JP2003106726A - Freezer and method of freezing - Google Patents
Freezer and method of freezingInfo
- Publication number
- JP2003106726A JP2003106726A JP2001295217A JP2001295217A JP2003106726A JP 2003106726 A JP2003106726 A JP 2003106726A JP 2001295217 A JP2001295217 A JP 2001295217A JP 2001295217 A JP2001295217 A JP 2001295217A JP 2003106726 A JP2003106726 A JP 2003106726A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- food
- cooling rate
- cooling
- freezing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000007710 freezing Methods 0.000 title claims description 104
- 230000008014 freezing Effects 0.000 title claims description 104
- 238000000034 method Methods 0.000 title claims description 42
- 238000001816 cooling Methods 0.000 claims abstract description 101
- 235000013305 food Nutrition 0.000 claims description 126
- 239000000463 material Substances 0.000 claims description 55
- 239000013078 crystal Substances 0.000 claims description 23
- 239000007788 liquid Substances 0.000 claims description 15
- 230000015572 biosynthetic process Effects 0.000 claims description 9
- 238000001514 detection method Methods 0.000 claims description 3
- 238000005057 refrigeration Methods 0.000 claims description 3
- 235000019640 taste Nutrition 0.000 abstract description 19
- 210000001519 tissue Anatomy 0.000 description 29
- 239000012267 brine Substances 0.000 description 21
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 21
- 235000013372 meat Nutrition 0.000 description 17
- 238000010257 thawing Methods 0.000 description 17
- 238000011156 evaluation Methods 0.000 description 14
- 230000001953 sensory effect Effects 0.000 description 13
- 210000003365 myofibril Anatomy 0.000 description 9
- 241000251468 Actinopterygii Species 0.000 description 8
- 238000003860 storage Methods 0.000 description 8
- 230000006378 damage Effects 0.000 description 7
- 210000001087 myotubule Anatomy 0.000 description 7
- 235000013311 vegetables Nutrition 0.000 description 7
- 238000010411 cooking Methods 0.000 description 6
- 239000011800 void material Substances 0.000 description 5
- 230000008020 evaporation Effects 0.000 description 4
- 238000001704 evaporation Methods 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 238000013459 approach Methods 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 235000020995 raw meat Nutrition 0.000 description 3
- 239000003507 refrigerant Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 235000013611 frozen food Nutrition 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 206010037660 Pyrexia Diseases 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 235000012041 food component Nutrition 0.000 description 1
- 239000005417 food ingredient Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 235000019583 umami taste Nutrition 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D2400/00—General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
- F25D2400/36—Visual displays
- F25D2400/361—Interactive visual displays
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D2700/00—Means for sensing or measuring; Sensors therefor
- F25D2700/12—Sensors measuring the inside temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D2700/00—Means for sensing or measuring; Sensors therefor
- F25D2700/16—Sensors measuring the temperature of products
Landscapes
- Devices That Are Associated With Refrigeration Equipment (AREA)
- Freezing, Cooling And Drying Of Foods (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、食材を冷凍するた
めの冷凍機および冷凍方法に関するものである。TECHNICAL FIELD The present invention relates to a refrigerator and a freezing method for freezing food materials.
【0002】[0002]
【従来の技術】食材を冷凍操作すると、食材の組織の温
度が急速に下がり、やがて組織内部の水が凍結点に達
し、0℃〜−5℃の凍結期間(最大氷結晶生成帯、凍結
する食品の種類によって多少の温度差はある)の間に組
織内部の水の7〜8割が凍結する。食材の凍結が中心部
に達した後は、組織の温度は再び下がり、その食材が設
置されている冷凍室の雰囲気温度に到達する。2. Description of the Related Art When a food material is frozen, the temperature of the tissue of the food material is rapidly lowered, the water in the tissue reaches a freezing point, and a freezing period of 0 ° C. to -5 ° C. (maximum ice crystal forming zone, freezing). While there is a slight temperature difference depending on the type of food, 70 to 80% of the water inside the tissue freezes. After the freezing of the food reaches the center, the temperature of the tissue falls again and reaches the ambient temperature of the freezing room in which the food is installed.
【0003】食材を冷凍する際には、食材全体をできる
だけ速く目標とする保存温度に到達させることが重要で
ある。凍結期間が長くなると、氷結晶が成長して組織自
体が破壊され、解凍時に水分や旨味などがドリップとし
て流出してしまい、冷凍前に比べて品質が著しく損なわ
れる。このため、冷凍室内部の雰囲気温度を低くするこ
とにより、凍結期間を短くし、氷結晶の成長を抑制する
ようにしている。When freezing foodstuffs, it is important that the entire foodstuff reaches the target storage temperature as quickly as possible. When the freezing period becomes long, ice crystals grow and the tissue itself is destroyed, and water, umami, etc. flow out as a drip during thawing, and the quality is significantly impaired compared to before freezing. Therefore, the freezing period is shortened and the growth of ice crystals is suppressed by lowering the atmospheric temperature inside the freezing chamber.
【0004】図8に、従来の冷凍方法で畜肉を冷凍した
ときの肉内部の温度の経時変化を示す。図示した冷凍方
法1では雰囲気温度−20℃の冷凍室内で冷却し、冷凍
方法2では雰囲気温度−40℃の冷凍室内で冷却し、冷
凍方法3では雰囲気温度−80℃の冷凍室内で冷却し
た。肉内部の凍結期間は、冷凍方法1によれば50分
(図中)であるのに対し、冷凍方法2によれば15分
(図中)、冷凍方法3によれば2.5分(図中)で
あり、雰囲気温度を低くするほど、凍結期間を短縮する
ことができる。FIG. 8 shows a change with time in the temperature inside the meat when the meat is frozen by the conventional freezing method. In the illustrated freezing method 1, cooling was performed in a freezing chamber having an ambient temperature of -20 ° C, in freezing method 2, cooling was performed in a freezing chamber having an ambient temperature of -40 ° C, and in freezing method 3, cooling was performed in a freezing chamber having an ambient temperature of -80 ° C. The freezing period in the meat is 50 minutes (in the figure) according to the freezing method 1, 15 minutes (in the figure) according to the freezing method 2, and 2.5 minutes (in the figure) according to the freezing method 3. Medium), and the lower the ambient temperature, the shorter the freezing period can be.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、雰囲気
温度を低くして凍結期間を短くしても、食材の品質を保
持するのに十分ではない。表1に、上記した各冷凍方法
1,2,3による食材(畜肉)の凍結期間、冷凍解凍後
の組織状態と成分濃度、調理後の官能評価を示す。組織
状態の評価は、冷凍前の生の食材と比較して冷凍食材の
組織がほとんど破壊されていないときに○、破壊が組織
の面積の1/2未満のときに×、破壊が1/2以上のと
きに××とした。成分濃度の評価は、冷凍食材の成分が
ほとんど流出されていないときに○、成分の流出が冷凍
前の成分の1/2未満のときに×、1/2以上のときに
××とした。官能評価は、冷凍前の生の状態を1.5ポ
イントとし、この値に近い程、冷凍前の食味に近いと表
した。1ポイント違うと食味の差が明確に認識される。However, lowering the ambient temperature and shortening the freezing period is not sufficient to maintain the quality of food. Table 1 shows the freezing period of the foodstuffs (meat) by the above-mentioned freezing methods 1, 2, and 3, the tissue state and component concentration after freezing and thawing, and the sensory evaluation after cooking. The evaluation of the tissue state is ○ when the tissue of the frozen food material is hardly destroyed as compared with the raw food material before freezing, × when the destruction is less than 1/2 of the area of the tissue, and 1/2 when the destruction is caused. In the above case, it was marked as XX. The component concentration was evaluated as ◯ when almost no component of the frozen food was flowed out, as × when the component flowed out was less than 1/2 of the component before freezing, and as XX when it was 1/2 or more. In the sensory evaluation, the raw state before freezing was set to 1.5 points, and the closer to this value, the closer to the taste before freezing. A difference of 1 point clearly identifies the difference in taste.
【0006】[0006]
【表1】
表1によれば、冷凍方法1(雰囲気温度−20℃)によ
る冷凍物では解凍後の組織状態、成分濃度とも悪く、調
理後の官能評価も0ポイントと低い。この冷凍方法1に
よる冷凍物の冷凍中の組織状態を図9に示した写真で観
察すると、試料表面に、氷結晶が存在したと推定される
孔(空洞)が認められる。この孔は、図10に示した写
真で観察される冷凍前の生の組織の筋線維と同等の大き
さである。このことから、50分の凍結期間の間に筋線
維と同等の大きさの氷結晶が生成して組織が破壊され、
その結果、上記したように解凍時の組織状態が悪くな
り、組織から水分とともに成分が食材外に流出して成分
濃度が悪くなり、解凍調理後の官能評価も低くなったと
推定される。[Table 1] According to Table 1, in the frozen product obtained by the freezing method 1 (atmosphere temperature −20 ° C.), both the tissue state and the component concentration after thawing are poor, and the sensory evaluation after cooking is as low as 0 point. When the texture state of the frozen product according to this Freezing Method 1 during freezing is observed in the photograph shown in FIG. 9, pores (cavities) presumed to contain ice crystals are observed on the sample surface. This hole has the same size as the muscle fiber of the raw tissue before freezing observed in the photograph shown in FIG. From this, during the freezing period of 50 minutes, ice crystals of the same size as muscle fibers are generated and the tissue is destroyed,
As a result, it is presumed that, as described above, the tissue condition at the time of thawing is deteriorated, the components flow out from the food material along with the moisture to the outside, and the concentration of the components is deteriorated, and the sensory evaluation after thawing and cooking is lowered.
【0007】冷凍方法2による冷凍物では、冷凍方法1
と比較して、解凍後の組織状態、成分濃度が良くなって
いる。これは、雰囲気温度を−40℃に下げたことで、
凍結期間が15分に短縮され、それにより氷結晶の成長
が抑制され、氷結晶による組織破壊が低減されたためと
推定される。しかし、解凍調理後の官能評価は、0.5
ポイントと、生と比較すると1ポイントの差があり、食
味が悪くなったことが明確に認識されている。In the case of a frozen product according to the freezing method 2, the freezing method 1
Compared with, the tissue condition after thawing and the component concentration were better. This is because by lowering the ambient temperature to -40 ℃,
It is presumed that the freezing period was shortened to 15 minutes, which suppressed the growth of ice crystals and reduced the tissue destruction due to ice crystals. However, the sensory evaluation after thawing and cooking was 0.5
There is a difference of 1 point between the point and raw, and it is clearly recognized that the taste is bad.
【0008】冷凍方法3は、こうした官能評価のポイン
トを生の1.5に近づけるように、雰囲気温度を冷凍方
法2より低い−80℃に下げることで、凍結期間を2.
5分とさらに短縮したものである。これにより氷結晶に
よる組織破壊はさらに低減されるものと推定されたが、
実際の冷凍物の組織状態、成分濃度、官能評価は冷凍方
法2より悪くなった。In the freezing method 3, the atmospheric temperature is lowered to −80 ° C., which is lower than that in the freezing method 2, so that the point of such sensory evaluation approaches to the raw value of 1.5, and the freezing period is 2.
It was shortened to 5 minutes. It was estimated that this would further reduce the tissue destruction due to ice crystals.
The actual texture state, component concentration, and sensory evaluation of the frozen product were worse than those of Freezing Method 2.
【0009】この冷凍方法3による冷凍物(凍結期間
2.5分、冷却速度2℃/min)の冷凍中の組織状態を図
11に示した写真で観察すると、試料表面に観察される
孔(空洞)は、上記した図9(冷凍方法1;凍結期間5
0分、冷却速度0.1℃/min)における孔よりも小さく
なっている。しかし、上記した図10に観察される生の
組織の筋線維より小さい氷結晶が存在したと推定される
孔が観察されることから、筋線維内部に氷結晶が生成し
て筋原線維に損傷を与え、それにより解凍後の組織状
態、成分濃度が悪くなり、解凍調理後の官能評価も低く
なったと推定される。Observation of the microstructure of the frozen material (freezing period 2.5 minutes, cooling rate 2 ° C./min) by the freezing method 3 during freezing is shown in the photograph shown in FIG. The cavity is shown in FIG. 9 (freezing method 1; freezing period 5) described above.
It is smaller than the hole at 0 minutes and a cooling rate of 0.1 ° C./min). However, since pores presumed to have ice crystals smaller than the muscle fibers of the raw tissue observed in FIG. 10 described above are observed, ice crystals are generated inside the muscle fibers to damage the myofibrils. It is presumed that, by this, the tissue state and component concentration after thawing became worse, and the sensory evaluation after thawing and cooking became lower.
【0010】このように、凍結期間における冷却速度を
単に速くするだけでは食材の組織の損傷を低減できず、
解凍時に食材本来の生に近い食味を再現することは難し
い。本発明は上記問題を解決するもので、食材を生の組
織および成分を保って冷凍することができ、解凍調理後
に食材本来の食味に近づけられる冷凍方法および冷凍機
を提供することを目的とするものである。As described above, it is not possible to reduce the damage to the tissue of the foodstuff by simply increasing the cooling rate during the freezing period,
When thawing, it is difficult to reproduce the original taste of the food. The present invention solves the above problems, and an object of the present invention is to provide a freezing method and a freezer that can freeze a food material while preserving its raw tissue and components, and bring it closer to the original taste of the food material after thawing and cooking. It is a thing.
【0011】[0011]
【課題を解決するための手段】上記課題を解決するため
に請求項1記載の本発明は、冷凍機を、冷凍室と、前記
冷凍室内を冷却する冷却手段と、前記冷凍室内に設置す
る食材の種類を入力する食材選択手段と、入力された食
材の種類に基づいて食材の冷却速度を制御する冷却速度
制御手段を備えた構成としたことを特徴とする。In order to solve the above-mentioned problems, the present invention according to claim 1 provides a refrigerator, a freezer compartment, cooling means for cooling the freezer compartment, and food materials installed in the freezer compartment. And a cooling rate control means for controlling the cooling rate of the foodstuff based on the inputted foodstuff type.
【0012】これにより、食材ごとの適切な冷却速度と
することで、食材の組織状態を保持した良好な冷凍物を
得ることが可能になる。請求項2記載の本発明は、請求
項1記載の冷凍機において、冷凍室内の食材とこの食材
に熱を伝える伝熱媒体の少なくとも一方の温度を検出す
る温度検出手段を有し、冷却速度制御手段は、食材の種
類ごとに決められた最適冷却速度を予め記憶し、食材選
択手段からの食材種類情報に応じて当該食材について最
適冷却速度を抽出し、前記温度検出手段で検出された温
度情報より直接的あるいは間接的に得られる冷凍室内の
食材の中心部温度が最大氷結晶生成帯にある間は、この
冷凍室内の食材の冷却速度を前記抽出した最適冷却速度
に、冷却手段により前記伝熱媒体を介して制御するよう
に構成されたことを特徴とする。[0012] With this, by setting an appropriate cooling rate for each food material, it becomes possible to obtain a good frozen product in which the texture state of the food material is maintained. According to a second aspect of the present invention, in the refrigerator according to the first aspect, there is provided temperature detection means for detecting the temperature of at least one of the food in the freezing chamber and the heat transfer medium that transfers heat to the food, and cooling speed control is provided. The means stores in advance the optimum cooling rate determined for each type of food, extracts the optimum cooling rate for the food according to the food type information from the food selection means, and detects the temperature information detected by the temperature detection means. While the central temperature of the foodstuff in the freezing room obtained more directly or indirectly is in the maximum ice crystal formation zone, the cooling speed of the foodstuff in the freezing room is transferred to the extracted optimum cooling speed by the cooling means. It is characterized in that it is configured to be controlled via a heat medium.
【0013】上記したようにして、食材を冷凍する最大
氷結晶生成帯での冷却速度を、食材の種類ごとに予め決
めた最適冷却速度に制御することにより、組織内部に生
成する氷結晶を、組織を損傷しにくい大きさに抑制する
ことができる。よって、冷凍前の食材の組織状態を保持
した良好な冷凍物を得ることが可能であり、この冷凍物
を解凍調理したときに、成分の流出が少ない、食材本来
の食味を実現できる。なお、伝熱媒体は、食材に接触し
て熱を伝える空気やブラインなどをいう。As described above, by controlling the cooling rate in the maximum ice crystal production zone for freezing foodstuffs to the optimum cooling rate predetermined for each type of foodstuffs, ice crystals produced inside the tissue are It is possible to suppress the size of the tissue so as not to be damaged. Therefore, it is possible to obtain a good frozen product that retains the textured state of the food product before freezing, and when the frozen product is thawed and cooked, the outflow of the components is small, and the original taste of the food product can be realized. The heat transfer medium is air, brine, or the like that transfers heat by contacting food materials.
【0014】請求項3記載の本発明は、請求項2記載の
冷凍機において、温度検出手段は食材の表面温度を検出
し、冷却速度制御手段は、食材の種類ごとに、食材の表
面温度と中心部温度の相関情報を予め記憶し、前記温度
検出手段で検出された食材の表面温度の値を用いて、冷
凍室内の食材の中心部温度を推定するように構成された
ことを特徴とする。According to a third aspect of the present invention, in the refrigerator according to the second aspect, the temperature detecting means detects the surface temperature of the food material, and the cooling speed control means detects the surface temperature of the food material for each type of food material. Correlation information of the central part temperature is stored in advance, and the central part temperature of the foodstuff in the freezer compartment is estimated by using the value of the surface temperature of the foodstuff detected by the temperature detecting means. .
【0015】請求項4記載の本発明は、請求項2記載の
冷凍機において、冷凍室内に設置する食材の種類ごとに
寸法や熱伝導度などの物理特性情報を入力する物理特性
情報入力手段を備え、温度検出手段は食材の表面温度を
検出し、冷却速度制御手段は、食材の表面温度と前記物
理特性情報とから食材の中心部温度を算出する演算式を
予め記憶し、前記温度検出手段で検出された食材の表面
温度の値と前記物理特性情報入力手段からの物理特性情
報と前記演算式とを用いて、冷凍室内の食材の中心部温
度を算出するように構成されたことを特徴とする。According to a fourth aspect of the present invention, in the refrigerator according to the second aspect, there is provided physical characteristic information input means for inputting physical characteristic information such as dimensions and thermal conductivity for each kind of food material installed in the freezing chamber. The temperature detecting means detects the surface temperature of the food material, and the cooling rate control means stores in advance an arithmetic expression for calculating the central temperature of the food material from the surface temperature of the food material and the physical characteristic information. The temperature of the foodstuff in the freezer compartment is calculated by using the value of the surface temperature of the foodstuff detected in step 4, the physical property information from the physical property information input means, and the arithmetic expression. And
【0016】請求項5記載の本発明は、請求項2記載の
冷凍機において、温度検出手段は、液体である伝熱媒体
の温度を検出し、冷却速度制御手段は、食材の種類ごと
に、食材の中心部温度と前記液体の温度との相関情報
と、最適冷却速度を実現可能な予め決められた前記液体
の最適液体温度の情報とを予め記憶し、前記温度検出手
段で検出された液体の温度情報から冷凍室内の食材の中
心部温度を推定し、推定した食材の中心部温度が最大氷
結晶生成帯の下限温度に到達するまで、冷却手段によっ
て前記液体の温度を前記最適液体温度に調節するように
構成されたことを特徴とする。According to a fifth aspect of the present invention, in the refrigerator according to the second aspect, the temperature detecting means detects the temperature of the heat transfer medium which is a liquid, and the cooling speed control means, for each type of food, Correlation information between the temperature of the central portion of the food and the temperature of the liquid, and the information of the predetermined optimum liquid temperature of the liquid that can realize the optimum cooling rate is stored in advance, and the liquid detected by the temperature detecting means. The temperature of the liquid is estimated by the cooling means until the center temperature of the food in the freezing chamber is estimated from the temperature information of the temperature until the temperature of the estimated center of the food reaches the lower limit temperature of the maximum ice crystal formation zone. It is characterized in that it is configured to adjust.
【0017】請求項6記載の本発明は、食材を冷凍する
際に、前記食材の中心部温度を検出し、前記食材の中心
部温度が最大氷結晶生成帯にある間は、前記食材の冷却
速度をその食材の種類について予め決められた最適冷却
速度に制御することを特徴とする。According to a sixth aspect of the present invention, the temperature of the center of the food is detected when the food is frozen, and the food is cooled while the temperature of the center of the food is in the maximum ice crystal formation zone. It is characterized in that the speed is controlled to an optimum cooling speed that is predetermined for the type of food.
【0018】[0018]
【発明の実施の形態】以下、本発明の実施の形態を、図
面を参照しながら説明する。
(実施の形態1)図1は本発明の実施の形態1における
冷凍機の概略構成を示す断面図である。BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. (Embodiment 1) FIG. 1 is a sectional view showing a schematic configuration of a refrigerator according to Embodiment 1 of the present invention.
【0019】冷凍機本体1は、食材2などの冷凍対象物
を下部に設置する冷凍室3と、冷凍室3の内部、すなわ
ち食材2に熱を伝える伝熱媒体としての空気を冷却する
冷却装置4と、冷凍室3の内部温度(上部温度)を検知
する室温センサー5と、食材2の内部温度(ほぼ中心部
の温度)を検知する品温センサー6と、室温センサー
5,品温センサー6の情報をもとに冷却装置4を駆動し
て冷凍室3の内部温度を調節し、食材の冷却速度を制御
する冷却速度制御手段7とを備えている。この冷却速度
制御手段7は、以下の表2に示すような、食材の種類ご
との最適冷却速度を記憶している。The refrigerator main body 1 includes a freezing room 3 in which a food material 2 or other object to be frozen is installed, and a cooling device for cooling air inside the freezing room 3, that is, as a heat transfer medium for transmitting heat to the food material 2. 4, a room temperature sensor 5 that detects the internal temperature (upper temperature) of the freezer compartment 3, an article temperature sensor 6 that detects the internal temperature of the food material 2 (the temperature at the central portion), a room temperature sensor 5, and an article temperature sensor 6 And a cooling rate control means 7 for controlling the cooling rate of the foodstuffs by driving the cooling device 4 on the basis of the information of 1. The cooling rate control means 7 stores the optimum cooling rate for each type of food as shown in Table 2 below.
【0020】[0020]
【表2】
冷却装置4は、冷凍室3外に配置した圧縮機8、凝縮器
9、キャピラリーチューブ10と、冷凍室3内に配置し
た直冷式蒸発器11とを順次環状に接続して冷凍サイク
ルを形成したものであり、前記直冷式蒸発器11によっ
て冷凍室3内を直接に冷却する。その際には、冷凍室3
の内部温度を制御値として、蒸発器11の冷媒の蒸発温
度と圧縮機8の能力の少なくとも一方が制御される。[Table 2] The cooling device 4 forms a refrigeration cycle by sequentially connecting a compressor 8, a condenser 9, a capillary tube 10 arranged outside the freezing chamber 3 and a direct-cooling evaporator 11 arranged inside the freezing chamber 3 in an annular shape. The inside of the freezer compartment 3 is directly cooled by the direct cooling type evaporator 11. In that case, freezer 3
At least one of the evaporation temperature of the refrigerant in the evaporator 11 and the capacity of the compressor 8 is controlled by using the internal temperature of the controller as a control value.
【0021】冷凍機本体1の外面には、図2に示すよう
なコントロールパネル12が設けられている。このコン
トロールパネル12は、冷凍保存しようとする食材2の
種類を選択するメニューキー13と、食材2の保存温度
を設定する設定キー14と、設定キー14による設定温
度を確定する決定ボタン15と、設定温度および冷凍室
3内の温度を表示する温度表示パネル16と、冷凍運転
を開始及び中止させるスタートボタン17と、冷凍が終
了したことを知らせる保存ランプ18とを備えている。A control panel 12 as shown in FIG. 2 is provided on the outer surface of the refrigerator main body 1. The control panel 12 has a menu key 13 for selecting the type of food material 2 to be frozen, a setting key 14 for setting the storage temperature of the food material 2, an enter button 15 for confirming the set temperature by the setting key 14, A temperature display panel 16 for displaying the set temperature and the temperature in the freezer compartment 3, a start button 17 for starting and stopping the freezing operation, and a storage lamp 18 for notifying the end of freezing are provided.
【0022】上記した冷凍機における食材2の冷凍方法
を、食材2として畜肉(以下、肉という)を例にとって
説明する。まず、コントロールパネル12において、温
度設定キー14で冷凍室3内の温度−20℃を設定し、
それにより温度表示パネル16に数秒間、表示される設
定温度を確認し、その後に温度決定ボタン15を押して
温度を確定する。次に、メニューキー13で「肉」を選
択し、肉である食材2を冷凍室3内の品温センサー4上
に設置するとともに、スタートボタン17を押して食材
2の冷却を開始する。A method of freezing the foodstuff 2 in the above refrigerator will be described by taking livestock meat (hereinafter referred to as meat) as the foodstuff 2 as an example. First, in the control panel 12, the temperature setting key 14 is used to set the temperature inside the freezer compartment −20 ° C.
Thereby, the set temperature displayed on the temperature display panel 16 is confirmed for several seconds, and then the temperature determination button 15 is pressed to fix the temperature. Next, "meat" is selected with the menu key 13, the food material 2 which is meat is set on the product temperature sensor 4 in the freezer compartment 3, and the start button 17 is pressed to start cooling the food material 2.
【0023】このことにより、冷却装置4の直冷式蒸発
器11が冷凍室3内を直接に冷却し、室温センサー5,
品温センサー6がそれぞれ冷凍室3,食材2の内部の温
度を検知して逐次、温度制御装置7に出力する。As a result, the direct-cooling type evaporator 11 of the cooling device 4 directly cools the inside of the freezer compartment 3, and the room temperature sensor 5,
The product temperature sensors 6 detect the temperatures inside the freezer compartment 3 and the food 2 respectively, and sequentially output them to the temperature control device 7.
【0024】それに対して温度制御装置7は、食材2の
内部温度0℃(凍結期間の開始温度)が検知された時か
ら一定時間ごとに、その時点での内部温度とその内部温
度への下降に要した時間とをチェックして冷却速度を演
算する。また演算の都度、得られた演算値を上記表1に
示した「肉」に最適な冷却速度0.5℃/minに対して比
較して、演算値が冷却速度0.5℃/minに近づくように
冷凍室3内を温度制御する。そして食材2の内部温度−
5℃(凍結期間の終了温度)が検知された後は、冷凍室
3内を−20℃に温度制御する。その後に食材2の内部
温度−20℃が検出されたら、保存ランプ18を点灯さ
せる。On the other hand, the temperature control device 7 decreases the internal temperature at that time and the internal temperature at a certain time interval from when the internal temperature 0 ° C. (starting temperature of the freezing period) of the food 2 is detected. And the cooling rate is calculated. In addition, for each calculation, the calculated value was compared with the optimum cooling rate of 0.5 ℃ / min for "meat" shown in Table 1 above, and the calculated value was reduced to 0.5 ℃ / min. The temperature inside the freezer compartment 3 is controlled so as to approach. And the internal temperature of the foodstuff 2 −
After 5 ° C (end temperature of the freezing period) is detected, the temperature inside the freezer compartment 3 is controlled to -20 ° C. After that, when the internal temperature of the food material −20 ° C. is detected, the storage lamp 18 is turned on.
【0025】図3に、上記した冷凍機における食材2お
よび冷凍室3の内部の温度変化を示す。冷凍運転の開始
時には冷凍室内、食材(肉)内部とも常温の20℃近辺
である。冷凍運転の開始後、冷凍室内は速やかに−20
℃まで冷却され、それにより冷却される食材内部が0℃
に到達するまで、冷凍室内は−20℃に制御される。食
材内部が0℃に到達した後は、同食材内部が上記した
0.5℃/minで降温するように冷凍室内の温度が制御さ
れ、冷凍室内の温度は−40℃近辺に至る。それにより
食材内部が約10分で−5℃に達したら、冷凍室内は再
び−20℃に制御され、食材内部は最終的に冷凍室内の
温度−20℃まで降温する。FIG. 3 shows changes in temperature inside the food material 2 and the freezer compartment 3 in the above refrigerator. At the start of the freezing operation, both the inside of the freezing room and the inside of the food (meat) are around 20 ° C., which is room temperature. After the start of the freezing operation, the inside of the freezing room is promptly -20
The inside of the food is cooled to 0 ℃
The temperature inside the freezer is controlled at -20 ° C until the temperature reaches. After the inside of the food reaches 0 ° C, the temperature inside the freezer is controlled so that the inside of the food is cooled at the above-mentioned 0.5 ° C / min, and the temperature inside the freezer reaches around -40 ° C. As a result, when the inside of the food reaches -5 ° C in about 10 minutes, the inside of the freezer is controlled again to -20 ° C, and the inside of the food is finally cooled to the temperature inside the freezer of -20 ° C.
【0026】図4に、肉の凍結期間0〜−5℃における
冷却速度と、冷凍終了後に解凍した時の筋原線維の隙間
率、および解凍調理したときの官能評価との関係を示
す。ここで、筋原線維の隙間率とは、肉の組織を構成す
る筋線維の断面積に対する筋原線維の隙間の割合(百分
率)である。冷凍前の生の食材は筋原線維の隙間がほと
んど観察されないので隙間率0%とし、官能評価1.5
ポイントとした。FIG. 4 shows the relationship between the cooling rate of the meat during the freezing period of 0 to -5 ° C., the void ratio of myofibrils when thawed after freezing, and the sensory evaluation when thawed and cooked. Here, the void ratio of myofibrils is the ratio (percentage) of the voids of myofibrils to the cross-sectional area of the muscle fibers that make up the tissue of the meat. In the raw food material before freezing, almost no voids of myofibrils were observed, so the void ratio was set to 0%, and the sensory evaluation was 1.5.
It was a point.
【0027】冷却速度0.5℃/minの時に筋原線維の隙
間率は約10%と最も低く、官能評価も1ポイントと、
生の1.5ポイントに最も近い。冷却速度2℃/min以上
になると筋原線維の隙間率は大きくなり、官能評価も0
ポイントと、生と比較して明確に悪くなっている。これ
は、先に従来の冷凍方法3について説明したように、冷
却速度が2℃/min以上になると筋線維内部に平均粒径の
小さい氷結晶が生成し、その氷結晶が筋原線維に損傷を
与えるためと推定される。When the cooling rate was 0.5 ° C./min, the void ratio of myofibrils was about 10%, the lowest, and the sensory evaluation was 1 point.
Closest to raw 1.5 points. When the cooling rate is 2 ° C / min or more, the void ratio of myofibrils becomes large, and the sensory evaluation is 0.
The point is clearly worse compared to raw. This is because, as described above for the conventional freezing method 3, when the cooling rate becomes 2 ° C./min or more, ice crystals with a small average particle size are generated inside the muscle fibers, and the ice crystals damage the myofibrils. Is presumed to give.
【0028】この結果から明らかなように、食材が肉で
ある場合には、凍結期間の冷却速度を0.5℃/minに制
御することによって、解凍後の組織状態を良好とし、最
も生に近い食味、すなわち食材本来の食味を実現するこ
とができる。As is clear from this result, when the food material is meat, the tissue state after thawing is improved by controlling the cooling rate during the freezing period to 0.5 ° C./min, and the meat is most raw. It is possible to achieve a similar taste, that is, the original taste of the food.
【0029】上記した表1に示したように、魚のための
最適冷却速度は0.8℃/min、野菜のための最適冷却速
度は3℃/minである。それぞれの最適冷却速度に凍結期
間において制御することにより、解凍後に食材本来の食
味を実現できる。As shown in Table 1 above, the optimum cooling rate for fish is 0.8 ° C / min and the optimum cooling rate for vegetables is 3 ° C / min. By controlling each optimum cooling rate during the freezing period, the original taste of the food can be realized after thawing.
【0030】なお、上記においては、品温センサー6で
食材2の内部温度を検知するようにしたが、実際に食材
2に品温センサー6を挿入して内部温度を検知するのは
外観を損なうことになるので、予め各種食材の表面温度
と内部温度との相関データを実験的に得て、品温センサ
ー6自体あるいは温度制御装置7に格納しておき、品温
センサー6により食材2の表面温度を検出して内部温度
を推定するようにしてもよい。In the above description, the article temperature sensor 6 is used to detect the internal temperature of the food 2. However, actually inserting the article temperature sensor 6 into the food 2 to detect the internal temperature impairs the appearance. Therefore, the correlation data between the surface temperature and the internal temperature of various foodstuffs is experimentally obtained in advance and stored in the product temperature sensor 6 itself or the temperature control device 7, and the surface of the foodstuff 2 is measured by the product temperature sensor 6. The internal temperature may be estimated by detecting the temperature.
【0031】上記したような直冷式蒸発器で構成されて
いる冷凍機で冷却速度を制御する方法としては、上記し
たように冷凍室3の内部温度を制御値とする方法の他、
冷凍室2の内部温度と関連づけた蒸発器11の冷媒の蒸
発温度を制御値とする方法、圧縮機8の能力を制御値と
する方法などがある。
(実施の形態2)図5は、本発明の実施の形態2におけ
る冷凍機の概略構成を示す断面図である。この冷凍機が
上記した実施の形態1の冷凍機と異なるのは、冷却装置
3の構成と、品温センサー6が食材2の表面の温度を検
知する点とである。As a method of controlling the cooling rate in the refrigerator constituted by the direct cooling type evaporator as described above, in addition to the method of setting the internal temperature of the freezing compartment 3 to the control value as described above,
There are a method of setting the evaporation temperature of the refrigerant of the evaporator 11 associated with the internal temperature of the freezer compartment 2 as a control value, a method of setting the capacity of the compressor 8 as a control value, and the like. (Embodiment 2) FIG. 5 is a sectional view showing a schematic configuration of a refrigerator according to Embodiment 2 of the present invention. This refrigerator is different from the refrigerator according to the first embodiment described above in the configuration of the cooling device 3 and the point that the article temperature sensor 6 detects the temperature of the surface of the food 2.
【0032】冷却装置3は、図示しない圧縮機と凝縮器
とキャピラリーチューブとを有した冷却器19と、冷却
器19で冷却された冷気を冷凍室3内に導くための吐出
ダクト20と、冷凍室3内の冷気を冷却器19に戻すた
めの吸い込みダクト21と、冷却器19による冷気を吐
出ダクト20を通じて冷凍室3内に強制通風する送風機
22と、吐出ダクト20の吹出し口20aの近傍に配置
され冷気流入量を調整するダンパサーモ23とを備えて
いる。ダンパサーモ23は温度制御装置7からの電気的
入力に応じてモータ24の駆動力により開閉するもので
ある。The cooling device 3 includes a cooler 19 having a compressor, a condenser and a capillary tube (not shown), a discharge duct 20 for introducing the cool air cooled by the cooler 19 into the freezer compartment 3, and a freezer. In the vicinity of the suction duct 21 for returning the cool air in the chamber 3 to the cooler 19, the blower 22 for forcedly ventilating the cool air by the cooler 19 into the freezing chamber 3 through the discharge duct 20, and the outlet 20a of the discharge duct 20. The damper thermo 23 is arranged to adjust the inflow amount of cold air. The damper thermo 23 is opened and closed by the driving force of the motor 24 according to an electric input from the temperature control device 7.
【0033】また図6に示すように、コントロールパネ
ル12は、冷凍する食材2の幅や熱伝導度などの物理特
性を選択する物理特性入力キー25を備えている。この
ため設定キー14は、食材の保存温度だけでなく物理特
性入力キー25で選択した物理特性の値を設定し、決定
ボタン15は設定キー14による設定値を確定し、表示
パネル16は設定キー14による設定値や冷凍室3内の
温度を表示するようになっている。Further, as shown in FIG. 6, the control panel 12 is provided with a physical characteristic input key 25 for selecting a physical characteristic such as the width and thermal conductivity of the food material 2 to be frozen. Therefore, the setting key 14 sets not only the storage temperature of the food material but also the value of the physical characteristic selected by the physical characteristic input key 25, the decision button 15 confirms the setting value by the setting key 14, and the display panel 16 sets the setting key. The set value by 14 and the temperature in the freezer compartment 3 are displayed.
【0034】上記した冷凍機における食材2の冷凍方法
を、食材2として魚を例にとって説明する。まず、コン
トロールパネル12において、メニューキー13で魚を
選択し、次いで物理特性入力キー25で幅を選択し、設
定キー14で幅の値を入力し、決定ボタン15によりそ
の入力値を確定する。次いで物理特性入力キー25で熱
伝導度を選択し、設定キー14で熱伝導度の値を入力
し、決定ボタン15によりその入力値を確定する。次い
で設定キー14で保存温度−20℃を入力し、決定ボタ
ン15によりその入力値を確定する。各入力値は、表示
パネル16に数秒間だけ表示される値を確認しながら確
定する。その後に、魚である食材2を冷凍室3内の品温
センサー4上に設置するとともに、スタートボタン17
を押して食材2の冷却を開始する。A method of freezing the food 2 in the above refrigerator will be described by taking fish as the food 2. First, in the control panel 12, the menu key 13 is used to select fish, the physical characteristic input key 25 is used to select a width, the setting key 14 is used to input a width value, and the enter button 15 is used to confirm the input value. Next, the thermal conductivity is selected with the physical property input key 25, the thermal conductivity value is input with the setting key 14, and the input value is confirmed with the enter button 15. Next, the setting key 14 is used to input the storage temperature of -20 ° C, and the enter button 15 is used to confirm the input value. Each input value is confirmed while confirming the value displayed on the display panel 16 for only a few seconds. After that, the food material 2, which is a fish, is placed on the product temperature sensor 4 in the freezer compartment 3, and the start button 17
Press to start cooling the food 2.
【0035】このことにより、冷却装置4が冷凍室3内
を冷却し、室温センサー5,品温センサー6がそれぞれ
冷凍室3の内部温度,食材2の表面温度を検知して逐
次、温度制御装置7に出力する。それに対して温度制御
装置7は、逐次入力してくる温度情報と先に設定入力さ
れた幅、熱伝導度の情報とを基に、予め格納されている
演算式を用いて、魚である食材2の内部温度(中心部温
度)を演算する。As a result, the cooling device 4 cools the inside of the freezer compartment 3, and the room temperature sensor 5 and the article temperature sensor 6 detect the internal temperature of the freezer compartment 3 and the surface temperature of the foodstuff 2 respectively, and successively control the temperature. Output to 7. On the other hand, the temperature control device 7 uses a pre-stored arithmetic expression based on the temperature information that is sequentially input and the width and thermal conductivity information that has been previously set and input, and uses the food ingredients that are fish. The internal temperature of 2 (center temperature) is calculated.
【0036】食材2を低温静止空気内に静置した場合の
熱量の関係式はたとえば式のように表される。ここ
で、静止空気内の熱伝達率h=5W/m2・℃であり、
熱伝導率λはコントロールパネル12から入力された値
であり、熱の移動距離Lはコントロールパネル12から
入力された幅の値から推定され、冷凍室内の温度Ta,
食材表面の温度Tbは温度センサー4により検出された
値である。よって、食材中心部の温度Tcは式から演
算される。Qは熱量、Sは表面積である。A relational expression of the amount of heat when the food material 2 is allowed to stand in low-temperature still air is expressed by, for example, the following expression. Here, the heat transfer coefficient h in still air is 5 W / m 2 · ° C,
The thermal conductivity λ is a value input from the control panel 12, and the heat transfer distance L is estimated from the width value input from the control panel 12, and the temperature Ta,
The temperature Tb of the food surface is a value detected by the temperature sensor 4. Therefore, the temperature Tc of the food center is calculated from the equation. Q is the amount of heat and S is the surface area.
【0037】
式 Q=h×(Tb−Ta)×S
式 Q=λ×((Tc−Tb)/L)×S
式=式より
式 h×(Tb−Ta)=λ×((Tc−Tb)/L)
次いで温度制御装置7は、上記した実施の形態1と同様
にして、食材2の内部温度0℃(凍結期間の開始温度)
が検知された時から一定時間ごとに、その時点での内部
温度とその内部温度への下降に要した時間とをチェック
して冷却速度を演算する。また演算の都度、得られた演
算値を上記表1に示した「魚」に最適な冷却速度0.8
℃/minに対して比較して、演算値が冷却速度0.8℃/m
inに近づくように冷凍室3内を温度制御する。そして食
材2の内部温度−5℃(凍結期間の終了温度)が検知さ
れた後は、冷凍室3内を−20℃に温度制御する。その
後に食材2の内部温度−20℃が検出されたら、保存ラ
ンプ18を点灯させる。Formula Q = h × (Tb−Ta) × S Formula Q = λ × ((Tc−Tb) / L) × S Formula = Formula From Formula h × (Tb−Ta) = λ × ((Tc− Tb) / L) Next, the temperature control device 7 performs the same internal temperature 0 ° C. (freezing period start temperature) of the food material 2 as in the first embodiment.
The cooling rate is calculated by checking the internal temperature at that time and the time required for the temperature to drop to the internal temperature at regular intervals from the time when is detected. In addition, each time the calculation is performed, the calculated value obtained is the optimum cooling rate of 0.8 for the "fish" shown in Table 1 above.
Compared to ℃ / min, the calculated value is cooling rate 0.8 ℃ / m
The temperature inside the freezer compartment 3 is controlled so as to approach in. Then, after the internal temperature of the food material −5 ° C. (end temperature of the freezing period) is detected, the temperature inside the freezer compartment 3 is controlled at −20 ° C. After that, when the internal temperature of the food material −20 ° C. is detected, the storage lamp 18 is turned on.
【0038】このようにして、食材2が魚である場合に
は、凍結期間の冷却速度を0.8℃/minに制御すること
によって、解凍後の組織状態を良好とし、最も生に近い
食味、食材本来の食味を実現することができる。In this way, when the food material 2 is fish, by controlling the cooling rate during the freezing period to 0.8 ° C./min, the tissue state after thawing is improved, and the taste that is closest to the raw taste is obtained. Therefore, the original taste of food can be realized.
【0039】上記と同様にして、肉については最適冷却
速度0.5℃/min、野菜については最適冷却速度3℃/m
inに凍結期間において制御することにより、解凍後に食
材本来の食味を実現できる。In the same manner as above, the optimum cooling rate for meat is 0.5 ° C / min and the optimum cooling rate for vegetables is 3 ° C / m.
By controlling to in during the freezing period, the original taste of the food can be realized after thawing.
【0040】なお、上記したような強制対流式蒸発器で
構成されている冷凍機で冷却速度を制御する方法として
は、上記したように冷凍室3内の温度を制御値とする方
法の他、冷却器19により冷却される冷気の温度を制御
値とする方法、ダンパーサーモ23により冷凍室3に流
入させる冷気の量を制御値とする方法、送風機22の風
量を制御値とする方法などがある。
(実施の形態3)図7は、本発明の実施の形態3におけ
る冷凍機の概略構成を示す断面図である。As a method of controlling the cooling rate in the refrigerator constituted by the forced convection evaporator as described above, in addition to the method of using the temperature in the freezer compartment 3 as the control value as described above, There are a method of setting the temperature of the cold air cooled by the cooler 19 as a control value, a method of setting the amount of cold air flowing into the freezer compartment 3 by the damper thermo 23 as a control value, and a method of setting the air volume of the blower 22 as a control value. . (Embodiment 3) FIG. 7 is a sectional view showing a schematic configuration of a refrigerator according to Embodiment 3 of the present invention.
【0041】冷凍機本体1は、冷凍槽26の内部に、食
材2などの冷凍対象物を浸漬し冷却する伝熱媒体として
のブライン27を入れており、このブライン27を冷却
する直冷式蒸発器11と、ブライン27を攪拌する攪拌
スクリュー28と、ブライン27の温度を検知する液温
センサー29と、食材2を収容してブライン27内に浸
漬されるかご30とを備えている。直冷式蒸発器(冷却
パイプ)11は、先に実施の形態1で説明した冷凍サイ
クル(図1参照)の一部を構成するものである。冷凍機
本体1の外面には、保存ランプがないことを除いて、実
施の形態1と同様のコントロールパネル12(図2参
照)が設けられている。The refrigerator main body 1 has a brine 27 as a heat transfer medium for immersing and cooling the object to be frozen such as the food 2 inside the freezer tank 26, and a direct cooling type evaporation for cooling the brine 27. The container 11 is provided with a stirring screw 28 that stirs the brine 27, a liquid temperature sensor 29 that detects the temperature of the brine 27, and a basket 30 that houses the food material 2 and is immersed in the brine 27. The direct-cooling evaporator (cooling pipe) 11 constitutes a part of the refrigeration cycle (see FIG. 1) described in the first embodiment. A control panel 12 (see FIG. 2) similar to that of the first embodiment is provided on the outer surface of the refrigerator body 1 except that there is no storage lamp.
【0042】温度制御装置7は、以下の表3に示すよう
な、各種食材の最適冷却速度とそれを実現可能な実験的
に得られたブライン温度を記憶していて、液温センサー
29の温度情報をもとに直冷式蒸発器11を介してブラ
イン27の温度を制御するように構成されている。The temperature control device 7 stores optimum cooling rates of various food materials and experimentally obtained brine temperatures capable of realizing the optimum cooling rates as shown in Table 3 below. The temperature of the brine 27 is controlled via the direct cooling evaporator 11 based on the information.
【0043】[0043]
【表3】
上記した冷凍機における食材2の冷凍方法を、食材2と
して野菜を例にとって説明する。まず、コントロールパ
ネル12において、設定キー14でブライン27の温度
−40℃を設定し、それにより表示パネル16に数秒間
だけ表示される設定温度を確認し、決定ボタン15を押
して確定する。その後に、メニューキー13で「野菜」
を選択し、野菜である食材2を入れたかご30をブライ
ン27中に直接浸漬し、スタートボタン17を押して食
材2の冷却を開始する。[Table 3] A method of freezing the food material 2 in the refrigerator described above will be described by taking vegetables as the food material 2 as an example. First, in the control panel 12, the temperature of the brine 27 is set to −40 ° C. with the setting key 14, the set temperature displayed on the display panel 16 for only a few seconds is confirmed, and the decision button 15 is pressed to confirm. After that, press “Menu” 13 to select “Vegetables”
Is selected, the basket 30 containing the foodstuff 2 that is a vegetable is directly immersed in the brine 27, and the start button 17 is pressed to start cooling the foodstuff 2.
【0044】このことにより、直冷式蒸発器11がブラ
イン27を直接に冷却して、上記した予め決められたブ
ライン温度−40℃に速やかに降温させ、それにより、
野菜である食材2の内部を冷却速度3℃/minに制御す
る。As a result, the direct-cooling type evaporator 11 directly cools the brine 27 and quickly lowers the brine 27 to the above-mentioned predetermined brine temperature of -40 ° C., whereby
The inside of the food material 2, which is a vegetable, is controlled at a cooling rate of 3 ° C./min.
【0045】このようにして、食材が野菜である場合に
は、ブライン温度を−40℃に制御することによって凍
結期間において最適冷却速度を3℃/minに制御すること
ができ、それにより、解凍後の組織状態を良好とし、最
も生に近い食味、食材本来の食味を実現することができ
る。In this way, when the food material is vegetables, the optimum cooling rate can be controlled at 3 ° C./min during the freezing period by controlling the brine temperature at −40 ° C., and thus the thawing process can be performed. It is possible to improve the subsequent tissue state and achieve the taste that is the closest to the fresh taste and the original taste of the food.
【0046】上記と同様にして、肉については、ブライ
ン温度を−20℃に制御することにより凍結期間に最適
冷却速度0.5℃/minに制御することができ、また魚に
ついては、ブライン温度を−25℃に制御することによ
り凍結期間に最適冷却速度0.8℃/minに制御すること
ができ、解凍後に食材本来の食味を実現できる。In the same manner as above, by controlling the brine temperature at -20 ° C for meat, the optimum cooling rate can be controlled at 0.5 ° C / min during the freezing period, and for fish, the brine temperature can be controlled. By controlling the temperature to be -25 ° C, the optimum cooling rate can be controlled to 0.8 ° C / min during the freezing period, and the original taste of the food material can be realized after thawing.
【0047】なお、このようなブライン27を用いた冷
凍機で冷却速度を制御する方法としては、上記したよう
にブライン温度を制御値とする方法の他、ブライン27
の流速(攪拌速度)を制御値とする方法、また上記した
実施の形態1と同様に、ブライン温度と関連づけた蒸発
器11の冷媒の蒸発温度を制御値とする方法、圧縮機の
能力を制御値とする方法などがある。As a method of controlling the cooling rate in the refrigerator using the brine 27, the brine 27 can be controlled by the brine temperature as described above.
Method using the flow rate (stirring speed) of the control value as a control value, the method using the evaporation temperature of the refrigerant of the evaporator 11 related to the brine temperature as the control value, and the capacity of the compressor as in the first embodiment described above. There is a method of setting the value.
【0048】[0048]
【発明の効果】以上のように本発明によれば、食材を冷
凍する凍結期間(最大氷結晶生成帯)で食材ごとに予め
決めた最適冷却速度に制御するようにしたことにより、
冷凍前の食材の組織状態を保持した良好な冷凍物を得る
ことが可能になり、この冷凍物を解凍調理したときに、
成分の流出が少ない、食材本来の食味を実現できる。As described above, according to the present invention, by controlling the predetermined optimum cooling rate for each food in the freezing period (maximum ice crystal formation zone) for freezing food,
It becomes possible to obtain a good frozen product that retains the texture state of the food material before freezing, and when this frozen product is thawed and cooked,
The original taste of food can be realized with less outflow of ingredients.
【図1】本発明の実施の形態1における冷凍機の概略構
成を示す断面図FIG. 1 is a sectional view showing a schematic configuration of a refrigerator according to a first embodiment of the present invention.
【図2】図1の冷凍機のコントロールパネルの正面図FIG. 2 is a front view of a control panel of the refrigerator shown in FIG.
【図3】図1の冷凍機を用いた冷凍方法で食材を冷凍す
る際の冷凍室および食材の内部の温度の経時変化を示す
グラフFIG. 3 is a graph showing changes over time in the temperature inside the freezer and the food when the food is frozen by the freezing method using the refrigerator shown in FIG.
【図4】肉を冷凍する際の冷却速度と組織状態及び官能
評価との関係を示すグラフFIG. 4 is a graph showing the relationship between the cooling rate when freezing meat and the tissue state and sensory evaluation.
【図5】本発明の実施の形態2における冷凍機の概略構
成を示す断面図FIG. 5 is a sectional view showing a schematic configuration of a refrigerator according to a second embodiment of the present invention.
【図6】図5の冷凍機のコントロールパネルの正面図6 is a front view of a control panel of the refrigerator shown in FIG.
【図7】本発明の実施の形態3における冷凍機の概略構
成を示す断面図FIG. 7 is a sectional view showing a schematic configuration of a refrigerator according to a third embodiment of the present invention.
【図8】従来の冷凍方法で食材を冷凍する際の食材内部
の温度の経時変化を示すグラフFIG. 8 is a graph showing changes over time in the temperature inside foodstuffs when the foodstuffs are frozen by a conventional freezing method.
【図9】生肉を従来の冷凍方法1で冷凍した後の組織状
態であって、筋線維内に氷結晶が生成したあとの孔が認
められる組織状態を示す写真FIG. 9 is a photograph showing a tissue state after freezing raw meat by the conventional freezing method 1, showing pores after formation of ice crystals in muscle fibers.
【図10】生肉の組織状態を示す写真FIG. 10 is a photograph showing the texture of raw meat.
【図11】生肉を従来の冷凍方法3で冷凍した後の組織
状態であって、筋原線維内に氷結晶が生成したあとの孔
が認められる組織状態を示す写真FIG. 11 is a photograph showing a tissue state after freezing raw meat by the conventional freezing method 3, showing pores after formation of ice crystals in myofibrils.
2 食材 3 冷凍室 4 冷却装置 5 室温センサー 6 品温センサー 7 温度制御装置 12 コントロールパネル 26 冷凍槽 27 ブライン 29 液温センサー 2 ingredients 3 freezer 4 Cooling device 5 Room temperature sensor 6 Product temperature sensor 7 Temperature control device 12 Control panel 26 Freezer 27 brine 29 Liquid temperature sensor
───────────────────────────────────────────────────── フロントページの続き (72)発明者 城野 章宏 大阪府東大阪市高井田本通4丁目2番5号 松下冷機株式会社内 Fターム(参考) 3L045 AA02 LA12 MA01 MA02 4B022 LB01 LF02 LN01 LT06 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Akihiro Jono 4-2-5 Takaidahondori, Higashi-Osaka City, Osaka Prefecture Within Matsushita Cold Machinery Co., Ltd. F-term (reference) 3L045 AA02 LA12 MA01 MA02 4B022 LB01 LF02 LN01 LT06
Claims (6)
手段と、前記冷凍室内に設置する食材の種類を入力する
食材選択手段と、入力された食材の種類に基づいて食材
の冷却速度を制御する冷却速度制御手段を備えたことを
特徴とする冷凍機。1. A freezing compartment, a cooling means for cooling the freezing compartment, a food selection means for inputting the type of food installed in the freezing compartment, and a cooling rate of the food based on the input kind of food. A refrigerator comprising a cooling rate control means for controlling.
伝熱媒体の少なくとも一方の温度を検出する温度検出手
段を有し、冷却速度制御手段は、食材の種類ごとに決め
られた最適冷却速度を予め記憶し、食材選択手段からの
食材種類情報に応じて当該食材について最適冷却速度を
抽出し、前記温度検出手段で検出された温度情報より直
接的あるいは間接的に得られる冷凍室内の食材の中心部
温度が最大氷結晶生成帯にある間は、この冷凍室内の食
材の冷却速度を前記抽出した最適冷却速度に、冷却手段
により前記伝熱媒体を介して制御するように構成された
請求項1記載の冷凍機。2. A temperature detecting means for detecting the temperature of at least one of the food in the freezing chamber and the heat transfer medium for transmitting heat to the food, and the cooling speed control means is the optimum cooling determined for each kind of food. The speed is stored in advance, the optimum cooling rate is extracted for the food according to the food type information from the food selection means, and the food in the freezer compartment is obtained directly or indirectly from the temperature information detected by the temperature detection means. While the center temperature of the is within the maximum ice crystal formation zone, the cooling rate of the food material in the freezing chamber is controlled to the extracted optimal cooling rate by the cooling means via the heat transfer medium. The refrigerator according to item 1.
し、冷却速度制御手段は、食材の種類ごとに、食材の表
面温度と中心部温度の相関情報を予め記憶し、前記温度
検出手段で検出された食材の表面温度の値を用いて、冷
凍室内の食材の中心部温度を推定するように構成された
請求項2記載の冷凍機。3. The temperature detecting means detects the surface temperature of the food material, and the cooling speed control means stores in advance the correlation information between the surface temperature and the central temperature of the food material for each kind of food material, and the temperature detecting means uses the temperature detecting means. The refrigerator according to claim 2, which is configured to estimate the temperature of the central portion of the food in the freezer compartment by using the value of the detected surface temperature of the food.
法や熱伝導度などの物理特性情報を入力する物理特性情
報入力手段を備え、温度検出手段は食材の表面温度を検
出し、冷却速度制御手段は、食材の表面温度と前記物理
特性情報とから食材の中心部温度を算出する演算式を予
め記憶し、前記温度検出手段で検出された食材の表面温
度の値と前記物理特性情報入力手段からの物理特性情報
と前記演算式とを用いて、冷凍室内の食材の中心部温度
を算出するように構成された請求項2記載の冷凍機。4. A physical characteristic information input means for inputting physical characteristic information such as dimensions and thermal conductivity for each type of food material installed in the freezer compartment, wherein the temperature detecting means detects the surface temperature of the food material and the cooling rate. The control means stores in advance an arithmetic expression for calculating the central temperature of the food from the surface temperature of the food and the physical characteristic information, and inputs the value of the surface temperature of the food detected by the temperature detecting means and the physical characteristic information input. The refrigerator according to claim 2, wherein the refrigerator is configured to calculate the temperature of the central portion of the food in the freezer compartment by using the physical characteristic information from the means and the arithmetic expression.
温度を検出し、冷却速度制御手段は、食材の種類ごと
に、食材の中心部温度と前記液体の温度との相関情報
と、最適冷却速度を実現可能な予め決められた前記液体
の最適液体温度の情報とを予め記憶し、前記温度検出手
段で検出された液体の温度情報から冷凍室内の食材の中
心部温度を推定し、推定した食材の中心部温度が最大氷
結晶生成帯の下限温度に到達するまで、冷却手段によっ
て前記液体の温度を前記最適液体温度に調節するように
構成された請求項2記載の冷凍機。5. The temperature detecting means detects the temperature of the heat transfer medium which is a liquid, and the cooling rate controlling means, for each type of food material, correlation information between the central temperature of the food material and the temperature of the liquid, Pre-stored with information of the optimum liquid temperature of the liquid which is predetermined that can realize the optimum cooling rate, and estimates the center temperature of the food in the freezer from the temperature information of the liquid detected by the temperature detecting means, The refrigerator according to claim 2, wherein the cooling means adjusts the temperature of the liquid to the optimum liquid temperature until the estimated central temperature of the food reaches the lower limit temperature of the maximum ice crystal formation zone.
温度を検出し、前記食材の中心部温度が最大氷結晶生成
帯にある間は、前記食材の冷却速度をその食材の種類に
ついて予め決められた最適冷却速度に制御する冷凍方
法。6. The temperature of the center of the food is detected when the food is frozen, and the cooling rate of the food is determined by the type of the food while the temperature of the center of the food is in the maximum ice crystal formation zone. A refrigeration method in which the cooling rate is controlled to a predetermined optimum cooling rate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001295217A JP2003106726A (en) | 2001-09-27 | 2001-09-27 | Freezer and method of freezing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001295217A JP2003106726A (en) | 2001-09-27 | 2001-09-27 | Freezer and method of freezing |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003106726A true JP2003106726A (en) | 2003-04-09 |
Family
ID=19116687
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001295217A Pending JP2003106726A (en) | 2001-09-27 | 2001-09-27 | Freezer and method of freezing |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003106726A (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1510769A1 (en) * | 2003-08-29 | 2005-03-02 | Afinox S.r.l. | Method and system for the refrigeration of food products |
JP2005198554A (en) * | 2004-01-15 | 2005-07-28 | Matsushita Electric Ind Co Ltd | Preservation device |
JP2006118768A (en) * | 2004-10-20 | 2006-05-11 | Matsushita Electric Ind Co Ltd | Cooking system |
JP2006250378A (en) * | 2005-03-08 | 2006-09-21 | Hoshizaki Electric Co Ltd | Cooling storage |
FR2885764A1 (en) * | 2005-05-20 | 2006-11-24 | Westfaliasurge Japy Soc Par Ac | Cooling of a milk in a tank, comprises determining speed of the cooling of the milk and controlling the speed of the cooling |
JP2009228966A (en) * | 2008-03-21 | 2009-10-08 | Toshiba Corp | Refrigerator |
JP2015230124A (en) * | 2014-06-04 | 2015-12-21 | 三菱重工冷熱株式会社 | Freezing method and freezer |
JP2017120144A (en) * | 2015-12-28 | 2017-07-06 | 貴徳 後藤 | Freezing device |
JP2019135973A (en) * | 2018-02-09 | 2019-08-22 | 株式会社スイーツ・ワールド | Production method of frozen vegetable |
KR20190103082A (en) * | 2019-05-30 | 2019-09-04 | 엘지전자 주식회사 | Artificial intelligent refrigerator, and temperature control system and method of the same |
JP2021018038A (en) * | 2019-07-23 | 2021-02-15 | 東京瓦斯株式会社 | Thermal management method, system, program, and equipment |
JP2021021505A (en) * | 2019-07-25 | 2021-02-18 | 東京瓦斯株式会社 | Temperature management method, system, program and apparatus |
JP2021042939A (en) * | 2019-09-13 | 2021-03-18 | 東京瓦斯株式会社 | Method, system, program and apparatus for managing cooling |
CN113983712A (en) * | 2021-10-22 | 2022-01-28 | 珠海格力节能环保制冷技术研究中心有限公司 | Unit operation control method and device, two-stage unit and refrigeration equipment |
CN115244398A (en) * | 2020-03-05 | 2022-10-25 | 国立大学法人北海道大学 | Freshness/maturity evaluation device for edible animal and freshness/maturity evaluation method |
-
2001
- 2001-09-27 JP JP2001295217A patent/JP2003106726A/en active Pending
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1510769A1 (en) * | 2003-08-29 | 2005-03-02 | Afinox S.r.l. | Method and system for the refrigeration of food products |
JP2005198554A (en) * | 2004-01-15 | 2005-07-28 | Matsushita Electric Ind Co Ltd | Preservation device |
JP2006118768A (en) * | 2004-10-20 | 2006-05-11 | Matsushita Electric Ind Co Ltd | Cooking system |
JP2006250378A (en) * | 2005-03-08 | 2006-09-21 | Hoshizaki Electric Co Ltd | Cooling storage |
FR2885764A1 (en) * | 2005-05-20 | 2006-11-24 | Westfaliasurge Japy Soc Par Ac | Cooling of a milk in a tank, comprises determining speed of the cooling of the milk and controlling the speed of the cooling |
JP2009228966A (en) * | 2008-03-21 | 2009-10-08 | Toshiba Corp | Refrigerator |
JP2015230124A (en) * | 2014-06-04 | 2015-12-21 | 三菱重工冷熱株式会社 | Freezing method and freezer |
JP2017120144A (en) * | 2015-12-28 | 2017-07-06 | 貴徳 後藤 | Freezing device |
JP7126236B2 (en) | 2018-02-09 | 2022-08-26 | 合同会社フローズンクラフト工房 | Method for producing frozen vegetables |
JP2019135973A (en) * | 2018-02-09 | 2019-08-22 | 株式会社スイーツ・ワールド | Production method of frozen vegetable |
KR20190103082A (en) * | 2019-05-30 | 2019-09-04 | 엘지전자 주식회사 | Artificial intelligent refrigerator, and temperature control system and method of the same |
WO2020241935A1 (en) * | 2019-05-30 | 2020-12-03 | 엘지전자 주식회사 | Artificial intelligence-based refrigeration device and temperature control system and method thereof |
US11994339B2 (en) | 2019-05-30 | 2024-05-28 | Lg Electronics Inc. | Artificial intelligent refrigerator and system and method for controlling temperature thereof |
KR102761553B1 (en) * | 2019-05-30 | 2025-02-04 | 엘지전자 주식회사 | Artificial intelligent refrigerator, and temperature control system and method of the same |
JP2021018038A (en) * | 2019-07-23 | 2021-02-15 | 東京瓦斯株式会社 | Thermal management method, system, program, and equipment |
JP7281357B2 (en) | 2019-07-23 | 2023-05-25 | 東京瓦斯株式会社 | Methods, systems, programs and equipment for temperature control |
JP2021021505A (en) * | 2019-07-25 | 2021-02-18 | 東京瓦斯株式会社 | Temperature management method, system, program and apparatus |
JP2021042939A (en) * | 2019-09-13 | 2021-03-18 | 東京瓦斯株式会社 | Method, system, program and apparatus for managing cooling |
CN115244398A (en) * | 2020-03-05 | 2022-10-25 | 国立大学法人北海道大学 | Freshness/maturity evaluation device for edible animal and freshness/maturity evaluation method |
CN113983712A (en) * | 2021-10-22 | 2022-01-28 | 珠海格力节能环保制冷技术研究中心有限公司 | Unit operation control method and device, two-stage unit and refrigeration equipment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4595972B2 (en) | refrigerator | |
JP2003106726A (en) | Freezer and method of freezing | |
US5033272A (en) | Freezer-refrigerator | |
WO2018205385A1 (en) | Overcooled meat fresh-preservation control method, controller, and refrigerator | |
WO2018205384A1 (en) | Ice-free meat fresh-preservation control method, controller, and refrigerator | |
JP4775344B2 (en) | refrigerator | |
WO2018205386A1 (en) | Partial-freezing meat fresh-preservation control method, controller, and refrigerator | |
WO2019085727A1 (en) | Freeze determining method for food in refrigerator, preservation method for food in refrigerator, and preservation refrigerator | |
CN107631549A (en) | Food freezing determination methods, refrigerator food preservation method and fresh-keeping refrigerator in refrigerator | |
JP4682479B2 (en) | Freezer refrigerator | |
KR101652513B1 (en) | Freezing storage method | |
JP2005201533A (en) | Storage | |
JPH0510643A (en) | Method for cooling food material in cooling device | |
JP4776670B2 (en) | Frozen storage device, refrigerator, and frozen storage method | |
KR101443638B1 (en) | Refrigerator | |
JP4308070B2 (en) | Defrost control device for direct cooling refrigerator | |
JP3813372B2 (en) | refrigerator | |
JP2003021446A (en) | Freezing machine and freezing method | |
JP6974089B2 (en) | Freezing / refrigerating showcase | |
JP2003343956A (en) | Refrigerator | |
JPH07253265A (en) | Defreezing method and defreezing device for frozen food | |
JP2002034534A (en) | Temperature control system of thawing device | |
KR100686133B1 (en) | Kimchi refrigerator and its control method | |
KR20090124496A (en) | Refrigerator and its control method | |
JP2004076950A (en) | Refrigerator |