマーフィルム。
1. An optical system in which a plurality of groove-shaped recesses are formed in parallel with each other on one surface, and at least one of the two wall surfaces of these groove-shaped recesses facing each other is formed as an inclined surface. Isotropic transparent film, provided in the plurality of groove-shaped recesses of the transparent film, optically anisotropic, the refractive index in a direction substantially parallel to the lengthwise direction of the groove-shaped recess A liquid crystal polymer film comprising a liquid crystal polymer layer having a refractive index higher than that of the transparent film.
【請求項2】一方の面に複数の溝状凹部が互いに平行に
形成され、これらの溝状凹部の互いに対向する2つの壁
面のうち、少なくとも一方の壁面が傾斜面に形成された
光学的に等方性な透明フィルムの前記複数の溝状凹部内
に高分子液晶を充填し、その高分子液晶の液晶分子を前
記溝状凹部の長さ方向に分子長軸が揃うように配向させ
ることにより、前記透明フィルムの複数の溝状凹部内
に、光学的に異方性で、且つ前記溝状凹部の長さ方向と
実質的に平行な方向の屈折率が前記透明フィルムの屈折
率よりも大きい液晶ポリマー層を形成することを特徴と
する液晶ポリマーフィルムの製造方法。
2. An optical system in which a plurality of groove-shaped recesses are formed in parallel with each other on one surface, and at least one of the two wall surfaces of these groove-shaped recesses facing each other is formed as an inclined surface. By filling a polymer liquid crystal in the plurality of groove-shaped recesses of the isotropic transparent film, by orienting the liquid crystal molecules of the polymer liquid crystal so that the long axes of the molecules are aligned in the length direction of the groove-shaped recess. In the plurality of groove-shaped recesses of the transparent film, the refractive index in a direction that is optically anisotropic and is substantially parallel to the lengthwise direction of the groove-shaped recesses is larger than the refractive index of the transparent film. A method for producing a liquid crystal polymer film, which comprises forming a liquid crystal polymer layer.
【請求項3】液晶ポリマー層は、透明フィルムの複数の
溝状凹部の壁面に、前記溝状凹部の長さ方向に沿う配向
処理を施した後、前記複数の溝状凹部内に高分子液晶を
充填してその液晶分子を前記配向処理の方向に配向さ
せ、その後に前記高分子液晶をポリマー化することによ
り形成することを特徴とする請求項2に記載の液晶ポリ
マーフィルムの製造方法。
3. A liquid crystal polymer layer, wherein a wall surface of a plurality of groove-shaped recesses of a transparent film is subjected to an alignment treatment along the lengthwise direction of the groove-shaped recesses, and then a polymer liquid crystal is placed in the groove-shaped recesses. 3. The method for producing a liquid crystal polymer film according to claim 2, wherein the liquid crystal molecules are aligned by filling the liquid crystal molecules in the direction of the alignment treatment, and then the polymer liquid crystal is polymerized.
【請求項4】透明フィルムの複数の溝状凹部内に充填さ
れた高分子液晶をアイソトロピック相を示す温度に加熱
し、その後に徐冷してネマティック相に戻すことによ
り、前記高分子液晶の液晶分子を、前記溝状凹部の壁面
に施された配向処理の方向に配向させることを特徴とす
る請求項3に記載の液晶ポリマーフィルムの製造方法。
4. A polymer liquid crystal filled in a plurality of groove-shaped recesses of a transparent film is heated to a temperature exhibiting an isotropic phase, and then gradually cooled to return to a nematic phase, whereby the polymer liquid crystal The method for producing a liquid crystal polymer film according to claim 3, wherein the liquid crystal molecules are aligned in the direction of the alignment treatment applied to the wall surface of the groove-shaped recess.
【請求項5】液晶ポリマー層は、透明フィルムの複数の
溝状凹部内にポリマー化した熱軟化性の高分子液晶を充
填した後、前記高分子液晶の外面に板材を密着させ、前
記高分子液晶を液晶分子が自由に動ける状態に軟化する
直前の温度に温めた状態で前記板材を前記透明フィルム
に対し、前記溝状凹部の長さ方向に沿って一方向にずら
すことにより、前記高分子液晶の液晶分子を前記板材の
ずらし方向に配向させて形成することを特徴とする請求
項2に記載の液晶ポリマーフィルムの製造方法。
5. The liquid crystal polymer layer comprises: filling a plurality of groove-shaped recesses of a transparent film with a polymerized thermosoftening polymer liquid crystal, and then adhering a plate material to the outer surface of the polymer liquid crystal, By shifting the plate material with respect to the transparent film in a state where the liquid crystal is warmed to a temperature immediately before softening so that the liquid crystal molecules can freely move, the polymer is shifted in one direction along the lengthwise direction of the groove-like recessed portion. The method for producing a liquid crystal polymer film according to claim 2, wherein the liquid crystal molecules of liquid crystal are formed by orienting them in the shifting direction of the plate material.
JP2001298240A 2001-09-27 2001-09-27 Liquid crystal polymer film and method for producing the same Pending JP2003107244A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001298240A JP2003107244A (en) 2001-09-27 2001-09-27 Liquid crystal polymer film and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001298240A JP2003107244A (en) 2001-09-27 2001-09-27 Liquid crystal polymer film and method for producing the same

Publications (1)

Publication Number Publication Date
JP2003107244A true JP2003107244A (en) 2003-04-09

Family

ID=19119168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001298240A Pending JP2003107244A (en) 2001-09-27 2001-09-27 Liquid crystal polymer film and method for producing the same

Country Status (1)

Country Link
JP (1) JP2003107244A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007294955A (en) * 2006-04-26 2007-11-08 Rohm & Haas Co Patterned light extraction sheet and manufacturing method thereof
JP2011064759A (en) * 2009-09-15 2011-03-31 Stanley Electric Co Ltd Optical device and manufacturing method thereof
JP2012230207A (en) * 2011-04-26 2012-11-22 Nitto Denko Corp Method for manufacturing optical laminate
KR101266352B1 (en) 2006-06-30 2013-05-22 엘지디스플레이 주식회사 Liquid crystal display device
CN114924413A (en) * 2022-04-28 2022-08-19 歌尔光学科技有限公司 Optical waveguide structure, preparation method of optical waveguide structure and head-mounted display device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007294955A (en) * 2006-04-26 2007-11-08 Rohm & Haas Co Patterned light extraction sheet and manufacturing method thereof
KR101266352B1 (en) 2006-06-30 2013-05-22 엘지디스플레이 주식회사 Liquid crystal display device
JP2011064759A (en) * 2009-09-15 2011-03-31 Stanley Electric Co Ltd Optical device and manufacturing method thereof
JP2012230207A (en) * 2011-04-26 2012-11-22 Nitto Denko Corp Method for manufacturing optical laminate
CN103502850A (en) * 2011-04-26 2014-01-08 日东电工株式会社 Method for producing optical laminate
US9348074B2 (en) 2011-04-26 2016-05-24 Nitto Denko Corporation Method for producing optical laminate
KR101847309B1 (en) 2011-04-26 2018-04-09 닛토덴코 가부시키가이샤 Method for producing optical laminate
CN114924413A (en) * 2022-04-28 2022-08-19 歌尔光学科技有限公司 Optical waveguide structure, preparation method of optical waveguide structure and head-mounted display device

Similar Documents

Publication Publication Date Title
JP3372016B2 (en) Method for manufacturing retardation sheet
TWI250327B (en) Reflecting board, liquid crystal device and electronic device
JP5467389B2 (en) Illumination device and display device
JP5095749B2 (en) Manufacturing method of surface relief birefringent liquid crystal element and manufacturing method of display using the same
JP3710368B2 (en) Manufacturing method of laminated film
TWI361322B (en)
JPH1090675A (en) Optical rotatory element, its production and image display device using that
TW201013239A (en) Polarizing plate, display, and electronic apparatus
JP4237331B2 (en) Reflective LCD
JP2000009911A (en) Diffusion reflection plate, its production and reflection display device
US11287685B2 (en) Optical element and image display device
JP2014142618A (en) Optical film, polarizing plate, liquid crystal display device, and manufacturing method of optical film
JP2000221324A (en) Polarizing device and liquid crystal display device having that polarizing device
JP2005313638A (en) Manufacturing process of laminated film, laminated film, and manufacturing process of display device
TWI459097B (en) Graded index birefringent component and manufacturing method thereof
JP2004226686A (en) Broadband 1/4 wavelength plate raw material, wideband circularly polarizing plate raw material, optical element raw material and display device
JP3834012B2 (en) Wide viewing angle LCD
CN102540316A (en) Method of fabricating patterned retarder
JP6507072B2 (en) Method of manufacturing optically anisotropic layer and method of manufacturing polarizing plate
JP2003107244A (en) Liquid crystal polymer film and method for producing the same
WO2022230657A1 (en) Planar lighting device, image display device, and optical film
JPH0743501A (en) Microlens array sheet and liquid crystal display formed by using the same
JP5038968B2 (en) Condensing element, surface light source using the same, and liquid crystal display device
JP4149731B2 (en) Condensing element, surface light source using the same, and liquid crystal display device
JPH10171379A (en) Reflection type guest-host liquid crystal display device and its manufacture